当前位置:文档之家› 碳纳米管材料导热性能的实验研究

碳纳米管材料导热性能的实验研究

碳纳米管材料导热性能的实验研究
碳纳米管材料导热性能的实验研究

华南理工大学硕f:学位论文

或(0,m)时,手性角0=00,管壁柱面上碳六元环的两个C.C键垂直于管中心轴,此类CNT被称为“锯齿形CNT”,因为此时碳原子在管子圆周上的分布呈锯齿状;当月≠m≠0,00<口<300时,CNT的构型为螺旋型碳纳米管,螺旋型碳纳米管具有手性特征,所以被称为“手性CNT”,如图1.1所示。

以(117m)=(5,5)的扶手椅管为例,其结构如图1.1a)所示,其周长L=475a,直径d,=o.678nm。该管的直径,与C60分子的直径(0.71nm)很接近,所以在该管两端均可置一c60半球,此C60半球的周长也呈扶手椅状,它是垂直于C60分子的五次对称轴一部分得到的。(11,m)=(9,0)之字形纳米管的结构如图1-lb)所示,其周长L=9a。直径dr=0.705nm。在此管两端也可以罩上C60半球。此半球的边沿也呈之字形,它是垂直于C60分子的三次对称轴平分得到。图1—1c)所示的是(10,5)手性纳米管,其周长上=√175Ⅱ,直径dr=1.036nm,其两端可罩C…半球。

1.3.2双壁与多壁碳纳米管的结构模型

由两层或两层以上的石墨片卷曲而成的管被称为DWCNTs或MWCNTs,如图1—3所示。他们的层结构可能是同一fi,圆柱或是蛋卷状,还有可能是两者的混合性的结构。DWCNTs与MWCNTs的结构比较复杂,不易确定。

图卜3双肇CNT

Fig.1-3Double—wallcarbonnanotube

1.4碳纳米管的制备方法

自1991年Iijima发现CNTs以来,已有数十种合成CNTs的方法问世,也发现一些新的转化途径…。这些方法方法丰要包括以下几种:

1.电弧法

1993年,Tijima教授与IBM实验室的Bethune教授改进了电弧法,他们在阳极置入催化荆金属,在放电室器壁中发现了单层碳纳米管1101。

华南理工大学硕E学位论文

系在小的温度区域呈线性,这就导致电阻也有频率为2。的交流成分,在频率为m的交流电流的作用下,欧姆定律给出电压由频率为Ca)和3u的成分组成。从频率为3u的交流电压的产生过程可以看出,这种交流电压与材料的热导率和热容有关,可以利用这样的性质设计实验对材料的物理参数进行测量m1。

1999年,中国科学院物理所谢思深研究小组为了研究CNTs的热物性,开发了一种『一J时测量细条状样品的导热系数和比热容的3m,这种方法测得的MWCNTs的导热系数的值大约是25W/(m?K1。这个实验装置需要创造一个很高真空环境,同时还要屏蔽热流以消除被测物体与环境的辐射热流。碳纳米管管束被四根柱子支起来,如图1—6所示,选取MWCNTs中间一段进行实验,测量交流电压v。和v3。,从而间接的计算出MWCNTs的导热系数和比热。他们采用这种方法测量了定向MWCNTs的导热系数和比热容,他们发现MWCNTs的导热系数在.153℃以下,与温度成平方关系,.153℃以上趋于线性。实验中MWCNTs管束的长度是1mill,直径是10rtm,它的质量大概1099,这么小量的测量在众多测量方法中还是很罕见的[4Sl““I。

图1.63∞法测量细丝状MWCNTs束比热和导热系数的四个探针装置图[421

Fig.1-6Illustrationofthefour-probeconfigurationformeasuringthespecificheatandthermal

MWCNTsbundles【45】

conductivityof

这种测量方法使得热学性质的测量如同电阻测量那样容易。对于铂丝的测量结果证明这种方法是简单、正确和可靠的,用来测量极微量样品的导热系数和比热容,优于常规方法。但是这种方法假定MWCNTs束是均匀的丝状样品,同时不考虑辐射,以及热损失,还假定热传导是一维的。由于这系列的假设,以及MWCNTs的管与管之间的耦合、碰撞以及干扰也可能会影响导热性能的测定,冈此这种方法并不能客观地反映其导热机理。

4.微装配装置法测MWCNT的导热系数

20世纪80年代以前,人们对物质系统的研究分为宏观和微观两个层次,大约在80年代中期,人们提出了介观(mesoscopy)这一概念,并将尺度介于宏舭和微观之间,微装配装置法(MDM)就是在这一尺度对单个MWCNT的导热性能进行研究。2001年,美国柏克里大学的Kim等人开始对单个MWCNT的导热系数进行测量研究,他们开发了一个介观装置如图1—7所示,这个装置把碳纳

第一章绪论

米管应用到微机电系统中,用这个装置可以测量单个MWCNT的热物性。图l一7是微装配装置的扫描电镜图像,用电子束镀金法和蚀刻术制作了氮化硅/氧化硅/硅多层膜的悬挂式结构,装置中是一个由两个101am×10um相邻的厚度为O.51.tm

图1—7测量单个MCNT导热系数的悬挂式装置SEM图像,右上角是装置中间倾斜部分的放

大图像i461

Fig.1-7SEMimageofthesuspendeddevicetomeasurethethermalconductivityofanindividualcarbonnanotube,insetrepresentsangleddetailviewofthecentralpartofthedevicel461

的氮化硅膜岛状物,这两个岛状物悬挂了200p.m长的氮化硅支架。在每一个岛状物上,由电子束平版印刷术制作的Pt薄膜电阻器作为加热器可用来提高悬挂式岛状物的温度。这些加热器用悬挂着的支架上的金属线和衬垫联系。制作了悬挂式装置后,把MWCNT放置在这个装置上,给这两个悬挂式岛状物架起桥梁。放置样品过程与用作MWCNT扫描探针屁微顶点的制作很相似,以前经常把MWCNT到装置的预期部分。这种方法自然地产生一个MWCNT装置,用这个装置来测量桥接MWCNT部分的导热系数卜j热电能㈣一i“。

在室温下,Kim等人这种微装配悬挂式装置测量MWCNT的导热系数超过3000W/(m?K),这个数值比以前用多数CNTs测量得到值大两个数量级,基本上可以比得E理论预测值。他们认为由于反转声子散射的开始,在47℃时CNTs的导热系数对温度依赖性达到一个峰值。这种装置虽能反映碳纳米管的传热机理,但是这种装置制作比较复杂,测量比较麻烦,所用的仪器比较昂贵,且仅限于测量多壁碳纳米管,对其它类型的碳纳米管不适用。

5.脉冲光热反射法测MWCNTs的导热系数

2002年,新加坡的Yang等人用脉冲光热反射法(PPR)研究并测得MWCNTs的导热系数。他们在室温下测得MWCNTs层的导热系数大约是15W/(m?K),导热系数值与管长没有关系。如果取更少量的CNTs来测量,有效导热系数的值町以

尼龙_碳纳米管复合材料研究进展

基金项目:河南省教育厅自然科学基金项目(200510459101); 作者简介:李中原(1971-),男,博士研究生; 3通讯联系人:E 2mail :zhucs @https://www.doczj.com/doc/aa5161419.html,. 尼龙Π碳纳米管复合材料研究进展 李中原,刘文涛,许书珍,何素芹3,朱诚身3 (郑州大学材料科学与工程学院 郑州 450052) 摘要:碳纳米管(C NTs )由于其独特的结构,较高的长径比,较大的比表面积,且具有超强的力学性能和良好 的导热性,已经证明是塑料的非常优异的导电填料,聚合物基碳纳米管复合材料可望应用于材料领域的多个方面,尤其在汽车、飞机及其它飞行器的制造等军事和商业应用上带来革命性的突破。本文介绍了碳纳米管的结构形态和碳纳米管的制备、纯化、修饰方法及聚合物基碳纳米管复合材料的制备、性能,并综述了近几年来尼龙Π碳纳米管复合材料的研究进展及应用前景。 关键词:碳纳米管;尼龙;复合材料 引言 聚酰胺具有优良的机械性能、耐磨性、耐酸碱性、自润滑性等优点,居于五大工程塑料之首,被广泛用作注射及挤出成型材料,主要用于在机械、仪器仪表、汽车、纺织等方面,并将在轴承、齿轮、风扇叶片、汽车部件、医疗器材、油管、油箱、电子电器制品的制造方面发挥重要作用,尤其是作为汽车零部件及电器元件。由于酰胺极性基团存在极易吸水、尺寸稳定性差等缺点,使其应用受到了很大限制[1]。纳米复合材料是近年来发展十分迅速的一种新兴复合材料,被认为是21世纪最有发展前途的材料,已成为材料学、物理学、化学、现代仪器学等多学科领域研究的热点。热塑性塑料基纳米复合材料是研究最早、最多、应用最广的材料,聚合物Π蒙脱土纳米复合材料目前有的已实现了产业化[2]。碳纳米管由于其独特的结构、 奇异的性能和潜在的应用价值,在理论上是复合材料理想的增强材料。近年来聚合物Π碳纳米管复合材料的研究已成为纳米科学研究中的一个新热点。碳纳米管的发现可以追溯到1985年C 60 [3]的发现,1991年日本学者Iijima [4]在对电弧放电后的石墨棒进行显微观察时发现阳极上形成了圆柱状沉积,沉积主要 由柱状排列的平行的中空管状物形成,管状物的直径一般在几个到几十个纳米之间,而管壁厚度仅为几个纳米,故称之为碳纳米管C NTs (carbon nanotubes ),并在自然杂志上发表。碳纳米管具有超级的力学性能[5],在碳纳米管中,碳原子之间存在着三种基本的原子力包括:强的δ键合,C C 键之间的π键合以及多壁碳纳米管层与层之间的相互作用力,它们对碳纳米管的力学性能有着重要的贡献,理论和实验结果显示碳纳米管具有相当高的弹性模量,可达1TPa ,强度是钢的10~100倍,多壁碳纳米管MWC NTs (multiwalled carbon nanotubes )的轴向杨氏模量实验值为200G ~4000G Pa ,轴向弯曲强度为14G Pa ,轴向压缩强度为100G Pa ,并且具有超高的韧性,理论最大延伸率可达20%,密度却只有钢的六分之一。它耐强酸、强碱、耐热冲击、有优异的热,电性能;高温强度高、有生物相容性和自润滑性。在真空中2800℃以下不氧化,在空气中700℃以下基本不氧化,热传导是金刚石的两倍,导电性和铜一样。本文将从碳纳米管的纯化与修饰,尼龙Π碳纳米管复合材料的制备方法及其性能特征三方面对尼龙Π碳纳米管复合材料的研究进展进行总结。

黑磷详细性能参数

黑磷性能参数 黑磷性能参数,这是大家很关心的内容。科学研究从未停止对于新材料的研究,比如石墨烯材料,自发现以来就被应用于多种电子产品的生产,被称之为奇迹材料。而如今,科学家们又发现黑鳞,与石墨烯相比,特点就是低成本的制造工艺,在生产生活中有很多优势,也被预测也会取代石墨烯。下面就由先丰纳米简单的介绍黑磷性能参数。 二维晶体是由几层单原子层堆叠而成的纳米厚度的平面晶体,比如石墨烯。但是石墨烯没有半导体带隙,也就是说它难以完成导体和绝缘体之间的转换,不能实现数字电路的逻辑开与关。而同样由单原子层堆叠而成的黑磷,则具有一个半导体带隙。 研究人员把黑磷做成纳米厚度的二维晶体后,发现它有非常好的半导体性质,这样就有可能用在未来的集成电路里。黑磷二维晶体有良好的电子迁移率,还有非常高的漏电流调制率,是石墨烯的10000倍,与电子线路的传统材料硅类似。 除了电性能外,黑磷的光学性能同包括硅和硫化钼在内的其他材料相比也有优势。它的半导体带隙是直接带隙,即电子导电能带底部和非导电能带顶部在同一位置,实现从非导到导电,电子只需要吸收能量,而传统的硅或者硫化钼等都是间接带隙,不仅需要能量,还要改变动量。这意味着黑磷和光可以直接耦合,这个特性让黑磷成为未来光电器件的一个备选材料。可以检测整个可见光到近红外区域的光谱。 这些初步的研究结果,远没有达到黑磷性能的极限,还有极大的拓展空间。黑磷还只是一个刚刚被发现的材料,现在其前景作任何的推断都还太早。这个材料的很多特性还有待发掘。

如果想要了解更多关于黑磷的内容,欢迎立即咨询先丰纳米公司。 先丰纳米是江苏先进纳米材料制造商和技术服务商,专注于石墨烯、类石墨烯、碳纳 米管、分子筛、黑磷、银纳米线等发展方向,现拥有石墨烯粉体、石墨烯浆料和石墨烯膜 完整生产线。 自2009年成立以来一直在科研和工业两个方面为客户提供完善服务。科研客户超过 一万家,工业客户超过两百家。 南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现 专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及 技术提供商。 2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米 材料制造和技术服务中心。现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。 欢迎广大客户和各界朋友莅临我司指导!欢迎电话咨询或者登陆我们的官网进行查看。

碳纳米管

碳纳米管简介 潘春旭 =================================== 武汉大学 物理科学与技术学院 地址:430072湖北省 武汉市 武昌区 珞珈山 电话:027-8768-2093(H);8721-4880(O) 传真:027-8765-4569 E-Mail: cxpan@https://www.doczj.com/doc/aa5161419.html,;cxpan@https://www.doczj.com/doc/aa5161419.html, 个人网页:https://www.doczj.com/doc/aa5161419.html,/cxpan =================================== 1. 什么是碳纳米管? 1991年日本NEC公司的饭岛纯雄(Sumio Iijima)首次利用电子显微镜观察到中空的碳纤维,直径一般在几纳米到几十个纳米之间,长度为数微米,甚至毫米,称为“碳纳米管”。理论分析和实验观察认为它是一种由六角网状的石墨烯片卷成的具有螺旋周期管状结构。正是由于饭岛的发现才真正引发了碳纳米管研究的热潮和近十年来碳纳米管科学和技术的飞速发展。 按照石墨烯片的层数,可分为: 1) 单壁碳纳米管(Single-walled nanotubes, SWNTs):由一层石墨烯片组成。单壁管典型的直 径和长度分别为0.75~3nm和1~50μm。又称富勒管(Fullerenes tubes)。 2) 多壁碳纳米管(Multi-walled nanotubes, MWNTs):含有多层石墨烯片。形状象个同轴电缆。 其层数从2~50不等,层间距为0.34±0.01nm,与石墨层间距(0.34nm)相当。多壁管的典 型直径和长度分别为2~30nm和0.1~50μm。 多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常布满小洞样的缺陷。与多壁管相 比,单壁管是由单层圆柱型石墨层构成, 其直径大小的分布范围小,缺陷少,具有 更高的均匀一致性。无论是多壁管还是单 壁管都具有很高的长径比,一般为100~ 1000,最高可达1000~10000,完全可以 认为是一维分子图1 碳纳米管原子排列结构示意图 2. 碳纳米管的独特性质 1) 力学性能 碳纳米管的抗拉强度达到50~200GPa,是钢的100倍,密度却只有钢的1/6,至少比常规石墨纤维高一个数量级。它是最强的纤维,在强度与重量之比方面,这种纤维是最理想的。如果用碳纳米管做成绳索,是迄今唯一可从月球挂到地球表面而不会被自身重量拉折的绳索,如果用它做成地球——月球载人电梯,人们来往月球和地球献方便了。用这种轻而柔软、结实的材料做防弹背心那就更加理想了。 除此以外,它的高弹性和弯曲刚性估计可以由超过兆兆帕的杨氏模量的热振幅测量证实。对于具有理想结构的单层壁的碳纳米管,其抗拉强度约800GPa;对于多层壁,理论计算太复杂,难于给出一确定的值。碳纳米管的结构虽然与高分子材料的结构相似,但其结构却比高分子材料稳定得多。

碳纳米管的性质性能及其应用前景

碳纳米管的性质性能其应用前景 The Properties and Applications of Carbon Nano-Tubes 张雅坤北京师范大学化学学院201411151935 摘要:从1991年被正式认识并命名至今,碳纳米管凭借其特殊的结构及异常的力学、电学和化学性能获得了材料、物理、电子及化学界的广泛关注。近些年随着碳纳米管及纳米材料研究的深入,其广阔的应用前景也不断地展现出来。本文主要对碳纳米管目前的性质性能及其应用前景进行了系统详细的介绍【8】。 关键词:碳纳米管、无机化学、性质性能、应用前景 一、综述 1.发展历史与研究进程 在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛(Lijima)在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。 1993年,S. Lijima等和D. S. Bethune等同时报道了采用电弧法,在石墨电极中添加一定的催化剂,可以得到仅仅具有一层管壁的碳纳米管,即单壁碳纳米管产物。

1997年,A. C. Dillon等报道了单壁碳纳米管的中空管可储存和稳定氢分子,引起广泛的关注。相关的实验研究和理论计算也相继展开。据推测,单壁碳纳米管的储氢量可达10%(质量比)。此外,碳纳米管还可以用来储存甲烷等其他气体。但该猜测在后来被证实是错误的,碳纳米管无法用于储氢的主要问题有两个:一是假如作为容器进行储氢,则无法对其进行可控的封闭和开启;二是假如用于氢气吸附,则其吸附率不超过1%(质量分数)。 能否控制单壁碳纳米管的生长是近二十余年来一直困扰着碳纳米管研究领域科学家们的难题,能否找到控制方法也成为碳纳米管应用的瓶颈。2014年,这道世界性难题被北京大学李彦教授研究团队攻克,该团队在全球首次提出单壁碳纳米管生长规律的控制方法,研究成果已于2014年6月26日发表在国际权威学术期刊《自然》杂志上,这是碳纳米管研究方面的又一大突破。 2.碳纳米管的制备方法 常用的碳纳米管制备方法主要有:电弧放电法、激光烧蚀法、化学气相沉积法(碳氢气体热解法)、固相热解法、辉光放电法、气体燃烧法以及聚合反应合成法等。 2.1电弧放电法 电弧放电法是生产碳纳米管的主要方法。1991年日本物理学家饭岛澄男就是从电弧放电法生产的碳纤维中首次发现碳纳米管的。电弧放电法的具体过程是:将石墨电极臵于充满氦气或氩气的反应容器中,在两极之间激发出电弧,此时温度可以达到4000度左右。在这种条件下,石墨会蒸发,生成的产物有富勒烯(C60)、无定型碳和单壁或多壁的碳纳米管。通过控制催化剂和容器中的氢气含量,可以

碳纳米管纳米材料的应用要点

碳纳米管及其复合材料在储能电池中的应用 摘要碳纳米管具有良好的机械性能和导电性、高化学稳定性、大表面积以及独特的一维结构,选择合适的方法制备出碳纳米管复合材料,可以使其各种物理化学性能得到增强, 因而在很多领域有着极大的应用前景,尤其是在储能电池中的应用。本文分析了碳纳米管及其复合材料的特点,总结了碳纳米管的储锂机理,对其发展趋势作了展望。 关键词碳纳米管复合材料储能电池应用 Abstract carbon nanotubes(CNTs) are nanometer-sized carbon materials with the characteristics of unique one-dimensional geometric structure,large surface area,high electrical conductivity,elevated mechanical strength and strong chemical inertness. Selecting appropriate methods to prepare carbon nanotube composites can enhance physical and chemical properties , and these composites have a great future in many areas,especially in energy storage batteries . In this paper, based on the analysis and comparison of the advantages and disadvantages of carbon nanotube composites,the enhancement mechanisms of the CNTs catalysts are introduced. Afterward,the lithium ion storage properties are summarized according to the preparation methods of composite materials. Finally, the prospects and challenge for these composite materials are also discussed. Keywords carbon nanotube; composite; energy storage batteries; application 1 引言 碳纳米管(CNTs)在2004 年被人们发现,是一种具有特殊结构的一维量子材料, 它的径向尺寸可达到纳米级, 轴向尺寸为微米级, 管的两端一般都封口, 因此它有很大的强度, 同时巨大的长径比有望使其制作成韧性极好的碳纤维。碳纳米管由于其独特的一维纳米形貌被作为锂离子电池负极材料广泛研究,通过对碳纳米管进行剪切,官能化及掺杂等方法进行改性处理,能有效的减少碳纳米管的首次不可逆容量,增加可逆的储锂比容量。此外,碳纳米管的中空结构也成为抑制高容量金属及金属氧化物体积膨胀理想复合基体。本文中,我们研究了碳纳米管的储锂性能,考察了碳纳米管作为锡类复合材料基体,其内部限域空间对高容量金属及金属氧化物的储锂性能促进的具体原因。该研究结果为碳纳米管以及其他具有限域空间的结构在锂离子电池中的应用提供了参考。 2 碳纳米管的储锂机理和应用 相比广泛应用的石墨类材料,碳纳米管在锂离子电池负极材料中有其独特的应用优势。首先,碳纳米管的尺寸在纳米级,管内及间隙空间也都处于纳米尺寸级,因而具有纳米材料的小尺寸效应,能有效的增加锂离子在化学电源中的反应活性空间;其次,碳纳米管的比表面积较大,能增加锂离子的反应活性位,并且随着

碳纳米管综述

碳纳米管综述 摘要:本文主要介绍碳纳米管的发现及发展过程,并说明碳纳米管的制备方法及其制备技术。同时也叙述碳纳米管的各种性能与应用。 引言:在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。 正文: 碳纳米管的制备: 碳纳米管的合成技术主要有:电弧法、激光烧蚀(蒸发)法、催化裂解或催化化学气相沉积法(CCVD,以及在各种合成技术基础上产生的定向控制生长法等。电弧法 利用石墨电极放电获得碳纳米管是各种合成技术中研究得最早的一种。研究者在优化电弧放电法制取碳纳米管方面做了大量的工作。 T. W. Ebbeseo[2]在He保护介质中石墨电弧放电,首次使碳纳米管的合成达到了克量级。为减少相互缠绕的碳纳米管在阴极上的烧结,D.T.Collbert[3]将石墨阴极与水冷铜阴极座连接,大大减少了碳纳米管缺陷。C. Journet[4]等在阳极中填人石墨粉末和铱的混合物,实现了SWNTs的大量制备。研究发现,铁组金属、一些稀土金属和铂族元素或以单个金属或以二金属混合物均能催化SWNTs 合成。 近年来,人们除通过调节电流、电压,改变气压及流速,改变电极组成,改进电极进给方式等优化电弧放电工艺外,还通过改变打弧介质,简化电弧装置。 综上所述,电弧法在制备碳纳米管的过程中通过改变电弧放电条件、催化剂、电极尺寸、进料方式、极间距离以及原料种类等手段而日渐成熟。电弧法得到的碳纳米管形直,壁簿(多壁甚至单壁).但产率偏低,电弧放电过程难以控制,制备成本偏高其工业化规模生产还需探索。 催化裂解法或催化化学气相沉积法(CCVD) 催化裂解法是目前应用较为广泛的一种制备碳纳米管的方法。该方法主要采用过渡金属作催化剂,适于碳纳米管的大规模制备,产物中的碳纳米管含量较高,但碳纳米管的缺陷较多。 催化裂解法制备碳纳米管所需的设备和工艺都比较简单,关键是催化剂的制备和分散。目前用催化裂解法制备碳纳米管的研究主要集中在以下两个方面:大规模制备无序的、非定向的碳纳米管;制备离散分布、定向排列的碳纳米管列阵。一般选用Fe, Co、Ni及其合金作催化剂,粘土、二氧化硅、硅藻土、氧化铝及氧化镁等作载体,乙炔、丙烯及甲烷等作碳源,氢气、氮气、氦气、氩气或氨气作稀释气,在530℃~1130℃范围内,碳氢化合物裂解产生的自由碳离子在催化剂作用下可生成单壁或多壁碳纳米管。1993年Yacaman等人[5]采用此方法,用Fe催化裂解乙炔,在770℃下合成了多壁碳纳米管,后来分别采用乙烯、聚乙烯、丙烯和甲烷等作为碳源,也都取得了成功。为使碳离子均匀分布,科研人员还用等离子加强或微波催化裂解气相沉积法制备碳纳米管。 激光蒸发法

碳纳米管的性质与应用

碳纳米管的性质与应用 【摘要】 本文主要介绍了碳纳米管的结构特点,制备方法,特殊性质,由于碳纳米管独特性质而产生的广泛应用,并对其前景进行展望。 【关键词】 碳纳米管场发射复合材料优良性能 【前言】 自日本NEC科学家Lijima发现碳纳米管以来,碳纳米管研究一直是国际新材料领域研究的热点。由于碳纳米管具有特殊的导电性能、力学性质及物理化学性质等,故其在许多领域具有其广阔的应用前景,自问世以来即引起广泛关注。目前,国内外有许多科学家对碳纳米管进行研究,科研成果颇丰,尤其是碳纳米管在复合材料、储氢及催化等领域的应用。 【正文】 一、碳纳米管的结构 碳纳米管中碳原子以sp2杂化为主,同时六角型网格结构存在一定程度的弯曲,形成空间拓扑结构,其中可形成一定的sp3杂化键,即形成的化学键同时具有sp2和sp3混合杂化状态,而这些p 轨道彼此交叠在碳纳米管石墨烯片层外形成高度离域化的大π 键,碳纳米管外表面的大π 键是碳纳米管与一些具有共轭性能的大分子以非共价键复合的化学基础[1]。 对多壁碳纳米管的光电子能谱研究结果表明,不论单壁碳纳米管还是多壁碳纳米管,其表面都结合有一定的官能基团,而且不同制备方法获得的碳纳米管由于制备方法各异,后处理过程不同而具有不同的表面结构。一般来讲,单壁碳纳米管具有较高的化学惰性,其表面要纯净一些,而多壁碳纳米管表面要活泼得多,结合有大量的表面基团,如羧基等。以变角X 光电子能谱对碳纳米管的表面检测结果表明,单壁碳纳米管表面具有化学惰性,化学结构比较简单,而且随着碳纳米管管壁层数的增加,缺陷和化学反应性增强,表面化学结构趋向复杂化。内层碳原子的化学结构比较单一,外层碳原子的化学组成比较复杂,而且外层碳原子上往往沉积有大量的无定形碳。由于具有物理结构和化学结构的不均匀性,碳

聚合物碳纳米管复合材料研究综述

聚合物/碳纳米管复合材料研究综述 摘要 综述了目前碳纳米管在填充聚合物来制备介电、导电、吸波、导热等复合材料方面的应用。对常见的几种聚合物/碳纳米管复合材料的制备工艺以及碳纳米管在聚合物中的分散方法进行了详细地阐述。最后对聚合物/碳纳米管在研究过程中存在的问题和未来的研究方向进行了相应地分析和展望。 关键词:碳纳米管; 逾渗理论; 复合材料; 制备工艺; 分散 Review of Research on Polymer /Carbon Nanotube Composite Abstract The current carbon nanotube-filled polymer compound to prepare the electricity,conductive,absorbing,thermal conductivity,and other aspects of application of composite materials are reviewed.Several common polymer / carbon nanotube composite preparation process as well as the dispersion of carbon nanotubes in polymer are elaborated.Finally,the polymer /carbon nanotube in the study process and future research is analyzed and prospected. Key words: carbon nanotubes; percolation theory; composite; preparation; dispersion

碳纳米管的性能综述

碳纳米管的性能综述 摘要 碳纳米管因为性能多方面并且应用广泛而受到很多研究员的关注,本文将对碳纳米管的几个性能的研究进行综述,包括碳纳米管的碳纳米管/FeS类Fenton催化剂催化性能、纳米连接性能、碳纳米管增强复合材料风机叶片性能、碳纳米管稳定性能分析、碳纳米管机械强度、碳纳米管吸附特性的综述。 关键字:碳纳米管性能催化剂催化性能连接性能稳定性能纤维的性能吸附特性 碳纳米管/FeS类Fenton催化剂催化性能 杨明轩等以浮动催化热分解法制备碳纳米管( CNTs) ,采用氧化-还原-硫化的方法制备了CNTs /FeS催化剂,采用X射线衍射( XRD) 透射电子显微镜( TEM) 和热重( TG) 分析等技术对催化剂进行了结构表征。将CNTs /FeS作为类Fenton催化剂用于水中环丙沙星的去除,研究了降解过程中H2O2 浓度CNTs /FeS催化剂的投加量环丙沙星浓度及pH等因素对催化降解性能的影响。结果表明,CNTs /FeS类Fenton催化反应在H2O2 浓度为20mmol /L和CNTs /FeS催化剂的投加量为10 mg的条件下具有最优的降解效果,其催化反应过程符合一级动力学方程,且具有更加宽泛的pH适应范围( pH=3 ~8) ,同时,CNTs /FeS类Fenton 催化剂在使用寿命方面也具有一定的优势.结论是采用碳纳米管原始样品制备了CNTs /FeS 类Fenton催化剂,并应用于环丙沙星的催化降解反应中,在pH=3 ~8范围内可保持较高去除率( 可达89%) ; 当H2O2 浓度为20mmol /L时,去除率最高( 可达90%) ; CNTs /FeS催化剂催化降解环丙沙星反应过程符合表观一级动力学方程。CNTs /FeS类Fenton催化反应在固液比1 ∶2的情况下,循环使用4次后仍然保持较高的催化降解效率。 碳纳米管的连接性能 2002年,Derycke等采用恒定的电流施加于Au电极结果表明,在焦耳热作用下,单壁碳纳米管( SWCNTs) 与金电极接触处的氧气等吸附物发生脱附,并获得了较低的接触电阻。 2006年,Chen等提出一种新颖的超声纳米焊接技术该技术使用超高频微幅振动的压头,成功地将CNTs压焊到金属电极上,形成可靠的电接触结果表明,焊接后的结构具有较高的机械强度和较低的接触电阻采用这种超声纳米焊接技术,能极大地改善基于CNTs的场效应晶体管性能。目前的纳米连接技术主要包括局部焦耳热法高温退火法电子束焊接法超声纳米焊接和原子力显微镜操纵法。 2011年,Karita等研究了多壁碳纳米管( MWCNTs) 和金电极间的电接触,并在接触处施加电流结果表明,当电流密度达到108A /cm2时,金表面沿着MWCNTs端开始熔化当电流密度提高2倍时,观察到接触区域的金表面结构发生显著性改变,从而减少了接触阻抗该研究组还针对开口和封口CNTs与金电极的纳米连接进行了研究发现,在与Au电极接触的区域中,采用开口CNTs所获单位面积电导率约为封口CNTs电导率的4倍但同时观测到,采用局部焦耳热法时,所产生的大电流引起连接区域材料过度熔化及表面形貌的改变,进而影响器件的性能。 碳纳米管的稳定性能

碳纳米管对环氧树脂力学性能的影响

收稿日期:2004-10-18 基金项目:2004年度湖北省教育厅优秀中青年科技创新团队资助计划项目;武汉科技大学优秀中青年科技创新团队资助计划项目作者简介:袁观明,1978年出生,硕士研究生,主要从事碳纳米管改性及其树脂基复合材料的研究工作 碳纳米管对环氧树脂力学性能的影响 袁观明 李轩科 张铭金 吕早生 张光德 ( 武汉科技大学,武汉 430081) 文 摘 用浇铸成型法制备了碳纳米管/环氧树脂复合材料,研究了其力学性能,并探讨了该材料的微观结构与性能之间的关系。结果表明,碳纳米管对环氧树脂具有明显增强增韧作用。在碳纳米管加入量为3.0%(质量分数)时,复合材料的综合性能较好,拉伸强度、拉伸模量及断裂伸长率较纯树脂分别提高了90%~100%、60%~70%、150%~200%。 关键词 碳纳米管,环氧树脂,复合材料 Effect of Car bon N anotubes on t heM echanical Properti es of Epoxy Resi n Yuan Guan m ing Li Xuanke Zhang M ing jin L üZaosheng Zhang G uangde (W uhan Unive rsity o f Sc i ence &T echno logy ,W uhan 430081) Abst ract Carbon nano t u be /epoxy co m posit e s a r e prepa r ed by cast -m o l d i n g m ethod .The m echan ica l pr oper -ties of the co m posit e s and the r e lationship bet w een the pr operties and the m icrostr ucture o f the co m po sites a r e inve s -tigated .The results sho w that str ength and toughness of epoxy resin a r e obviousl y i m proved w ith t h e addition of car -bon nano t u bes i n resin .The tensil e str ess -strain curves indicate t h at t h e m echan ica l pr ope rty of co m posit e s is be tter t h an tha t o f pu r e resin m atrix .The co m posit e w ith 3.0w t %car bon nano tube conten t has m uch higher value t h an t h at of pure r esi n ,90%~100%,h i g he r in tensile streng th ,60%~70%h i g he r in tensile m odalus and 150%~200%higher i n breaking e longa tion .SE M i m ages ana l y ses of the frac t u re section o f the co m posite disp l a y tha t the add ition concen tration of carbon nanotubes in resin has a close rela tion w ith t h e m echan ica lp r opert y o f car bon nano -t u be /epoxy r e sin co m posit e s . K ey w ords Carbon nano t u bes ,Epoxy r esi n ,Co m po site 1 前言 碳纳米管自从1991年被日本学者Iiji m a 发现以来 [1] ,10多年来一直是世界科学研究的热点之 一[2] 。碳纳米管在理论上是复合材料理想的功能和增强材料,其超强的力学性能和热稳定性可以极大地改善聚合物基复合材料的强度和韧性。近年来,碳纳米管/聚合物纳米复合材料的研究已成为碳 纳米管应用研究的一个新热点[3,4] 。 固化后的环氧树脂通常较脆,耐疲劳性、耐热性、耐冲击性比较差,使其应用受到了一定的限制,因此对环氧树脂进行各种改性已成为该领域的重要研究课题[5~7] 。目前,国外已有不少关于用碳纳米 管改善环氧树脂性能的报道。如A llaou i [8] 、Scha -dle r [9] 、B reton [10] 等用共混法制得了碳纳米管/环氧 树脂复合材料,发现添加碳纳米管可以提高基体的 力学性能,但是由于碳纳米管的分散性问题未能得

碳纳米管纳米复合材料的研究现状及问题(一)

碳纳米管纳米复合材料的研究现状及问题(一) 文章介绍了碳纳米管的结构和性能,综述了碳纳米管/聚合物复合材料的制备方法及其聚合物结构复合材料和聚合物功能复合材料中的应用研究情况,在此基础上,分析了碳纳米管在复合材料制备过程中的纯化、分散、损伤和界面等问题,并展望了今后碳纳米管/聚合物复合材料的发展趋势。 。碳纳米管的这些特性使其在复合材料领域成为理想的填料。聚合物容易加工并可制造成结构复杂的构件,采用传统的加工方法即可将聚合物/碳纳米管复合材料加工及制造成结构复杂的构件,并且在加工过程中不会破坏碳纳米管的结构,从而降低生产成本。因此,聚合物/碳纳米管复合材料被广泛地研究。 根据不同的应用目的,聚合物/碳纳米管复合材料可相应地分为结构复合材料和功能复合材料两大类。近几年,人们已经制备了各种各样的聚合物/碳纳米管复合材料,并对所制备的复合材料的力学性能、电性能、热性能、光性能等其它各种性能进行了广泛地研究,对这些研究结果分析表明:聚合物/碳纳米管复合材料的性能取决于多种因素,如碳纳米管的类型(单壁碳纳米管或多壁碳纳米管),形态和结构(直径、长度和手性)等。文章主要对聚合物/碳纳米管复合材料的研究现状进行综述,并对其所面临的挑战进行讨论。 1聚合物/碳纳米管复合材料的制备 聚合物/碳纳米管复合材料的制备方法主要有三种:液相共混、固相共融和原位聚合方法,其中以共混法较为普遍。 1.1溶液共混复合法 溶液法是利用机械搅拌、磁力搅拌或高能超声将团聚的碳纳米管剥离开来,均匀分散在聚合物溶液中,再将多余的溶剂除去后即可获得聚合物/碳纳米管复合材料。这种方法的优点是操作简单、方便快捷,主要用来制备膜材料。Xuetal8]和Lauetal.9]采用这种方法制备了CNT/环氧树脂复合材料,并报道了复合材料的性能。除了环氧树脂,其它聚合物(如聚苯乙烯、聚乙烯醇和聚氯乙烯等)也可采用这种方法制备复合材料。 1.2熔融共混复合法 熔融共混法是通过转子施加的剪切力将碳纳米管分散在聚合物熔体中。这种方法尤其适用于制备热塑性聚合物/碳纳米管复合材料。该方法的优点主要是可以避免溶剂或表面活性剂对复合材料的污染,复合物没有发现断裂和破损,但仅适用于耐高温、不易分解的聚合物中。Jinetal.10]采用这种方法制备了PMMA/MWNT复合材料,并研究其性能。结果表明碳纳米管均匀分散在聚合物基体中,没有明显的损坏。复合材料的储能模量显著提高。 1.3原位复合法 将碳纳米管分散在聚合物单体,加入引发剂,引发单体原位聚合生成高分子,得到聚合物/碳纳米管复合材料。这种方法被认为是提高碳纳米管分散及加强其与聚合物基体相互作用的最行之有效的方法。Jiaetal.11]采用原位聚合法制备了PMMA/SWNT复合材料。结果表明碳纳米管与聚合物基体间存在强烈代写论文的黏结作用。这主要是因为AIBN在引发过程中打开碳纳米管的π键使之参与到PMMA的聚合反应中。采用经表面修饰的碳纳米管制备PMMA/碳纳米管复合材料,不但可以提高碳纳米管在聚合物基体中的分散比例,复合材料的机械力学性能也可得到巨大的提高。 2聚合物/碳纳米管复合材料的研究现状 2.1聚合物/碳纳米管结构复合材料 碳纳米管因其超乎寻常的强度和刚度而被认为是制备新一代高性能结构复合材料的理想填料。近几年,科研人员针对聚合物/碳纳米管复合材料的机械力学性能展开了多方面的研究,其中,最令人印象深刻的是随着碳纳米管的加入,复合材料的弹性模量、抗张强度及断裂韧性的提高。

六方氮化硼微片详细性能参数

六方氮化硼微片性能参数 六方氮化硼微片性能参数,大部人可能都不大了解。那什么是氮化硼?氮化硼是由氮原子和硼原子所构成的晶体(BN),其化学组成为43.6%的硼和56.4%的氮。氮化硼按晶型分,氮化硼被分为六方氮化硼、立方氮化硼、菱方氮化硼和纤锌矿氮化硼。下面就由先丰纳米简单的介绍六方氮化硼微片性能参数。 六方氮化硼性能参数: 1、高耐热性:3000℃升华,其强度1800℃为室温的2倍,1500℃空冷至室温数十次不破裂,在惰性气体中2800℃不软化。 2、高导热系数:热压制品为33W/M.K和纯铁一样,在530℃以上是陶瓷材料中导热最大的材料。 3、低热膨胀系数:2×10-6的膨胀系数仅次于石英玻璃,是陶瓷中最小的,加上其具有高导热性,所以抗热震性能很好。 4、优良的电性能:高温绝缘性好,25℃为1014Ω-cm,2000℃还可以达到103Ω-cm,是陶瓷中的高温绝缘材料,介电常数为4,可透微波和红外线。 5、良好的耐腐蚀性:与一般金属(铁、铜、铝、铅等)、贵重金属,半导体材料(锗、硅、砷化钾),玻璃,熔盐(水晶石、氟化物、炉渣)、无机酸、碱不反应。 6、低的摩擦系数:U为0.16,高温下不增大,比二硫化钼,石墨耐高温,氧化气氛可用到900℃,真空下可用到2000℃。 7、高纯度含硼高:其杂质含量小于10PPM,而含硼大于43.6%。

8、可机械加工性:其硬度为莫氏2,所以可用一般机械加工方法加工成精度很高的 零部件制品。 如果想要了解关于更多的六方氮化硼内容,欢迎立即咨询先丰纳米公司。 先丰纳米是江苏先进纳米材料制造商和技术服务商,专注于石墨烯、类石墨烯、碳纳 米管、分子筛、黑磷、银纳米线等发展方向,现拥有石墨烯粉体、石墨烯浆料和石墨烯膜 完整生产线。 自2009年成立以来一直在科研和工业两个方面为客户提供完善服务。科研客户超过 一万家,工业客户超过两百家。 南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现 专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及 技术提供商。 2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米 材料制造和技术服务中心。现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。 欢迎广大客户和各界朋友莅临我司指导!欢迎电话咨询或者登陆我们的官网进行查看。

碳纳米管

碳纳米管“太空天梯” 未来的“太空天梯” 碳纳米管是由石墨分子单层绕同轴缠绕而成或由单层石墨圆筒沿同轴层层套构而成的管状物。其直径一般在一到几十个纳米之间,长度则远大于其直径。1991年,日本NEC公司基础研究实验室的电子显微镜专家饭岛在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了这一特别的分子结构。 碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能。作为人类发现的力学性能最好的材料,碳纳米管有着极高的拉伸强度、杨氏模量和断裂伸长率。例如,碳纳米管的单位质量上的拉伸强度是钢铁的276倍,远远超过其他任何材料。 目前碳纳米管的研究现状 自从1991年碳纳米管被正式报道以来,为了提高其长度,全世界的碳纳米管研究者进行了大量艰辛的探索。然而一直到2009年,碳纳米管的最大长度只有18.5厘米,直到目前成功制备出单根长度达到半米以上的碳纳米管。这种有限的长度极大地限制了碳纳米管的实际应用。 碳纳米管的优点。 (1)界面层的存在和界面层厚度的增大均降低

碳纳米管和界面层的应力传递效率随长径比的变化了应力传递效率和纤维的饱和应力, 但同时增大了碳纳米管纤维的有效长度。所以界面层比较明显地承担了应力载荷, 则在碳纳米管复合材料中应该考虑界面层存在和界面层厚度的影响。 (2)碳纳米管的长径比只在较小时影响有效长度和应力传递效率。 长径比所影响的具体范围不同, 对碳纳米管有效长度为小于50 , 而对于应力传递效率则小于10 。 (3)碳纳米管的应力传递效率要远比界面层的应力传递效率大。 在碳纳米管复合材料中虽应要考虑界面层的影响, 但应力载荷的最主要承担者仍是碳纳米管纤维。对碳纳米管复合材料的应力场、纤维的饱和应力和应力传递效率以及有效长度的分析, 为碳纳米管复合材料力学性能的分析、结构优化和功能化设计以及寿命预测等做好必要的准备。 碳纳米管的缺点 (1)如何实现高质量碳纳米管的连续批量工业化生产。 碳纳米管的制备现状大致是:MWNTs能较大量生产,SWNTs多数处于实验室研制阶段,某些制备方法得到的碳纳米管生长机理还不明确,对碳纳米管的结构(管径、管长、螺旋度、壁厚等)还不能做到任意调节和控制,影响碳纳米管的产量、质量及产率的因素太多。 (2)有限的长度极大地限制了碳纳米管的实际应用。 提高了碳纳米管的长度,唯一的途径就是尽可能地提高其催化剂活性概率。对于碳纳米管的生长而言,在其生长过程中催化剂失活从而使其停止生长是一个不可逆转的规律,从而造成了超长碳纳米管很难达到很长的长度,并且也使其单位宽度上的生长密度急剧下降。 (3) 对人体的毒害作用 碳纳米管对人体存在一定的毒性作用,目前研究主要集中在肺脏毒性和细胞毒性,表现为可引起肺脏炎症、肉芽肿和细胞凋亡、活力下降、细胞周期改变等。其毒力大小与碳纳米管的特性有关,如结构、长度、表面积、制备方法、浓度、

石墨烯纳米片详细性能参数

石墨烯纳米片性能参数 石墨烯纳米片性能参数,这是我们在购买前需要了解的事情。石墨烯纳米片具有优良 的导电,润滑,耐腐,耐高温等特性。制备的石墨烯纳米片厚度在4~20nm,微片大小在5~10μm,小于20层。石墨烯纳米片在导热方面显示了它优异的特性,应用在导热胶,导热高分子复合材料,散热材料中。同时在导电橡胶,导电塑料,抗静电材料方面有广阔的 应用前景。下面就由先丰纳米给大家简单的介绍石墨烯纳米片性能参数。 性能: 1、具有高比表面积和发达的中孔,孔隙结构分布合理。 2、具有优异的吸波防辐射屏蔽性能,可有效降低内阻,屏蔽辐射。, 3、石墨烯除了有很好的导电性能外,还具备优异的机械性能及导热性能,是导电涂料添加剂 4、石墨烯的导热系数高,将其用于导热涂料可有效传导材料的内部温度,增强导热效果。 应用领域: 1、导电涂料,纳米导电复合材料、纳米电子器件、塑料、橡胶和锂离子电池等方面具 有广泛的应用前景。 2、防屏蔽涂料,石墨烯具有优异的吸波,防辐射屏蔽功能,可直接应用于防屏蔽涂料,军工等防辐射材料。 3、塑料里掺入百分之一的石墨烯,能将它们转变成电导体,且增强抗热和机械性能。

如果想要了解更多关于石墨烯纳米片的内容,欢迎立即咨询先丰纳米。 先丰纳米是江苏先进纳米材料制造商和技术服务商,专注于石墨烯、类石墨烯、碳纳 米管、分子筛、黑磷、银纳米线等发展方向,现拥有石墨烯粉体、石墨烯浆料和石墨烯膜 完整生产线。 自2009年成立以来一直在科研和工业两个方面为客户提供完善服务。科研客户超过 一万家,工业客户超过两百家。 南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现 专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及 技术提供商。 2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米 材料制造和技术服务中心。现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。 欢迎广大客户和各界朋友莅临我司指导!欢迎电话咨询或者登陆我们的官网进行查看。

碳纳米管材料结构与性能的研究

碳纳米管材料结构与性能的研究 中文摘要 英文摘要 关键词 绪论 研究背景 碳纳米管是20世纪90年代发现的一种碳材料的一维形式,具有优良的物理化学性能。纳米材料由于其尺寸处在原子簇和宏观物体交界的过渡区域,具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等特性,展现出独特的电学、光学和机械特性,碳纳米管在物理、化学、信息技术、环境科学、材料科学、能源技术、生命及医学科学等领域均具有广阔的应用前景。正是由于碳纳米管这种潜在的价值和广泛的应用前景,使有关碳纳米管材料的研究成为最受关注的研究领域之一。纳米材料这一概念形成以后,世界各国都给予了极大关注,它所具有的独特性质,给物理、化学、材料、生物、医药等领域的研究带来了新的机遇。

碳纳米管材料的分类 碳纳米管可以看做是石墨烯片层卷曲而成,因此按照石墨烯片的层数可分为:单壁碳纳米管(或称单层碳纳米管,Single-walled Carbon nanotubes, SWCNTs)和多壁碳纳米管(或多层碳纳米管,Multi-walled Carbon nanotubes, MWCNTs)。 碳纳米管依其结构特征可以分为三种类型:扶手椅形纳米管(armchair form),锯齿形纳米管(zigzag form)和手性纳米管(chiral form)。碳纳米管的手性指数(n,m)与其螺旋度和电学性能等有直接关系,习惯上n>=m。当n=m时,碳纳米管称为扶手椅形纳米管,手性角(螺旋角)为30o;当n>m=0时,碳纳米管称为锯齿形纳米管,手性角(螺旋角)为0o;当n>m≠0时,将其称为手性碳纳米管。根据碳纳米管的导电性质可以将其分为金属型碳纳米管和半导体型碳纳米管:当n-m=3k(k为整数)时,碳纳米管为金属型;当n-m=3k ±1,碳纳米管为半导体型。 按照是否含有管壁缺陷可以分为:完善碳纳米管和含缺陷碳纳米管。 按照外形的均匀性和整体形态,可分为:直管型,碳纳米管束,Y型,蛇型等。 碳纳米管的制备

相关主题
文本预览
相关文档 最新文档