当前位置:文档之家› 机械系统动力学课件

机械系统动力学课件

机械系统动力学课件
机械系统动力学课件

机械系统动力学

机械系统动力学报告 题目:电梯机械系统的动态特性分析 姓名: 专业: 学号:

电梯机械系统的动态特性分析 一、课题背景介绍 随着社会的快速发展,城市人口密度越来越大,高层建筑不断涌现,因此,现在对电梯的提出了更高的要求,随着科技的进步,在满足客观需求的基础上,电梯向着舒适性,高速,高效的方向发展。在电梯的发展过程中,安全性和功能性一直是电梯公司首要考虑的因素,其中舒适性也要包含在电梯的设计中,避免出现速度或者加速度出现突变,或者电梯运行过程中的振动引起人们的不适。因此,在电梯的设计过程中,对电梯进行动态特性分析是十分必要的。 二、在MATLAB中编程、绘图。 通过同组小伙伴的努力,已经得到了该系统的简化模型与运动方程。因此进行编程: 该系统的微分方程:[][][]{}[]Q x k x c x M= + ? ? ? ? ? ? + ? ? ? ? ? ?? ? ? ,其中矩阵[M]、 [C]、[K]、[Q]都已知。 该系统的微分方程是一个二阶一元微分方程,在MATLAB中,提供有求解常微分方程数值解的函数,其中在MATLAB中常用的求微分方程数值解的有7个:ode45,ode23,ode113,ode15s,ode23s,ode23t,ode23tb 。 ode是MATLAB专门用于解微分方程的功能函数。该求解器有变步长(variable-step)和定步长(fixed-step)两种类型。不同类型有着不同的求解器,其中ode45求解器属于变步长的一种,采用Runge-Kutta

算法;和他采用相同算法的变步长求解器还有ode23。 ode45表示采用四阶,五阶Runge-Kutta单步算法,截断误差为(Δx)^3。解决的是Nonstiff(非刚性)常微分方程。 ode45是解决数值解问题的首选方法,若长时间没结果,应该就是刚性的,可换用ode23试试。 Ode45函数调用形式如下:[T,Y]=ode45(odefun,tspan,y0) 相关参数介绍如下: 通过以上的了解,并对该微分方程进行变换与降阶,得出程序。MATLAB程序: (1)建立M函数文件来定义方程组如下: function dy=func(t,y) dy=zeros(10,1); dy(1)=y(2); dy(2)=1/1660*(-0.006*y(2)+0.003*y(4)-0.0006*y(10)-1.27*10^7*y(1)+1.27*10^7*y (3)+2.54*10^6*y(9)); dy(3)=y(4); dy(4)=1/1600*(+0.03*y(2)-0.007*y(4)+0.003*y(6)+1.27*10^7*y(1)-7.274*10^8*y(3 )+1.27*10^7*y(5)); dy(5)=y(6);

机械设计基础第十四章 机械系统动力学

第十四章 机械系统动力学 14-11、在图14-19中,行星轮系各轮齿数为123z z z 、、,其质心与轮心重合,又齿轮1、2对质心12O O 、的转动惯量为12J J 、,系杆H 对的转动惯量为H J ,齿轮2的质量为2m ,现以齿轮1为等效构件,求该轮系的等效转动惯量J ν。 2222 2121221 12323121 13212 1 13222 12311212213121313 ( )()()()1()()()( )()()()o H H H o H J J J J m z z z z z z z z z O O z z z z z z z O O J J J J m z z z z z z z z νννωωω ωωωω ωω ωωωωνω=+++=-= += +=+-=++++++解: 14-12、机器主轴的角速度值1()rad ?从降到时2()rad ?,飞轮放出的功 (m)W N ,求飞轮的转动惯量。 max min 122 2 121 ()2 2F F Wy M d J W J ?ν??ωωωω==-=-? 解: 14-15、机器的一个稳定运动循环与主轴两转相对应,以曲柄和连杆所组成的转动副A 的中心为等效力的作用点,等效阻力变化曲线c A F S ν-如图14-22所示。等效驱动力a F ν为常数,等效构件(曲柄)的平均角速度值25/m rad s ?=, 3 H 1 2 3 2 1 H O 1 O 2

不均匀系数0.02δ=,曲柄长度0.5OA l m =,求装在主轴(曲柄轴)上的飞轮的转动惯量。 (a) W v 与时间关系图 (b )、能量指示图 a 2 24()2 3015m Wy=25N m 25 6.28250.02 c va OA vc OA OA va F W W F l F l l F N Mva N J kg m νν=∏?∏=∏+==∏= =?解:稳定运动循环过程 14-17、图14-24中各轮齿数为12213z z z z =、,,轮1为主动轮,在轮1上加力矩1M =常数。作用在轮 2 上的阻力距地变化为: 2r 22r 020M M M ??≤≤∏==∏≤≤∏=当时,常数;当时,,两轮对各自中心的转动惯量为12J J 、。轮的平均角速度值为m ω。若不均匀系数为δ,则:(1)画出以轮1为等效构件的等效力矩曲线M ν?-;(2)求出最大盈亏功;(3)求飞轮的转动惯量F J 。 图14-24 习题14-17图 40Nm 15∏ 12.5∏ 22.5∏ 15Nm ∏ 2∏ 2.5∏ 4∏ 25∏ 1 1 z 2 z 2 r M 2 M ∏ 2∏ 2?

系统动力学(自己总结)

系统动力学 1.系统动力学的发展 系统动力学(简称SD—system dynamics)的出现于1956年,创始人为美国麻省理工学院的福瑞斯特教授。系统动力学是福瑞斯特教授于1958年为分析生产管理及库存管理等企业问题而提出的系统仿真方法,最初叫工业动态学。是一门分析研究信息反馈系统的学科,也是一门认识系统问题和解决系统问题的交叉综合学科。从系统方法论来说:系统动力学是结构的方法、功能的方法和历史的方法的统一。它基于系统论,吸收了控制论、信息论的精髓,是一门综合自然科学和社会科学的横向学科。 系统动力学的发展过程大致可分为三个阶段: 1)系统动力学的诞生—20世纪50-60年代 由于SD这种方法早期研究对象是以企业为中心的工业系统,初名也就叫工业动力学。这阶段主要是以福雷斯特教授在哈佛商业评论发表的《工业动力学》作为奠基之作,之后他又讲述了系统动力学的方法论和原理,系统产生动态行为的基本原理。后来,以福雷斯特教授对城市的兴衰问题进行深入的研究,提出了城市模型。 2)系统动力学发展成熟—20世纪70-80 这阶段主要的标准性成果是系统动力学世界模型与美国国家模型的研究成功。这两个模型的研究成功地解决了困扰经济学界长波问题,因此吸引了世界范围内学者的关注,促进它在世界范围内的传播与发展,确立了在社会经济问题研究中的学科地位。 3)系统动力学广泛运用与传播—20世纪90年代-至今 在这一阶段,SD在世界范围内得到广泛的传播,其应用范围更广泛,并且获得新的发展.系统动力学正加强与控制理论、系统科学、突变理论、耗散结构与分叉、结构稳定性分析、灵敏度分析、统计分析、参数估计、最优化技术应用、类属结构研究、专家系统等方面的联系。许多学者纷纷采用系统动力学方法来研究各自的社会经济问题,涉及到经济、能源、交通、环境、生态、生物、医学、工业、城市等广泛的领域。 2.系统动力学的原理 系统动力学是一门分析研究信息反馈系统的学科。它是系统科学中的一个分支,是跨越自然科学和社会科学的横向学科。系统动力学基于系统论,吸收控制论、信息论的精髓,是一门认识系统问题和解决系统问题交叉、综合性的新学科。从系统方法论来说,系统动力学的方法是结构方法、功能方法和历史方法的统一。 系统动力学是在系统论的基础上发展起来的,因此它包含着系统论的思想。系统动力学是以系统的结构决定着系统行为前提条件而展开研究的。它认为存在系统内的众多变量在它们相互作用的反馈环里有因果联系。反馈之间有系统的相

研究生《机械系统动力学》试卷及答案

太原理工大学研究生试题 姓名: 学号: 专业班级: 机械工程2014级 课程名称: 《机械系统动力学》 考试时间: 120分钟 考试日期: 题号 一 二 三 四 五 六 七 八 总分 分数 1 圆柱型仪表悬浮在液体中,如图1所示。仪表质量为m ,液体的比重为ρ,液体的粘性阻尼系数为r ,试导出仪表在液体中竖直方向自由振动方程式,并求固有频率。(10分) 2 系统如图2所示,试计算系统微幅摆动的固有频率,假定OA 是均质刚性杆,质量为m 。(10分) 3 图3所示的悬臂梁,单位长度质量为ρ,试用雷利法计算横向振动的周期。假定梁的 变形曲线为?? ? ?? -=x L y y M 2cos 1π(y M 为自由端的挠度)。(10分) 4 如图4所示的系统,试推导质量m 微幅振动的方程式并求解θ(t)。(10分) 5 一简支梁如图5所示,在跨中央有重量W 为4900N 电机,在W 的作用下,梁的静挠度δst=,粘性阻尼使自由振动10周后振幅减小为初始值的一半,电机n=600rpm 时,转子不平衡质量产生的离心惯性力Q=1960N ,梁的分布质量略去不计,试求系统稳态受迫振动的振幅。(15分) 6 如图6所示的扭转摆,弹簧杆的刚度系数为K ,圆盘的转动惯量为J ,试求系统的固有频率。(15分) 7如图7一提升机,通过刚度系数m N K /1057823?=的钢丝绳和天轮(定滑轮)提升货载。货载重量N W 147000=,以s m v /025.0=的速度等速下降。求提升机突然制动时的钢丝绳最大张力。(15分) 8某振动系统如图8所示,试用拉个朗日法写出动能、势能和能量散失函数。(15分) 太原理工大学研究生试题纸

(完整word版)系统动力学步骤

系统动力学分析步骤 (1)系统分析(分析问题,剖析要因) 1)调查收集有关系统的情况与统计数据 2)了解用户提出的要求、目的与明确所要解决的问题 3)分析系统的基本问题与主要问题、基本矛盾与主要矛盾、变量与主要变 量 4)初步划分系统的界限,并确定内生变量、外生变量和输入量 5)确定系统行为的参考模式 (2)系统的结构分析(处理系统信息,分析系统的反馈机制) 1)分析系统总体的与局部的反馈机制 2)划分系统的层次与子块 3)分析系统的变量、变量之间的关系,定义变量(包括常数),确定变量的 种类及主要变量。 4)确定回路及回路间的反馈耦合关系,初步确定系统的主回路及它们的性 质,分析主回路随时间转移的可能性 (3)确定定量的规范模型 1)确定系统中的状态、速率、辅助变量和建立主要变量之间的关系; 2)设计各非线性表函数和确定、估计各类参数; 3)给所有N方程、C方程与表函数赋值; (4)模型模拟与政策分析 1)以系统动力学的理论为指导进行模型模拟与政策分析,进而更深入地剖 析系统的问题; 2)寻找解决问题的决策,并尽可能付诸实施,取得实践结果,获取更丰富 的信息,发现新的矛盾与问题; 3)修改模型,包括结构与参数的修改; (5)模型的检验和评估 这一步骤的任务不是放在最后一起来做的,其中相当一部分是在上述过程中分散进行的。 参考模式:用图形表示重要变量,并推论和绘出与这些最有关的其他重要的两,从而突出、集中的勾画出有待研究的问题的发展趋势和轮廓,我们称这类随时间变化的变量图形为行为参考模式。在建模的过程中,要反复地参考这些模式。当系统的模型建成后,检验其有效性标准之一就是看模型产生的行为模式与参考模式是否大体一致。

机械动力学的发展简史及其对机械设计的影响

机械动力学的发展简史及其对机械设计的影响 摘要:机械动力学是研究机械在运转过程中的受力、机械中各构件的质量与机械运动之间的相互关系,是现代机械设计的理论基础,同时也研究机械运转过程中能量的平衡和分配关系。本文主要简单介绍了机械动力学的发展史,并在其基础上探讨了机械动力学的研究内容及其对机械设计的影响,以更好地指导我们以后的机械设计工作。 关键词:机械动力学,机械设计 ABSTRACT:Mechanical dynamics is the study of machinery in the running process of stress, mechanical components in quality and the relationship between mechanical movement,it is the modern mechanical design theory foundation, at the same time also study the mechanical operation process of energy balance and distribution relationship. This paper briefly introduces the history of mechanical dynamics, and on the basis of the mechanical dynamics discussed the research contents and the influence of mechanical design, in order to better guide our future mechanical design work. Kewwords: Mechanical dynamics Mechanical design

机械动力学考试答案

图4 机器安装示意图 88、一个质量20Kg 的机器,按图4所示方式安装。若弹簧的总刚度 为17KN/m ,总阻尼为300m s N ?。试求初始条mm x 250=,s mm x 3000= 时的振动响应。 88、解:由0=++kx x c x m 代入数据后得 08501501017300203=++=?++x x x x x x (8分) 其中,152=a ,8502=n ω,计算阻尼比和固有圆频率 17.2826.012.291126.02 .295.722=-?=-=<===ζωωωζn d n a (4分) 将初始条件代入 00020020arctan )(ax x x ax x x A d d +=++= ω?ω (4分) 得: o d d ax x x mm ax x x A 3.555.25.730017.2825arctan arctan )(4.30)17.2825.7300(25)(0002220020?+?=+==?++=++= ω?ω(2分)

则系统的振动响应为 4. 305.7+ =-t x t(2分)e sin( 28 ) 96 .0 . 17

1. “机械动力学”主要研究哪些内容,请以任一机器为对象举例说明研究内容及其相互关系。 答:机械动力学是研究机械在力的作用下的运动和机械在运动中产生的力,并从力与运动的相互作用的角度进行机械设计和改进的科学。动力学主要研究内容概括起来有:1,共振分析;2,振动分析与动载荷计算;3,计算机与现代测试技术的运用;4,减震与隔振。柴油机上的发动机,发动机不平衡时会产生很强的地面波,从而产生噪声,而承受震动的结构,发动机底座,会由于振动引起的交变应力而导致材料的疲劳失效,而且振动会加剧机械零部件的磨损,如轴承和齿轮的磨损等,并使机械中的紧固件如螺母等变松。在加工时还会导致零件加工质量变差。通过对共振的研究和分析,使机械的运转频率避免共振区,避免机械共振事故的发生,通过振动分析与动载荷计算可以求出在外力作用下机械的真实运动,运用计算机和现代测试技术对机械的运行状态进行检测,以及故障诊断,模态分析以及动态分析,现实中机器运转时由于各种激励因素的存在,不可避免发生振动,为了减小振动,通常在机器底部加装弹簧,橡胶等隔振材料。 2.简述在刚性运动前提下,如何进行运动构件的真实运动分析求解(请列出步骤)? 答:首先建立等效力学模型,将复杂的机械系统简化为一个构件,即等效构件,根据质点系动能定理,将作用于机械系统上的所有外力和外力矩、所有构件的质量和转动惯量,都向等效构件转化;其次计算等效构件上的等效量(包括等效力矩,等效力,等效质量,等效转动惯量);再次建立等效构件的运动方程式,有两种形式,能量形式和力矩形式;最后通过方程式求出等效构件的角速度函数和角加速度函数,这样便可以求出机械系统的真实运动规律。 3.在弹性运动假设下,有哪些弹性动力学建模方法,各有什么特点?请解释“瞬时刚化” 的概念。) 答:弹性动力学模型有集中参数模型和有限元模型。集中参数模型建立起的运动方程为常微分方程,但是由于质量简化过多,模型粗糙,精度比较差;有限元建立的运动方程也为常微分方程,但相较集中参数模型精确,适应性广,可以模拟复杂形状的构件,运算模型统一。瞬时刚化:机构在运动到循环中的某一位置时,可将机构的形状和作用在其上的载荷瞬时冻结起来,从而可瞬时的将机构看做一个刚体结构。

机械系统动力学试题

机械系统动力学试题 一、 简答题: 1.机械振动系统的固有频率与哪些因素有关?关系如何? 2.简述机械振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。 3.简述无阻尼单自由度系统共振的能量集聚过程。 4. 简述线性多自由度系统动力响应分析方法。 5. 如何设计参数,使减振器效果最佳? 二、 计算题: 1、 单自由度系统质量Kg m 10=, m s N c /20?=, m N k /4000=, m x 01.00=, 00=? x ,根据下列条件求系统的总响应。 (a ) 作用在系统的外激励为t F t F ωcos )(0=,其中N F 1000=, s rad /10=ω。 (b ) 0)(=t F 时的自由振动。 2、 质量为m 的发电转子,它的转动惯量J 0的确定采用试验方法:在转子径向R 1的地方附加一小质量m 1。试验装置如图2所示,记录其振动周期。 a )求发电机转子J 0。 b )并证明R 的微小变化在R 1=(m/m 1+1)·R 时有最小影响。 3、 如图3所示扭转振动系统,忽略阻尼的影响 J J J J ===321,K K K ==21 (1)写出其刚度矩阵; (2)写出系统自由振动运动微分方程; (2)求出系统的固有频率; (3)在图示运动平面上,绘出与固有频率对应的振型图。 1 θ(图2)

(图3) 4、求汽车俯仰振动(角运动)和跳振(上下垂直振动)的频率以及振 动中心(节点)的位置(如图4)。参数如下:质量m=1000kg,回转半径r=0.9m,前轴距重心的距离l1=0.1m,后轴距重心的距离l2=1.5m,前弹簧刚度k1=18kN/m,后弹簧刚度k2=22kN/m (图4) 5、如5图所示锻锤作用在工件上的冲击力可以近似为矩形脉冲。已知 工件,铁锤与框架的质量为m1=200 Mg,基础质量为m2=250Mg,弹簧垫的刚度为k1=150MN/m,土壤的刚度为k2=75MN/m.假定各质量的初始位移与速度均为零,求系统的振动规律。

机械动力学简史

机械动力学简史 一.动力学简介 机械动力学作为机械原理的重要组成部分,主要研究机械在运转过程中的受力,机械中各部分构件的质量和构件之间机械运动的相互关系,是现代机械设计的重要理论基础。 一般来说,机械动力学的研究内容包括六个方面:(1)在已知外力作用下求机械系统的真实运动规律;(2)分析机械运动过程中各构件之间的相互作用力;(3)研究回转构件和机构平衡的理论和方法;(4)研究机械运转过程中能量的平衡和分配关系;(5)机械振动的分析研究;(6)机构分析和机构综合。其主要研究方向是机械在力的作用下的运动和机械在运动过程中产生的力,并且从力和相互作用的角度对机械进行设计和改进的学科。 二.动力学的前期发展 人类的发展过程中,很重要的一个进步特征就是工具的使用和制造。从石器时代的各种石制工具开始,机械的形式开始发展起来。从简单的工具形式,到包含各类零件、部件的较为先进的机械,这中间的发展过程经历了不断的改进与反复,也经历了在国家内部与国家之间的传播过程。 机械的发展过程也经历了从人自身的体力,到利用畜力、风力和水力等,材料的类型也从自然中自有的,过渡到简单的人造材料。整个发展过程最终形成了包含动力、传动和工作等部分的完整机械。 人类从石器时代进入青铜时代、铁器时代,用以吹旺炉火的鼓风器的发展起了重要作用。有足够强大的鼓风器,才能使冶金炉获得足够高的炉温,才能从矿石中炼得金属。中国在公元前1000~前900年就已有了冶铸用的鼓风器,并渐从人力鼓风发展到畜力和水力鼓风。早在公元前,中国已在指南车上应用复杂的齿轮系统。古希腊已有圆柱齿轮、圆锥齿轮和蜗杆传动的记载。但是,关于齿轮传动瞬时速比与齿形的关系和齿形曲线的选择,直到17世纪之后方有理论阐述。手摇把和踏板机构是曲柄连杆机构的先驱,在各文明古国都有悠久历史,但是曲柄连杆机构的形式、运动和动力的确切分析和综合,则是近代机构学的成就。 近代的机械动力学,在动力以及机械结构本身来说,具有各方面的重大突破。动力在整个生产过程中占据关键地位。随着机械的改进,对于金属和矿石的需求量增加,人类开始在原有的人力和畜力的基础上,利用水力和风力对机械进行驱动,但是这也造成了很多工厂的选址的限制,并不具有很大的推广性。而后来稍晚出现的纽科门大气式蒸汽机,虽然也可以驱使一些机械,但是其燃料的利用率很低,对于燃料的需求量太大,这也使得这种蒸汽机只能应用于煤矿附近。 瓦特发明的具有分开的凝汽器的蒸汽机以及具有回转力的蒸汽机,不仅降低了燃料的消耗量,也很大程度上扩大了蒸汽机的应用范围。蒸汽机的发明和发展,使矿业和工业生产、铁路和航运都得以机械动力化。蒸汽机几乎是19世纪唯一的动力源。但蒸汽机及其锅炉、凝汽器、冷却水系统等体积庞大、笨重,应用很不方便。 19世纪末,电力供应系统和电动机开始发展和推广。20世纪初,电动机已在工业生产中取代了蒸汽机,成为驱动各种工作机械的基本动力。生产的机械化已离不开电气化,而电气化则通过机械化才对生产发挥作用。 发电站初期应用蒸汽机为原动机。20世纪初期,出现了高效率、高转速、大功率的汽轮机,也出现了适应各种水力资源的大、小功率的水轮机,促进了电力供应系统的蓬勃发展。19世纪后期发明的内燃机经过逐年改进,成为轻而小、效率高、易于操纵、并可随时启动的原动机。它先被fuqu用以驱动没有电力供应的陆上工作机械,以后又用于汽车、移动机

系统动力学

目录 第一章绪论 1.1问题的提出 1.2研究的目的及意义 1.3国内外研究现状 第二章系统动力学及库存控制基本理论分析 2.1系统动力学的基本概念 2.1.1系统的概念 2.1.2系统动力学中系统的概念 2.2系统动力学模型结构 2.2.1反馈系统、因果关系图和反馈回路 2.2.2系统动力学流图 2.2.3系统变量 2.2.4系统动力学模型特点 2.3系统动力学建模 2.3.1系统动力学建模原则 2.4库存管理基础理论 2.4.1库存 2.4.2库存的作用 2.5库存控制理论及其模型 2.5.1库存控制 第三章系统动力学模型建立与分析 第四章模型仿真运行及结果分析 4.1系统动力学仿真设计 4.2仿真结果输出 致谢 参考文献

第一章绪论 1.1问题的提出 当今管理问题日益复杂化,促使人们认识、分析、研究、解决问题的思想方法开始从点与线的思考慢慢面向思考和系统化的思考转变。在此背景下,出现了以供应链管理(Supply Chain Management,SCM)为代表的新的管理理论与方法。供应链管理是当前管理学界研究的热点与难点问题,国际上一些著名的企业如IBM、戴尔、海尔等在供应链管理的实践中取得了巨大成就,因而受到管理学家和公司管理人员的极大的推崇。 供应链系统包括原材料供应商、制造商、分销商、零售商、最终客户等。每个组织内部又包含若干职能部门,如产品研发、生产制造、市场营销、人力资源、财务会计、物流运输等。这些职能部门可以看作是相互联系的子系统,他们之间是相互联系,相互制约的关系,而不是独立存在的。推而广之,供应链中的各个组织都具有这种交互关系。子系统与子系统之间的交互关系、系统与外部环境之间的交互关系,决定了供应链系统的复杂性、开放性、动态性和突变性。 供应链库存管理的目的就是使整个供应链系统中各个节点企业的库存波动控制在合理的范围并且使库存水平最小。库存的优化管理可以为企业带来比如减弱牛鞭效应、降低成本、加快资金周转等诸多好处,因此可以说是实现价值链增值的重要环节。但是由于供应链系统的非线性、复杂性以及动态性等特征,库存管理的科学决策很难由以往的直观经验和数学模型获得。系统动力学(System Dynamics,SD)是由美国麻省理工大学的J.W.福瑞斯特(J.W.Forrester)教授于20世纪50年代中期利用系统信息反馈理论为解决社会经济问题而开创的新学科。系统动力学可以根据系统内部各子系统的因果关系构造出具有多重反馈、非线性和时滞性的模型,并可利用计算机仿真来模拟系统的动态变化过程,分析关键因素对系统整体及其内部变量的影响。因此系统动力学方法是研究供应链库存问题行之有效的科学方法。 1.2研究的目的及意义 供应链库存管理不仅仅是一种新型的供应链库存管理模式,更是一

工程机械动力学发展方向

机械动力学发展方向 随着高速、轻质机器人、航天器、车辆等复杂机械系统的高性能、高精度设计要求,对机械系统的精确、实时、有效的运动预测和控制已成为目前机械系统动力学领域的研究热点和难点。在兵器、机器人、航空、航天、机械等国防和国民经济建设中,诸如发射系统、飞行器、机械手、民用机械等大量的机械系统均可归结为以各种方式相连接的多个刚体和弹性体组成的多体系统。多体系统动力学是研究上述复杂机械系统动态特性最行之有效的方法,已成为现代力学的重要发展支流。近代机械发展的一个显著特点是,自动调节和控制装置日益成为机械不可缺少的组成部分。机械动力学的研究对象已扩展到包括不同特性的动力机和控制调节装置在内的整个机械系统,控制理论已渗入到机械动力学的研究领域。 1. 基于多体系统动力学理论开发的热点: (1)柔性多体系统动力学建模 近40 年来,国内外专家学者不断创造性地提出和改进各种多体系统动力学方法。依据不同的动力学原理(方法),柔性多体系统动力学建模主要基于两类基本方法:矢量力学方法和分析力学方法。 Newton/Euler(N/E)方法是典型的矢量力学方法,其特点是对每个物体做隔离分析,物理意义明确,刻划了系统完整的受力关系,是目前动力学实时分析控制的主要手段。 分析力学方法主要包括由d'Alembert原理(或Jourdain原理)出发导出的Lagrange 方法及由Gauss 极小值原理出发导出的LiLov方法等,主要以Lagrange 方法为代表,其特点是将系统作为整体考虑,在建模过程中不出现约束反力,列写运动微分方程方法规格化,方程数目最少,所得方程为常微分方程,处理的是标量,但推导过程繁冗,所得方程很长。 (2)三维可视化仿真。 机械系统动力学三维可视化仿真是机械系统动力学研究的另一热点问题。上世纪80 年代以来,基于多体系统动力学理论,开发出了许多著名的多体系统商业可视化软件包,比较知名的有ADAMS,DADS,MADYMO 等,为工程技术领域提供强有力的计算机辅助分析的工具[7, 8]。随着多体系统理论和仿真算法的不断发展,这些软件的分析功能在不断增强,版本也在不断升级,也逐渐可以同有限元技术在大型结构分析中的应用相媲美。国内一些大学的力学系和机械系于十多年前就开始跟踪国际前沿的研究,在基础理论和方法上取得了许多重要的进展和成果。但较之国外,在应用和软件的产业化方面还存在很大的差距,而这正是我国当前所急需的 2. 机械动力学的未来趋势 未来机械系统动力学发展的重点将会在以下方面[3]:柔性多体系统的力学响应与其他类型的物理场(如:电、热、磁和流体向量场)耦合求解、柔性多体系统控制与逆动力学设计、柔性多体系统动力学数值求解策略改进。

《机械动力学》——期末复习题及答案

《机械动力学》期末复习题及答案1、判断 1.机构平衡问题在本质上是一种以动态静力分析为基础的动力学综合,或动力学设计。 答案:正确 2.优化平衡就是采用优化的方法获得一个绝对最佳解。 答案:错误 3.惯性力的计算是建立在主动构件作理想运动的假定的基础上的。 答案:正确 4.等效质量和等效转动惯量与机械驱动构件的真实速度无关。 答案:正确 5.作用于等效构件上的等效力(或等效力矩)所作的功等于作用于系统上的外力所作的功。答案: 错误 6.两点动代换后的系统与原有系统在静力学上是完全等效的。 答案:错误 7.对于不存在多余约束和多个自由度的机构,动态静力分析是一个静定问题。 答案:错误 8.摆动力的完全平衡常常会导致机械结构的简单化。 答案:错误 9.机构摆动力完全平衡的条件是:机构运动时,其总质心作变速直线运动。 答案:错误 10.等效质量和等效转动惯量与质量有关。 答案:错误 11.平衡是在运动设计完成之前的一种动力学设计。 答案:错误 12.在动力分析中主要涉及的力是驱动力和生产阻力。 答案:正确 13.当取直线运动的构件作为等效构件时,作用于系统上的全部外力折算到该构件上得到等效力。答案:正确 14.摆动力的平衡一定会导致机械结构的复杂化。 答案:错误 15.机器人操作机是一个多自由度的闭环的空间机构。 答案:错误 16.质量代换是将构件的质量用若干集中质量来代换,使这些代换质量与原有质量在运动学上等效答案:正确 17.弹性动力分析考虑构件的弹性变形。 答案:正确 18.机构摆动力矩完全平衡的条件为机构的质量矩为常数。 答案:错误

19.拉格朗日方程是研究约束系统静力动力学问题的一个普遍的方法。 答案:正确 20.在不含有变速比传动而仅含定速比传动的系统中,传动比为常数。 答案:正确 21.平衡分析着眼于全部消除或部分消除引起震动的激振力。 答案:正确 22.通路定理是用来判断能否实现摆动力完全平衡的理论。 答案:错误 23.无论如何,等效力与机械驱动构件的真实速度无关。 答案:正确 24.综合平衡不仅考虑机构在机座上的平衡,同时也考虑运动副动压力的平衡和输入转矩的平衡。答案:正确 25.速度越快,系统的固有频率越大。 答案:错误 26.平衡的实质就是采用构件质量再分配等手段完全地或部分地消除惯性载荷。 答案:正确 27.优化综合平衡是一个多目标的优化问题,是一种部分平衡。 答案:正确 28.机构摆动力完全平衡的条件为机构的质量矩为常数。 答案:正确 29.当以电动机为原动机时,驱动力矩是速度的函数。 答案:错误 30.为了使得等效构件的运动与机构中该构件的运动一致,要将全部外力等效地折算到该机构上这 一折算是依据功能原理进行的。 答案:正确 2、单选 1.动力学反问题是已知机构的(),求解输入转矩和各运动副反力及其变化规律。 A.运动状态 B.运动状态和工作阻力 C.工作阻力 D.运动状态或工作阻力 答案:B 2.平衡的实质就是采用构件质量再分配等手段完全地或部分地消除()。 A.加速度 B.角加速度 C.惯性载荷 D.重力 答案: C 3.摆动力的完全平衡常常会导致机械结构的()。 A.简单化

机械系统动力学

《机械系统动力学》 机械系统动力学中分析中的 仿真前沿 学院:机械工程学院 专业:机制一班 姓名:董正凯 学号:S12080201006

摘要 计算机及其相应技术的发展为建立机械系统仿真提供了一个有效的手段,机械系统动力学中的许多难题均可以采用仿真技术来解决,本文主要讲述了目前在机械系统动力学的分析中仿真技术主要的研究重点及其研究中主要存在的问题。 关键词:机械系统动力学仿真系统建模

机械系统动力学中分析中的仿真前沿 机械专业既是一个传统的专业,又是一个不断融合新技术、不断创新的专业。随着科技的发展,计算机仿真技术越来越广泛地应用在各个领域。基于多体系统动力学的机械系统动力学分析与仿真技术,从二十世纪七十年代开始吸引了众多研究者,已解决了自动化建模和求解问题的基础理论问题,并于八十年代形成了一系列商业化软件,到了九十年代,机械系统动力学分析与仿真技术更已能成熟应用于工业界。 目前的研究重点表现在以下几个方面: (1)柔性多体系统动力学的建模理论 多刚体系统的建模理论已经成熟,目前柔性多体系统的建模成了一个研究热点,柔性多体系统动力学由于本身既存在大范围的刚体运动又存在弹性变形运动,因而其与有限元分析方法及多刚体力学分析方法有密切关系。事实上,绝对的刚体运动不存在,绝对的弹性动力学问题在工程实际中也少见,实际工程问题严格说都是柔性多体动力学问题,只不过为了问题的简化容易求解,不得不化简为多刚体动力学问题、结构动力学问题来处理。然而这给使用者带来了不便,同一个问题必须利用两种分析方法处理。大多商用软件系统采用的浮动标架法对处理小变形部件的柔性系统较为有效,对包含大变形部件的柔体多体系统会产生较大仿真分析误差甚至完全错误的仿真结论。最近提出的绝对节点坐标方法,是对有限元技术的拓展和较大创新,在常规有限元中梁单元、板壳单元采用节点微小转动作为节点坐标,因而不能精确描述刚体运动。绝对节点坐标法则采用节点位移和节点斜率作为节点坐标,其形函数可以描述任意刚体位移。利用这种方法梁和板壳可以看作是等参单元,系统的质量阵为一常数阵,然而其刚度阵为强非线性阵,这与浮动标架法有截然不同的区别。这种方法已成功应用于手术线的大变形仿真中。寻求有限元分析与多刚体力学的统一近年来成为多体动力学分析的一个研究热点,绝对节点坐标法在这方面有极大的潜力,可以说绝对节点坐标法是柔性多体力学发展的一个重要进展。另外,各种柔性多体的分析方法之间是否存在某种互推关系也引起了人们的注意,如两个主要分析方法:浮动标架法、绝对节点坐标法之间是否可以互推?这些都具有重大理论意义。 另外柔性多体系统动力学中由于大范围的刚体运动与弹性变形运动相互耦合,采用浮动标架法时,即便是小变形问题,由于处于高速旋转仍会产生动力刚化现象。如果仅仅采用小变形理论,将产生错误的结论,必须计及动力刚化效应。动力刚化现象已成为柔性多体动力学的一个重要研究方面。如何利用简单的补偿方法来考虑动力刚化是问题的关键。 柔性多体系统动力学中关于柔性体的离散化表达存在三种形式:基于有限元分析的模态表达,基于试验模态分析的模态表达和基于有限元节点坐标的有限元列式。有限元列式由于大大地增加了系统的求解规模使其应用受到限制,因而一般采用模态分析方法,对模态进行模态截断、模态综合,从而缩减系统的求解规模。为了保证求解精度,同时又能提高求解速度如何进行模态截断、模态综合就成了一个关键问题。再者如何充分利用试验模态分析的结果也是一个关键性研究课题,这一方面的研究还不够深入。 柔性多体系统动力学可以计算出每一时刻的弹性位移,通过计算应变可计算计算出应力。由于一般的多柔体分析程序不具备有限元分析功能,因而柔性体的应力分析都是由有限元程序处理。由于可以计算出每个柔性体的应力的变化历

作业(二)答案:单自由度机械系统动力学等效转动惯量等效力矩汇编

作业(二)单自由度机械系统动力学等效转动惯量等效力矩 1.如题图1所示的六杆机构中,已知滑块5的质量为m 5=20kg ,l AB =l ED =100mm ,l BC =l CD =l EF =200mm ,φ1=φ2=φ3=90o ,作用在滑块5上的力P=500N .当取曲柄AB 为等效构件时,求机构在图示位置的等效转动惯量和力P的等效力矩. 图1 答案:解此题的思路是:①运动分析求出机构处在该位置时,质心点的速度及各构件的角速度. ②根据等效转动惯量,等效力矩的公式求出. 做出机构的位置图,用图解法进行运动分析. V C =V B =ω1×l AB ω2=0 V D =V C =ω1×l AB 且ω3=V C /l CD =ω1 V F =V D =ω1×l AB (方向水平向右) ω4=0 由等效转动惯量的公式: e J =m 5(V F /ω1)2 =20kg ×(ω1×l AB /ω1)2 =0.2kgm 2 由等效力矩的定义: e M =500×ω1×l AB ×cos180o /ω1=-50Nm (因为VF 的方向 与P方向相反,所以α=180o ) ∑=+=n i i Si Si i e J v m J 1 2 1 21 ])( )( [ωωω∑=±=n i i i i i i e M v F M 1 1 1 )]( )( cos [ωωωα

2.题图2所示的轮系中,已知各轮齿数:z 1=z 2’=20,z 2=z 3=40,J 1=J 2’=0.01kg ·m 2,J 2=J 3=0.04kg ·m 2.作用在轴O3上的阻力矩M3=40N ·m .当取齿轮1为等效构件时,求机构的等效转动惯量和阻力矩M3的等效力矩. 图2 答案:该轮系为定轴轮系. i 12=ω1/ω2=(-1)1z 2/z 1 ∴ ω2=-ω1/2=-0.5×ω1 ω2’=ω2=-0.5×ω1 i 2’3=ω2’/ω3=(-1)1z 3/z 2’ ∴ ω3=0.25×ω1 根据等效转动惯量公式 e J = J 1×(ω1/ω1)2 +J 2×(ω2/ω1)2 +J 2’×(ω2’/ω1)2 +J 3×(ω3/ω1)2 =J 1+J 2/4+J 2’/4 +J 3/16 =0.01+0.04/4+0.01/4+0.04/16 =0.025 kg ·m 2 根据等效力矩的公式: e M =M 3×ω3/ω1=40×0.25ω1/ω1=10N ·m 3.在题图3所示减速器中,已知各轮的齿数:z 1=z 3=25,z 2=z 4=50,各轮的转动惯量J 1=J 3=0.04kg ·m 2,J 2=J 4=0.16kg ·m 2,(忽略各轴的转动惯量),作用在轴Ⅲ上的阻力矩M 3=100N ·m .试求选取轴 ∑=+=n i i Si Si i e J v m J 12 1 21 ])( ( [ωωω∑=±=n i i i i i i e M v F M 11 1 )]( )( cos [ωωωα

系统动力学自己总结)

系统动力学1.系统动力学的发展 系统动力学(简称SD—system dynamics)的出现于1956年,创始人为美国麻省理工学院的福瑞斯特教授。系统动力学是福瑞斯特教授于1958年为分析生产管理及库存管理等企业问题而提出的系统仿真方法,最初叫工业动态学。是一门分析研究信息反馈系统的学科,也是一门认识系统问题和解决系统问题的交叉综合学科。从系统方法论来说:系统动力学是结构的方法、功能的方法和历史的方法的统一。它基于系统论,吸收了控制论、信息论的精髓,是一门综合自然科学和社会科学的横向学科。 系统动力学的发展过程大致可分为三个阶段: 1)系统动力学的诞生—20世纪50-60年代 由于SD这种方法早期研究对象是以企业为中心的工业系统,初名也就叫工业动力学。这阶段主要是以福雷斯特教授在哈佛商业评论发表的《工业动力学》作为奠基之作,之后他又讲述了系统动力学的方法论和原理,系统产生动态行为的基本原理。后来,以福雷斯特教授对城市的兴衰问题进行深入的研究,提出了城市模型。 2)系统动力学发展成熟—20世纪70-80 这阶段主要的标准性成果是系统动力学世界模型与美国国家模型的研究成功。这两个模型的研究成功地解决了困扰经济学界长波问题,因此吸引了世界范围内学者的关注,促进它在世界范围内的传播与发展,确立了在社会经济问题研究中的学科地位。 3)系统动力学广泛运用与传播—20世纪90年代-至今 在这一阶段,SD在世界范围内得到广泛的传播,其应用范围更广泛,并且获得新的发展.系统动力学正加强与控制理论、系统科学、突变理论、耗散结构与分叉、结构稳定性分析、灵敏度分析、统计分析、参数估计、最优化技术应用、类属结构研究、专家系统等方面的联系。许多学者纷纷采用系统动力学方法来研究各自的社会经济问题,涉及到经济、能源、交通、环境、生态、生物、医学、工业、城市等广泛的领域。 2.系统动力学的原理 系统动力学是一门分析研究信息反馈系统的学科。它是系统科学中的一个分支,是跨越自然科学和社会科学的横向学科。系统动力学基于系统论,吸收控制论、信息论的精髓,是一门认识系统问题和解决系统问题交叉、综合性的新学科。从系统方法论来说,系统动力学的方法是结构方法、功能方法和历史方法的统一。 系统动力学是在系统论的基础上发展起来的,因此它包含着系统论的思想。系统动力学是以系统的结构决定着系统行为前提条件而展开研究的。它认为存在系统内的众多变量在它们相互作用的反馈环里有因果联系。反馈之间有系统的相互联系,构成了该系统的结构,而正是这个结构成为系统行为的根本性决定因素。

机械动力学在机械行业中的应用及发展

摘要 21 世纪初,发展以灵巧机械手、步行机器人、并联机床、可移动光学仪器平台、磁悬浮列车、汽车主动底盘等为代表的智能化机电产品将是我国机械工业的奋斗目标之一。这类机电产品具有材料新颖、结构轻巧、机动性强、智能化高等特点,产生了材料非线性、几何非线性、控制中的非线性与时滞等复杂动力学问题。这些问题将是21 世纪初机械动力学领域的研究前沿。 近代机械发展的一个显著特点是,自动调节和控制装置日益成为机械不可缺少的组成部分。机械动力学的研究对象已扩展到包括不同特性的动力机和控制调节装置在内的整个机械系统,控制理论已渗入到机械动力学的研究领域。在高速、精密机械设计中,为了保证机械的精确度和稳定性,构件的弹性效应已成为设计中不容忽视的因素。一门把机构学、机械振动和弹性理论结合起来的新的学科——运动弹性体动力学正在形成,并在高速连杆机构和凸轮机构的研究中取得了一些成果。在某些机械的设计中,已提出变质量的机械动力学问题。各种模拟理论和方法以及运动和动力参数的测试方法,日益成为机械动力学研究的重要手段。 一、机械动力学研究的内容 任何机械,在存在运动的同时,都要受到力的作用。机械动力学时研究机械在力作用下的运动和机械在运动中产生的力,并从力与运动的相互作用的角度进行机械的设计和改进的科学。详细的机械动力学研究方向可以分为以下六点: (1)在已知外力作用下,求具有确定惯性参量的机械系统的真实运动规律;分析机械运动过程中各构件之间的相互作用力;研究回转构件和机构平衡的理论和方法;机械振动的分析;以及机构的分析和综合等等。 为了简化问题,常把机械系统看作具有理想、稳定约束的刚体系统处理。对于单自由度的机械系统,用等效力和等效质量的概念,可以把刚体系统的动力学问题转化为单个刚体的动力学问题;对多自由度机械系统动力学问题一般用拉格朗日方程求解。机械系统动力学方程常常是多参量非线性微分方程,只在特殊条件下可直接求解,一般情况下需要用数值方法迭代求解许多机械动力学问题可借助电子计算机分析计算机根据输入的外力参量、构件的惯性参量和机械系统的结构信息,自动列出相应的微分方程并解出所要求的运动参量。 (2)分析机械运动过程中各构件之间的相互作用力。这些力的大小和变化规律是设计运动副的结构、分析支承和构件的承载能力以及选择合理润滑方法的依据。在求出机械真实运动规律后可算出各构件的惯性力,再依据达朗伯原理用静力学方法求出构件间的相互作用力。(3)研究回转构件和机构平衡的理论和方法。平衡的目的是消除或减少作用在机械基础上周期变化的振颤力和振颤力矩。对于刚性转子的平衡已有较成熟的技术和方法:对于工作转速接近或超过转子自身固有频率的挠性转子平衡问题,不论是理论和方法都需要进一步研究。 平面或空间机构中包含有往复运动和平面或空间一般运动的构件。其质心沿一封闭曲线运动。根据机构的不同结构,可以应用附加配重或附加构件等方法全部或部分消除其振颤力但振颤力矩的全部平衡较难实现优化技术应用于机构平衡领域已经取得较好的成果。 (4)研究机械运转过程中能量的平衡和分配关系。这包括:机械效率的计算和分析;调速器的理论和设计;飞轮的应用和设计等。 (5)机械振动的分析研究是机械动力学的基本内容之一。它已发展成为内容丰富、自成体系的一门学科。 (6)机构分析和机构综合一般是对机构的结构和运动而言,但随着机械运转速度的提高,机械动力学已成为分析和综合高速机构时不可缺少的内容. 二、机械动力学的分类

相关主题
文本预览
相关文档 最新文档