当前位置:文档之家› 植物抗逆性

植物抗逆性

植物抗逆性
植物抗逆性

植物抗逆性

姓名:班级:学号:

摘要:随着现代生物技术和基因工程的发展,人们对植物抗性的研究逐渐转入基因层面,现在已能够将多种抗植物病虫害的基因转入目的植物中,但日益引起关注的生物安全性问题也是不容忽视的。在这种情况下,发掘植物自身抗性资源便显得越来越重要。

关键词:植物;抗逆性;基因

根据达尔文“适者生存”的进化规律。凡是地球上现存的植物都是长期自然选择的结果,不同环境条件下生长的植物有利性状被保留下来,并不断加强,不利性状不断被淘汰,就会形成对某些环境胁迫因子的抵御能力,表现为抗逆性。如植物的抗虫性,抗旱性等。

一.植物抗逆性的利用

1. 植物抗逆性与农业生产

早在中国的古代,农耕工作者们就开始认识和利用植物的优良的抗逆性。《齐民要术》中记载要把作物的抗旱性,抗涝性和抗虫性等作为评价和选择种子品种优劣的标准。并对八十六种物粟的抗逆性特点进行了明确的指出。成为我国传统农业在品种选育上的一个重要标准。

时至今日,研究和利用植物的抗逆性意义更是重大之至。化肥、杀虫剂等大量化学试剂的使用,造成了环境的污染破坏,人们利用生物工程技术选择性利用植物自身的抗虫品种而得到优质高产的品系。减少或杜绝了杀虫剂的使用,降低了生产成本和减少了环境污染,对虫害获得持久的仿效,而且不需要入则的技术即可达到防治目的。这是抗性研究而以长期坚持并取得实质性进展的关键所在。如利用植物的次生性物质在植物抗性中起着非常重要的作用,可作为毒素而直接作用于昆虫,如生氰糖苷,作为阻食剂会影响昆虫对食物的利用;又如酚类物质能阻碍昆虫的消化;作为生长调节剂能影响昆虫的变态发育。通过转基因技术,将编码这些抗性的特异基因进行克隆转移到其它植物细胞中,转录出相应的蛋白产物。起到抗性的作用。

2.植物抗逆性与环境

在对佛山市不同污染点30种绿化植物的叶面积、FV/Fm、叶片细胞膜渗漏率及光和色素含量相对清洁对照点华南植物园的差异。结果显示,大气污染条件下,绿化植物叶片的生长收到限制。PSII最大光化学效率下降,光合色素发生降解,细胞膜受到伤害。实验证明,根据不同植物在同种污染物作用下的伤害阙值不同,可以确定不同物种对此污染物的抗性等级。由于测定大量植株多项指标的伤害阙值不可行,因此可根据污染点与对照点相对值的大小判断植物抗性。实验数据表明,同一住屋不同生理指标对环境污染的响应不相同,从而,得到的抗性等级不同,本实验中只有少数生理指标反映出相同的抗性等级。大气状况使FV/Fm等七个分析参数产生极显著差异,说明,大气污染直接影响这7个生理指标,子评价大气污染状

况及植物抗性时这些指标均可以作为参考。其中,叶面积对大气污染反应最为敏感。

二.植物抗逆性生理

1. 抗逆生理与植物水分

研究已经知道植物对各种环境胁迫的响应中,水分状况的变化是比较明显的。在冻害、冷害、热害、旱害和病害等发生时,植物的水分状况都有如下的共同表现,即植物的的吸水量降低,蒸腾量减少,由于蒸腾大雨吸水,植物组织的含水量降低同时发生萎蔫,植物组织的持水力增强。例如,红松的实生苗在硫酸盐处理时,随着盐分浓度的提高,地上部分水分含量相对下降;葡萄植株遭受大气干旱时,叶片含水量明显降低;玉米幼苗经零上2℃处理12小时,叶片含水量降低。而且在这些变化中,植物组织中自有谁含量相对减少,而束缚水的含量明显增加。可以发现植物组织中自由水和束缚水的相对含量对植物的抗逆性有重要影响。

2.抗逆性生理与原生质透性

原生质透性在反映植物抗性的差异上是比较敏感的。大量电解质和非电解质物质被动的向组织外渗漏。例如,葡萄叶片与干旱失水时,细胞的相对透性比对照增加3~12倍,回复正常供水后,组织含水量能迅速恢复,原生质透性恢复缓慢,干旱程度越重,原生质透性受害越大,恢复越慢挥着不能恢复而使植物死亡。海蓬子幼苗用不同浓度的氯化钠处理时,随着盐浓度的增加,叶片电解质的外渗值明显增加。植物发生寒害时,原生质的透性也明显受到破坏,不同抗性的研究中证明各种环境胁迫对原生质透性都有同样的破环作用。原生质透性的破环,实质上是原生质膜的透性破环。

3.植物抗逆性与物质代谢

在植物抗逆生理有关的物质代谢研究中,以碳水化合物和蛋白质代谢研究较多,从这两种物质代谢来看,所有抗性生理中也都有共同的反映。在冻、冷、旱、热和涝旱等抗性方面都表现为淀粉水解作用加强。丽日,山芋在低温下储藏时会变甜,这是淀粉水解为葡萄糖和蔗糖;淹水条件下,小麦和睡到植株内贮藏的淀粉水解成可溶性糖,在淹水过程中,可溶性糖又被无氧呼吸迅速利用。因之可溶性糖在淹水初期明显增强,而后也迅速降低。淀粉水解为呼吸作用提供了基质,并能增加细胞的渗透压,在抵抗环境胁迫上且有一定的保护作用。

此外,植物的抗性与呼吸作用和光合作用也有者密切的关系。

三.植物抗逆性的研究进展

20世纪80年代以来植物基因工程技术的迅猛发展为植物抗性育种研究开辟了新的途径,并形成了以主要经济作物、园艺植物抗性基因研究为重点的对相关基因的定位、克隆、序列分析,抗性相关蛋白结构分类及外源基因的整合与表达等一系列新的研究热点。随着以人类基因组计划为代表的多种模式生物基因

组项目,以及植物功能基因组学研究的开展,我们可以从基因表达整体水平上对抗性基因进一步认识。目前经常使用的主要是4种:从微生物苏云金杆菌分离出的苏云金杆菌杀虫结晶蛋白基因,简称BT基因;从植物中分理出的昆虫蛋白酶抑制剂基因,其中应用最广泛的是CPTI;植物凝集素基因;病毒外壳蛋白基因,简称CP基因等。

Flor早先在“基因对基因”假说中论述了抗性基因与病原物无毒基因的关系。后人证实这一机制在细菌、植物病毒、线虫乃至高等植物病害中广泛存在;另外也适于寄主植物与病原物微效基因间的相互作用。抗性基因一般为多基因家族形式,多数与广谱抗性基因一般为多基因家族形式,多数与广谱抗性机制有关,虽然有的目的基因本身不直接编码功能酶,但可通过其特定产物因子又发自身防卫反映,其抗性作用是间接的。

目前对R基因克隆的主要方法有图位克隆、转座子标签发。例如从玉米、番茄中应用转座子标签发分别克隆出Hm1,N,Cf-9,拟南芥RPM1,RPS2基因和水稻中的多种抗病基因。

转基因包括转抗性蛋白基因或Avr基因,后者可产生广谱抗性。常用的抗性基因有十几种,可来自动、植物和微生物,如细菌的Bt基因和异戊基转移酶基因,植物凝集素,昆虫几丁质酶等。转抗性基因与植物自然抗性基因不同主要在于外源性往往需要进行人工改造以提高其表达水平。另外,植物自身存在的几丁质酶基因表大量往往不高,需要人为促进其过量表达或是直接转昆虫几丁质酶基因以获得或的抗性效果。可采用诱导型启动子、多抗性基因转化等策略。

Avr基因存在与否决定着病原菌能否入侵含相应抗病基因的寄主植物或入侵后能否大量增殖,这类基因在病原物里表达后被植物识别,使植物转变对该病原物的抗性目前已经定位或克隆的细菌基因主要来源于假单胞属和黄单胞属,编码不具有典型的信号肽的亲水性可溶蛋白。大部分只存在于特定病原物中的某些小种中。从真菌中被定位与分离的Avr基因较少,多数是通过反向遗传方法从植物细胞内定殖的真菌中得到的。这些Avr蛋白被注射到胞间区域外质体中可诱导HR产生。真菌中首个被克隆的Avr基因是番茄叶霉菌基因,其对应的抗性基因为Cf-9。研究发现同种病毒无毒因子可诱导不同的抗病基因介导的HR过程。

四、结束语

常规选育方法结合抗性基因工程将促进植物抗病虫害等育种的发展。但目前的植物抗性基因研究也存在诸如转基因植物环境释放的生态风险评估,转基因多拷贝诱发的基因沉默和转基因体系多带后外源基因丢失等等难题。另外,现在对抗性基因的抗病激励尤其是对相关细胞信号传导网络研究不足。随着由病原物基因组设计药物结构,通过化学品诱导植物抗性与信号表达、核酶抗病毒研究和诱导型启动子元件分析等一系列新思路新方法的运用,我们相信植物抗性基因研究将会更加深入,植的抗性也越来越对人们的生产生活起到至关重要的作用。

参考文献:

[1]刘亚萍,王献平等.小麦抗条诱病基因Yr24的SSR标记。植物病理学报,2005,35:478-480

[2]杜春芳,毛雪等.多基因抗性的DTL作图及其在作物持久性抗病育种上的应用。西北植物学报。2004,24:172-177

[3]王洪春等,1980:植物生理学报,6:227-232

[4] liu Y j, Ding H . Response of plants to air pollution and their significance in urban

Bull Bot ,2001,18:577-584

[5] Su X ,Hu D Q, Lin Z F, et al. Effect of air pollution on the chlorophyll fluorescence characters of two afforestation plants in Guangzhou .Acta Phytoecol Sin,2002,26:589-593

[6]Rice. E.

[7] D G,Michael K,Sirak,et al. Positional cloning of a gene for nematode resistance in sugar ,1997,275:832-834

[10] Physiol,46: 466-472

[11] Cell Physiol,13:67,

[12]Conrath U , and as a mechanism in inducd systemic resistance of ,107:113-119

作物抗逆性的基因工程研究进展

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 一、国内外植物抗逆性研究进展 (1) 1.1、多胺与植物抗逆性关系研究进展 (2) 1.2、海藻糖在提高植物抗逆性方面的研究进展 (2) 1.3、多效唑提高植物抗逆性的研究进展 (3) 二、各种抗逆机制及其基因工程进展 (3) 2.1、耐重金属机制及相关基因工程进展 (3) 2.2、抗旱机制及相关基因工程进展 (3) 2.3、抗冻机制及相关基因工程进展 (3) 2.4、抗氧化机制及相关基因工程进展 (4) 三、分离和鉴定的抗逆基因作用机理 (4) 3.1、mtID基因和gutD 基因 (4) 3.2、ImtI基因 (4) 3.3、otsBA 基因和TPS 基因 (4) 四、转录因子与植物抗逆性研究进展 (4) 4.1、MYB/MYC转录因子 (4) 4.2、ERF类转录因子 (5) 4.3、bZIP类转录因子 (5) 五、展望 (5) 致谢 (6) 参考文献 (7)

作物抗逆性的基因工程研究进展 摘要植物作为生态系统的重要组成部分,无时无刻不在自身所处环境中进行着物质,信息和能量的交换。研究逆境对植物造成的伤害以及植物对此的反应,是认识植物与环境关系的一条重要途径,也是为人类控制植物的生长条件提供了可能性。近年来,由于DNA技术的发展,从基因等分子水平对植物抗逆性的研究已取得一定的进展。本文对在植物受不同逆境胁迫(如:重金属、冻害、氧化等)情况下的分子机制及植物抗逆性基因工程研究的进展进行综述。并对抗性生理领域中的一些学说和国内外一些研究结果作了介绍,并指出相生相克现象也可作为抗逆生理的一个方面加以研究,对于作物抗逆性的基因工程的应用前景进行了展望, 以便为进一步研究和应用提供一些相关信息。 关键词植物能量抗逆性基因工程 Advances in genetic engineering for Crops resistance Abstract Plants as an important part of the ecosystem,All the time in itself and carry out a physical environment, information and exchange.Plants in stress and plant damage caused in this reaction is an important way to the plant environment and understanding of the relationship, but also for controlling the growth of human conditions offers the possibility of the plant. In recent years, due to the development of DNA technology, researchers from the molecular level of plant resistance genes has been some progress made.In this paper, subject to different environmental stress on plants: progress (such as heavy metals, damage, oxidation, etc.) and the circumstances of the molecular mechanisms of plant resistance gene engineering studies were reviewed. And some of the theory and the results of several studies in the field of physiology confrontational introduced abroad, noting that allelopathy phenomenon can also be studied as an aspect of physiological stress resistance, resistance to the prospect of genetically engineered crops were prospected, in order to provide some information for further research and applications. Key words Plants energy resistance Genetic Engineering 自然生态系统中与植物相关的因子多种多样,且处于动态变化之中,植物对每自然界中的一个因子都有一定的耐受限度,即阈值。一旦环境因子的变化超越了这一阈值,就形成了逆境。因此,在植物的生长过程中,逆境是不可避免的。植物在长期与自然界相抗争的进化过程中,形成了相应的自我保护机制,从感受环境条件的变化到调整体内新陈代谢,直至发生有遗传性的根本改变,并且将抗性遗传给后代。 一、国内外植物抗逆性研究进展

赖草属植物的抗逆性研究进展与应用前景

doi:10.3969/j.issn.1008—9632,2009.04.054 赖草属植物的抗逆性研究进展与应用前景 叶煜辉,江明锋,陈艳,杨满业 (西南民族大学生命科学与技术学院四川省草原研究院,成都610041) 摘要:赖草属是多年生禾本科植物,在中国的分布地域较为广泛。该属内植物对逆境具有较强的抗性,尤其是对于干旱、盐碱、高寒和病虫害等有较强的抵抗能力。综述了近年来赖草属植物抗逆性方面的研究进展,从赖草的耐旱性、耐盐性、耐寒性以及抗病虫害等方面对赖草属植物的抗逆性机理进行了探讨,并对其未来应用做出了展望。 关键字:赖草属;抗逆性;耐受机制;生理变化 中图分类号:Q945.7文献标识码:A文章编号:1008—9632(2009)04—0054—04 赖草属(k”z瑚Hochst)在中国又称滨麦属,是禾本科早熟禾亚科(Pooideae)小麦族(TritDumort,也称大麦族Hordeae)大麦亚族(Hordeinae)中的多年生植物类群,全世界约有30余种,分布于北半球温寒地带,多数产于亚洲中部,少数分布于欧洲和北美。中国区域有赖草属植物约20种,2变种,划分为3个组,即多穗组、少穗组和单穗组,主要分布于新疆、甘肃、宁夏、内蒙、东北三省、四川、陕西、河北、山西。1。。它们的生境极其多样,在海拔500~4700米的范围均有分布。从湿润的盐碱滩地和海滨滩地到干旱高温的沙土草原、荒漠化草原皆有生长,具有广泛的适应性和较高的抗逆性。 禾本科抗逆品种选育是一项世界性的重大课题,也是急迫解决的难题。赖草作为禾本科小麦等农作物的近缘属种具有无性繁殖能力强、品质优良、营养丰富等特点,而且还具有抗旱、抗寒、抗病虫害、适应性强等优良特性。在研究其耐受性状和耐受性的生理生化机制的基础上,克隆赖草抗逆基因并进行功能鉴定,通过转基因把克隆到的抗逆基因直接导入其他植物,可以解决传统杂交方式存在的花期不遇、杂交不亲和、周期长等问题。通过对赖草属植物抗旱机制的研究,还可以加快抗逆新品种的开发,对提高干旱和半干旱地区的植被盖度、提高农作物产量、改良退化及沙化草地、改善西部生态环境、促进干旱地区草地畜牧业的发展具有重要意义。 1抗逆性研究进展 1.1耐旱性分析 541.1.1植物抗旱性研究的主要指标植物适应干旱环境的方式是多种多样的,有的以不同方式减少蒸腾失水,有的以特化组织大量贮存水分,有的以降低叶水势增强其吸水能力,有的以大量累积脯氨酸等有机质进行渗透调节,有的细胞液浓度大,有的原生质粘滞度高等。由于耐旱机制的复杂性和植物对干旱适应的多样性,要寻找一个通用的耐旱性指标是不现实的。现在中国对植物抗旱指标的选择和研究方法主要采用以下几种:(1)叶片旱生结构;(2)水分生理;(3)苗木生长;(4)叶绿素含量;(5)脯氨酸。易津等人对赖草属牧草幼苗耐旱性进行了研究。2。,采用不连续干旱胁迫处理3个月后,对幼苗存活率(%)、苗高(cm)、苗鲜重(g)、根冠比、茎叶干鲜数量比、叶绿素含量和过氧化物酶活性测定,结果发现赖草属内羊草(Leymuschinen—sis)、赖草(Leymusdasytachys,内蒙古)和毛穗赖草(Leymuspaboanus)与属内其它植物相比为耐旱性较强的物种。 1.1.2赖草属的抗旱生理赖草属植物在干旱胁迫下发生许多生理变化,如:光合作用减弱,细胞膜透性平衡被破坏,丙二醛(Malondialchehyche,MDA)含量增加,超氧化物歧化酶(Superoxidedismutase,SOD)活性增加等。 1.1.2.1干旱胁迫下光合作用减弱干旱胁迫对光合作用的影响比较复杂,不仅会使光合速率降低,而且还会抑制光合作用反应中原初光能转换、电子传递、光合磷酸化和光合作用暗反应进程,最终导致光合作用下降。干旱胁迫时,叶表面气孔关闭,阻止CO,扩散, 收发日期:2008—09—01;修回日期:2008—10—20 作者简介:叶煜辉(1982一),男,汉族,硕士,主要从事分子生物学与基因工程方向研究,E-mail:2552393yyh@163.com;通讯作者:江明锋(1971一),男,羌族,博士,副教授,主研分子生物学与基因工程,E-mail:Mingfengjiangvip@sina.COIll。项目基金:四川省科技厅应用基础研究项目(项目编号:2006J13—134) 万方数据

植物抗逆性的鉴定

植物抗逆性的鉴定(电导仪法) 一、原理 植物细胞膜对维持细胞的微环境和正常的代谢起着重要的作用。在正常情况下,细胞膜对物质具有选择透性能力。当植物受到逆境影响时,如高温或低温,干旱、盐渍、病原菌侵染后,细胞膜遭到破坏,膜透性增大,从而使细胞内的电解质外渗,以致植物细胞浸提液的电导率增大。膜透性增大的程度与逆境胁迫强度有关,也与植物抗逆性的强弱有关。这样,比较不同作物或同一作物不同品种在相同胁迫温度下膜透性的增大程度,即可比较作物间或品种间的抗逆性强弱,因此,电导法目前已成为作物抗性栽培、育种上鉴定植物抗逆性强弱的一个精确而实用的方法。 二、材料、仪器设备及试剂 (一)材料:小麦、女贞叶片; (二)仪器设备:1. 电导仪;2. 天平;3. 温箱;4. 真空干燥器;5. 抽气机;6. 恒温水浴锅;7. 注射器; (三)试剂:NaCl溶液。 三、实验步骤 1. 制作标准曲线:如需定量定透性变化,可用纯NaCl配成0、10、20、40、60、80、100μg/ml的标准液,在20~25℃恒温下用电导仪测定,可读出电导度。 2. 选取小麦或其他植物在一定部位上生长叶龄相似的叶子若干,剪下后,先用纱布拭净,称取二份,各重2g。 3. 一份插入小杯中放在40℃恒温箱内萎蔫0.5~1h,另一份插入水杯中放在室温下做对照。处理后分别用蒸馏水冲洗二次,并用洁净滤纸吸干。然后剪成长约1cm小段放入小玻杯中(大小以够容电极为度),并用玻棒或干净尼龙网压住,在杯中准确加入蒸馏水20 ml,浸没叶片。 4. 放入真空干燥器,用抽气机抽气7~8min以抽出细胞间隙中的空气;重新缓缓放入空气,水即被压入组织中而使叶下沉。 5. 将抽过气的小玻杯取出,放在实验桌上静置20min,然后用玻棒轻轻搅动叶片,在20~25℃恒温下,用电导仪测定溶液电导率。

腐植酸为什么能提高植物的抗逆性

腐植酸为什么能提高植物的抗逆性? 腐殖酸是一种天然的有机大分子化合物的混合物,广泛存在于自然界中,由于其具有独特的生理功能,近年来被广泛应用于农业生产。除了改良土壤、提高肥效、促进作物生长等方面,它在植物抗逆性中的作用也越来越受到关注。 关于植物抗逆性 植物体是一个开放体系,生存于自然环境之下,难免会遭到恶劣环境的伤害。通常我们把这些对植物产生伤害的环境称之为逆境(或胁迫),细分起来有以下几类: 生物 物理 化学 温度 病害、虫害、杂草 阴雨、雪、冰雹、机械伤害、洪涝、干旱 除草剂及化肥的副作用、药害、土壤酸化、板结、盐碱化 高温、低温 当这些逆境出现时,植物会产生一些列的变化,如干旱会导致叶片和嫩茎萎蔫;淹水使叶片黄化,枯干,根系褐变甚至腐烂;高温下叶片变褐,出现死斑,树皮开裂;病原菌侵染叶片出现病斑。

轻则影响植物的生长发育及产量和品质,严重时甚至直接导致其死亡。 与人和动物不一样是,植物无论遇到什么危险,都无法逃离,既然跑不掉,植物只能退而求其次,练就了一身“挨打”的本领,这便是植物抗逆性的由来。 如干旱情况下植物通过控制叶片的气孔的开关,来维持水分的平衡;受到高盐度的环境胁迫,通过改善细胞膜的通透性,来阻止大量盐溶液进入植物体内;甚至遭受病虫害时,部分植物也可产生化学物质去抵抗,或吸引病虫害的天敌来消灭它们。 一般来说,植物在生长盛期抗逆性比较小,进入休眠以后,则抗逆性增大;营养生长期抗逆性较强,开花期抗逆性较弱。但如果逆境超出了其耐受能力,植物也是难逃厄运。 逆境一旦出现,我们无法改变,但若能提升植物自身的抗逆性,或许是不错的办法! 腐植酸在各种逆境中的作用

实验四 植物抗逆性的测定

实验植物抗逆性的测定(电导仪法) 一实验目的 进一步理解和认识逆境胁迫对植物细胞膜透性的影响,了解电导法在植物逆境生理与抗性育种研究中的应用范围。 二、实验原理 在正常生长状况下,植物细胞膜保持着良好的选择透性,而当植物组织受到逆境(例如干旱、低温、高温、盐渍等)伤害时,由于膜脂过氧化、膜蛋白变性及膜脂流动性改变,造成膜相变和膜结构破坏,使得细胞膜透性增大,从而使细胞内的电解质外渗,以致植物细胞浸提液的电导率增大。膜透性增大的程度与逆境胁迫强度有关,胁迫强度越大,伤害越重,外渗越多,电导率的增加也越大。同时也与植物抗逆性的强弱有关,抗性越强,伤害越轻,外渗越少,电导率的增加也越小。所以,通过测定外渗液电导率的变化,就可以反映出细胞膜的伤害程度和所测材料抗逆性的大小。 三、材料、仪器和试剂 1. 材料: 各种植物叶片(如丁香、小麦等) 2. 仪器设备: 电导仪;天平;恒温箱;真空干燥器;抽气机;恒温水浴锅;烧杯;剪刀或打孔器; 吸水纸;纱布等。 3.试剂:去离子水 四、实验步骤 1.容器的洗涤: 电导法对水和容器的洁净度要求严格,所用容器必须彻底清洗,再用去离子水冲净,倒臵于洁净滤纸上备用。 2.试验材料的处理: 选取正常生长的小麦或其他植物相同部位叶片若干,剪下后,先用纱布拭净,分成2份,将其中一份放臵50℃左右的恒温箱中处理30min,进行逆境胁迫处理。另一份放臵在室温下作对照。 3. 测定步骤 (1) 将处理组叶片与对照组叶片用去离子水冲洗2次,再用洁净滤纸吸净表面水分,各称取2g,然后剪成长约1cm小段放入小烧杯中(大小以够容电极为度),并用玻璃棒压住,在杯中准确加入蒸馏水20ml,浸没叶片。将其放入真空干燥器中,用抽气机抽气7~8min以抽出细胞间隙中的空气;重新缓缓放入空气,水即被压入组织中而使叶片下沉。(注:材料为

浅析植物抗逆性

浅析植物抗逆性 摘要:随着现代生物技术和基因工程的发展,人们对植物抗性的研究逐渐转入基因层面,现在已能够将多种抗植物病虫害的基因转入目的植物中,但日益引起关注的生物安全性问题也是不容忽视的。在这种情况下,发掘植物自身抗性资源便显得越来越重要。 关键词:植物;抗逆性;基因 根据达尔文“适者生存”的进化规律。凡是地球上现存的植物都是长期自然选择的结果,不同环境条件下生长的植物有利性状被保留下来,并不断加强,不利性状不断被淘汰,就会形成对某些环境胁迫因子的抵御能力,表现为抗逆性。如植物的抗虫性,抗旱性等。 一.植物抗逆性的利用 1. 植物抗逆性与农业生产 早在中国的古代,农耕工作者们就开始认识和利用植物的优良的抗逆性。《齐民要术》中记载要把作物的抗旱性,抗涝性和抗虫性等作为评价和选择种子品种优劣的标准。并对八十六种物粟的抗逆性特点进行了明确的指出。成为我国传统农业在品种选育上的一个重要标准。 时至今日,研究和利用植物的抗逆性意义更是重大之至。化肥、杀虫剂等大量化学试剂的使用,造成了环境的污染破坏,人们利用生物工程技术选择性利用植物自身的抗虫品种而得到优质高产的品系。减少或杜绝了杀虫剂的使用,降低了生产成本和减少了环境污染,对虫害获得持久的仿效,而且不需要入则的技术即可达到防治目的。这是抗性研究而以长期坚持并取得实质性进展的关键所在。如利用植物的次生性物质在植物抗性中起着非常重要的作用,可作为毒素而直接作用于昆虫,如生氰糖苷,作为阻食剂会影响昆虫对食物的利用;又如酚类物质能阻碍昆虫的消化;作为生长调节剂能影响昆虫的变态发育。通过转基因技术,将编码这些抗性的特异基因进行克隆转移到其它植物细胞中,转录出相应的蛋白产物。起到抗性的作用。 2.植物抗逆性与环境 在对不同污染点30种绿化植物的叶面积、FV/Fm、叶片细胞膜渗漏率及光和色素含量相对清洁对照点华南植物园的差异。结果显示,大气污染条件下,绿化植物叶片的生长收到限制。PSII最大光化学效率下降,光合色素发生降解,细胞膜受到伤害。实验证明,根据不同植物在同种污染物作用下的伤害阙值不同,可以确定不同物种对此污染物的抗性等级。由于测定大量植株多项指标的伤害阙值不可行,因此可根据污染点与对照点相对值的大小判断植物抗性。实验数据表明,同一住屋不同生理指标对环境污染的响应不相同,从而,得到的抗性等级不同,本实验中只有少数生理指标反映出相同的抗性等级。大气状况使FV/Fm 等七个分析参数产生极显著差异,说明,大气污染直接影响这7个生理指标,子评价大气污染状况及植物

植物抗逆性研究进展

植物抗逆性研究进展 V A菌根真菌对植物吸收能力及抗逆性的影响研究进展 接种菌根真菌是一种提高农作物产量和质量的比较经济有效的新方法。V A菌根侵染能扩大寄主植物根系的吸收面积;能够改善水分运输,抵抗水分胁迫,提高植物抗旱性能;能够增强植物对矿物元素和水分的吸收能力,改变菌根根际土壤环境,并在根际生态系统中起重要作用。V A菌根真菌也可通过植物根系获得碳水化合物及其他营养物质,从而形成营养上的共生关系为植物提供生长所必需的氮等矿物营养;增强寄主植物光合作用及水分循环运转;提高植物对各种病虫害的抗性。可见,V A菌根真菌对植物的生长具有极其重要的生态价值和经济价值。 电场处理对毛乌素沙地沙生植物抗逆性影响的研究进展 自2002年以来,将电场技术应用于毛乌素沙地沙生植物抗逆性研究中,结果表明,恰当的电场处理更有利于种子的萌发及苗的生长,增强了其抗旱抗寒能力。 多胺与植物抗逆性关系研究进展 在逆境条件下,植物会改变生长和发育类型以适应环境。许多研究表明,在各种逆境协迫下,植物体中多胺水平及其合成酶活力会大量增加,以调节植物生长、发育和提高其抗逆能力,这种反应对逆境条件下的植物可能有意义。就目前的资料来看,多胺之所以能提高植物的抗逆性其机制可能是:①通过气孔调节和部分渗透调节控制逆境条件下水分的丢失。Liu等的研究表明,多胺以保卫细胞中向内的K+-通道作为靶点,调节气孔的运动[10]。多胺还可作为渗透调节剂,其积累可增加细胞间渗透,部分调节水分丢失。②调节膜的物理化学性质。多胺可与膜上带负电荷的磷脂分子头部及其他带负电的基团结合,影响了膜的流动性,同时也间接地调节膜结合酶的活性。③多胺可影响核酸酶和蛋白质酶特别是与植物抗逆性有关的保护酶活性,保护质膜和原生质不受伤害。④清除体内活性氧自由基和降低膜脂过氧化。⑤调节复制、转录、翻译过程。 尽管多胺对植物抗逆性起积极作用,但植物的各种抗性性状是由多个基因控制的数量性状,很难用转基因的方法将如此众多的外源基因同时转入一种植物中并进行表达调控,更何况还有很多与抗性有关的基因尚未发现,这说明植物抗性机制是复杂的。迄今,多胺合成代谢中的3个关键酶ADC、ODC、SAMDC已在许多植物中得到了纯化和鉴定,它们的基因也从多种植物中克隆,并采用转基因技术获得了一些认为多胺可提高植物抗性的证据,但多胺在植物中的载体是什么,植物对多胺的信号感受和传递途径怎样,多胺通过怎样的信号转导通路作用于植物的抗性基因,作用于哪些抗性基因,进而在转录和翻译水平上调控这些基因的表达,控制胁迫蛋白的水平,都还不清楚。因此,采用各种手段,特别是分子生物学的方法研究多胺对植物作用的多样性和提高植物抗胁迫的分子机制、多胺作用的信号转导是值得考虑的 多效唑提高植物抗逆性的研究进展 多效唑是英国ICI有限公司在20世纪70年代末推出的一种高效低毒的植物生长延缓剂和广谱性的杀菌剂[1],因此它对多种植物都有调节生长的效应。多效唑还能引起植物体内一系列的代谢和结构变化,增强植物的抗逆性[2],并兼有杀菌作用。本文仅就多效唑提高植物的抗逆性方面作一简要综述,以期为该领域的研究提供借鉴。 钙与植物抗逆性研究进展 钙是植物必需的营养元素,具有极其重要的生理功能。植物在缺钙条件下,出现与缺钙有关的生理性病害,如苹果果实缺钙可导致苦痘病、水心病和痘斑病等在采前或贮藏期间的生理病害[1]。早在19世纪,钙就被列为植物必需营养元素,并与氮、磷、钾一起称为“肥料的四要素”。钙有“植物细胞代谢的总调节者”之称,它的重要性主要体现在钙能与作为胞内信使的钙调蛋白结合,调节植物体的许多生理代谢过程[2,3],尤其在环境胁迫下,钙和钙调素参与胁迫信号的感受、传递、响应与表达,提高植物的抗逆性[4]。近十几年来,有关钙素营养生理及钙提高植物抗逆性的研究已取得许多进展,现综述如下。 目前,国内外对钙生理及抗逆性研究已经取得了很大进展,但是前人的工作主要侧重于外源钙对植物的影响,对细胞内钙的作用的细节研究得不够深入细致。以下几个方面的问题亟待深入研究:(1)植物是如何感受到逆境信号以及这些信号是如何由激素传导的;(2)激素是如何把逆境信号通过细胞膜传递给钙信使系统的;(3)钙信使系统如何一步步激活靶酶将逆境信号转变为植物体内的生理生化反应从而使植物适应环境胁迫的;(4)钙信使系统与其它胞内信使是如何一起协调调节植物激素的生理反应的。相信随着植物生理学和分子生物学的发展及研究的一步步深入,人们对以上这些问题一定会有日益透彻的认识。这些问题的解决,将使钙生理及抗逆性的研究更加深入,使钙素营养的研究和应用走向新的辉煌 硅与植物抗逆性研究进展 果聚糖对植物抗逆性的影响及相应基因工程研究进展 果聚糖是一类重要的可溶性碳水化合物,其在植物中的积累可提高植物的抗逆性。本文除了介绍果聚糖的有关知识外,重点综述了果聚糖对植物抗逆性的影响,并从果聚糖对渗透的调节,对膜的保护,在低温、干旱条件下果聚糖相关酶活性变化方面阐述了果聚糖抗旱、抗寒机制。此外,综述了提高果聚糖积累方面的基因工程研究进展及存在的相关问题。

植物抗逆性

植物抗逆性 姓名:班级:学号:摘要:随着现代生物技术和基因工程的发展,人们对植物抗性的研究逐渐转入基因层面,现在已能够将多种抗植物病虫害的基因转入目的植物中,但日益引起关注的生物安全性问题也是不容忽视的。在这种情况下,发掘植物自身抗性资源便显得越来越重要。 关键词:植物;抗逆性;基因 根据达尔文“适者生存”的进化规律。凡是地球上现存的植物都是长期自然选择的结果,不同环境条件下生长的植物有利性状被保留下来,并不断加强,不利性状不断被淘汰,就会形成对某些环境胁迫因子的抵御能力,表现为抗逆性。如植物的抗虫性,抗旱性等。 一.植物抗逆性的利用 1. 植物抗逆性与农业生产 早在中国的古代,农耕工作者们就开始认识和利用植物的优良的抗逆性。《齐民要术》中记载要把作物的抗旱性,抗涝性和抗虫性等作为评价和选择种子品种优劣的标准。并对八十六种物粟的抗逆性特点进行了明确的指出。成为我国传统农业在品种选育上的一个重要标准。 时至今日,研究和利用植物的抗逆性意义更是重大之至。化肥、杀虫剂等大量化学试剂的使用,造成了环境的污染破坏,人们利用生物工程技术选择性利用植物自身的抗虫品种而得到优质高产的品系。减少或杜绝了杀虫剂的使用,降低了生产成本和减少了环境污染,对虫害获得持久的仿效,而且不需要入则的技术即可达到防治目的。这是抗性研究而以长期坚持并取得实质性进展的关键所在。如利用植物的次生性物质在植物抗性中起着非常重要的作用,可作为毒素而直接作用于昆虫,如生氰糖苷,作为阻食剂会影响昆虫对食物的利用;又如酚类物质能阻碍昆虫的消化;作为生长调节剂能影响昆虫的变态发育。通过转基因技术,将编码这些抗性的特异基因进行克隆转移到其它植物细胞中,转录出相应的蛋白产物。起到抗性的作用。 2.植物抗逆性与环境 在对佛山市不同污染点30种绿化植物的叶面积、FV/Fm、叶片细胞膜渗漏率及光和色素含量相对清洁对照点华南植物园的差异。结果显示,大气污染条件

植物抗逆性研究概述

植物抗逆性研究概述 摘要:植物在进化过程中,对于外界的不良环境会产生一定的防御机制。综述了干旱、高盐、低温对植物的危害及植物的抗逆性应答反应,以及水杨酸和脱落酸在逆境胁迫中发挥的作用。关键词:植物,抗逆性,水杨酸,脱落酸 逆境指对植物生长和发育不利的各种环境因素的总称,又简称胁迫。植物在生长过程中经常会遇到干旱、盐碱、低温、重金属以及病原物入侵等不良环境条件的影响,导致植物水分亏缺,从而产生渗透胁迫,影响植物的生长和发育,严重时会导致植物死亡。反之,植物经过长期的逆境锻炼也进化产生了一系列对逆境的适应能力,即植物的逆境适应性。其包括避逆性和抗逆性2个方面。避逆性是指植物整个发育过程不与逆境相遇,而是在逆境胁迫到来前已完成生其生活史,但不是普遍现象,只存在于少数植物。而抗逆性是指植物对逆境的抵抗能力或耐受能力,简称抗性,包括御逆性和耐逆性。抗性是植物对环境的适应性反应,是一种遗传特性,是在不良环境条件下逐步形成的,也是绝大多数植物响应环境胁迫的普遍方式。同样,激素水杨酸( Salicylicacid, SA) 和脱落酸(Abscisic Acid,ABA)均是植物体内重要的激素,不仅能调节植物的一些生长发育过程,还在植物抗生物胁迫和非生物胁迫中发挥着重要作用。因此,从干旱胁迫、盐胁迫、低温胁迫、重金属胁迫以及病原物入侵等方面简要介绍植物的抗逆生理及机制,同时也介绍了SA、ABA在植物抗环境胁迫方面的重要意义,以及植物抗逆性基因工程方面的研究成果。 1干旱胁迫对植物的影响 1.1 干旱对植物的伤害 干旱对农作物造成的损失在所有的非生物胁迫中占首位,仅次于生物胁迫病虫害造成的损失。当植物耗水量大于吸水量时,植物体内就会发生水分亏缺,面临干旱胁迫。当植物细胞失水达到一定程度时,膜的磷脂分子排列发生紊乱,膜蛋白遭破坏,使膜的选择透性丧失;叶绿体和线粒体结构也被破坏,会使叶绿体类囊体片层数目减少、扭曲,使线粒体内嵴数量减少,细胞核核膜模糊,染色体凝聚,合成酶类活性下降,光合作用下降。 1. 2植物的抗旱反应 干旱胁迫时,植物的形态结构、渗透调节等会发生相应的变化。抗旱性强的植物根系和输导组织较发达,表皮绒毛多,角质化或膜脂化程度高,叶片细胞体积/表面积比值小,等这些都有利于增加水分的吸收,减少水分的散失。而且植物在面临干旱胁迫时,体内的水分和营养物质会发生重新分配,茎和新叶会从老叶、花、果实中吸收水分和营养。在受到轻度干旱胁迫时,植物能够诱导细胞内发生溶质积累,通过渗透调节降低水势,从而保证组织水势下降时细胞膨压得以维持。植物的渗透调节主要通过亲和性溶质的积累而实现。这类亲和性溶质主要包括脯氨酸、甘露醇、多胺等小分子有机物,它们的大量积累不但不会破坏生物大分子的结构和功能,反而表现出良好的亲和性,有助于植物在干旱条件下对水分的吸收。 1.3 水杨酸与植物的抗旱性 SA 的类似物乙酰水杨酸能改善干旱条件下小麦叶片的水分状况,保护膜的结构。1%的乙酰水杨酸拌种处理玉米种子,可提高玉米幼苗叶片抗脱水能力。根据陶宗娅等的研究,用含1.0mmol/L SA的不同渗透势PEG溶液漂浮处理小麦幼苗叶片,结果表明:SA 降低了叶片过氧化氢酶的活性,轻度胁迫下SA对稳定膜结构和功能有一定作用,在较严重的渗透胁迫和SA 处理下叶片失水量、膜相对透性和丙二醛含量有所增加,H2O2和O-2积累也较快,但与不加SA处理比较,超氧化物歧化酶(SOD)和过氧化物酶( POD)活性仍较高,脂质过氧化程度稍有加重。不同条件下SA在参与和影响植物代谢过程中信号传导途径及其对代谢调控的机理可能存在差异。又如,外源SA 及其类似物的作用位点之一可能在细胞膜上,引起跨

植物尿囊素在抗逆性应答中作用(植物生理学报)2017.4.14

16-0512 doi: 收稿2016-12-00 修订2017- 资助河北省自然科学基金(C2015408022)和河北省大学生创新创业训练计划项目(201510100033)。 * 通讯作者(E-mail: yx_sun70@https://www.doczj.com/doc/a410358422.html,)。 尿囊素在植物抗逆性应答中的作用 张一名, 褚卓栋, 冯雪, 孙艳香*, 龚艳红 廊坊师范学院生命科学学院, 廊坊065000 摘要: 在高等植物中, 尿囊素是嘌呤降解途径上的一种中间产物, 不仅是氮素转运、存储过程中的重要物质, 而且在植物抗逆性应答过程中也发挥着重要作用。本文总结了植物尿囊素的代谢途径、逆境胁迫响应以及尿囊素信号调控和传导的最新研究进展, 并就未来其在植物抗逆生理和育种方面的研究与应用作出展望。 关键词: 尿囊素; 代谢途径; 胁迫应答; 信号转导 尿囊素(allantoin, C4H6O3N4)是植物氮素循环系统的重要成员。自上世纪初Macalister (1912)首次在聚合草(Symphytum officinale L.)中提取出后, 其在植物体内一直被认为是嘌呤分解过程中的一种中间代谢物, 参与植物体内氮素的转运、存储以及再利用等活动(Matsumoto等1978; Smith和Atkins 2002; Rentsch等2007)。此外, 国内早期的研究显示外源施加尿囊素可提高农作物的产量(谢德意等1993; 凌杏元等1995; 许鸿源等1997)。近年来研究发现, 植物在病原菌侵染(Montalbini 1991)、低温(Kaplan等2004; Wang P等2012)、营养缺乏(Nikiforova等2005)、暗处理(Brychkova等2008)、高盐(Kanani等2010; Wang WS等2016; Lescano等2016) 以及干旱(Oliver等2011; Silvente等2012; Yobi等2013)等胁迫条件下, 均伴有尿囊素的积累。同时, 体内较高的尿囊素水平或者外施尿囊素又可诱导植物体的一系列胁迫应答反应(Takagi等2016; Watanabe等2014a)。由此可见, 尿囊素在植物的抗逆应答中也发挥着重要作用。本文旨在通过综述植物尿囊素的代谢途径及其参与植物胁迫响应的相关研究进展, 梳理其在植物抗逆性应答过程中的作用方式, 拓展对其在植物抗逆生理中的认识, 为植物抗逆机理以及抗逆育种的研究提供新思路。 1 植物尿囊素的代谢途径 高等植物体内尿囊素合成的主要途径是通过嘌呤降解过程完成(如图1所示)。腺嘌呤核苷酸(adenosine monophosphate, AMP)与鸟嘌呤核苷酸(guanosine monophosphate, GMP)经过脱氨作用后, 均转化为黄嘌呤(xanthine), 又在黄嘌呤脱氢酶(xanthine dehydrogenase, XDH)的催化下生成尿酸(uric acid)。尿酸在尿酸氧化酶(urate oxidase, UOX)、尿囊素合酶(allantoin

ABA与植物抗逆性

ABA与植物的抗逆性

ABA与植物的抗逆性 若为沙 (西北农林科技大学 712100) 摘要:脱落酸(ABA)是一种重要的植物激素,在植物对胁迫环境抗逆性中发挥重要作用。植物细胞的ABA受体是多重的,在不同条件下介导不同的生物学效应,这些效应调节植物的生理化反应,从而适应环境。文章综述了近年来国内外有关ABA与植物抗逆性研究的一些进展,重点介绍逆境胁迫中ABA的作用及其研究进展。 关键词:脱落酸(ABA)干旱胁迫低温胁迫高温胁迫盐胁迫 植物受气候环境条件影响很敏感,农作物更为敏感。农业是对资源最为依赖的脆弱产业,也是最易受气象环境影响的领域。全球每年因气象因素、金属污染造成农作物的损失高达数千亿美元,在中国由于受干旱、低温等灾害的影响,每年造成的损失也达到几十亿甚至上百亿美元的损失。由于受不利气象因子及其它环境因子的影响,使作物经常生长在逆境胁迫中,所以提高作物的抗逆性,保证粮食安全已引起各国政府的普遍关注。目前提高作物抗逆性的重要途径之一,就是利用外源激素调控、提高作物的抗逆境能力,其中脱落酸对作物抗逆性的影响以及在农业中的应用已经越来越受到人们的关注。脱落酸(abscisic acid,ABA)是一种植物体内存在的具有倍半萜结构的植物内源激素,具有控制植物生长、抑制种子萌发及促进衰老等效应,随着研究的不断深入,发现ABA在植物干旱、高盐、低温等逆境胁迫反应中起重要作用,它是植物的抗逆诱导因子。 脱落酸(abscisic acid,ABA)作为一种调节植物生长的激素,由美国艾迪科特于1963 年从未成熟的棉铃中分离所得促进脱落的物质,称为脱落素Ⅱ。1965 年,英国研究小组的韦尔林等从槭树叶片中分离得到了相同的物质,最初发现它的作用与控制植物休眠有关,称为休眠素。1965年证实,脱落素II 和休眠素为同一种物质,统一命名为脱落酸[1]。随后对其生理功能进行了深入的研究,逆境环境下,植物体合成大量脱落酸,用于促进气孔关闭;促进水分吸收,增加共质体途径水流;降低叶片伸展率,诱导抗旱特异性蛋白质合成,调整保卫细胞离子通道,诱导相关基因的表达。因此称之为植物“胁迫激素”。 ABA主要在叶绿体中合成,然后转移到其他组织中积累起来。研究发现不仅植物的叶片,立体的根系,特别是根尖也能合成大量的脱落酸。进一步研究发现,植物的其他器官,特别是花、果实、种子也能合成脱落酸。高等植物体内脱落酸的生物合成有两条途径。一是C15直接途径:3 个异戊烯单位聚合成C15前体—

脯氨酸与植物的抗逆性

脯氨酸与植物的抗逆性 王宝增(河北省廊坊师范学院生命科学学院065000) 摘要本文主要介绍了脯氨酸在植物体中的合成与分解以及脯氨酸与植物抗逆性的关系。关键词脯氨酸逆境胁迫相容性溶质抗逆性 植物一生中会受到多种不利环境的影响,在诸多逆境因素中,由干旱、盐渍等因素引起的渗透胁迫(os-motic stress)是限制植物生长发育和作物产量的主要原因。许多植物在逆境胁迫中都会积累一些相容性溶质(compatible solute),如脯氨酸、甜菜碱、糖醇等,这些物质溶解度高,没有毒性,在细胞中积累不会干扰细胞内正常的生化反应,并且可以抵抗渗透胁迫[1]。在已知的相容性溶质中,脯氨酸在植物中的分布最为广泛[2]。 1脯氨酸在植物体中的积累 脯氨酸作为蛋白质氨基酸中的一员,在植物初生代谢中的作用尤为重要。人们在萎蔫的黑麦中首先发现了脯氨酸积累这一现象[3]。之后,在逆境胁迫下的其他植物中也发现了脯氨酸的积累。植物在遭受干旱、盐渍、强光与重金属污染和其他生物胁迫过程中都会有脯氨酸的大量积累,少则十几倍,多则几十倍甚至上百倍。许多研究表明,脯氨酸主要分布在细胞质中,调节胞质和液泡之间渗透势的平衡[4]。在水分胁迫中,它优先在细胞质中积累。例如马铃薯细胞在正常水分条件下,细胞内的脯氨酸有34%积累在液泡中;但当其处于水分亏缺条件下时,液泡中脯氨酸含量下降,细胞质中脯氨酸含量上升[5]。 2脯氨酸的合成与分解 在植物中,脯氨酸的合成主要来自谷氨酸,合成反应主要在叶绿体中完成。谷氨酸在吡咯啉-5-羧酸合成酶(P5CS)催化下还原成谷氨酸半缩醛,后者自发转变成吡咯啉-5-羧酸(P5C),吡咯啉-5-羧酸还原酶(P5CR)进一步将吡咯啉-5-羧酸还原成脯氨酸。在大多数植物中,吡咯啉-5-羧酸合成酶由2个基因编码,吡咯啉-5-羧酸还原酶由1个基因编码。脯氨酸的分解代谢在线粒体中完成,分别由脯氨酸脱氢酶(PDH)和吡咯啉-5-羧酸脱氢酶(P5CDH)催化完成,脯氨酸脱氢酶催化脯氨酸转变成吡咯啉-5-羧酸,吡咯啉-5-羧酸脱氢酶催化吡咯啉-5-羧酸氧化成谷氨酸。其中,脯氨酸脱氢酶由2个基因编码,吡咯啉-5-羧酸脱氢酶由1个基因编码[6]。 脯氨酸代谢对外界环境非常敏感。在渗透胁迫(植物脱水)过程中,脯氨酸积累是其生物合成活化和降解代谢钝化两方面作用的结果。植物脱水时,P5CS 基因活化,PDH基因钝化。例如,拟南芥在脱水开始2 h之内,P5CS的mRNA即出现,2 5h迅速增加,脯氨酸含量呈直线上升,PDH基因则处于抑制状态[2];而在渗透胁迫解除(复水)时,脯氨酸含量迅速降低,则是由于上述基因表达发生了相反变化的结果。 3脯氨酸积累与抗逆性 长期以来, 檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨 人们都认为脯氨酸只是一种惰性的相 [14]宋士清,郭世荣,尚庆茂,等.2006.外源SA对盐胁迫下黄瓜幼苗的生理效应.园艺学报,33(1):68 72 [15]马德华,庞金安,李淑菊.1998.温度逆境锻炼对高温下黄瓜幼苗生理的影响.园艺学报,25(4):350 355 [16]王利军,战吉成,黄卫东.2002.水杨酸与植物抗逆性.植物生理学通讯,38(6):619 624 [17]康喜亮,郁松林,胡伟,等.2005.SA与高温锻炼对高温逆境下葡萄幼苗叶片钙离子水平的影响.石河子大学学报(自然科学版),23(4):482 486 [18]Janda T,Szala IG,Tar II,et a1.1999.Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize plants.Planta,208(2):175 180 [19]韩涛,李丽萍,冯双庆.2002.外源水杨酸处理对采后番茄和黄瓜果实抗冷性的影响.中国农业科学,35(5):571 575[20]Kang GZ,Wang ZX,Sun GC.2003.Participation of H2O2in en-hancement of cold chilling by salicylic acid in banana seedlings.Acta Botanica Sinica,45(5):567 573[21]张玉秀,柴团耀,Gerard Burkard.1999.植物耐重金属机理研究进展.植物学报,41(5):453 457 [22]Zawoznik MS,Groppa MD,Tomaro ML,et al.2007.Endogenous salicylic acid potentiates cadmium-induced oxidative stress in Ara-bidopsis thaliana.Plant Science,173(2):190 197 [23]张芬琴.2000.铝胁迫与小麦叶片的内肽酶活性及活性氧的产生.农业环境保护,19(2):79 81 [24]Yalpani N,Enyedi AJ,Leon J,et al.1994.Ultraviolet light and ozone stimulate accumulation of salicylic acid,pathogenesis-relat-ed proteins and virus resistance in tobacco.Planta,193(3):372 376 [25]Gafney T,Friedrich L,Vernoij B.1993.Requirement of salicylic acid for the induction of systemic acquired resistance.Science,261(5122):754 756 [26]Rao MV,Davis KR.1999.Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis the role of salicylic acid.Plant Journal,17(6):603 614?

脱落酸对植物抗逆性的影响

脱落酸对植物抗逆性的影响 Xxx (xxx) 摘要:ABA在植物干旱、高盐、低温和病虫害等逆境胁迫反应中发挥着重要作用,文章阐述了ABA在植物逆境胁迫反应中的作用机理,以及对酸雨胁迫下脱落酸对植物抗逆性的影响研究的展望。 关键词:ABA,逆境胁迫,抗逆性,反应机制,酸雨 The effects of abscisic acid in plant resistance xxx (xxx) Abstract: ABA plays an important role in plant resistance such as drought resistance, high saltresistance, low temperature resistance and plant diseases and insect pests resistance. The physiological mechanism of phytohormone responded to environmental stress was reviewed,and the expectation of studying the effects of acid rain stress on plant resistance. Key words:ABA, adversity stress, resistance, Reaction mechanism,acid rain 植物在生长发育的过程中会遇到逆境,即不利于植物生存和生长的环境条件的统称,包括冷、热、旱、涝、盐碱、大气土壤污染等各种物理化学胁迫和来源于病虫、杂草的生存竞争胁迫。在逆境条件下,植物体会受到原生质膜结构遭到破坏、酶活性降低、糖类和蛋白质大量水解、各细胞器遭受可逆或不可逆损伤的危害。与此同时,植物在长期的进化和适应过程中形成了对这些逆境的适应能力,能采取不同的方式去抵抗各种胁迫因子。植物激素是植物体内合成的调节其生长发育的微量有机物质,作用于植物从种子发芽到幼苗生长、开花、结实和成熟等整个生命周期,并能提高植物逆境胁迫下的抗性。据研究表明,虽然植物激素在植物体内的含量十分微量,但在植物的逆境生理研究中却占据着十分重要的地位。 如植物受到干旱、低温、盐害等环境胁迫时,细胞迅速积累ABA[1]。本文通过研究逆境下ABA增强植物适应逆境的生理机制,更有助于生产上采取切实可行的技术措施,保护植物免受伤害,为植物的生长创造有利条件。 1 脱落酸 1.1脱落酸的概念 脱落酸(abscisic acid,ABA)别名:脱落素(Abscisin),休眠素(Dormin)。一种抑制生长的植物激素,因能促使叶子脱落而得名。可能广泛分布于高等植物。除促使叶子脱落外尚有其他作用,如使芽进入休眠状态、促使马铃薯形成块茎等。对细胞的延长也有抑制作用。

植物抗逆性测定

设计实验不同植物材料抗逆性比较逆境条件下,植物会受到不同程度的伤害,如:蛋白质变性、膜损伤。但是、植物也可以通过本身的代谢变化,如:吸水力降低、蒸腾减弱、光合下降、呼吸增高或降低、激素改变、保护性酶增多、渗透物质(可溶性糖、脯氨酸)增加等来适应逆境。农业生产上,可通过选育高抗品种、逆境锻炼、化学诱导和农业措施提高植物的抗逆性。本组综合实验采用不同品种或对植物进行化学诱导和锻炼的方式研究逆境条件下的生理生化变化,为逆境生理研究打下基础,并培养综合分析能力和科研能力。 [研究方案] 一、研究题目 1、不同品种抗逆性生理指标比较 2、几种外源物质浸种对种子萌发、幼苗生长和抗性的影响 3、生长调节剂处理对植物抗逆性生理指标的影响 4、逆境(低温、高温、干旱等)预处理对植物抗逆性的效应 可在上述几个大题目下具体确定小题目。 二、实验材料准备 实验材料主要采用幼芽和幼苗。可用培养皿和瓷盘培养发芽材料1~2周。 三、实验内容 根据不同研究题目,可在以下测定项目中选择: 1、生长测量: 芽长、根长、根数、地上部鲜重、地下部鲜重。 2、生理生化指标测定: 植物抗逆性的鉴定(电导仪法);丙二醛含量的测定;脯氨酸含量的测定(酸性茚三酮法);过氧化氢酶活性测定(高锰酸钾滴定法);超氧物歧化酶活性测定(NBT还原法);植物蒸腾速率的测定(快速称重法);叶绿体色素的定量测定(分光光度法);植物体内可溶性糖的测定,(蒽酮法);植物组织中游离氨基酸总量的测定,(茚三酮显色法);植物组织中可溶性蛋白含量的测定(考马斯亮蓝G-250染色法)。 各研究题目的生理生化指标测定,根据教学安排和研究内容选做3~4个。 [实验安排] 自由组合小组,选出组长,由组长安排实验材料和重复。 9~12学时、分3~4次进行。 [数据处理和结果统计] 一、数据记录 实验中要及时记载原始数据,以便计算和核对。每个研究题目应设计专门的记录表。 二、结果统计 通过实验获取的原始数据要及时照各实验方法计算出结果,并将结果统一列于结果统计表中,每个研究题目应设计专门的结果统计表,便于分析与比较。 每组还可将结果作图比较。 [实验课程论文撰写] 以每组的数据、按照自然科学期刊上的论文格式、每人完成一篇实验课程论文(参见实验课程论文写作)。

相关主题
文本预览
相关文档 最新文档