当前位置:文档之家› 基于决策树和支持向量机的电能质量扰动识别_陈华丰(1)

基于决策树和支持向量机的电能质量扰动识别_陈华丰(1)

基于决策树和支持向量机的电能质量扰动识别_陈华丰(1)
基于决策树和支持向量机的电能质量扰动识别_陈华丰(1)

基于S变换的电能质量扰动识别研究分析

目录 摘要......................................................................... I Abstract ...........................................................................................................................................II 1引言. (1) 1.1课题的背景及研究的意义 (1) 1.2电能质量概述 (2) 1.2.1电能质量的定义 (2) 1.2.2电能质量的特点和分类 (2) 1.3电能质量扰动综述 (2) 1.3.1电能质量扰动的类型 (2) 1.3.2电能质量扰动的分析方法 (3) 1.3.3电能质量扰动的分类方法 (3) 1.4论文的创新点 (3) 1.5论文的主要内容及框架 (3) 2电能质量扰动信号的数学模型及仿真 (4) 2.1电压暂降 (4) 2.2电压暂升 (4) 2.3电压中断 (5) 2.4电压闪变 (5) 2.5谐波 (6) 2.6暂态振荡 (7) 3 S变换的原理简介及性质 (7) 3.1 S变换的原理简介 (7) 3.1.1 一维连续的S变换公式 (7) 3.1.2一维离散的S变换公式 (8) 3.1.3离散的S变换算法 (8) 3.1.4广义的S变换公式 (9) 3.2 S变换的性质的简要说明 (9) 3.2.1 S变换的局部性特征 (9) 3.2.2 S变换的线性特征 (9) 3.2.3 S变换的时移性特征 (10) 4 电能质量的扰动信号的特征提取 (10) 4.1简要介绍S变换后的复数矩阵 (10) 4.2简要介绍该复数矩阵的模值矩阵 (10) 4.3电能质量各类扰动信号的仿真及其时频统计信息图 (11) 4.4电能质量各类扰动信号的特征分析 (13) 5电能质量的扰动信号的分类识别 (14) 5.1决策树模型的构建 (14) 5.2验证仿真分类结果的正确性 (15)

电能质量在线监测系统方案设计分析

电能质量在线监测系统方案设计分析 发表时间:2019-03-13T14:35:13.890Z 来源:《河南电力》2018年18期作者:王旭马柠韩芳冰李源舟赵健男 [导读] 本文主要就电能质量在线监测系统方案设计方面的内展开了论述,以供参阅。 (大连供电公司辽宁省大连市 116001) 摘要:随着社会的发展,电能质量问题越来越受到社会的关注,其取决于发电、输电、供电和用电方,关系到各方的利益,电能质量在线监测的网络化是一种必然趋势。本文主要就电能质量在线监测系统方案设计方面的内展开了论述,以供参阅。 关键词:电能质量;在线监测系统;方案设计 引言 随着社会的快速发展,电能的使用面临着一种新的问题:一方面是电能需求量在不断增加;另一方面是社会对电能质量的要求也越来越高,要求在电能使用中实现质和量的统一。电能质量的问题,取决于发电、输电、供电和用电方,要保证电力系统电网的电能质量,必须由电力部门和接入电网的广大电力用户来共同维护,因此为了切实维护电力部门和用户的合法利益,保证电网的安全运行,净化电气环境,必须加强对电力系统电网电能质量的监测和管理。 1力系统电能质量问题的产生的主要原因 电力系统元件存在的非线性问题包括同步发电机运行中感应电动势不理想;变压器励磁回路非线性特性;直流输电等。还有变电站并联电容器补偿装置等因素对谐波的影响。在工业和生活用电负载中,非线性负载是电力系统谐波问题的主要来源。各种自然灾害、误操作、电网故障时、发电机及励磁系统的工作状态的改变、故障保护装置中的电力电子设备的启动等都将造成各种电能质量问题。 2基于虚拟仪器技术的电能质量在线监测系统 2.1方案目的 由于用电科普知识不能有效普及,新增大量用户并未充分考虑电能质量的相关问题;加之配网中补偿电容器的设计大多未考虑谐波问题,更有许多用户不投或过投补偿装置,使谐波处于难以控制的状态,是造成配网中谐波滋长的主要原因,若不加以控制,这种趋势将处于增无减的状态,最终出现难以预料的实际问题。因此,建立长期有效的电网电能质量在线监测点、并辅以机动灵活的临时监测点相互配合,用于监测、分析某供电公司电能质量问题,并根据分析结果加以治理,意义重大。 2.2某供电公司电能质量在线监测布点选择 某供电公司主干线路为220kV供电,因此布点选择在各个220kV枢纽变电站中,接入所有等级母线电压,主变低压侧开关电流,及110kV重点用户及联络线路电流。以实时监测该变电站的电能质量情况,通过对变电站的电能质量监测,能判断与该站相接的其他110kV、35kV变电站是否可能存在电能质量超标情况。并通过临时时监测点的建立现场测试各重点用户电能质量情况。 2.3某供电公司电能质量在线监测总体设计实施方案 (1)电能质量监测仪工作原理。本项目的设计的电能质量监测仪,电压和电流信号经过传感器、高精度放大电路、抗混叠滤波器、A /D模数转换电路转换成数字信号,GPS的分脉冲信号和触发录波的开关量经光电隔离后送DSP进行分析及相关数据处理(开关量触发录波和精确对时),然后将测试结果通过PCI总线送工控机。工控机可将这些结果显示、存储、远传。(2)电能质量在线监测系统工作原理。由多台电能质量监测仪(下位机),通讯网络和电能质量分析系统(上位机)构成电能质量动态监测系统,上位机通过通讯网络对下位机进行参数设置、进行远程录波,从下位机获取电能质量测量数据并导入数据库。通过数据库查询,得到所需的测试报表,实时报表,统计报表,趋势图,波形图,频谱图等等,并可显示,打印,保存。上位机还能通过局域网与多用户进行数据共享。(3)某供电公司电能质量在线监测系统实现技术关键点。本项目的测量的间隔时间等于3S,即相邻两次测量之间没有缝隙。其采用的是TI公司的6000系列DSP,主频高,内建八个数据处理单元,可并行数据处理。其硬件结构和软件指令集,适合用来作频谱分析。并有高速PCI接口,方便与工控机进行大量的数据传输,为电能质量谐波无缝监测提供了物质保障。由于采用了高速DSP,因此采用非整数点的频谱分析方法,提高了谐波的分析精度;根据国标,严格采用闪变量值判定的基准方法计算闪变和变动;采用对称分量法计算零序分量、正序分量、负序分量和三相不平衡度,频率的测量精度主要取决于采样频率,与算法的合理性也有直接的关系。本项目A/D采样率为12.8kHz/通道,即:每周波采样256点,加上合理的算法,使得频率误差≤0.002Hz,远优于国标的0.01Hz。 2.4电能质量管理软件 监测中心的电能质量管理软件是在Linux操作系统下,采用面向对象的语言编写,全中文操作,人机界面友好,软件实现了如下功能:(l)可对系统内所有监测终端参数进行远程设定。(2)对监测终端进行网络化管理,管理员可以按照不同用户、不同电压等级、甚至行业等不同分类方式分别管理,这样在同一个界面下就可以设置大量的终端,同时这种管理方式,也方便日后终端的扩展,适应系统配置的变更。(3)可对电能质量的各项指标进行统计、处理、显示和存储,并可对记录的各种事件和波形再现。(4)对监测的数据具有数据库管理功能,从而实现了长期数据的存储与处理、分析大规模数据、对不同类别的数据进行分区管理、快捷的数据查询等。(5)可自动生成所需的图形和报表,其中包括:电能质量总览图、参数记录曲线图、电压谐波频谱图、电流谐波频谱图和电能质量综合统计报表等。 2.5方案评价 对于某供电公司建立电能质量监测网,利用监测数据分析用户对电力系统电能质量产生的污染及危害程度,采取针对性的措施实现电网及用户的电能质量监测和综合治理,改善现有供电系统的供电质量、降低电能损耗、保证电网的安全、可靠、经济运行起到积极作用。通过论述发现,今后研究电能质量问题的首要任务,是建立高效标准的电能质量监测系统,要继续增加监测点,建立网络化、信息化和标准化的电能质量监测系统,保障电网安全运行和为电力用户提供安全可靠和优质服务。 结束语 总而言之,电能质量在线监测技术,是一种可以更科学、更全面监测、分析和研究电能质量的方法。最大的功能特征是就是,电能质量监测装置长时间不间断对监测点进行收集、记录和存储电力系统各种稳态、暂态信息,能实时、精确地测量电能质量,可以为分析电能

电能质量的性能指标与改善方法

电能质量的性能指标与改善方法 摘要:介绍了电能质量的相关概念和术语,并对其指标进行了分类,指出不同的指标有不同的定义和应用领域;重点就国家已颁布的六 个电能质量标准的主要内容作了分析;并结合实际阐述电能质量的几种改善方法与措施;无源滤波器、有源滤波器、静止型无功补偿装置,介绍了它们的基本组成和原理,这些方法可以有效地解决稳态时的电压质量问题;文章还就电能质量技术的改进与提高,提出系统 化综合补偿技术是解决电能质量问题的"治本"途径,以解决动态电能质量问题。得出结论:运用FACTS和电力新技术对电能质量进行系 统地综合补偿,将是电能质量问题研究与开发的方向和有效解决途径。 关键词:电能质量 SVC 动态电能质量综合补偿 1 电能质量概念 电能质量包括四个方面的相关术语和概念:电压质量(Voltagequality)即用实际电压与额定电压间的偏差(偏差含电压幅值,波形和相位的偏差),反映供电企业向用户供给的电力是否合格;电流质量(Current quality)即对用户取用电流提出恒定频率、正弦波形要求,并使电流波形与供电电压同相位,以保证系统以高功率因数运行,这个定义有助于电网电能质量的改善,并降低网损;供电质量(qualityofsupply)包含技术含义和非技术含义两个方面:技术含义有电压质量和供电可靠性;非技术含义是指服务质量(qualityofservice)包括供电企业对用户投诉的反应速度和电力价格等;用电质量(qualityofconsumption)包括电流质量和非技术含义,如用户是否按时、如数缴纳电费等,它反映供用双方相互作用与影响用电方的责任和义务。 一般地,电能质量的定义:导致用户设备故障或不能正常工作的电压、电流或频率偏差。这个定义简单明晰,概括了电能质量问题的成 因和后果。随着基于计算机系统的控制设备与电子装置的广泛应用,电力系统中用电负荷结构发生改变,即变频装置、电弧炉炼钢、电 气化铁道等非线性、冲击性负荷造成对电能质量的污染与破坏,而电能作为商品,人们会对电能质量提出更高的要求,电能质量已逐渐 成为全社会共同关注的问题,有关电能质量的问题已经成为电工领域的前沿性课题,有必要对其相关指标与改善措施作讨论和分析。 2 电能质量指标 电能质量指标是电能质量各个方面的具体描述,不同的指标有不同的定义,参考IEC标准、从电磁现象及相互作用和影响角度考虑 给出的引起干扰的基本现象分类如下: (1)低频传导现象:谐波、间谐波、电压波动、电压与电流不平衡,电压暂降与短时断电,电网频率变化,低频感应电压,交流网络中的直流; (2)低频辐射现象:磁场、电场; (3)高频传导现象:感应连续波电压与电流,单向瞬态、振荡瞬态; (4)高频辐射现象:磁场、电场、电磁场(连续波、瞬态); (5)静电放电现象。 对于以上电力系统中的电磁现象,稳态现象可以利用幅值、频率、频谱、调制、缺口深度和面积来描述,非稳态现象可利用上升率、幅值、相位移、持续时间、频谱、频率、发生率、能量强度等描述。 保障电能质量既是电力企业的责任,供电企业应保证供给用户的供电质量符合国家标准;同时也是用户(拥有干扰性负荷)应尽的义务,即用户用电不得危害供电;安全用电;对各种电能质量问题应采取有效的措施加以抑制。 电能质量指标国内外大多取95%概率值作为衡量依据,并需指明监测点,这些指标特点也对用电设备性能提出了相应的要求。即电气设备不仅应能在规定的标准值之内正常运行,而且应具备承受短时超标运行的能力。 3 电能质量标准 综合新颁布的电磁兼容国家标准和发达国家的相关标准,中低压电能质量标准分5大类13个指标。 (1)频率偏差:包括在互联电网和孤立电网中的两种; (2)电压幅值:慢速电压变化(即电压偏差);快速电压变化(电压波动和闪变);电压暂降(是由于系统故障或干扰造成用户电压短时 间(10ms~lmin)内下降到90%的额定值以下,然后又恢复到正常水平,会使用户的次品率增大或生产停顿);短时断电(又称电压中断,是由于系统故障跳闸后造成用户电压完全丧失(3min,电压中断使用户生产停顿,甚至混乱);长时断电;暂时工频过电压;瞬态过电压; (3)电压不平衡; (4)电压波形:谐波电压;间谐波电压;(由较大的波动或冲击性非线性负荷引起,如大功率的交一交变频,间谐波的频率不是工频 的整数倍,但其危害等同于整数次谐波)。

基于敏感VMD因子的电能质量扰动分析方法

基于敏感VMD因子的电能质量扰动分析方法 发表时间:2019-06-06T09:00:22.090Z 来源:《电力设备》2019年第2期作者:周煜 [导读] 摘要:伴随近年来国家对电厂环保力度增大,电厂里新增加的用电设备负荷性质复杂,对原厂用电系统电能质量产生不同程度的影响。 (国家电网公司华北分部电力调控分中心北京 100053) 摘要:伴随近年来国家对电厂环保力度增大,电厂里新增加的用电设备负荷性质复杂,对原厂用电系统电能质量产生不同程度的影响。针对这一问题,本文提出一种基于敏感VMD因子的电能质量扰动分析方法。该方法利用变分模态分解对电压信号进行模态分解,通过敏感评估分析模态分量,选取包含信号特征的有效模态分量,凸显信号特征。并结合概率神经网络构建故障分析模型,进行电能质量扰动诊断。将所提方法应用于电能质量仿真实验,证明了该方法的有效性。 关键词:VMD;PNN;电能质量扰动;故障诊断 近年来电厂内环保技改设施规模不断扩大,新增用电数量增加一倍[1]。各种冲击性负荷、电力电子设备的投入,导致原有厂用电系统更加复杂,导致包括电压暂降、电压暂升、谐波等电能质量问题日益凸显[2]。电能质量扰动的增多,将增大仪表误差、增加损耗、保护装置误动[3]等问题,给日常生活产生很大影响。因此,对扰动信号进行监控分析,及时发现问题处理具有重要意义。 变分模态分解(variational mode decomposition,VMD)方法假设信号由一组具有不同中心频率的模态分量组成[4],通过非递归模式将各模态解调到对应的频带,最终获取所有模态分量。同时,由于信号特征通常只在特定频段出现,因此引入敏感因子参数,对模态分量进行评估分析,排除无关的干扰分量,凸显信号特征。 本文提出一种基于敏感VMD敏感因子的电能质量扰动分析方法。首先利用VMD方法将原始信号在不同中心频率分解成一组模态分量,然后通过敏感因子筛选其中包含信号特征的分量,输入PNN分类模型,对原始信号进行故障诊断。 1 敏感VMD因子方法 1.1 VMD方法 VMD通过建立变分模型,将信号分解为K个单分量模态函数,寻找最优解。设存在连续信号f(t),根据VMD理论[5],将其分解为K 个限带内禀模态函数(Band-Limited Intrinsic Mode Function,BIMF): (1) 式(1)中,Ak(t)为包络线,φk(t)为相位函数。 首先建立变分约束模型如下: (2) 式(2)中,wk为第k个BIMF分量的中心角频率。 进而得到增广拉格朗日方程: (3) 式(3)中,a为二次惩罚因子,r为拉格朗日算子。 通过不断迭代更新,设置结束判定如下: (4) 最终得到的拉格朗日方程鞍点wf即为式(2)的最优解。 1.2 敏感因子筛选 敏感因子λk定义如下[6]: (5) δk = βk-αk (6) 式(6)中,αk为故障特征的相关系数,βk为非故障信号的相关系数。VMD方法处理后的分量频率从高到低。因此,λk值越小,表明该模态分量包含的故障特征越多。通过迭代法可知,选取前3个模态分量叠加,即可凸显故障特征。 将模态分量输入PNN[7]。通过计算模态分量之间的匹配关系,计算分量间的概率密度函数,最后识别扰动类别。 2 基于敏感VMD因子故障诊断方法 由上分析,本文提出一种基于敏感VMD因子的电能质量扰动分析方法。通过对厂用电电压信号进行VMD分析,将信号分解成一组频率从高到低的模态分量,经过敏感因子筛选重构,输入PNN故障分析模型,进行电能质量扰动识别。 具体步骤如下: (1)采样厂用电扰动i类状态的信号,得到各类扰动样本数mj(j=1,2,···,i)。 (2)对样本进行VMD分析,迭代更新得到Uk和wk。 (3)设定停止判别依据式(4),满足要求后迭代终止,此时的wf即为希望值。 (4)根据式(5)计算敏感因子,评估分量中的故障特征程度强弱,构建模态分析向量。 (5)将模态分析向量输入PNN故障分析模型,得到信号相应的扰动类别。 3 实验研究

支持向量机的matlab代码

支持向量机的matlab代码 Matlab中关于evalin帮助: EVALIN(WS,'expression') evaluates 'expression' in the context of the workspace WS. WS can be 'caller' or 'base'. It is similar to EVAL except that you can control which workspace the expression is evaluated in. [X,Y,Z,...] = EVALIN(WS,'expression') returns output arguments from the expression. EVALIN(WS,'try','catch') tries to evaluate the 'try' expression and if that fails it evaluates the 'catch' expression (in the current workspace). 可知evalin('base', 'algo')是对工作空间base中的algo求值(返回其值)。 如果是7.0以上版本 >>edit svmtrain >>edit svmclassify >>edit svmpredict function [svm_struct, svIndex] = svmtrain(training, groupnames, varargin) %SVMTRAIN trains a support vector machine classifier % % SVMStruct = SVMTRAIN(TRAINING,GROUP) trains a support vector machine % classifier using data TRAINING taken from two groups given by GROUP. % SVMStruct contains information about the trained classifier that is % used by SVMCLASSIFY for classification. GROUP is a column vector of % values of the same length as TRAINING that defines two groups. Each % element of GROUP specifies the group the corresponding row of TRAINING % belongs to. GROUP can be a numeric vector, a string array, or a cell % array of strings. SVMTRAIN treats NaNs or empty strings in GROUP as % missing values and ignores the corresponding rows of TRAINING. % % SVMTRAIN(...,'KERNEL_FUNCTION',KFUN) allows you to specify the kernel % function KFUN used to map the training data into kernel space. The % default kernel function is the dot product. KFUN can be one of the % following strings or a function handle: % % 'linear' Linear kernel or dot product % 'quadratic' Quadratic kernel % 'polynomial' Polynomial kernel (default order 3) % 'rbf' Gaussian Radial Basis Function kernel % 'mlp' Multilayer Perceptron kernel (default scale 1) % function A kernel function specified using @,

(完整版)电能质量测试规范

电能质量现场测试规范 江西省电力公司 2012.5

前言 本规范的编制是针对江西省电力系统电能质量指标(公用电网谐波、三相电压不平衡度、电压波动及闪变)测试而制订。 一、范围 本规范适用于发电厂、变电站、用户端电能质量指标(公用电网谐波、三相电压不平衡度、电压波动及闪变)现场测试。 二、引用标准 GB/T14549-1993 《电能质量公用电网谐波》 GB/T15543-2008 《电能质量三相电压允许不平衡度》 GB/T 12326-2008 《电能质量电压波动和闪变》 电能质量综合测试分析仪技术说明书 三、测试前准备工作 3.1 人员要求 1)现场工作人员应身体健康、精神状态良好。 2)必须具备必要的电气知识、掌握本专业作业技能。 3)认真学习了本测试规范。 4)熟悉《电业安全工作规程》相关知识,并经考试合格。 5)有强烈的安全责任感。 3.2 工器具及材料 1)个人工具箱1套。 2)电能质量综合测试分析仪若干套(在有效期内)。 3)数字万用表1只(在有效期内)。 4)试验接线3套。 5)绝缘胶布1卷。 6)毛刷2把(1.5″)。 7)手电筒1个。

3.3 现场准备工作 1)开工前两天内,准备好本次测试所需电能质量综合测试分析仪、工器具、相关图纸,收集所测线路或机组的PT、CT变比,现场运行方式、供电主变容量、谐波源用户协议容量等相关技术资料。电能质量综合测试分析仪的电压、电流回路完好,工器具应试验合格,满足本次测试的要求,材料应齐全,图纸及资料应附合现场实际情况。 2)被测试单位根据现场工作时间和工作内容落实工作票,工作票应填写正确,并按《电业安全工作规程》相关部分执行。 3.4 安全提示 1)本规范所做测试不需拆动二次回路,测试中严禁拆动二次回路。 2)电流二次回路开路,易引起人员伤亡及设备损坏。 3)电压二次回路短路,易引起人员伤亡、设备损坏及保护误动。 3.5安全措施 1)做安全技术措施前应先检查附录A中的《现场安全技术措施》和实际接线及图纸是否一致,如发现不一致,及时向专业技术人员汇报,经确认无误后及时修改,修改正确后严格执行附录A中的《现场安全技术措施》。 2)检查在被测试设备相邻运行设备上确挂有红布幔。 3)必须正确使用工器具及仪器仪表。 4)严禁交、直流电压回路短路或接地。 5)严禁交流电流回路开路。 6)工作中应使用绝缘工具并戴手套。 7)在保护室内严禁使用无线通讯设备。 8)严禁电流回路开路或失去接地点,防止引起人员伤亡及设备损坏。 9)进入工作现场,必须正确使用劳保用品。 3.6 测试仪器的检查 1)检查测试仪器的电压输入方式是否与现场对应。若现场仅有三相三线,则应把电压输入线接成三相三线方式。在现场,尽可能找到三相四线的接线方式,以提高测试的准确度。

同步电机习题答案

同步电机习题与答案 6.1 同步电机的气隙磁场,在空载时是如何激励的?在负载时是如何激励的?[答案见后] 6.2 为什么大容量同步电机采用磁极旋转式而不采用电枢旋转式? [答案见后] 6.3 在凸极同步电机中,为什么要采用双反应理论来分析电枢反应? [答案见后] 6.4 凸极同步电机中,为什么直轴电枢反应电抗X ad大于交轴电枢反应电抗X aq?[答案见后] 6.5 测定同步发电机的空载特性和短路特性时,如果转速降为原来0.95n N,对试验结果有什么影响? [答案见后] 6.6 一般同步发电机三相稳定短路,当I k=I N时的励磁电流I fk和额定负载时的 励磁电流I fN 都已达到空载特性的饱和段,为什么前者X d 取不饱和值而后者取饱 和值?为什么X q 一般总是采用不饱和值? [答案见后] 6.7 为什么同步发电机突然短路,电流比稳态短路电流大得多?为什么突然短路电流大小与合闸瞬间有关? [答案见后] 6.8 在直流电机中,E>U还是U>E是判断电机作为发电机还是作为电动机运行的依据之一,在同步电机中,这个结论还正确吗?为什么? [答案见后]

6.9 当同步发电机与大容量电网并联运行以及单独运行时,其cosφ是分别由什么决定的?为什么? [答案见后] 6.10 试利用功角特性和电动势平衡方程式求出隐极同步发电机的V形曲线。[答案见后] 6.11 两台容量相近的同步发电机并联运行,有功功率和无功功率怎样分配和调节? [答案见后] 6.12 同步电动机与感应电动机相比有何优缺点? [答案见后] 6.13 凸极式同步发电机在三相对称额定负载下运行时,设其负载阻抗为R+jX,试根据不考虑饱和的电动势相量图证明下列关系式 [答案见后] 6.14 试述直流同步电抗X d、直轴瞬变电抗X′d、直轴超瞬变电抗X"d的物理意义和表达式,阻尼绕组对这些参数的影响? [答案见后] 6.15 有一台三相汽轮发电机,P N=25000kW,U N=10.5kV,Y接法,cosφN=0.8(滞后),作单机运行。由试验测得它的同步电抗标么值为X* =2.13。电枢电 t 阻忽略不计。每相励磁电动势为7520V,试分析下列几种情况接上三相对称负载时的电枢电流值,并说明其电枢反应的性质:

支持向量机非线性回归通用MATLAB源码

支持向量机非线性回归通用MA TLAB源码 支持向量机和BP神经网络都可以用来做非线性回归拟合,但它们的原理是不相同的,支持向量机基于结构风险最小化理论,普遍认为其泛化能力要比神经网络的强。大量仿真证实,支持向量机的泛化能力强于BP网络,而且能避免神经网络的固有缺陷——训练结果不稳定。本源码可以用于线性回归、非线性回归、非线性函数拟合、数据建模、预测、分类等多种应用场合,GreenSim团队推荐您使用。 function [Alpha1,Alpha2,Alpha,Flag,B]=SVMNR(X,Y,Epsilon,C,TKF,Para1,Para2) %% % SVMNR.m % Support Vector Machine for Nonlinear Regression % All rights reserved %% % 支持向量机非线性回归通用程序 % GreenSim团队原创作品,转载请注明 % GreenSim团队长期从事算法设计、代写程序等业务 % 欢迎访问GreenSim——算法仿真团队→https://www.doczj.com/doc/a54671068.html,/greensim % 程序功能: % 使用支持向量机进行非线性回归,得到非线性函数y=f(x1,x2,…,xn)的支持向量解析式,% 求解二次规划时调用了优化工具箱的quadprog函数。本函数在程序入口处对数据进行了% [-1,1]的归一化处理,所以计算得到的回归解析式的系数是针对归一化数据的,仿真测 % 试需使用与本函数配套的Regression函数。 % 主要参考文献: % 朱国强,刘士荣等.支持向量机及其在函数逼近中的应用.华东理工大学学报 % 输入参数列表 % X 输入样本原始数据,n×l的矩阵,n为变量个数,l为样本个数 % Y 输出样本原始数据,1×l的矩阵,l为样本个数 % Epsilon ε不敏感损失函数的参数,Epsilon越大,支持向量越少 % C 惩罚系数,C过大或过小,泛化能力变差 % TKF Type of Kernel Function 核函数类型 % TKF=1 线性核函数,注意:使用线性核函数,将进行支持向量机的线性回归 % TKF=2 多项式核函数 % TKF=3 径向基核函数 % TKF=4 指数核函数 % TKF=5 Sigmoid核函数 % TKF=任意其它值,自定义核函数 % Para1 核函数中的第一个参数 % Para2 核函数中的第二个参数 % 注:关于核函数参数的定义请见Regression.m和SVMNR.m内部的定义 % 输出参数列表 % Alpha1 α系数 % Alpha2 α*系数 % Alpha 支持向量的加权系数(α-α*)向量

S变换在电能质量扰动分析中的应用综述

第39卷第3期电力系统保护与控制Vol.39 No.3 2011年2月1日Power System Protection and Control Feb.1, 2011 S变换在电能质量扰动分析中的应用综述 易吉良1,2,彭建春2,谭会生1 (1.湖南工业大学电气与信息工程学院,湖南 株洲 412008;2.湖南大学电气与信息工程学院,湖南 长沙 410082) 摘要:结合国内外采用S变换应用于电能质量扰动分析的现状,对基于S变换的电能质量扰动检测、识别以及其他方面的应用进行了分类和总结。分析了S变换结合各种人工智能与数学工具在进行电能质量扰动分析时的优势和不足,介绍了近年来利用广义S变换、改进S变换和双曲S变换等其他形式S变换在电能质量扰动分析中的应用情况。最后对S变换应用于电能质量扰动分析的发展趋势以及值得进一步研究的问题进行了展望。 关键词:电能质量;S变换;检测;分类;应用 A summary of S-transform applied to power quality disturbances analysis YI Ji-liang1,2,PENG Jian-chun2,TAN Hui-sheng1 (1. College of Electrical and Information Engineering,Hunan University of Technology,Zhuzhou 412008,China; 2. College of Electrical and Information Engineering,Hunan University,Changsha 410082,China) Abstract:On the basis of the application status of S-transform in power quality disturbances analysis at home and abroad, the S-transform based power quality disturbance detection, classification and application in other aspects are summarized and classified.The advantages and disadvantages of using S-transform combining with various artificial intelligent and mathematical tools to analyze power quality disturbance are analyzed The situation of other forms of S .-transform in recent years such as generalized S-transform modified S ,-transform and hyperbolic S-transform applied to power quality disturbance analysis is introduced Finally the develo .,ping trend and further issues of using S-transform to analyze power quality disturbance are presented. This work is supported by National Natural Science Foundation of China (No. 50677015). Key words:power quality;S-transform;detection;classification;application 中图分类号: TM714 文献标识码:A 文章编号: 1674-3415(2011)03-0141-07 0 引言 电能质量扰动(Power Quality Disturbances,PQD)会导致设备过热、电机停转、保护失灵以及计量不准等严重后果,因此电能质量问题引起了广泛的关注。有效的PQD分析是治理电能质量的基础,只有正确识别影响电能质量的诸多因素,查明相应的起因和来源,检测、分类并统计扰动现象,确定扰动范围和幅值,才能从根本上综合治理并提高系统电能质量。而PQD分析主要包括PQD信号的消噪、特征提取、扰动分类和参数估计等四方面的内容[1-2]。 PQD类型较多,可以分为稳态和暂态两大类,单一的时域或频域方法难以胜任所有类型的PQD 基金项目:国家自然科学基金项目(50677015) 分析,因此,时频分析方法成了PQD分析的常用工具。最初,基于小波变换的方法最受研究者的青睐,但小波变换不能单独提取任意频次的信号,而且小波系数受噪声影响较大,这些缺陷使其无法定量检测含噪或含谐波的扰动信号的幅值特征[3]。而短时傅里叶变换存在需要选择窗口类型和宽度以及窗口宽度固定等缺陷,使其在PQD分析中的应用受到了限制。作为小波变换和短时傅里叶变换的继承和发展,S变换采用高斯窗函数且窗宽与频率的倒数成正比,免去了窗函数的选择和改善了窗宽固定的缺陷,并且时频表示中各频率分量的相位谱与原始信号保持直接的联系,使其在PQD分析中可以采用更多的特征量,同时,S变换提取的特征量对噪声不敏感,因此,近年来众多学者纷纷采用S变换并结合其他分析工具应用于PQD的分析,产生了大量研究成果。

MATLAB-智能算法30个案例分析-终极版(带目录)

MATLAB 智能算法30个案例分析(终极版) 1 基于遗传算法的TSP算法(王辉) 2 基于遗传算法和非线性规划的函数寻优算法(史峰) 3 基于遗传算法的BP神经网络优化算法(王辉) 4 设菲尔德大学的MATLAB遗传算法工具箱(王辉) 5 基于遗传算法的LQR控制优化算法(胡斐) 6 遗传算法工具箱详解及应用(胡斐) 7 多种群遗传算法的函数优化算法(王辉) 8 基于量子遗传算法的函数寻优算法(王辉) 9 多目标Pareto最优解搜索算法(胡斐) 10 基于多目标Pareto的二维背包搜索算法(史峰) 11 基于免疫算法的柔性车间调度算法(史峰) 12 基于免疫算法的运输中心规划算法(史峰) 13 基于粒子群算法的函数寻优算法(史峰) 14 基于粒子群算法的PID控制优化算法(史峰) 15 基于混合粒子群算法的TSP寻优算法(史峰) 16 基于动态粒子群算法的动态环境寻优算法(史峰) 17 粒子群算法工具箱(史峰) 18 基于鱼群算法的函数寻优算法(王辉) 19 基于模拟退火算法的TSP算法(王辉) 20 基于遗传模拟退火算法的聚类算法(王辉) 21 基于模拟退火算法的HEV能量管理策略参数优化(胡斐)

22 蚁群算法的优化计算——旅行商问题(TSP)优化(郁磊) 23 基于蚁群算法的二维路径规划算法(史峰) 24 基于蚁群算法的三维路径规划算法(史峰) 25 有导师学习神经网络的回归拟合——基于近红外光谱的汽油辛烷值预测(郁磊) 26 有导师学习神经网络的分类——鸢尾花种类识别(郁磊) 27 无导师学习神经网络的分类——矿井突水水源判别(郁磊) 28 支持向量机的分类——基于乳腺组织电阻抗特性的乳腺癌诊断(郁磊) 29 支持向量机的回归拟合——混凝土抗压强度预测(郁磊) 30 极限学习机的回归拟合及分类——对比实验研究(郁磊) 智能算法是我们在学习中经常遇到的算法,主要包括遗传算法,免疫算法,粒子群算法,神经网络等,智能算法对于很多人来说,既爱又恨,爱是因为熟练的掌握几种智能算法,能够很方便的解决我们的论坛问题,恨是因为智能算法感觉比较“玄乎”,很难理解,更难用它来解决问题。 因此,我们组织了王辉,史峰,郁磊,胡斐四名高手共同写作MATLAB智能算法,该书包含了遗传算法,免疫算法,粒子群算法,鱼群算法,多目标pareto算法,模拟退火算法,蚁群算法,神经网络,SVM等,本书最大的特点在于以案例为导向,每个案例针对一

电网电能质量的监测与分析

电网电能质量的监测与分析 导读:我根据大家的需要整理了一份关于《电网电能质量的监测与分析》的内容,具体内容:【关键词】分析,监测,质量,电压,电能,电网,随着经济的快速发展,电网中非线性负荷用户的比例不断提高,由此而产生的供电电能质量严重下降,表现得越来越突出。电能质量严重超标正在大范...【关键词】分析,监测,质量,电压,电能,电网,随着经济的快速发展,电网中非线性负荷用户的比例不断提高,由此而产生的供电电能质量严重下降,表现得越来越突出。电能质量严重超标正在大范围的污染供电环境,危及电网及其供电设备的安全稳定运行,严重的影响电力企业及广大用户的经济效益。这种现象在北京孙河220kV变电站表现十分严重,它不但使变电设备的安全运行无法保证,而且影响到当地的企业生产用电和居民生活用电。为此2002年在该站安装了电能质量监测系统,对10kV母线的电能质量进行了连续的监测。1孙河220kV变电站电能质量在线监测系统介绍为了加强对电能质量的管理和监控,2002年在孙河220kV变电站建立了电能质量在线监测系统,进行实时在线监测。此前,该站经常烧TV保险,曾多次发生过TV爆炸的事故,存在严重的谐振现象。采用电能质量在线监测仪进行实时监测,该装置主要有以下几种监测和统计功能:(1) 三相各次谐波电压、电流及其谐波含有率;(2) 三相电压、电流总谐波畸变率; (3) 三相有功、无功功率及其方向;(4) 总的有功功率、无功功率,功率因数及相位移功率因数;(5) 电网频率、线电压、电压偏差;(6) 电压不平衡度、负序电压、负序电流。电能质量在线监测单元,安装在220kV孙

河变电站10kVII段母线,服务器安装在监控中心,是集通讯/数据库/Web 发布于一体的服务器,与变电站监控单元间通过光纤进行通讯传输数据,同时监控数据通过Web服务器对MIS系统开放,支持Web浏览方式,做到数据共享,公司所有局域网内的微机,均可通过Web浏览进行访问,查看电能质量分析的各种报表和数据,了解监测点的电压、电流波形、各次电流电压的谐波分量等电能质量情况。2变电站概况及监测结果该变电站有主变压器2台,容量均为180MVA,220kV母线、110kV母线、10kV母线均分段并列运行,有并联补偿电容器一组,容量为2700kvar,正常运行方式为2号主变带全站负荷。负荷主要是周围一些工厂的工业用电、城市生活用电及周围农业负荷。工业用电主要集中棉厂、纱厂、变压器厂、化工厂和木材加工厂等,这些也是该站主要的谐波源。经过3个月的连续监测,对数据进行了统计,该监测点监测数据的部分统计,见表1~6。3对电能质量的分析根据监测数据和结果分析:(1) 从谐波电压总畸变率表4可看出,该监测点谐波电压总畸变率严重超标。国家标准为4%,实际情况为三相总畸变依次是:6.89%、6.50%、7.24%。对于并联无功补偿装置,10kV 电容器应进行容量及参数计算,适当改变电容参数,避免产生谐振,防止谐波对电容器造成损坏。对该站以后新增负荷时,应严格控制谐波源,以避免谐波分量进一步提高,给电网造成较大的安全隐患。(2) 从各次谐波电压含有率水平表1可见:3次谐波含有率较高,A相为6.7%,其次是5、7次谐波,这对并联无功补偿电容器串联电抗百分数的选择,有重要的参考价值。(3) 谐波电流均不超标,主要谐波频次为:3、5、7、9次,这为谐波治理提供了基础数据。(4) 根据上述分析可判断,该监测点存在严重

几种电能质量扰动检测和分类方法研究

龙源期刊网 https://www.doczj.com/doc/a54671068.html, 几种电能质量扰动检测和分类方法研究 作者:杨正凡 来源:《科技风》2018年第30期 摘要:随着电力行业的发展、新型电力电子器件和大量非线性负荷的使用,致使电能质量问题正变得越來越严重,同时,电力供应商和电能消费者均对电能质量提出更高的要求。电能质量扰动信号的识别分类是进行电能质量扰动参数分析、定位扰动信号发生的源头,并对电能质量进行改善的重要前提。本文对几种电能质量暂态扰动信号的定位与识别方法进行了探讨,简析它们在处理电能质量扰动信号上的优缺,为后续的相关工作提供参考。 关键词:电能质量;扰动;定位与分类 1 电能质量扰动检测方法 1.1 傅里叶变换 傅里叶变换就是把时域上的信息映射到了频域上,因此可以分别从时域和频域两个角度来观察信号所具有的特性。但傅里叶变换只能反映信号在整个时间轴上的整体信息,却不能反映局部时间上频率特性。因此,傅里叶变换只适合处理一些平稳的、随时间周期变化的信号,否则会出现栅栏效应和频谱泄露。离散傅里叶变换(Discrete Fourier Transform,DFT)在频域检测中也得到了广泛的应用,通过加窗、插值及频谱校正等方式在傅里叶方法上进行了改善,使得变换速度和计算精度得到了很大的提高。而后又提出了快速傅里叶变换(Fast Fourier Transform,FFT),因其克服了DFT的计算量大等问题,使得其运算速度得到很大的提升。 1.2 小波变换 小波变换是一常用的处理电能质量的时频域分析法。小波变换可以很好的处理非平稳的信号,并且它能够同时从时域和频域进行观察,可以用一个二维矩阵实现信号的重构和局部变化,它的时频窗口可以自适应变化,具有良好的时频局部化特性。而能否选取合适的小波基使得小波变换的分析结果差别很大,而且小波变换的冗余度和计算量都较大。连续小波变换、离散小波变换、小波包变换等改进型方法克服了小波变换的缺陷在实际中得到大量应用。 1.3 希尔伯特黄变换 希尔伯特黄变换(Hilbert.Huang Transform,HHT)也是一种时频域分析法,实现了完全自适应并对非平稳信号有着精准的分析。能同时满足时间域和频率轴上所要求的精度要求,对突变信号的处理性更强。但其需要复杂的递回,运算时间反而比短时傅里叶变换要长。由于

29.同步发电机的隐极电机饱和分析

二、考虑饱和时的磁动势-电动势相矢图 1、电磁关系: 定义:=+为气隙基波合成磁动势;磁动势平衡 2、电动势方程式:电动势平衡 a E U Ir jIx δσ =++ΦI (定子三相电流)ΦE a U Ir +与平衡 E 3、磁动势-电动势相矢图:根据磁动势方程式和电动势方程式作出的相矢图。 §10-3 隐极同步发电机的电动势方程式、同步电抗和相量图(续) F δ1f F a F

E E δ U jIx σ a Ir δ a F 1 f f F F '90 ?'+90 ?'+ k D A I 图示为绘制完成的磁动势-电动势相矢图。绘制该图的主要目的是获取相位。然后根据获取的发电机的励磁控制。 0E 0E

I E U Ir E δ jIx σ ) f 绘制磁动势-电动势相矢图 已知U 、I 、cos φ、r a 和x σ以及空载特性,以感性负载为例。 注意: 1)空载特性求得的磁势为阶梯波磁势,需转化成基波磁势。 阶梯形励磁磁动势÷k a (×k f )→等值电枢基波磁动势 2)已知基波磁势求电势,要将基波磁势转化成阶梯波磁势才能利 用空载特性。 基波电枢磁动势×k a →等值阶 梯形波励磁磁动势

1f a f F k F F F k F k δδδδδ ' '== =f a k k 1= 为电枢磁动势折算系数 阶梯波与正弦波之间的折算 k a 的物理意义:一个基波电枢磁动势乘以折算系数k a 以后就换算成了一个 等值的阶梯形波励磁磁动势;反过来说,一个阶梯形励磁磁动势除以k a (或乘以k f )后,就换算成了一个等值的电枢基波磁动势。

相关主题
文本预览
相关文档 最新文档