当前位置:文档之家› 7.1-2 噪声基础

7.1-2 噪声基础

7.1-2 噪声基础
7.1-2 噪声基础

7. 作业场所噪声检测

在工业生产过程中,噪声污染和水污染、空气污染等一样是当代主要的环境污染之一。但噪声污染是物理污染(或称能量污染)。与声源同时产生同时消失,噪声污染源分布很广,较难集中处理。由于噪声渗透到人们生产和生活的各个领域,且能够直接感觉到它的干扰,不象物质污染那样只有产生后果才受到注意,所以噪声污染往往是受到抱怨和控告最多的环境污染。

7.1 工业噪声概述

1. 声音和噪声

声音的本质是波动,受作用的空气发生振动,当振动频率在20--20000Hz时,作用于耳鼓膜而产生的感觉称为声音。

声源可以是固体、也可以是流体(液体和气体)的振动。声音的传媒介质有空气、水和固体,它们分别称为空气声、水声和固体声等。

噪声:凡是不需要的、使人厌烦的并对人类的生产和生活活动有妨碍的声音。对噪声判断往往与个人所处的环境和主观愿望有关。

2. 噪声来源

按产生的机理可分为3种

(1)气体动力噪声

(2)机械噪声

(3)电磁性噪声。电磁噪声主要是由交替变化的电磁场激发金属零部件和空气间隙周期性振动而产生的。对于电动机来说由于电源不稳定也可以激发定子振动,而产生噪声。电动机、发电机噪声中某些成分和变压器噪声是典型的电磁噪声。电磁噪声主要分布在1000Hz 以上的高频区域。

城市环境噪声的来源有4种主要来源:

(1)交通噪声,火车,汽车,飞机

(2)工业噪声,汽笛,机床,

(3)建筑施工噪声,建筑施工,挖土机,混凝土搅拌

(4)社会生活噪声,喇叭,收音机,卡拉ok

3. 噪声的危害

1.干扰睡眠:耳鸣、脉搏加剧、失眠、兴奋

2.听力损伤:暂时性损伤,持久性损伤

3.生理影响:刺激肾上腺;唾液、胃液分泌减少;引起流产,

代谢紊乱;肿瘤;引起胎儿和儿童的发育不良。

4.对动物影响:鸟类:内出血、脱毛、不产蛋

4. 噪声控制基本途径

对环境噪声的控制,控制技术是基本手段。

行政管理措施和合理的规划也都是非常重要的。

所有的噪声问题基本上都可以分为三部分:声源~传播途径~接收者。因此,一般噪声控制技术都是分为三部分来考虑。首先是降低声源本的噪声,如果做不到,或都能做到却又不经济,则考虑从传播途径中来降低。如上述方案仍然达到要求或不经济则可考虑接收者的个人防护。

(1)声源控制降低声源本身的噪声是治本的方法

(2)噪声传播途径控制

(a)吸声:主要利用吸声材料或吸收结构来吸收声能。

(b)隔声:用屏蔽物将声音隔离,是控制噪声最有效措施之一。

(c)消声:消声就是利用消声器来降低空气中声的传播。

(3)个人防护(护耳器)运转。

7.2 声学基础

5. 声音的物理特性和量度

(1)声音的产生、频率、波长和声速

人类能听到的声音范围:可听声

20-20000Hz,最灵敏约3000Hz

次声<20Hz 超声>20000Hz

声音的传播速度:(P169)

(2)声功率、声强和声压

声功率(W);是指单位时间内,声波通过垂直于传播方向某指定面积的声能量,w

声强(I):是指单位时间内(每秒),声波通过垂直于声波传播方向单位面积的声能量,W/s2

声压(P)声波通过介质时所产生的压力变化量称为声压。是由于声波的存在而引起的压力增值, Pa

在标准状况下,稳定大气压为105Pa。在可听范围内,声压为2×10 -- 5一20Pa。

(3)分贝、声功率级、声强级和声压级

声音和噪声都采用声压级、声强级和声功率级来描述其强弱用频率或频谱来描述其高低。

分贝:人们日常遇到的声音,若以声压值表示,由于变化范围非常大,可以在6个数量级以上,由于人体听觉对声信号

强弱刺激的反应不是线性的,而是成对数比例关系。所以采用

分贝来表达声学量值。

分贝是指两个相同的物理量之比取以10为底的对数并乘以10(或20)。dB

6. 人对噪声的感觉

20dB 无声无人的播音室内

30dB 非常宁静无人的音乐厅内

40dB 不怎麽感到噪声安静的图书馆内

50dB 能感觉到噪声安静的旅馆大厅内

60dB 噪声已不可忽视工厂一般的食堂内

声功率级

声强级

声压级

一些噪声环境下的声压和声压级

(4)噪声的叠加和相减

从图知,两噪声相加,总声压级不会比其中任一个大3分贝以上;而两个声压级相差10分贝以上时,叠加增量可忽略不计。

多声源的叠加,只需逐次两两叠加即可,而与叠加次序无关。

2.噪声的相减:

噪声测量中还经常碰到如何扣除背景噪声问题,这就是噪声相减的问题。通常是指噪声源的声级比背景噪声高、但由于后者的存在使测量读数增高,这就需要减去背景的噪声。

可查曲线计算

过程控制系统习题解答

《过程控制系统》习题解答 1-1 试简述过程控制的发展概况及各个阶段的主要特点。 答:第一个阶段50年代前后:实现了仪表化和局部自动化,其特点: 1、过程检测控制仪表采用基地式仪表和部分单元组合式仪表 2、过程控制系统结构大多数是单输入、单输出系统 3、被控参数主要是温度、压力、流量和液位四种参数 4、控制的目的是保持这些过程参数的稳定,消除或减少主要扰动对生产过程的影响 5、过程控制理论是以频率法和根轨迹法为主体的经典控制理论,主要解决单输入、单输出的定值控制系统的分析和综合问题 第二个阶段60年代来:大量采用气动和电动单元组合仪表,其特点: 1、过程控制仪表开始将各个单元划分为更小的功能,适应比较复杂的模拟和逻辑规律相结合的控制系统 2、计算机系统开始运用于过程控制 3、过程控制系统方面为了特殊的工艺要求,相继开发和应用了各种复杂的过程控制系统(串级控制、比值控制、均匀控制、前馈控制、选择性控制) 4、在过程控制理论方面,现代控制理论的得到了应用 第三个阶段70年代以来:现代过程控制的新阶段——计算机时代,其特点: 1、对全工厂或整个工艺流程的集中控制、应用计算系统进行多参数综合控制 2、自动化技术工具方面有了新发展,以微处理器为核心的智能单元组合仪表和开发和广泛应用 3、在线成分检测与数据处理的测量变送器的应用 4、集散控制系统的广泛应用 第四个阶段80年代以后:飞跃的发展,其特点: 1、现代控制理论的应用大大促进了过程控制的发展 2、过程控制的结构已称为具有高度自动化的集中、远动控制中心 3、过程控制的概念更大的发展,包括先进的管理系统、调度和优化等。 1-2 与其它自动控制相比,过程控制有哪些优点?为什么说过程控制的控制过程多属慢过程? 过程控制的特点是与其它自动控制系统相比较而言的。 一、连续生产过程的自动控制 连续控制指连续生产过程的自动控制,其被控量需定量控制,而且应是连续可调的。若控制动作在时间上是离散的(如采用控制系统等),但是其被控量需定量控制,也归入过程控制。 二、过程控制系统由过程检测、控制仪表组成 过程控制是通过各种检测仪表、控制仪表和电子计算机等自动化技术工具,对整个生产过程进行自动检测、自动监督和自动控制。一个过程控制系统是由被控过程和检测控制仪表两部分组成。 三、被控过程是多种多样的、非电量的 现代工业生产过程中,工业过程日趋复杂,工艺要求各异,产品多种多样;动态特性具有大惯性、大滞后、非线性特性。有些过程的机理(如发酵等)复杂,很难用目前过程辨识方法建立过程的精确数学模型,因此设计能适应各种过程的控制系统并非易事。 四、过程控制的控制过程多属慢过程,而且多半为参量控制 因为大惯性、大滞后等特性,决定了过程控制的控制过程多属慢过程;在一些特殊工业生产过程中,采用一些物理量和化学量来表征其生产过程状况,故需要对过程参数进行自动检测和自动控制,所以过程控制多半为参量控制。

现代控制理论课后习题答案

绪论 为了帮助大家在期末复习中能更全面地掌握书中知识点,并且在以后参加考研考博考试直到工作中,为大家提供一个理论参考依据,我们11级自动化二班的同学们在王整风教授的带领下合力编写了这本《现代控制理论习题集》(刘豹第三版),希望大家好好利用这本辅助工具。 根据老师要求,本次任务分组化,责任到个人。我们班整体分为五大组,每组负责整理一章习题,每个人的任务由组长具体分配,一个人大概分1~2道题,每个人任务虽然不算多,但也给同学们提出了要求:1.写清题号,抄题,画图(用CAD或word画)。2.题解详略得当,老师要求的步骤必须写上。3.遇到一题多解,要尽量写出多种方法。 本习题集贯穿全书,为大家展示了控制理论的基础、性质和控制一个动态系统的四个基本步骤,即建模、系统辨识、信号处理、综合控制输入。我们紧贴原课本,强调运用统一、联系的方法分析处理每一道题,将各章节的知识点都有机地整合在一起,力争做到了对控制理论概念阐述明确,给每道题的解析赋予了较强的物理概念及工程背景。在课后题中出现的本章节重难点部分,我们加上了必要的文字和图例说明,让读者感觉每一题都思路清晰,简单明了,由于我们给习题配以多种解法,更有助于发散大家的思维,做到举一反三!

这本书是由11级自动化二班《现代控制理论》授课老师王整风教授全程监管,魏琳琳同学负责分组和发布任务书,由五个小组组组长李卓钰、程俊辉、林玉松、王亚楠、张宝峰负责自己章节的初步审核,然后汇总到胡玉皓同学那里,并由他做最后的总审核工作,绪论是段培龙同学和付博同学共同编写的。 本书耗时两周,在同学的共同努力下完成,是二班大家庭里又一份智慧和努力的结晶,望大家能够合理使用,如发现错误请及时通知,欢迎大家的批评指正! 2014年6月2日

斑点噪声的形成原理与斑点噪声模型

第二章相干斑点噪声的形成原理与斑点噪声模型 相干斑点噪声是SAR影像的重要特征之一。要进行新滤波器的设计和开发,有必要了解斑点噪声的形成原理和斑点噪声模型以及其他相关知识,因此本章就斑点噪声的形成原理,概率分布函数、自相关函数、功率谱以及人们比较公认的斑点噪声模型做一个简要的介绍。 2.1 斑点噪声的形成原理 SAR影像上的斑点噪声是这样形成的[31],即当雷达波照射一个雷达波长尺度的粗糙表面时,返回的信号包含了一个分辨单元内部许多基本散射体的回波,由于表面粗糙的原因,各基本散射体与传感器之间的距离是不一样的,因此,尽管接收到的回波在频率上是相干的,回波在相位上已不再是相干的;如果回波相位一致,那么接收到的是强信号,如果回波相位不一致,则接收到的是弱信号。一幅SAR影像是通过对来自连续雷达脉冲的回波进行相干处理而形成的。其结果是导致回波强度发生逐像素的变化,这种变化在模式上表现为颗粒状,称为斑点噪声(Speckle)。SAR影像上斑点噪声的存在产生了许多后果,最明显的后果就是用单个像素的强度值来度量分布式目标的反射率会发生错误。 斑点噪声在SAR影像上表现为一种颗粒状的、黑白点相间的纹理。例如,对于一个均匀目标,如一片草覆盖的地区,在没有斑点噪声影响的情况下,影像上的像素值会呈现淡的色调(图2.1 A);然而,每个分辨单元内单个草的叶片的回波会导致影像上某些像素比平均值更亮,而另外一些像素则比平均值更暗(图2.1 B),这样,该目标就表现出斑点噪声效果[32]。 图2.1 斑点噪声的影响效果 2.2 斑点噪声的特征[33]

2.2.1 斑点噪声的概率分布函数 2.2.1.1单视SAR 图像 前人在光学和SAR 影像斑点噪声的理论分析上已经做了大量工作[31]、[34] 。单视图像的斑点噪声服从负指数分布,对均匀的目标场景,图像的像素强度的概率分布为: I I I I p ) /exp()(-= (2.1) 若以振幅A 或分贝值D 来表示,它们与强度I 的关系为 I=A 2 (2.2) I I D ln 10 ln 10log 1010== (2.3) 所以强度概率分布可以直接转化为下式: )/e x p (2)(2I A I A A p -= (2.4) I K I K D K D D p ))/e x p (e x p ()(-= (2.5) 其中k=10/ln10。它们均为Rayleigh 分布。 2.2.1.2多视SAR 图像 为了提高图像的信噪比要进行多视处理,多视处理是对同一场景的n 个不连续的子图像的平均。n 个独立子图像非相干迭加将改变斑点噪声的概率分布,强度I 的概率分布变成Gamma 分布: )/e x p ()!1()(1 I nI I n I n I p n n n --=- (2.6) )/e x p ()!1(2)(21 2I nA I n A n A p n n n --=- (2.7) ))/e x p (e x p ()!1()(I K D n K nD I n K n D p n n --= (2.8) 2.2.2 斑点噪声的自相关函数 斑点噪声的自相关函数具有指数分布形式如图2.2[33],可以看出在初始处有较宽的范围及噪声谱的非均匀性,即斑点噪声非白噪声。这可以用成像时邻域像素的相互干扰来解释。 2.2.3斑点噪声的功率密度谱 斑点噪声的功率谱密度如图2.3[33]所示呈椭圆结构,可用经验方程表示:

过程控制工程知识点复习

过程控制工程知识点复习 一.过程控制系统及其分类 1.过程控制理论是以频率法和根轨迹法为主体的经典控制理论,主要解决单输入 单输出的定值控制系统的分析和综合问题。 2.过程控制有三种图表示分别是系统框图控制流程图工艺流程图我们应当学会识 别。 控制流程图 系统框图

工艺流程图 3.过程控制系统的分类 按结构特点分为反馈控制系统(闭环)前馈控制系统(开环)前馈-反馈控制系 统(复合控制系统)复合控制系统 按信号特点分定值控制系统(给出给定值)程序控制系统(按一定规律变化如空调温度随时间变化定值变化11:00给25°c 12:00给28°c)随动控制系统(如比值控制) 二.过程建模 被控过程是指正在运行的多种被控制的生产工艺设备,如锅炉,精馏塔,化学反应器等等,被控过程的数学模型(动态特性)是指过程在各输入量(控制量与扰动)作用下相应输出量变化函数关系的数学表达式。 过程的数学模型有两种 1.非参数模型,如阶跃响应曲线脉冲响应曲线频率特性曲线是用曲线表示的 2.参数模型,如微分方程传递函数脉冲响应函数状态方程差分方程是用数学 方程式表示的。 机理法建模 机理法建模又称为数学分析法建模或理论建模。

自平衡能力:即过程在输入量的作用下其平衡状态被破坏后无需人或仪器的干 预,依靠过程自身能力逐渐恢复达到另一新的平衡状态 试验法建模 试验法建模是在实际的生产过程中,根据过程输入,输出实验数据,通过过程辨 识与参数估计的方法建立被控过程的数学模型。特点是不需要深入了解过程机理 但必须设计合理实验。 三.过程测量及变送 测量误差 测量误差是指测量结果与被测量的真值之差,测量误差反应了测量结果的可靠度。 绝对误差:绝对误差是指仪表指示值与被测变量的真值之差,在工程上,通常把高一等级精度的标准仪器测得的值作为真值(实际值)此时的绝对误差是指用标准仪表(高精度)与测量仪表(低精度)同时测量同一值是,所得两个结果之差。 相对误差:相对误差是指绝对误差与被测量的真值之比的百分数,它比绝对误差更具有说明测量结果的精度。相对误差分为实际相对误差和标称相对误差和引用相对误差 引用相对误差δ=((绝对误差)/(仪表量程))*100%=((x-x0)/(a-b))*100% x仪表测量值x0仪表测量真值a仪表上限b仪表下限 实际相对误差为绝对误差与真值之比的百分数标称相对误差为绝对误差与仪表指示值之比的百分数 四.简单过程控制系统 对过程控制设计的一般要求1.安全性2.稳定性3.经济性 (单回路)过程控制系统的设计步骤 1.根据工艺参数合理选择性能指标 2.选择合理的控制参数和被控参数 3.合理的选择和设计控制器 4.兼顾被控参数的测量与变送器执行器的选择 控制方案设计 1.合理选择被控参数Y(s) 2.合理选择被控参数Q(s) 3.合理设计(选择)控制(调节)规律Wc(s) 4.被控过程参数的测量与变送Wm(s) 5.控制执行器的选择Wv(s) 过程控制系统在运行中有两种状态,一种是稳态,一种是动态 阶跃响应的性能指标 1.余差(静态偏差)C 过渡过程后给定值与被控参数稳态值之差 2.衰减率衡量系统过渡过程稳定性的一个动态指标 ψ=(B1-B2)/B1=1-B2/B1 为保持系统足够的稳定度,一般取ψ=0.75-0.9 3.最大偏差A(超调量σ) 最大偏差是指被控参数第一个波的峰值与给定值的差 σ=(y(tp)-y(∞))/ y(∞)*100% 这个值表示被控参数偏离给定值的程度,衡量性能的重要指标 4.过渡时间ts 从受扰动开始到进入新的稳态值+-5%范围内的时间,衡量快速性的指标,该值约小

现代控制理论基础考试题A卷及答案

即 112442k g k f M L M ML θθθ??=-+++ ??? && 212 44k k g M M L θθθ??=-+ ??? && (2)定义状态变量 11x θ=,21x θ=&,32 x θ=,42x θ=& 则 一.(本题满分10分) 如图所示为一个摆杆系统,两摆杆长度均为L ,摆杆的质量忽略不计,摆杆末端两个质量块(质量均为M )视为质点,两摆杆中点处连接一条弹簧,1θ与2θ分别为两摆杆与竖直方向的夹角。当12θθ=时,弹簧没有伸长和压缩。水平向右的外力()f t 作用在左杆中点处,假设摆杆与支点之间没有摩擦与阻尼,而且位移足够小,满足近似式sin θθ=,cos 1θ=。 (1)写出系统的运动微分方程; (2)写出系统的状态方程。 【解】 (1)对左边的质量块,有 ()2111211 cos sin sin cos sin 222 L L L ML f k MgL θθθθθθ=?-?-?-&& 对右边的质量块,有 ()221222 sin sin cos sin 22 L L ML k MgL θθθθθ=?-?-&& 在位移足够小的条件下,近似写成: ()1121 24f kL ML Mg θθθθ=---&& ()2122 4kL ML Mg θθθθ=--&&

2 / 7 1221 334413 44244x x k g k f x x x M L M ML x x k k g x x x M M L =?? ???=-+++ ???? ? =????=-+? ????? &&&& 或写成 11 223 34401 000014420001000044x x k g k x x M L M f ML x x x x k k g M M L ? ? ?? ?????????? ??-+???? ???????????=+???? ????? ??????????????????? ????-+?? ? ? ?????? ? &&&& 二.(本题满分10分) 设一个线性定常系统的状态方程为=x Ax &,其中22R ?∈A 。 若1(0)1?? =??-??x 时,状态响应为22()t t e t e --??=??-?? x ;2(0)1??=??-??x 时,状态响应为 2()t t e t e --?? =??-?? x 。试求当1(0)3??=????x 时的状态响应()t x 。 【解答】系统的状态转移矩阵为()t t e =A Φ,根据题意有 221()1t t t e t e e --????==????--???? A x 22()1t t t e t e e --????==????--???? A x 合并得 2212211t t t t t e e e e e ----????=????----?? ??A 求得状态转移矩阵为 1 22221212221111t t t t t t t t t e e e e e e e e e -----------?????? ?? ==????????------???? ????A 22222222t t t t t t t t e e e e e e e e --------?? -+-+=??--??

噪声基础知识及治理

7、A声级 研究噪声对人体健康的危害及对噪声的防治,必须有噪声对人体影响程度的评价标准。对噪声的评价常采用统计的方法,即依靠足够数的人们对噪声主观反应的对比性调查,得出统计的平均量。主要的评价量有A声级、等效连续、噪声评价数NR和累积百分声级。 有关概念: (1)响度级:单位是方(phon)。响度级就是指当选取1000Hz纯音做基准音时,凡是听起来和该纯音一样响的声音,不论其声压级和频率是多少,它的响度级(方值)就等于该纯音的声压级数。 (2)等响曲线:345页图表示每一条曲线表示不同频率、不同声压级的纯音具有相同的响度级。 (3)频率计权:在测量仪器中,对不同频率的客观声压级人为地给予适当的增减,这种修正方法称为频率计权,实现这种频率计权的网络称为计权网络。A、B、C、D 4种计权网络,经过计权网络测得的声级称为计权声级,是衡量噪声强弱的主观评价量。 A声级测量的结果与人耳对声音的响度感觉相近似,用A声级分贝数的大小对噪声排列次序时,能够较好反映人对各种噪声的主观评价。是目前评价噪声的主要指标。 8、等效声级 A声级很好的反映了噪声影响与频率的关系,对于稳态的噪声,即随时间变化不大的噪声,我们通常可以采用A声级来评价。等效声级是以A声级为基础建立起来的非稳态噪声的噪声评价量,它是以A声级的稳态噪声代替变动噪声,在相同的暴露时间内能够给人以等数量的声能,这个声级就是该变动噪声的等效声级,又称等效A声级,或简称等效声级。等效连续A声级指在某段时间内的不稳态噪声的A 声级,用能量平均的方法,以一个连续不变的A声级来表示该时段内噪声的声级,又称等能量A 声级。等效连续A声级Leq 可表示为: 9、频带声压级 在一个倍频程带宽频率范围声压级的累加称为倍频带声压级。 10、噪声评价数 噪声评价数NR曲线见350页图,NR数指噪声评价曲线的号数,它是中心频率等于1000Hz时倍步带声压级的分贝数,它的噪声级范围是0—130dB,适用于中心频率从31.5—8000Hz的9个倍频带。在同一条NR曲线上各倍频带的噪声级对人的影响是相同的。 11、累积百分声级 累积百分声级又称统计声级,指在测量时间内所有超过Ln声级所占的n%时间,单位为dB。 12、混响 当室内声场达到稳态后,声源突然停止发声,房间内的声音并没有立即停止,需要延续一段时间,声能逐渐衰减直到实际听不到声音为止,这种声音的延续现象称为混响。声源停止发声后,由于多次反射或散射而逐渐衰减的声音也可以称之为混响。室内空气或墙壁壁面的吸收作用愈差,声能愈不容易衰减,混响时间就

噪声交易理论

读书报告 论文:Noise trade, The Journal of Finance, Vol.41, No.3, Fischer Black 主要内容:是关于噪声交易理论以及噪声在经济上,金融上和通货膨胀上的影响。噪声即市场中虚假或误判的信息。它被视为“信息”的反面,噪声交易者错误地认为他们拥有对风险资产未来价格的特殊信息。他们对这种特殊信息的信心可能是来自技术分析方法,经纪商,或者其他咨询机构的虚假信号,而他们的非理性之处正在于他们认为这些信号中包含了有价值的信息,并以此作为投资决策的依据。他们的过分自信从而忽视了交易过程中的重要点最终导致了交易的失败。损失厌恶,期望理论发现人们在面对收益和损失的时候,表现出了不对称性,当涉及收益的时候,表现出风险厌恶,当涉及损失的时候,表现出风险偏好,损失厌恶表现出人的偏好是不一致的,这也往往是导致交易损失的原因。 市场中与噪声交易者相对的是知情交易者。他们在掌握了所投资对象信息的情况下进行投资,但是为了使利益最大化,他们也会想方设法隐藏自己的交易行为。特别是具有大量资金的交易者,一定会设法避免在自己完全进入或退出前就开始影响到市场的趋势。这一行为造成的结果恰恰更接近噪声交易——大量交易发生了,却没有影响到市场的趋势。 噪声交易与知情交易存在相互作用、相互依存和相互制约的关系;噪声交易者与知情交易者之间达成交易的概率显著大于噪声交易者之间或知情交易者之间 成交的概率;价格是重要的信息来源;知情交易者在开盘时的信息优势最明显;知 情交易是引起股价变动的重要原因,而噪声交易则是引起成交量放大的主要因素。故噪声交易者的风险就是被套利者(知情交易者)利用的错误定价在短期恶化的风险。 而市场交易产生噪声是由于噪声存在于市场任何一处,交易者并不知道自己因噪声而交易,而是一直认为自己因知内部信息而交易。噪声也是导致交易者偏离预期效用的主要原因。 当市场在酝酿反弹的时候,总有一部分人由于各种可能的原因先知先觉,抢先行动起来。他们在成功的做到不影响趋势的同时,却令市场中噪声交易增加了。在这种情况下,市场看似无意义的噪声其实包含了大量关于股票价格的信息——市场在蠢蠢欲动。 噪声和噪声交易对市场流动性来说是非常重要的,它是提高市场流动性的必要手段.他们对风险资产的基本面存在一定程度的认识偏差,从而对其产生与知情交易者相比过度或者不足的需求量,并进而对风险资产的价格产生影响。 若没有噪声交易者,只有知情交易者,假定参与的知情交易者有着相同的信息,

噪声基础知识

噪声分贝(dB) 1、声音 1.1 分贝的感觉 当物体振动时,在它周围就会产生声波,声波不断向外传播,被人们听到成为声音。人耳的听觉下限是0dB,低于15dB的环境是极为安静的环境,安静得会使人不知所措。乡村的夜晚大多是25-30dB,除了细心才能够体会到的流水、风、小动物等自然声音以外,其他感觉一片宁静,这也是生活在喧嚣之中的城市人所追求的净土。城市的夜晚会因区域不同而有所不同。较为安静区域的室内一般在30-35dB,住在繁华的闹市区或是交通干线附近的居民,将不得不忍受室内40-50dB(甚至更高)的噪声。人们正常讲话的声音大约是60-70dB,大声呼喊的瞬间可达100dB。在机器轰鸣的厂房中,持续的噪声可达80-110dB,这种高强度的噪声会损害人耳的听觉,并对神经系统产生不良影响,长期还会导致神经衰弱、消化不良、听力下降、心血管等疾病。人耳的噪声听觉上限是120dB,超过120dB的声音会耳痛、难以忍受,140dB的声音会使人失去听觉。高分贝喇叭、重型机械、喷气飞机引擎等都能够产生超过120dB的声音。 1.2 人耳的感觉 人耳听觉非常敏感,正常人能够察觉1dB的声音变化,3dB的差异将感到明显不同。人耳存在掩蔽效应,当一个声音高于另一个声音10dB时,较小的声音因掩蔽而难于被听到和理解,由于掩蔽效应,在90-100dB的环境中,即使近距离讲话也会听不清。人耳有感知声音频率的能力,频率高的声音人们会有“高音”的感觉,频率低的声音人们会有“低音”的感觉,人耳正常的听觉频率范围是20-20KHz。人耳耳道类似一个2-3cm的小管,由于频率共振的原因,在2000-3000Hz的范围内声音被增强,这一频率在语言中的辅音中占主导地位,有利于听清语言和交流,但人耳最先老化的频率也在这个范围内。一般认为,500Hz以下为低频,500-2000Hz为中频,2000Hz以上为高频。语言的频率范围主要集中在中频。人耳听觉敏感性由于频率的不同有所不同,频率越低或越高时敏感度变差,也就是说,同样大小的声音,中频听起来要比低频和高频的声音响。 1.3频率特性 声音可以分解为若干(甚至无限多)频率分量的合成。为了测量和描述声音频率特性,人们使用频谱。频率的表示方法常用倍频程和1/3倍频程。倍频程的中心频率是31.5、63、125、250、500、1K、2K、4K、8K、16KHz十个频率,后一个频率均为前一个频率的两倍,因此被称为倍频程,而且后一个频率的频率带宽也是前一个频率的两倍。在有些更为精细的要求下,将频率更细地划分,形成1/3倍频程,也就是把每个倍频程再划分成三个频带,中心频率是20、31.5、40、50、63、80、100、125、160、200、250、315、400、500、630、800、1K、1.25K、1.6K、2K、2.5K、3.15K、4K、5K、6.3K、8K、10K、12.5K、16K、20KHz等三十个频率,后一个频率均为前一个频率的21/3倍。在实际工程中更关心人耳敏感的部分,大多数情况下考虑的频率范围在100Hz到5KHz。噪声治理中一般采用倍频程。如果将声音的频率分量绘制成曲线就形成了频谱。 不同声源发出噪声有不同的频率特性,有些噪声低频能量很大,如气泵、齿轮转动机器等,有些声源中频能量很大,如轴承、冷却塔淋水声,有些噪声高频能量很大,如交直流电机、变压器、阀门等,但大多噪声往往是各种频率都有很大声音,而且没有任何规则。对于各种声学材料来讲,不同频率条件下声学性能是不同的。有的材料具有良好的高频吸声性能,有的材料具有良好的低频吸声性能,有的材料对某些频率具有良好的吸声性能,不一而同。隔声等其他声学性能也是如此。 1.4分贝dB

噪音基础知识

环境噪声相关基础 1.描述声波的基本物理量与概念 (1)(1)波长 记作λ, 单位为米(m)。 (2)(2)频率 记作f,单位为赫兹(Hz)。 (3) (3)声速 λ= v/f 声速的大小主要与介质的性质和温度的高低有关。同一温度下,不同介质中声速不同。在20℃时,空气中声速约为340 m/s,空气的温度每升高1℃,声速约增加0.607 m/s。 (4)声场 (5)波前(波阵面) 2、环境噪声评价量及其计算 2.1.计量声音的物理量 (1)声功率 声源在单位时间内辐射的总声能量称为声功率。常用W表示,单位为瓦(w)。声功率是表示声源特性的一个物理量。声功率越大,表示声源单位时间内发射的声能量越大,引起的噪声越强。声功率的大小,只与声源本身有关。 (2)声强 声强是衡量声音强弱的一个物理量。声场中,在垂直于声波传播方向上,单位时间内通过单位面积的声能称做声强。声强常以I表示,单位为 (w/m2)。 (3)声压 目前,在声学测量中,直接测量声强较为困难,故常用声压来衡量声音的强弱。声波在大气中传播时,引起空气质点的振动,从而使空气密度发生变化。在 (7-2) 声波所达到的各点上,气压时而比无声时的压强高,时而比无声时的压强低,某一瞬间介质中的压强相对于无声波时压强的改变量称为声压,记为p(t),,单位是 Pa。 声音在振动过程中,声压是随时间迅速起伏变化的,入耳感受到的实际只是一个平均效应,因为瞬时声压有正负值之分,所以有效声压取瞬时声压的均方根

值。 dt t p T p T T ?=0 2 )(1 式中T p 是 T 时间内的有效声压,Pa ;p (t )为某一时刻的瞬时声压,Pa 。 通常所说的声压,若未加说明,即指有效声压,若 p 1,p 2,分别表示两列声波在某一点所引起的有效声压,该点迭加后的有效声压可由波动方程导出,为 2 221p p p T += 声压是声场中某点声波压力的量度,影响它的因素与声强相同。并且,在自由声场中多声波传播方向上某点声强与声压、介质密度ρ存在如下关系 v p I ρ2= 2.2.声压级,声强级与声功率级 正常人耳刚刚能听到的最低声压称听阈声压。对于频率为 1000Hz 的声音,听阈声压约为为2×lO -5Pa 。刚刚使人耳产生疼痛感觉的声压称痛阈声压。对于频率为1000Hz 的声音,正常人耳的痛阈声压为 20Pa 。从听阈到痛阈,声压的绝对值之比为1:106,即相差一百万倍,而从听阈到痛阈,相应声强的变化为10-12—1W /m 2,其绝对值之比为1:1012,即相差一万亿倍。因此用声压或用声强的绝对值表示声音的强弱都很不方便。加之人耳对声音大小的感觉,近似地与声压、声强呈对数关系,所以通常用对数值来度量声音,分别称为声压级与声强级。 声压级 0 lg 20p p L p = (dB) 声强级 0 lg 20I I L I = (dB) 式中:p 0为基准声压(听阈声压),2×10-5Pa 。I 0为基准声强, 2×10-12 w/m 2。 与上类似,某声源的声功率级定义为 (7-4) (7-5) (7-6) (7-8) (7-7)

现代控制理论基础试卷及答案

现代控制理论基础考试题 西北工业大学考试题(A卷) (考试时间120分钟) 学院:专业:姓名:学号: ) 一.填空题(共27分,每空分) 1.现代控制理论基础的系统分析包括___________和___________。 2._______是系统松弛时,输出量、输入量的拉普拉斯变换之比。 3.线性定常系统齐次状态方程是指系统___________时的状态方程。 4.推导离散化系统方程时在被控对象上串接一个开关,该开关以T为周期进 行开和关。这个开关称为_______。 5.离散系统的能______和能______是有条件的等价。 6.在所有可能的实现中,维数最小的实现称为最小实现,也称为__________。 7.构造一个与系统状态x有关的标量函数V(x, t)来表征系统的广义能量, V(x, t)称为___________。8." 9.单输入-单输出线性定常系统,其BIBO稳定的充要条件是传递函数的所有 极点具有______。 10.控制系统的综合目的在于通过系统的综合保证系统稳定,有满意的 _________、_________和较强的_________。 11.所谓系统镇定问题就是一个李亚普诺夫意义下非渐近稳定的系统通过引入_______,以实现系统在李亚普诺夫意义下渐近稳定的问题。 12.实际的物理系统中,控制向量总是受到限制的,只能在r维控制空间中某一个控制域内取值,这个控制域称为_______。 13._________和_________是两个相并行的求解最优控制问题的重要方法。二.判断题(共20分,每空2分) 1.一个系统,状态变量的数目和选取都是惟一的。(×) 2.传递函数矩阵的描述与状态变量选择无关。(√) 3.状态方程是矩阵代数方程,输出方程是矩阵微分方程。(×) 4.对于任意的初始状态) ( t x和输入向量)(t u,系统状态方程的解存在并且惟一。(√) 5.( 6.传递函数矩阵也能描述系统方程中能控不能观测部分的特性。(×) 7.BIBO 稳定的系统是平衡状态渐近稳定。(×)

噪声的来源

1).噪声的来源 数字图像的噪声主要来源于图像的获取(数字化过程)和传输过程。图像传感的工作情况受各种因素的影响,如图像获取中的环境条件和传感元器件自身的质量。例如,使用CCD 摄像机获取图像,光照程度和传感器温度是生成图像中产生大量噪声的主要因素。图像在传输过程中主要由于所用的传输信道的干扰受到的噪声。比如,通过无线电网络传输的图像肯能会因为光或其他的大气因素的干扰被污染。也有很大一部分来自电子元器件,如电阻引起的热噪声;真空器件引起的散粒噪声和闪烁噪声;面结型晶体管产生的颗粒噪声和1/f噪声;场效应管的沟道热噪声;光电管的光量子噪声和电子起伏噪声;摄像管引起的各种噪声等等。由这些元器件组成各种电子线路以及构成的设备又将使这些噪声产生不同的变换而形成局部线路和设备的噪声。另外还有就是光学现象所产生的图像光学噪声。 2).常见的噪声 在我们的图像中常见的噪声主要有以下几种: (1)加性噪声 加性嗓声和图像信号强度是不相关的,如图像在传输过程中引进的“信道噪声"电视摄像机扫描图像的噪声的。这类带有噪声的图像g可看成为理想无噪声图像f与噪声n之和,即 g=f+n[8] (2)乘性噪声 乘性嗓声和图像信号是相关的,往往随图像信号的变化而变化,如飞点扫描图像中的嗓声、电视扫描光栅、胶片颗粒造成等,这类噪声和图像的关系是 g=f+f*n (3)量化噪声 量化嗓声是数字图像的主要噪声源,其大小显示出数字图像和原始图像的差异,减少这种嗓声的最好办法就是采用按灰度级概率密度函数选择化级的最优化措施。 (4)“椒盐"噪声 此类嗓声如图像切割引起的即黑图像上的白点。白图像上的黑点噪声,在变换域引入的误差,使图像反变换后造成的变换噪声等。 3).图像噪声的衡量 由于噪声的产生本身具有随机性,因此对一幅图像中包含噪声只能用统计学的方法进行

相位噪声基础及测试原理和方法

相位噪声基础及测试原理和方法 相位噪声指标对于当前的射频微波系统、移动通信系统、雷达系统等电子系统影响非常明显,将直接影响系统指标的优劣。该项指标对于系统的研发、设计均具有指导意义。相位噪声指标的测试手段很多,如何能够精准的测量该指标是射频微波领域的一项重要任务。随着当前接收机相位噪声指标越来越高,相应的测试技术和测试手段也有了很大的进步。同时,与相位噪声测试相关的其他测试需求也越来越多,如何准确的进行这些指标的测试也愈发重要。 1、引言 随着电子技术的发展,器件的噪声系数越来越低,放大器的动态范围也越来越大,增益也大有提高,使得电路系统的灵敏度和选择性以及线性度等主要技术指标都得到较好的解决。同时,随着技术的不断提高,对电路系统又提出了更高的要求,这就要求电路系统必须具有较低的相位噪声,在现代技术中,相位噪声已成为限制电路系统的主要因素。低相位噪声对于提高电路系统性能起到重要作用。 相位噪声好坏对通讯系统有很大影响,尤其现代通讯系统中状态很多,频道又很密集,并且不断的变换,所以对相位噪声的要求也愈来愈高。如果本振信号的相位噪声较差,会增加通信中的误码率,影响载频跟踪精度。相位噪声不好,不仅增加误码率、影响载频跟踪精度,还影响通信接收机信道内、外性能测量,相位噪声对邻近频道选择性有影响。如果要求接收机选择性越高,则相位噪声就必须更好,要求接收机灵敏度越高,相位噪声也必须更好。 总之,对于现代通信的各种接收机,相位噪声指标尤为重要,对于该指标的精准测试要求也越来越高,相应的技术手段要求也越来越高。 2、相位噪声基础 2.1、什么是相位噪声 相位噪声是振荡器在短时间内频率稳定度的度量参数。它来源于振荡器输出信号由噪声引起的相位、频率的变化。频率稳定度分为两个方面:长期稳定度和短期稳定度,其中,短期稳定度在时域内用艾伦方差来表示,在频域内用相位噪声来表示。 2.2、相位噪声的定义

过程控制基本概念

过程控制基本概念 自动控制技术在工业、农业、国防和科学技术现代化中起着十分重要的作用,自动控制水平的高低也是衡量一个国家科学技术先进与否的重要标志之一。随着国民经济和国防建设的发展,自动控制技术的应用日益广泛,其重要作用也越来越显著。 生产过程自动控制(简称过程控制)-------自动控制技术在石油、化工、电力、冶金、机械、轻工、纺织等生产过程的具体应用,是自动化技术的重要组成部分。 §1.1 过程控制的发展概况及特点 一、过程控制的发展概况 在过程控制发展的历程中,生产过程的需求、控制理论的开拓和控制技术工具和手段的进展三者相互影响、相互促进,推动了过程控制不断的向前发展。纵观过程控制的发展历史,大致经历了以下几个阶段: 20世纪40年代: 手工操作状态,只有少量的检测仪表用于生产过程,操作人员主要根据观测到 的反映生产过程的关键参数,用人工来改变操作条件,凭经验去控制生产过程。 20世纪40年代末~50年代: 过程控制系统:多为单输入、单输出简单控制系统 过程检测:采用的是基地式仪表和部分单元组合仪表(气动Ⅰ型和电动Ⅰ型); 部分生产过程实现了仪表化和局部自动化 控制理论:以反馈为中心的经典控制理论 20世纪60年代: 过程控制系统:串级、比值、均匀、前馈和选择性等多种复杂控制系统。 自动化仪表:单元组合仪表(气动Ⅱ型和电动Ⅱ型)成为主流产品 60年代后期,出现了专门用于过程控制的小型计算机,直接数字控 制系统和监督计算机控制系统开始应用于过程控制领域。 控制理论:出现了以状态空间方法为基础,以极小值原理和动态规划等最优控制 理论为基本特征的现代控制理论,传统的单输入单输出系统发展到多 输入多输出系统领域,、型、型 20世纪70~80年代: 微电子技术的发展,大规模集成电路制造成功且集成度越来越高(80年代初一片硅片可集成十几万个晶体管,于是32位微处理器问世),微型计算机的出 现及应用都促使控制系统发展。 过程控制系统:最优控制、非线性分布式参数控制、解耦控制、模糊控制 自动化仪表:气动Ⅲ型和电动Ⅲ型,以微处理器为主要构成单元的智能控制装置。 集散控制系统(DCS)、可编程逻辑控制器(PLC) 、工业PC机、 和数字控制器等,已成为控制装置的主流。 集散控制系统实现了控制分散、危险分散,操作监测和管理集中。 控制理论:形成了大系统理论和智能控制理论。模糊控制、专家系统控制、模式 识别技术 20世纪90年代至今:信息技术飞速发展 过程控制系统:管控一体化现场,综合自动化是当今生产过程控制的发展方向。

控制理论基础试卷及答案

第 1 页 共 2 页 燕山大学(威县函授点) 2016级第三学期《控制理论基础》考试试卷 姓名 专业 分数 一、填空题(每题1分,共 15分) 1、自动控制系统由 、 、 、 、 、 和 、 组成。 2、经典控制理论中常用的数学模型有 、 、 。 3、在框图运算中,若有n 个环节串联连接,则总传递函数为各环节传递函数的 ,若有n 个环节并联,则总的传递函数为各环节传递函数的 。 4、按有无反馈划分,控制系统可分为 和 。 5、反馈控制又称偏差控制,其控制作用是通过 与反馈量的差值进行的。 二、选择题(每题2分,共20分) 1、关于奈氏判据及其辅助函数 F(s)= 1 + G(s)H(s),错误的说法是 ( ) A 、 F(s)的零点就是开环传递函数的极点 B 、 F(s)的极点就是开环传递函数的极点 C 、 F(s)的零点数与极点数相同 D 、 F(s)的零点就是闭环传递函数的极点 2、已知负反馈系统的开环传递函数为 2 21 ()6100s G s s s +=++,则该系统的闭环特征方程为 ( )。 A 、261000s s ++= B 、 2(6100)(21)0s s s ++++= C 、2 610010s s +++= D 、与是否为单位反馈系统有关 3、一阶系统的闭环极点越靠近S 平面原点,则 ( ) 。 A 、准确度越高 B 、准确度越低 C 、响应速度越快 D 、响应速度越慢 4、已知系统的开环传递函数为100 (0.11)(5)s s ++,则该系统的开环增益为 ( )。 A 、 100 B 、1000 C 、20 D 、不能确定 5、若两个系统的根轨迹相同,则有相同的: A 、闭环零点和极点 B 、开环零点 C 、闭环极点 D 、阶跃响应 6、下列串联校正装置的传递函数中,能在1c ω=处提供最大相位超前角的是 ( )。 A 、 1011s s ++ B 、1010.11s s ++ C 、210.51s s ++ D 、0.11101s s ++ 7、关于P I 控制器作用,下列观点正确的有( ) A 、 可使系统开环传函的型别提高,消除或减小稳态误差; B 、 积分部分主要是用来改善系统动态性能的; C 、 比例系数无论正负、大小如何变化,都不会影响系统稳定性; D 、 只要应用P I 控制规律,系统的稳态误差就为零。 8、关于线性系统稳定性的判定,下列观点正确的是 ( )。 A 、 线性系统稳定的充分必要条件是:系统闭环特征方程的各项系数都为正数; B 、 无论是开环极点或是闭环极点处于右半S 平面,系统不稳定; C 、 如果系统闭环系统特征方程某项系数为负数,系统不稳定; D 、 当系统的相角裕度大于零,幅值裕度大于1时,系统不稳定。 9、关于系统频域校正,下列观点错误的是( ) A 、 一个设计良好的系统,相角裕度应为45度左右; B 、 开环频率特性,在中频段对数幅频特性斜率应为20/dB dec -;

哈尔滨工业大学2010《现代控制理论基础》考试题B卷及答案

一.(本题满分10分) 请写出如图所示电路当开关闭合后系统的状态方程和输出方程。其中状态变量的设置如图所示,系统的输出变量为流经电感2L 的电流强度。 【解答】根据基尔霍夫定律得: 1113222332 1L x Rx x u L x Rx x Cx x x ++=?? +=??+=? 改写为1 13111 223 22 31 211111R x x x u L L L R x x x L L x x x C C ? =--+?? ? =-+???=-?? ,输出方程为2y x = 写成矩阵形式为

[]11 111222 2 331231011000110010R L L x x L R x x u L L x x C C x y x x ??? -- ???????????????? ???????=-+???? ??????? ??????????????? ? ???-?????? ? ? ??? ?? ?=??? ?????? 二.(本题满分10分) 单输入单输出离散时间系统的差分方程为 (2)5(1)3()(1)2()y k y k y k r k r k ++++=++ 回答下列问题: (1)求系统的脉冲传递函数; (2)分析系统的稳定性; (3)取状态变量为1()()x k y k = ,21()(1)()x k x k r k =+-,求系统的状态空间表达式; (4)分析系统的状态能观性。 【解答】 (1)在零初始条件下进行z 变换有: ()()253()2()z z Y z z R z ++=+ 系统的脉冲传递函数: 2()2 ()53 Y z z R z z z +=++ (2)系统的特征方程为 2()530D z z z =++= 特征根为1 4.3z =-,20.7z =-,11z >,所以离散系统不稳定。 (3)由1()()x k y k =,21()(1)()x k x k r k =+-,可以得到 21(1)(2)(1)(2)(1)x k x k r k y k r k +=+-+=+-+ 由已知得 (2)(1)2()5(1)3()y k r k r k y k y k +-+=-+-112()5(1)3()r k x k x k =-+- []212()5()()3()r k x k r k x k =-+-123()5()3()x k x k r k =--- 于是有: 212(1)3()5()3()x k x k x k r k +=--- 又因为 12(1)()()x k x k r k +=+ 所以状态空间表达式为

降噪过程中的理论依据

降噪过程中的理论依据 程乃周 2006/4/13 MWSC噪声的产生: 各种不同频率和强度的声音杂乱地组合而产生的声音称为噪声。所以我们的降噪过程就是利用各种方法去改变声音的频率和强度,使其组合而成的声音比较悦耳和和谐。这也是降噪过程总指导。 MWSC外机振动噪声源头主要来于压缩机、制冷系统和水系统三个部分,然后通过各种路径传播出去,最终形成现场噪音。其中压缩机和制冷系统引起的噪音占了很大的比例。 振动和噪声两者的关系极其密切,因声波是由由发声物体的振动产生的,特别是振动频率在20~2000Hz(人可以听到的声音范围)的声频范围内时,振动源也是噪声源。可以说在我们的听觉范围内它们是孪生兄弟。 压缩机引起的噪声: 压缩机是分体水源热泵外机的唯一运转部件,在其运转过程中产生噪声(主要是高频的电磁声)和振动,其中振动的影响最大,振动通常由配管和脚垫传递出。在这次降噪过程中,我们的重要目标是减少压缩机振动对其他部件的影响。因为压缩机振动引起的配管和钣金的振动通常都是让人产生烦躁的低频声。而在分体水源对于压缩机本身振动产生噪声一般不用设计隔音棉进行隔音,就是我们所说的给压缩机穿衣服,因为钣金和贴在钣金上吸音棉或隔音棉在很大程度声已经让其消失在密封的腔体中。 对于压缩机尤其是旋转式压缩机的振动一定要注意两个方面的问题,一是压缩机脚垫与压缩机地脚固定螺母之间必须保证不能相碰,我们现在用橡胶垫搁置在两者之间,否则压缩机的振动很容易通过定位螺栓传递到或悬浮钣和底盘引起悬浮钣和底盘振动。二是压缩机的振动必然引起配管的振动,配管的振动不仅会产生噪声,而且容易发生疲劳断裂现象。在实验过程中我们给于铜管的振动很大的重视,无论是那种方案都会把它作为最重要的对象。根据以往实验经验,改铜管的走向是往往起到很大的作用。 制冷系统引起声音: 制冷剂避免不了要在系统中流动,在其蒸发、冷凝过程中也会会产生噪声。要想得到很的效果就必须保证在各种运行工况下没有明显的异常噪声。

相关主题
文本预览
相关文档 最新文档