2010工科数分第二学期期末试题
- 格式:doc
- 大小:110.00 KB
- 文档页数:6
1. (5分) 若函数22t 02(e 1)d , 0() 0,0x t x f x x x ⎧-⎪≠=⎨⎪=⎩⎰ 求(0).f ' 2. (5分) 设()d arcsin xf x x x C =+⎰,求d .()x f x ⎰3. (10分) 设0<1()21<20<02xx f x xx x x ≤⎧⎪=-≤⎨⎪≥⎩或,求0()=()d x F x f t t ⎰.4. (10分) 设tan d n n I x x =⎰,求证:121ta (12)n n n n I x I n n --=--≥,并求55tan d I x x =⎰. 5.计算下面的积分(每小题5分,共4题20分) (1)41(1+)x x x ⎰; (2)40d 1+cos2x xx π⎰;(3)+322arctan d (1)x x x ∞+⎰; (4)222111[]d ln (1)x x x x --⎰. 6. (10分)设()f u 是连续函数,求2sin ()=(e )d x x x F x xf t t ⎰关于x 的导数。
7.(10分)设()g x 为正值连续函数,令()=||g()d (0)aa f x x t t t a --≥⎰,,判别()f x 的图形在[,]a a -上的凹凸性。
8. (10分) 证明当0x >时,有221ln(11x x x x +++>+. 9.(10分)曲线1ln(1)x y e x=++的渐近线有几条?请给出您的结论。
10.(10分)设在[1,)+∞上处处有()0f x ''≤,且(1)2,(1)3f f '==-,证明在(1,)+∞内方程()0f x =仅有一个实根。
厦门大学《高等数学》课程期末试卷学院 系 2010年级 专业主考教师:理工类教学组 试卷类型:(A 卷)11. 附加题(10分)设函数()()f x g x ,在[,]a b 上连续。
主视图侧视图2010——2011学年度第二学期期末数学(文科)试卷 一、选择题(每题5分,合计60分)1.复数34i i +()(其中i 为虚数单位)在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.7cos6π=( )A .12B.12-C .2D .2-3.双曲线2214yx -=的渐近线方程为( )A .1x =±B .2y =±C .2y x =±D .2x y =±4.记集合M {}24x x =>,N {}230x x x =-≤,则=M N ( ) A .{}23x x <≤ B.{}02x x x ><-或 C .{}23x x -<≤ D .{}02x x <<5.下图给出的是计算201614121+⋅⋅⋅+++的值的一个程序框图,其中判断框内应填入的条件是 ( )A. 9i >B. 10i >C. 11i >D. 12i >6.如图是某几何体的三视图,其中俯视图和侧视图是半径 为1的半圆,主视图是个圆,则该几何体的全面积是( ) A .π B .π2 C .π3 D .π47.已知数列{}n a 为等差数列,且π=++1371a a a ,则)t a n (122a a +的值为( )A .B .C .D .3-8.下列命题中的假命题...是( ) A . 0,3<∈∃x R xB .“0>a ”是“0>a ”的充分不必要条件C .02,>∈∀x R xD .若q p ∧为假命题,则p 、q 均为假命题0.00040.00030.00020.00019.已知两个不同的平面α,β和两条不重合的直线m ,n ,在下列四个命题中错误..的是 ( )A .若m ∥α,n =βα ,则m ∥n B.若m ⊥α,m ⊥β,则α∥β C .若m ∥n ,m ⊥α ,则n ⊥α D .若m ⊥α,m ∥n ,β⊂n ,则α⊥β10.若方程()20f x -=在(,0)-∞内有解,则()y f x =的图象是( )11.在区间()0,1内任取两个实数,则这两个实数的和大于13的概率为A .1718B .79C .29D .11812.对任意实数,x y ,定义运算x y ax by cxy *=++,其中,,a b c 是常数,等式右边的运算是通常的加法和乘法运算。
华南农业大学期末考试试卷(A 卷)2009~2010学年第2学期 考试科目:高等数学A Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业一、 单项选择题(本大题共5小题,每小题3分,共15分) 1.微分方程'220y y x ---=是( )A .齐次方程B .可分离变量方程C .一阶线性方程D .二阶微分方程2.过点(1,2,--且与直线25421x y z +-==-垂直的平面方程是( )A .4250x y z +-+=B .4250x y z ++-=C .42110x y z +-+=D .42110x y z ++-= 3.设(,)ln()2yf x y x x=+,则(1,1)y f =( ) A .0 B .13 C .12D .24.若lim 0n n u →∞=,则级数1n n u ∞=∑( )A .可能收敛,也可能发散B .一定条件收敛C .一定收敛D .一定发散5.下列级数中发散的是( )A .112n n ∞=∑ B .11(1)n n ∞-=-∑ C .n ∞= D .n ∞= 二、填空题(本大题共5小题,每小题3分,共15分)1.微分方程"4'50y y y -+=的通解为______。
(今年不作要求)2.设有向量(4,3,0),(1,2,2)a b ==-,则2a b +=____________________。
3.设有向量(1,1,0),a b ==-,它们的夹角为θ,则c o s θ=____________________。
4.设x z y =,则dz =____________________。
5.设L 是圆周229x y +=(按逆时针方向绕行),则曲线积分2(22)(4)Lxy y dx x x dy -+-⎰的值为____________________。
三、计算题(本大题共7小题,每小题7分,共49分)1.已知arctan x z y =,求2,z z x x y∂∂∂∂∂。
河南理工大学 2010-2011 学年第 2 学期《工科数学分析》(下)试卷(A 卷)一、填空题(共28分,每小题4分)1.函数xyz z xy u -+=32在点()2,1,1处沿方向l (其方向角分别是00060,45,60)的方向导数 是 9/2 .2.设0 < p < 1,计算级数()∑∞=--1121k k p p k =)20(,22<<-p pp3. 函数())sin(,22y x y x f +=在点)0,0(的泰勒公式(到二阶为止)为()()()2222,y x y x y x f +=++=ρρο4.函数()xx f 3=的幂级数展开式为∑∞=0!3ln n nn x n .5.设()⎰-=22x xxy dy ex F ,则=')(x F ()⎰----+-223522x xxy x x dy ey ex e6.()⎰C ds x =()15532-,其中(C )为抛物线x y =从点()0,0到点()1,1的一段弧。
7.微分方程()02='+''y y ,满足初始条件1,000='===x x y y 的特解为1ln y +=x 。
二、解答题(共50分,每小题10分)1、 设()v u ,Φ具有连续偏导数,函数()y x z ,由隐方程()bz cy az cx --Φ,=0确定,求yz b x z a∂∂+∂∂。
解:将隐方程两边全微分可得:()()()()()0,2121=-⋅Φ'+-⋅Φ'=-⋅Φ'+-⋅Φ'=--Φbdz cdy adz cdx bz cy d az cx d bz cy az cx d ………………………………………………3分 整理得:dy b a c dx b a c dz 212211Φ'+Φ'Φ'+Φ'+Φ'Φ'=……………………………………6分所以,212211,Φ'+Φ'Φ'=∂∂Φ'+Φ'Φ'=∂∂b a c y zb ac x z …………………………………………8分 y zb x z a ∂∂+∂∂=c b a c b b a c a =Φ'+Φ'Φ'+Φ'+Φ'Φ'212211,………………………………………10分2、 判定正项级数∑⎰∞=+1141n n dx x x的敛散性。
2010级高等数学(二)期末试题解答及评分标准A(本科少学时)一、选择题(本大题5个小题,每小题3分,共15分)1.22ln(23)4arccos(56)z x y x y =+++的定义域为( D ).A.{(,)230}x y x y +>; B.22{(,)230561}x y x y x y +>+≤或; C.22{(,)561}x y x y +≤; D.22{(,)230561}x y x y x y +>+≤且.2.微分方程2220d yy dxω+=(ω是常数)的通解是函数( B ).A.x y ωcos =; B.x C x C y ωωsin cos 21+=; C.x C ωsin 1; D.()ϕ+=x y 10sin .3.设有命题I :函数(,)z f x y =在00(,)x y 处连续,另有命题II :函数(,)z f x y =在00(,)x y 处的两个偏导数0000(,),(,)x y f x y f x y 存在,可以断定I 是II 的( C ).A.充分条件 ; B.必要条件 ; C.既非充分也非必要条件 ; D.充分且必要条件.4.设区域D 由y x =、0y =及1x =所围城,令1DI d σ=⎰⎰、2DI xd σ=⎰⎰、23DI x d σ=⎰⎰、4DI xyd σ=⎰⎰,则1I 、2I 、3I 、4I 中值最大的是( A ).A.1I ; B.2I ; C.3I ; D.4I .5.设有三元方程1ln =+-xz e y z xy ,根据隐函数存在定理,存在点)1,1,0(的一个邻域,在此邻域内该方程( D ).A.只能确定一个具有连续偏导数的隐函数),(y x z z =;B.可确定两个具有连续偏导数的隐函数),(z y x x =和),(y x z z =;C.可确定两个具有连续偏导数的隐函数),(z x y y =和),(y x z z =;D.可确定两个具有连续偏导数的隐函数),(z y x x =和),(z x y y = .二、填空题(本大题5个小题,每小题3分,共15分)6.设22),(y x xy y x f -=+,则(,)f x y =y y y +-1)1(2 .7.设f 具有一阶连续偏导数(1)z f ≠,且(,,)z f x y z =,则dz =1x y zf dx f dy f +- .8.幂级数11(1)n n nn -∞=-∑的收敛域是11(,]22-(含端点敛散性).9.设区域D 为环形域:2214x y ≤+≤,则22()Dx y d σ+=⎰⎰152π . 10.函数)ln(22z y x u ++=在点A )1,0,1(处沿点A 指向点B )2,2,3(-的方向导数为21.三、试解下列各题(本大题6个小题,每小题8分,共48分)11.求极限011cos()lim sin x y xy x xy →→-.解 200111()1cos()2lim lim sin x x y y xy xy x xy x xy →→→→-=⋅ (5分)12=. (8分) 12. 设sin 2arctan()z xy x y =+-,求(0,1)x z 和(0,1)y z .解 212cos 21()x z y xy x y =++-,5(0,1)2x z = (4分) 同理212cos 21()y z x xy x y =-+-,1(0,1)2yz =-. (8分) 13. 写出级数234234232432234ππππ⋅⋅⋅++++ 的通项,并判定其敛散性. 解 !nn n n u nπ= (3分)因为1lim1n n nu u e π+→∞=>,所以级数发散. (8分)14. 设f 具有二阶连续偏导数,且),(y xy f z =,求22z x∂∂,2z x y ∂∂∂.解 由于//11()z f xy yf x x∂∂=⋅=∂∂, (3分) 故//112/122)(f y f x y x z =∂∂=∂∂ (6分)//12//11/1//12//11/1/12)()(yf xyf f f xy y f y f yf y y x z ++=⎥⎦⎤⎢⎣⎡+∂∂⋅+=∂∂=∂∂∂(8分)15. 计算Dxdxdy ⎰⎰,其中D 由1xy =、y x =、2x =所围成.解 211xxDxdxdy dx xdy =⎰⎰⎰⎰ (4分)43=. (8分) 16. 已知向量a 、b 、c两两垂直,且1a = ,2b = ,3c = ,求a b c ++ .解 因为a 、b 、c两两垂直,所以0a b b c a c ⋅=⋅=⋅=(3分) 又2()()a b c a b c a b c ++=++⋅++2()a a b b c c a b b c a c =⋅+⋅+⋅+⋅+⋅+⋅22214a b c =++= (7分)从而a b c ++=(8分)四、试解下列各题(本大题2个小题,每小题6分,共12分)17.求函数22(,)8006004000033f x y x y x xy y =+----的极值点,并判定取得极大值还是极小值.解 8006x L x y =--,6006y L y x =--联立0x y L L ==得 120,80x y == (3分) 又在该点处6,1,6xx xy yy A L B L C L ==-==-==-20,0AC B A -><,故在该点处取得极大值. (6分)18. 设平面图形由抛物线)0(,2>-=a x ax y 及直线1,0,0===x x y 所围成,试确定a 的值,使此平面图形的面积最小.解曲线2y a xx =-与0y =的交点为1(0,0),(,0)a,故有所围面积为120()||A a ax x dx =-⎰112210()()a ax ax dx ax x dx =-+-⎰⎰(3分)令)()(1110112102/⎰⎰⎰⎰-++-=aa a a xdx xdx dx x a dx x a da d a A 031323=+-=a , 解得唯一驻点02)(,24//3>==aa A a 且,故当32=a 时所围成的平面图形面积最小. (6分)五、证明题(本大题2个小题,每小题5分,共10分)19.设(,)f x y 在有界闭区域D 上连续,证明:在D 上至少有一点(,)ξη,使:(,)(,)Df x y d f σξησ=⎰⎰.证明 因为(,)f x y 在有界闭区域D 上连续,所以(,)f x y 在有界闭区域D 上有最大值M 和最小值m ,即:(,)m f x y M ≤≤,从而 (,)Dm f x y d M σσσ≤≤⎰⎰,(,)Df x y d m M σσ≤≤⎰⎰ (3分)根据介值定理,在D 上至少有一点(,)ξη,使得:(,)(,)Df x y d f σξησ=⎰⎰即:(,)(,)Df x y d f σξησ=⎰⎰ . (5分)20.设)(22y x f y z -=,其中)(u f 为可导函数,验证211y zy z y x z x =∂∂+∂∂. 证明 由于)(u f 可导,故/22z xyf x f ∂=-∂, /2/22(2)2z f yf y f y f y f f ∂-⋅-+==∂ (3分) 从而 22/22/2211yzyf f y f f yf y z y x z x =++-=∂∂+∂∂. (5分)。
2009-2010第二学期工科数学分析期末试题解答(A 卷)一.1.11,65arccos(2分,2分)2.(1,2,7),4(2分,2分)3.25-,}52,51{-(2分,2分)4.∑∞=+--01)1(4)1(n nn n x ,∑∞=---+11)1(4)1(4ln n nn n x n (2分,2分)5.dy dx 2-,}2,1{-(2分,2分)6.x x y ln ,34ln(2分,2分)7.0,ππ324+,0,12+π(1分,1分,1分,1分)二.⎰=Ly dlx I μ2…………………….(2分)⎰+=15322)1(1dxx x μ……………………(6分)μμ35611532=+=⎰dx x x ……………………(9分)三.设V 在第一卦限部分为1V ⎰⎰⎰⎰⎰⎰==122486V VdVx dV x I ……………(3分)⎰⎰⎰---=yx xdzdy dx x 101010248……………..(6分)⎰⎰---=xdyy x dx x 10102)1(48………………..(7分)⎰-=1022)1(24dx x x …………………(8分)54=…………………(9分)四.令02==∂∂x xz,014=-=∂∂y yz………………(2分)解得0=x ,41=y ,得驻点)41,0(,………………..(3分)由122=+y x ,得221y x -=,代入目标函数得62+-=y y z )11(≤≤-y ………………..(4分)令012=-=y dydz,得21=y ,此时23±=x ,得两点)21,23(±………..(6分)当1±=y 时,0=x ,得两点)1,0(±………………..(7分)83941,0(=z ,42321,23(=±z ,8)1,0(=-z ,6)1,0(=z 8max =z ,839min =z ……………..(9分)五.由题意,有yXx Y ∂∂=∂∂……………………….(1分)λλλλλλλλ2121)()()33()(3)()()3()(3y x y x y y x y x y x x y y x ++--+=++--+---…….(3分)即033=--+y x y x λλ,3=λ…………………….(4分)1),()1,1(33)(3)(3),(C dy y x xy dx y x x y y x u y x ++-++-=⎰…………………….(6分)11313)(3)(3C dy y x x y dx y x xy x++-++-=⎰⎰……………………(8分)C y x yx ++-=2)(……………………(10分)注:没有加C 不扣分。
一、选择题每小题5分,共50分.⑥卷:1A ; 2B ; 3A ; 4C ; 5B ; 6D ; 7B ; 8C ; 9A ; 10B. ®卷:1D ;2D ;3A ; 4B ; 5C ; 6B ;7B ;8C ;9C ; 10D.G )二、(微积分)(10分)求三重积分Jjj (X+y+z )2dV,其中。
:f+y2+(z_i )2G.Ω解原式=JJj (X2+j 2+z 2+2xy+2yz+2zr )dVΩ=∫∫∫(x 2+y 2+z 2)dV (3分)Ω"力si110dp(7分) (10分)x=3+2tG )二、(高数)(io 分)设直线。
:9=彳=平,直线L2:,y=ι+f .z =2+f (1)证明右与4平行.(2)求。
与4确定的平面方程.⑴证《的方向向量s ∣=(2,1,1),取点M (1,2,3)∈L 1;(的方向向量4=(2,1」),取点M 2(3,l,2)∈L 2.向量陷%=(2,T,T )与电不平行,所以∆1与4平行.(4分)iJk(2)所求平面的法向量W=S 1XM 1M 2=21 1=(0,4,-4),(7分) 2-1-1 平面方程4(y-2)-4(z-3)=0,BP y-z+∖=0.(10分)G )二、(工数)(10分)求微分方程丁〃+9-25=1的通解. 解特征方程r 2+r-2=0,特征根(=1,为=一2. 对应的齐次方程的通解Y (x )=Ce+c 2e-2∖ (4分) 设原方程的特解/=AxeS 代入原方程,得(7分) A (x+2)e x +A (x+l )e x -2Are r =e A ,得3A=1,BPA=-,y*=-xe r .(9分) 3,3=2信cos>∙sin^ = 2π.^1-c °s^5 I即2无+三+屯一2包-包=0∂ιΓ∂u∂v∂v∂u∂v⑥四、(10分)求曲线积分Jj(x)sinydx+(/(X)CoSy+πx)dy ,其中函数/(x)具有二阶连续导数,L 是圆周线(x-l)2+(y-π)2=l+π2上从点A(2,2π)沿逆时针方向到点0(0,0)的有向弧段. 解—=f(x)cosy+‰—=f(x)cosy.∂x ∂y方法1取从O(0,0)到Λ(2,2π)的有向线段OA:y=πx(0≤x≤2)92由格林公式,∫f ∖x)sinydr+(/(x)cos y+πx)dy=∫∫πdΛd>,=—(1+π2). 1.+OAD2又[f ,(x)Siny(Ir+(/(x)cosy+πx)dyOA =J :(/'O)sinπx+π∙(∕(X)COSπx+πx))dx原方程的通解为 y = c 1 e r + c 2e -2v + - xe x .⑥三、(10分)通过卜二J 变换方程2』+孙栗+/票0. y = e∂x" ox∂y∂y 解 M = In Λ, V = In y ∂z ∂z 1—=—•—∂x ∂u X ∂z ∂z 1 ∂y ∂v y∂2z _ ∂2z 1 ∂z 1 ∂2z _ ∂2z 1 ∂2z _ ∂2z 1 ∂z 1 ∂x 2 ∂u 2 X 2 ∂u X 29∂x∂y ∂u∂v xy '∂y 2 ∂v 2 y 2 ∂v y 2z 1 ∂z 1 ‹∂u 2 X"∂2z 1 λ ∖∂u∂v xyr δ2z 1 ∂z 1 、力2 y 2∂v y ∖=0,2典一斗匹+典4 0, ‹∂u 2 ∂u J ∂u∂v (。
课程编号:MTH17004, MTH17006北京理工大学2010-2011学年第二学期工科数学分析期末试题(A 卷)班级_______________ 学号_________________ 姓名__________________(本试卷共6页, 十一个大题,试卷后面空白纸撕下作草稿纸)一. 填空题(每小题2分, 共10分)1. 已知3||=a ,26||=b ,72||=⨯b a,且a 与b 的夹角是钝角,则=⋅b a ______。
2. 设x yz ye y x u z ln 2++=,则=)1,1,1()grad (div u ______________。
3. 已知向量c b a,,不共面,但向量c a c b b a +++λ,,2共面,则=λ _________。
4. 设L 是曲线1,,3===z t y t x 上从)1,0,0(A 到)1,8,2(B 的一段,若将⎰++=Lzdz ydy dx x I 2化成第一类曲线积分,则有=I _________________________。
5. 变量替换x y v x u ==,可将微分方程z yzy x z x =∂∂+∂∂化成 ________________________。
二. (9分) 交换积分次序并计算⎰⎰=yyxdx xe dy I 1。
三. (9分) 求函数y y y x y x f -+=2221),(的极值和极值点。
四. (9分)设方程523=+-y xz z 确定函数),(y x z z =,求yx z∂∂∂2。
五. (9分) 在曲面xy z =上求一点,使曲面在此点处的切平面垂直于直线13211zy x =-=+,并写出切平面方程。
六. (8分) 证明方程0ln 1=+-xdy x dx yx y y 是全微分方程,并求出通解。
七. (10分) 求幂级数∑∞=-+11)1(n n x n n 的收敛域及和函数。
2009-2010学年第二学期高等数学(2)期末试卷及其答案2009 至 2010 学年度第 2 期 高等数学(下)课程考试试题册A试题使用对象 : 2009 级 理科各 专业(本科)命题人: 考试用时 120 分钟 答题方式采用:闭卷说明:1.答题请使用黑色或蓝色的钢笔、圆珠笔在答题纸上书写工整.2.考生应在答题纸上答题,在此卷上答题作废.一.填空题(本题共15 分,共5 小题,每题 3 分) 1.已知(2,1,),(1,2,4)a mb ==r r,则当m = 时,向量a b⊥r r .2.(,)(2,0)sin()limx y xy y →= .3.设区域D 为22y x +≤x 2,则二重积分Dd σ=⎰⎰ .4.函数(,),(,)P x y Q x y 在包含L 的单连通区域G 内具有一阶连续偏导数,如果曲线积分(,)(,)LP x y dx Q x y dy+⎰与路径无关,则(,),(,)P x y Q x y 应满足条件 .5. 当p 时,级数211pn n +∞=∑收敛.二.选择题(本题共15分,共5小题,每题3 分)1.直线221:314x y z L -+-==-与平面:6287x y z π-+=的位置关系是 .A .直线L 与平面π平行;B .直线L 与平面π垂直;C .直线L 在平面π上;D .直线L 与平面π只有一个交点,但不垂直.2. 函数(,)f x y 在点(,)x y 可微分是(,)f x y 在该点连续的( ).A .充分条件; B. 必要条件; C. 充分必要条件; D. 既非充分也不必要条件 3.改变积分次序,则100(,)y dy f x y dx⎰⎰.A .1(,)xdx f x y dy ⎰⎰; B .11(,)dx f x y dy ⎰⎰;C .11(,)x dx f x y dy ⎰⎰;D .11(,)xdx f x y dy ⎰⎰4.下列级数中收敛的是 . A .∑∞=+1884n n nn B .∑∞=-1884n n nn C .∑∞=+1824n n nnD .1248n nn n ∞=⨯∑.5.级数1...-++A. 发散B. 绝对收敛C. 条件收敛D. 既绝对收敛又条件收敛 三. 求解下列各题(本题共70分,共9小题,1~2每题7 分,3~9每题8 分). 1.设sin uz e v=,而u xy =,v x y =- 求xz .2.设22(,tan())u f x y xy =-,其中f 具有一阶连续偏导数,求yz . 3.求旋转抛物面221z x y =+-在点(2,1,4)处的切平面方程及法线方程. 4.计算 22Dx d y σ⎰⎰,其中D 是由直线y x =.2x =和曲线1xy =所围成的闭区域. 5.计算L⎰,其中L 是圆周222x y a +=(0a >).6.计算22()(sin )Lxy dx x y dy--+⎰,其中L 是上半圆周y =x 轴所围区域的边界,沿逆时针方向.7.将函数1()3f x x =+展开成(3)x -的幂级数. 8.计算曲面积分xydydz yzdzdx xzdxdy ∑++⎰⎰,其中∑为1x y z ++=,0,x =y =,0z =所围立体的外侧.9.求抛物面22z xy =+到平面10x y z +++=的最短距离.2009 至 2010 学年度第 2 期高等数学(下)课程试题A 参考答案试题使用对象: 2009 级 理科各专业(本科) 向瑞银一.填空题(本题共15 分,共5 小题,每题 3 分) 1. 1-; 2. 2; 3. π; 4.y P ∂∂=xQ ∂∂; 5.12p >二.选择题(本题共15分,共5小题,每题3 分) 1.B ; 2.A ; 3.D ; 4.C ; 5.C 三. 求解下列各题(本题共70分,共9小题,1~2每题7 分,3~9每题8 分).1.z z u z vx u x v x∂∂∂∂∂=+∂∂∂∂∂……4分sin cos u u ye v e v=+(sin()cos())xy e y x y x y =-+-……7分 2.2212()(tan())y y uf x y f xy y∂''''=⋅-+∂ ……4分2122sec ()()yyf f xy xy '''=-+2122sec ()yf xf xy ''=-+……7分 3. 令22(,,)1F x y z xy z=+--,则法向量(2,2,1)n x y =-r,(2,1,4)(4,2,1)n=-r ……3分在点(2,1,4)处的切平面方程为 4(2)2(1)(4)0x y z -+---=.即4260x y z +--=. (6)分法线方程为214421x y z ---==-. ……8分 4.22Dx d yσ⎰⎰22121xxx dx dy y=⎰⎰……4分221/11()x xx dxy=-⎰……6分231()x x dx =-⎰322111()42x x =-94=……8分5.令cos ,sin x a y a θθ==,则sin ,cos x a y a θθ''=-=,ds θ=ad θ= ……3分20a Le ad πθ=⎰⎰ ……6分=2aae π ……8分6.2P xy=-,1P y ∂=-∂ ,2(sin )Q x y =-+,1Q x∂=-∂ , ……4分()0DDQ PI dxdy dxdy x y∂∂=-=∂∂⎰⎰⎰⎰ ……6分=……8分 7.1136(3)x x =++-113616x =-+ ……4分 当316x -<,即 39x -<<时,13x +013()66nn x +∞=-=-∑ ……8分8. ⎰⎰∑++zxdxdy yzdzdx xydydz=()x y z dxdydz Ω++⎰⎰⎰……4分 =1110()xx ydx dy x y z dz---++⎰⎰⎰……6分81=……8分9.设抛物面一点(,,)x y z ,它到平面的距离为1d x y z =+++满足条件220x y z +-= ……3分 拉格朗日函数为222(1)()3x y z L x y z λ+++=++- ……5分2(1)203x x y z L x λ+++=+=,2(1)203yx y z Ly λ+++=+=2(1)3z x y z L λ+++=-=,220Lx y z λ=+-=解方程组得,12x y ==-,12z =. 由问题本身知最短距离存在,所以最短距离为0.5,0.5,0.5)d --=6=……8分。
课程编号:MTH17004, MTH17006
北京理工大学2010-2011学年第二学期
工科数学分析期末试题(A 卷)
班级_______________ 学号_________________ 姓名__________________
(本试卷共6页, 十一个大题,试卷后面空白纸撕下作草稿纸)
一. 填空题(每小题2分, 共10分) 1.
已知3||=a
,26
||=b ,72
||=⨯b a
,且a
与b 的夹角是钝角,则=
⋅b a
______。
2. 设x
yz ye
y x u z
ln 2
++=,则=)
1,1,1()
grad (div
u ______________。
3.
已知向量c
b a
,,不共面,但向量c
a c
b b a
+++λ,,2共面,则=
λ _________。
4. 设
L
是曲线
1
,,3
===z t y t x 上从
)1,0,0(A 到
)
1,8,2(B 的一段,若将
⎰++=
L
zdz
ydy dx x
I 2
化成第一类曲线积分,则有=
I _________________________。
5. 变量替换x
y v x u
=
=,可将微分方程z
y
z y x
z x
=∂∂+∂∂化成 ________________________。
二. (9分) 交换积分次序并计算⎰
⎰
=
y y
x
dx
x
e
dy
I 1。
三. (9分) 求函数y
y
y x y x f -+
=2
2
2
1),(的极值和极值点。
四. (9分)设方程523
=+-y xz z 确定函数),(y x z z =,求
y
x z ∂∂∂2。
五. (9分) 在曲面
xy
z =上求一点,使曲面在此点处的切平面垂直于直线
1
3
21
1z y x =-=+,并写出切平面方程。
六. (8分) 证明方程0
ln 1
=+-xdy x dx yx y
y 是全微分方程,并求出通解。
七. (10分) 求幂级数∑
∞
=-+1
1
)1(n n x
n n 的收敛域及和函数。
八. (10分) 设V 是球面1)
(z 1)
1(2
2
2
≥=-++z y
x 与锥面2
2
y
x
z
+=所围的立体,其上
每点的密度与此点到原点的距离的平方成反比(比例系数为1),求V 的质量及质心。
九.(9分) 将x
x
x f arctan )1()(2
+=展开成x 的幂级数,并指出收敛域。
十.(9分) 利用高斯公式计算⎰⎰-+-+-=
S
dxdy
z x
dzdx y z
dydz x y
I
)()()(2
2
2
,其中S 是抛
物面)1(22
2
≥--=z y
x
z 的上侧。
十一.(8分) 设0
>n
a ,且级数∑
∞
=1
n n
a 收敛,
n
n n a a b )
1ln(1+-
=λ(λ是常数),判断级数∑
∞
=1
n n
b 的收敛性。