当前位置:文档之家› 《直线和圆的位置关系》典型例题

《直线和圆的位置关系》典型例题

《直线和圆的位置关系》典型例题
《直线和圆的位置关系》典型例题

《直线和圆的位置关系》典型例题

例1在R t△ABC中,∠C=90°,AB=4cm,BC=2cm,以C为圆心,r为半径的圆与AB有何种位置关系?为什么?

(1)r=1cm;(2)r=cm;(3)r=2.5cm.

例2 在R t△ABC中,∠C=90°,AB=4cm,BC=2cm,以C为圆心,r为半径的圆,若直线AB与⊙C,(1)相交;(2)相切;(3)相离.求半径r的取值.

例3如图,在直角梯形ABCD中,AD∥BC,∠C=∠D=90°,若AB=6,AD=4,BC=2,试问:DC上是否存在点P,使R t△PBC∽R t△APD?

例4如图,直角梯形中,,,,为上的一点,平分,平分.求证:以为直径的圆与相切.

例5已知中,,于,,,以为圆心,为半径画圆.求证直线和⊙相离.

参考答案

例1分析如图,欲判定⊙C与直线AB的关系,只需先求出圆心C到直线AB的距离CD的长,然后再与r比较即可.

解:过C点作CD⊥AB于D,

在R t△ABC中,∠C=90°,AB=4,BC=2,

∴AC=2

∴AB·CD=AC·BC,

∴,

(1)当r =1cm时CD>r,∴圆C与AB相离;

(2)当r=cm时,CD=r,∴圆C与AB相切;

(3)当r=2.5cm时,CD<r,∴圆C与AB相交.

说明:从“数”到“形”,判定圆与直线位置关系.

例2 解:过C点作CD⊥AB于D,

在R t△ABC中,∠C=90°,AB=4,BC=2,

∴AC=2

∴AB·CD=AC·BC,

∴,

(1)∵直线AB与⊙C相离,∴0r

(2)∵直线AB与⊙C相切,∴r =CD,即r=;

(3)∵直线AB与⊙C相交,∴r>CD,即r>.

说明:从“形”到“数”,由圆与直线位置关系来确定半径.

例3 分析:若R t△PBC∽R t△APD,则∠APD+∠BPC=90°,可知∠APB=90°,

所以P点为以AB为直径的圆O与DC的交点,由条件可知为⊙O与DC相切,所以存在一点P,使R t△PBC∽R t△APD.

解:设以AB为直径的圆为⊙O,OP⊥DC,则:

OP为直角梯形ABCD的中位线,

∴OP=(AD+BC)/2=(4+2)/2=3,又∵OA=OB=AB/2=3,

∴OP=OA,∴⊙O与DC相切,

∴∠APB=90°,∴∠APD+∠BPC=90°.又∵∠PBC+∠BPC=90°,

∴∠APD=∠PBC,又∵∠C=∠D=90°,∴R t△PBC∽R t△APD.

因此,DC上存在点P,使R t△PBC∽R t△APD.

说明:①直线与圆位置关系的应用;②此题目可以变动数值,使DC与⊙O 相交、相离.

例4 分析:要证以为直径的圆与相切,只需证明的中点

到的距离等于.

证明:过点作于,

同理可证:

为的中点,

即:以为直径的圆与相切.

说明:在判定直线是圆的切线时,若条件没有告诉它们有公共点,常用的方法就是“距离判定”法,即先由圆心到该直线作垂线,证明圆心到该直线的距离恰好等于半径,从而得出直线是圆的切线的结论.

例5 分析:欲证直线和⊙相离,只需计算点到的距离的长,若,则判定与⊙相离(如图)

证明于,

是圆心到的距离

∽.

⊙的半径为,

故与⊙相离.

定积分典型例题20例答案(供参考)

定积分典型例题20例答案 例1 求2 1lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111 n n n =?的一个因子1n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞+L =1lim n n →∞+L =34 = ?. 例2 0 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=, 故321(1)3f x x -= ,令3126x -=得3x =,所以1(26)27 f =.

点、线、面之间的位置关系练习题

点、线、面之间的位置关系及线面平行应用练习 1、 平面L =?βα,点βαα∈∈∈C B A ,,,且L C ∈,又R L AB =?,过 A 、 B 、 C 三点确定的平面记作γ,则γβ?是( ) A .直线AC B .直线B C C .直线CR D .以上都不对 2、空间不共线的四点,可以确定平面的个数是( ) A .0 B .1 C .1或4 D .无法确定 3、在三角形、四边形、梯形和圆中,一定是平面图形的有 个 4、正方体1111D C B A ABCD -中,P 、Q 分别为11,CC AA 的中点,则四边形PBQ D 1是( ) A .正方形 B .菱形 C .矩形 D .空间四边形 5、在空间四边形ABCD 中,点E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,若AC=BD , 且BD AC ⊥,则四边形EFGH 为 6、下列命题正确的是( ) A . 若βα??b a ,,则直线b a ,为异面直线 B . 若βα??b a ,,则直线b a ,为异面直线 C . 若?=?b a ,则直线b a ,为异面直线 D . 不同在任何一个平面内的两条直线叫异面直线 7、在空间中:①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有 公共点,则这两条直线是异面直线,以上两个命题中为真命题的是 8、过直线L 外两点作与直线L 平行的平面,可以作( ) A .1个 B .1个或无数个 C .0个或无数个 D .0个、1个或无数个 9、b a //,且a 与平面α相交,那么直线b 与平面α的位置关系是( ) A .必相交 B .有可能平行 C .相交或平行 D .相交或在平面内 10、直线与平面平行的条件是这条直线与平面内的( ) A .一条直线不相交 B .两条直线不相交 C .任意一条直线不相交 D .无数条直线不相交 11、如果两直线b a //,且//a 平面α,则b 与平面α的位置关系是( ) A .相交 B .α//b C .α?b D .α//b 或α?b 12、已知直线a 与直线b 垂直,a 平行于平面α,则b 与平面α的位置关系是( ) A .α//b B .α?b C .b 与平面α相交 D .以上都有可能 13、若直线a 与直线b 是异面直线,且//a 平面α,则b 与平面α的位置关系是( ) A .α//b B .b 与平面α相交 C .α?b D .不能确定 14、已知//a 平面α,直线α?b ,则直线a 与直线b 的关系是( ) A .相交 B .平行 C .异面 D .平行或异面

人教版高中物理必修一高一同步练习第三章第五节力的分解

应注意:已知一个力和它的另一个分力的方向,则另一个分力有无数个解,且有最小值(两分力方向垂直时)。 3. 分力方向的确定 分解的原则:根据力所产生的效果进行分解,一个力可以分解成无数对分力,但对于一个确定的物体所受到的力进行分解时,应考虑实际效果,即进行有意义分解。 4. 力的分解的解题思路 力分解问题的关键是根据力的实际作用效果,画出力的平行四边形,接着就转化为一个根据已知边角关系求解的几何问题,因此其解题基本思路可表示为 5. 力的分解的几种情况 已知一个力的大小和方向,求它的两个分力。 据平行四边形定则知,这种情况下可以作出无数个符合条件的平行四边形,即对一已知力分解,含有无数个解,但如果再加以下条件,情况就不一样了,下面讨论: (1)已知两个分力的方向时,有唯一解,如图所示。 (2)已知一个分力1 F 的大小和方向,力的分解有唯一解,如图所示,只能作出一个平行四边形。 (3)已知两个分力的大小,力的分解可能有两个解,如图所示,可作出两个平行四边形。 (4)已知一个分力1F 的方向与另一个分力2F 的大小,如图所示,则:当θsin F F 2=时,有唯一解,如图甲所示;当θsin F F 2<时,无解,如图乙所示;当 θsin F F F 2>>时,存在两个解,如图丙所示;当F F 2>时,存在一个解,如图丁所示。

总结:如图所示,已知力F 的一个分力1F 沿OA 方向,另一个分力大小为 2F 。我们可以以合力F 的末端为圆心,以分力2 F 的长度为半径作圆弧,各种情况均可由图表示出来。 6. 求分力的方法 (1)直角三角形法。 对物体进行受力分析,对其中的某力按效果或需要分解,能构成直角三角形的,可直接应用直角三角形边、角的三角函数关系求解,方便快捷。 (2)正交分解法。 ①以力的作用点为原点作直角坐标系,标出x 轴和y 轴,如果这时物体处于平衡状态,则两轴的方向可根据方便自己选择。 ②将与坐标轴不重合的力分解成x 轴方向和y 轴方向的两个分力,并在图上标明,用符号x F ,和 y F 表示。 ③在图上标出力与x 轴或力与y 轴的夹角,然后列出x F 、y F 的数学表达式,如:F 与x 轴夹角为θ,则θcos F F x =,θ sin F F y =与两轴重合的力就不需要分解了。 ④列出x 轴方向上的各分力的合力和y 轴方向上的各分力的合力的两个方程,然后再求解。 (3)相似三角形法。 对物体进行受力分析,根据题意对其中的某力分解,找出与力的矢量三角形相似的几何三角形,用相似三角形对应边的比例关系求解。 (4)动态矢量三角形(动态平衡)法。 所谓动态平衡问题是指通过控制某些物理量,使物体的状态发生缓慢变化,而在这个过程中物体又始终处于一系列的平衡状态,利用图解法解决此类问题方便快捷。 【典型例题】

第十一章曲线积分与曲面积分经典例题

第十一章 曲线积分与曲面积分 内容要点 一、引例 设有一曲线形构件所占的位置是xOy 面内的一段曲线L (图10-1-1),它的质量分布不均匀,其线密度为),(y x ρ,试求该构件的质量. 二、第一类曲线积分的定义与性质 性质1 设α,β为常数,则 ???+=+L L L ds y x g ds y x f ds y x g y x f ),(),()],(),([βαβα; 性质2设L 由1L 和2L 两段光滑曲线组成(记为=L 21L L +),则 .),(),(),(2 1 2 1 ???+=+L L L L ds y x f ds y x f ds y x f 注: 若曲线L 可分成有限段,而且每一段都是光滑的,我们就称L 是分段光滑的,在以后的讨论中总假定L 是光滑的或分段光滑的. 性质3 设在L 有),(),(y x g y x f ≤,则 ds y x g ds y x f L L ??≤),(),( 性质4(中值定理)设函数),(y x f 在光滑曲线L 上连续,则在L 上必存在一点),(ηξ,使 s f ds y x f L ?=?),(),(ηξ 其中s 是曲线L 的长度. 三、第一类曲线积分的计算:)(), (),(βα≤≤?? ?==t t y y t x x dt t y t x t y t x f ds y x f L )()(])(),([),(22'+'=??β α 如果曲线L 的方程为 b x a x y y ≤≤=),(,则 dx x y x y x f ds y x f b a L )(1])(,[),(2'+=?? 如果曲线L 的方程为 d y c y x x ≤≤=),(,则 dy y x y y x f ds y x f d c L )(1]),([),(2'+=?? 如果曲线L 的方程为 βθαθ≤≤=),(r r ,则 θθθθθβ α d r r r r f ds y x f L )()()sin ,cos (),(22'+=??

点线面位置关系(知识点加典型例题)

2.1空间中点、直线、平面之间的位置关系 2.1空间点、直线、平面之间的位置关系 1、教学重点和难点 重点:空间直线、平面的位置关系。 难点:三种语言(文字语言、图形语言、符号语言)的转换 2、三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α ,A ∈α ,B ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 推论:① 一条直线和其外一点可确定一个平面 ②两条相交直线可确定一个平面 ③两条平行直线可确定一个平面 (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该 点的公共直线。 符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 (4)公理 4:平行于同一条直线的两条直线平行 等角定理:如果一个角的两边和另一个角的两边分别平行且方向相同,那么L A · α C · B · A · α P · α L β

2、空间两条不重合的直线有三种位置关系:相交、平行、异面 3、异面直线所成角θ的范围是 00<θ≤900 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。 2 公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 a ∥ b c ∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点: ① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0,); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形; ⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。 共面直线 =>a ∥c 2

圆证明切线的练习题

圆证明切线的练习题 1. 如图,AB是⊙O的直径,⊙O交BC的中点 于D,DE⊥AC,E是垂足. 求证:DE是⊙O的切线;如果AB=5,tan∠B=的长. 2.如图,△ABC中,AB=AE,以AB为直径作⊙O交BE 于C,过C作CD⊥AE于D, 1C ,求CE B DC的延长线与AB的延长线交于点P . 求证:PD是⊙O的切线;若AE=5,BE=6,求DC的长. 3.在Rt△ABC 中,∠C=90 ? , BC=9, CA=12,∠ABC的平分线 BD交AC于点D, DE⊥DB交AB于点E,⊙O是△BDE的外接圆, 交BC于点F 求证:AC是⊙O的切线; 联结EF,求 4.已知:如图,△ABC中,AB=AC=5,BC=6,以AB为直径作⊙O交AC于点D,交BC于点E,EF⊥AC于F交AB的延长线于G. 求证:FG是⊙O的切线;求AD的长.

证明: 1 A EF 的值. AC 5.如图,点A、B、F在?O上,?AFB?30?,OB的延长线交直线AD于点D,过点 B作BC?AD于C,?CBD?60?,连接AB. 求证:AD是?O 的切线; 若AB?6,求阴影部分的面积. 6.已知:如图,AB是⊙O的直径,E是AB延长线上的一点,D是⊙O上的一点,且AD平分∠FAE,ED⊥AF交AF 的延长线于点C.判断直线CE与⊙O的位置关系,并证明你的结论; A 若AF∶FC=5∶3,AE=16,求⊙O的直径AB的长. 7.如图,以等腰?ABC中的腰AB为直径作⊙O,交底边BC于点D.过点D作DE?AC,垂足为E.求证:DE为⊙O的切线; 8.如图,已知R t△ABC,∠ABC=90°,以直角边 AB为直径作O,交斜边AC于点D,连结BD.

力的合成与分解经典知识总结

北京四中编稿老师:肖伟华审稿老师:肖伟华责编: 郭金娟 力的合成与分解 本节课我们需要掌握以下几个概念: 1、合力与分力; 2、力的合成、分解; 3、矢量与标量; 4、熟练掌握力的合成与分解的定则:平行四边形定则。 5、理解一种物理学处理问题的方法:等效替代法,并能用这种方法解决有关力学问题。 一、合力与分力: 在实际问题中,一个物体往往同时受到几个力的作用。如果一个力产生的效果与原来几个力产生的效果相同,这个力就叫那几个力的合力,而那几个力就叫这个力的分力。 二、力的合成与分解: 求几个力的合力的过程叫力的合成,求一个力的分力的过程叫力的分解。 合力与分力有等效性与可替代性。求力的合成的过程实际上就是寻找一个与几个力等效的力的过程;求力的分解的过程,实际上是寻找几个与这个力等效的力的过程。 三、力的平行四边形定则: 在中学阶段,我们主要处理平面力学中的共点力的合成与分解。 1、一条直线上的两个共点力的合成方法: 选定一定正方向,我们用“+”、“-”号代表力的方向,与正方向相同的力前面加“+”号,与正方向相反的力前面加“-”号。有了这种规定以后,一条直线上的力的合成就可以转化为代数加减了:当两个力的方向相同时,合力的大小等于两个分力数值相加,方向与分力的方向相同;当两个力的方向相反时,合力的大小等于两个分力数值上相减,方向与大的那个分力相同。 2、互成角度的共点力的合成、分解: 实验表明,两个互成角度的共点力的合力,可以用表示这两个力的有向线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向,这就是力的平行四边形定则。 力的分解是合成的逆运算,即以表示合力的有向线段为对角线,作平行四边形,与合力作用点共点的两个邻边就表示两个分力的大小和方向。 在理解力的合成与分解时应注意的问题: 1)合力与分力在效果上是相同的,可以互相替代。在求力的合成时,合力只是分力的效果,实际并不存在;同样,在求力的分解时,分力只是合力产生的效果,实际并不存在。因此在进行受力分析时,不能同时把合力与分力都当作物体所受的力。

点线面位置关系例题与练习(含答案)

点、线、面的位置关系 ● 知识梳理 (一).平面 公理1:如果一条直线上有两点在一个平面内,那么直线在平面内。 公理2:不共线... 的三点确定一个平面. 推论1:直线与直线外的一点确定一个平面. 推论2:两条相交直线确定一个平面. 推论3:两条平行直线确定一个平面. 公理3:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线 (二)空间图形的位置关系 1.空间直线的位置关系:相交,平行,异面 1.1平行线的传递公理:平行于同一条直线的两条直线互相平行。 1.2等角定理:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。 1.3异面直线定义:不同在任何一个平面内的两条直线——异面直线; 1.4异面直线所成的角:(1)范围:(]0,90θ∈??;(2)作异面直线所成的角:平移法. 2.直线与平面的位置关系: 包含,相交,平行 3.平面与平面的位置关系:平行,相交 (三)平行关系(包括线面平行,面面平行) 1.线面平行:①定义:直线与平面无公共点. ②判定定理:////a b a a b αα α???????? ③性质定理:////a a a b b αβαβ??????=?

2.线面斜交: ①直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角。范围:[]0,90θ∈?? 3.面面平行:①定义://αβαβ=??; ②判定定理:如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行; 符号表述:,,,//,////a b a b O a b ααααβ?=? 判定2:垂直于同一条直线的两个平面互相平行.符号表述:,//a a αβαβ⊥⊥?. ③面面平行的性质:(1)////a a αββα????? ; (2)////a a b b αβαγβγ? ? =???=? (四)垂直关系(包括线面垂直,面面垂直) 1.线面垂直①定义:若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面。 符号表述:若任意,a α?都有l a ⊥,且l α?,则l α⊥. ②判定:,a b a b O l l l a l b ααα?? ?=? ???⊥??⊥? ⊥?? ③性质:(1) ,l a l a αα⊥??⊥; (2),//a b a b αα⊥⊥?; 3.2面面斜交①二面角:(1)定义:【如图】,OB l OA l AOB l αβ⊥⊥?∠-是二面角-的平面角 范围:[0,180]AOB ∠∈?? ②作二面角的平面角的方法:(1)定义法;(2)三垂线法(常用);(3)垂面法. 3.3面面垂直(1)定义:若二面角l αβ--的平面角为90?,则αβ⊥; (2)判定定理: a a ααββ?? ?⊥?⊥?

证明圆的切线经典例题

证明圆的切线方法及例题 证明圆的切线常用的方法有: 一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F. 求证:EF与⊙O相切. 证明:连结OE,AD. ∵AB是⊙O的直径, ∴AD⊥BC. 又∵AB=BC, ∴∠3=∠4. ⌒⌒ ∴BD=DE,∠1=∠2. 又∵OB=OE,OF=OF, ∴△BOF≌△EOF(SAS). ∴∠OBF=∠OEF. ∵BF与⊙O相切, ∴OB⊥BF. ∴∠OEF=900. ∴EF与⊙O相切. 说明:此题是通过证明三角形全等证明垂直的

例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切. 证明一:作直径AE,连结EC. ∵AD是∠BAC的平分线, ∴∠DAB=∠DAC. ∵PA=PD, ∴∠2=∠1+∠DAC. ∵∠2=∠B+∠DAB, ∴∠1=∠B. 又∵∠B=∠E, ∴∠1=∠E ∵AE是⊙O的直径, ∴AC⊥EC,∠E+∠EAC=900. ∴∠1+∠EAC=900. 即OA⊥PA. ∴PA与⊙O相切. 证明二:延长AD交⊙O于E,连结OA,OE. ∵AD是∠BAC的平分线, ⌒⌒ ∴BE=CE, ∴OE⊥BC. ∴∠E+∠BDE=900. ∵OA=OE, ∴∠E=∠1. ∵PA=PD, ∴∠PAD=∠PDA. 又∵∠PDA=∠BDE, ∴∠1+∠PAD=900 即OA⊥PA. ∴PA与⊙O相切 说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用.

高三物理一轮复习力的合成与分解教案

力的合成与分解 课题力的合成与分解计划课时 2 节 教学目标1、理解合力与分力的概念。 2、理解共点力的概念 3、掌握力的合成方法。 4、掌握力的分解方法。 教学重点力的合成与分解 教学难点对实际问题进行正确的力的分解 教学方法探究法、讨论法 教学内容及教学过程 一、引入课题 物体往往会受到多个力的作用,如何求解物体所受的合力呢? 二、主要教学过程 知识点一、力的合成和分解 1.合力与分力 (1)定义:如果一个力产生的效果跟几个共点力共同作用产生的效果相同,这一个力就叫做那几个力的合力,原来的几个力叫做分力。 (2)关系:合力和分力是等效替代的关系。 2.共点力 作用在物体的同一点,或作用线的延长线交于一点的力。 3.力的合成 (1)定义:求几个力的合力的过程。 (2)运算法则 ①平行四边形定则:求两个互成角度的共点力的合力,可以用表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向。 ②三角形定则:把两个矢量首尾相接,从而求出合矢量的方法。 图1 4.力的分解 (1)定义:求一个已知力的分力的过程。 (2)遵循原则:平行四边形定则或三角形定则。 (3)分解方法:①按力产生的效果分解;②正交分解。

知识点二、矢量和标量 1.矢量:既有大小又有方向的量,相加时遵从平行四边形定则。 2.标量:只有大小没有方向的量,求和时按代数法则相加。 三、典型例题分析 【例1】(多选)两个共点力F1、F2大小不同,它们的合力大小为F,则( ) A.F1、F2同时增大一倍,F也增大一倍 B.F1、F2同时增加10 N,F也增加10 N C.F1增加10 N,F2减少10 N,F一定不变 D.若F1、F2中的一个增大,F不一定增大 解析F1、F2同时增大一倍,F也增大一倍,选项A正确;F1、F2同时增加10 N,F不一定增加10 N,选项B错误;F1增加10 N,F2减少10 N,F可能变化,选项C错误;若F1、F2中的一个增大,F不一定增大,选项D正确。 【例2】一物体受到三个共面共点力F1、F2、F3的作用,三力的矢量关系如图4所示(小方格边长相等),则下列说法正确的是( ) 图4 A.三力的合力有最大值F1+F2+F3,方向不确定 B.三力的合力有唯一值3F3,方向与F3同向 C.三力的合力有唯一值2F3,方向与F3同向 D.由题给条件无法求合力大小 解析先以力F1和F2为邻边作平行四边形,其合力与F3共线,大小F12=2F3如图所示,合力F12再与第三个力F3合成求合力F合。可见F合=3F3。 答案 B 【例3】(多选)如图5所示,电灯的重力G=10 N,AO绳与顶板间的夹角为45°,BO绳水平,AO 绳的拉力为F A,BO绳的拉力为F B,则(注意:要求按效果分解和正交分解两种方法求解)( ) 图5 A.F A=10 2 N B.F A=10 N C.F B=10 2 N D.F B=10 N 解析效果分解法在结点O,灯的重力产生了两个效果,一是沿AO向下的拉紧AO的分力F1,二是沿BO向左的拉紧BO绳的分力F2,分解示意图如图所示。

点线面位置关系(知识点加典型例题)

2.1空间中点、直线、平面之间的位置关系 2.1空间点、直线、平面之间的位置关系 1、教学重点和难点 重点:空间直线、平面的位置关系。 难点:三种语言(文字语言、图形语言、符号语言)的转换 2、三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α ,A∈α ,B ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 推论:① 一条直线和其外一点可确定一个平面 ②两条相交直线可确定一个平面 ③两条平行直线可确定一个平面 (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点 的公共直线。 符号表示为:P∈α∩β =>α∩β=L,且P ∈L 公理3作用:判定两个平面是否相交的依据 (4)公理 4:平行于同一条直线的两条直线平行 等角定理:如果一个角的两边和另一个角的两边分别平行且方向相同,那么这两个角相等. 2、空间两条不重合的直线有三种位置关系:相交、平行、异面 L A · α C · B · A · α P · α L β

3、异面直线所成角θ的范围是 00 <θ≤900 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。 2 公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 a ∥ b c∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点: ① a'与b'所成的角的大小只由a 、b的相互位置来确定,与O的选择无关,为简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0,); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形; ⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。 2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系: (1)直线在平面内 —— 有无数个公共点 共面直线 =>a ∥c 2

高中物理知识讲解 力的合成与分解

力的合成与分解 【典型例题】 类型一、求合力的取值范围 例1、物体同时受到同一平面内的三个共点力的作用,下列几组力的合力不可能为零的是( ) A.5 N,7 N,8 N B.5 N,2 N,3 N C.1 N,5 N,10 N D.10 N,10 N,10 N 【答案】C 【解析】分析A?B?C?D各组力中,前两力合力范围分别是:2 N≤F合≤12 N,第三力在其范围之内:3 N≤F合≤7 N,第三力在其合力范围之内;4 N≤F合≤6 N,第三力不在其合力范围之内;0≤F合≤20 N,第三力在其合力范围之内,故只有C中第三力不在前两力合力范围之内,C中的三力合力不可能为零. 【点评】共点的三个力的合力大小范围分析方法是:这三个力方向相同时合力最大,最大值等于这三个力大小之和;若这三个力中某一个力处在另外两个力的合力范围中,则这三个力的合力最小值是零. 举一反三 【变式】一个物体受三个共点力的作用,它们的大小分别为F1=7 N、F2=8 N、F3=9 N.求它们的合力的取值范围?【答案】0≤F≤24 N 类型二、求合力的大小与方向 例2、如图所示,物体受到大小相等的两个拉力作用,每个拉力都是20 N,夹角是60°,求这两个力的合力. 【解析】本题给出的两个力大小相等,夹角为60°,所以可以通过作图和计算两种方法计算合力的大小. 解法1(作图法):取5 mm长线段表示5 N,作出平行四边形如图甲所示,量得对角线长为35 mm.合力F大小为35 N,合力的方向沿F1、F2夹角的平分线. 解法2(计算法):由于两个力大小相等,所以作出的平行四边形是菱形,可用计算法求得合力F,如图乙所示,【点评】力的合成方法有“作图法”和“计算法”,两种解法各有千秋.“作图法”形象直观,一目了然,但不够精确,误差大;“计算法”是先作图,再解三角形,似乎比较麻烦,但计算结果更准确. 【高清课程:力的合成与分解例2】 例3、如左图在正六边形顶点A分别施以F1~F55个共点力,其中F3=10N,A点所受合力为;如图,在A 点依次施以1N~6N,共6个共点力.且相邻两力之间夹角为600,则A点所合力为。

定积分典型例题20例答案

定积分典型例题20例答案 例1 求33322 32 1lim (2)n n n n n →∞+++. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 33322 32 1lim (2)n n n n n →∞+++=333 112 lim ()n n n n n n →∞++ +=1303 4 xdx =?. 例2 2 20 2x x dx -? =_________. 解法1 由定积分的几何意义知,2 20 2x x dx -?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故220 2x x dx -? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 2 2 2x x dx -? =2 2 2 1sin cos t tdt ππ- -? =2 2 21sin cos t tdt π -? =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=,

2.1《空间点、直线、平面之间的位置关系》练习题

2.1空间点、直线、平面之间的位置关系练习题 一、 选择题: 1.下面推理过程,错误的是( ) (A ) αα??∈A l A l ,// (B ) ααα??∈∈∈l B A l A ,, (C ) AB B B A A =??∈∈∈∈βαβαβα,,, (D ) βαβα=?∈∈不共线并且C B A C B A C B A ,,,,,,,, 2.一条直线和这条直线之外不共线的三点所能确定的平面的个数是( ) (A ) 1个或3个 (B ) 1个或4个 (C ) 3个或4个 (D ) 1个、3个或4个 3.以下命题正确的有( ) (1)若a ∥b ,b ∥c ,则直线a ,b ,c 共面; (2)若a ∥α,则a 平行于平面α内的所有直线; (3)若平面α内的无数条直线都与β平行,则α∥β; (4)分别和两条异面直线都相交的两条直线必定异面。 (A ) 1个 (B ) 2个 (C ) 3个 (D )4个 4.正方体的一条体对角线与正方体的棱可以组成异面直线的对数是( ) (A ) 2 (B ) 3 (C ) 6 (D ) 12 5.以下命题中为真命题的个数是( ) (1)若直线l 平行于平面α内的无数条直线,则直线l ∥α; (2)若直线a 在平面α外,则a ∥α; (3)若直线a ∥b ,α?b ,则a ∥α; (4)若直线a ∥b ,α?b ,则a 平行于平面α内的无数条直线。 (A ) 1个 (B ) 2个 (C ) 3个 (D )4个 6.若三个平面两两相交,则它们的交线条数是( ) (A ) 1条 (B ) 2条 (C ) 3条 (D )1条或3条 7. 下列命题正确的是( ) A.经过三点确定一个平面 B.经过一条直线和一个点确定一个平面 C.四边形确定一个平面 D.两两相交且不共点的三条直线确定一个平面 8. 下列命题中正确的个数是( ) ①若直线l 上有无数个点不在平面α内,则l α∥. ②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行. ③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行.

_力的分解知识点与习题及答案

力的分解基本知识点与练习题 基本知识点 一、分力的概念 1、几个力,如果它们共同产生的效果跟作用在物体上的一个力产生的效果相同,则这几个力就叫做 那个力的分力(那个力就叫做这几个力的合力)。 2、分力与合力是等效替代关系,其相同之处是作用效果相同;不同之处是不能同时出现,在受力分 析或有关力的计算中不能重复考虑。 二、力的分解 1、力的分解的概念:求一个已知力的分力叫做力的分解。 2、力的分解是力的合成的逆运算。同样遵守力的平行四边形定则:如果把已知力F作为平行四边形的 对角线,那么,与力F共点的平行四边形的两个邻边就表示力F的两个分力F1和F2。 3、力的分解的特点是:同一个力,若没有其他限制,可以分解为无数对大小、方向不同的力(因为对于 同一条对角线.可以作出无数个不同的平行四边形),通常根据力的作用效果分解力才有实际意义。 4、按力的效果分解力F的一般方法步骤: (1)根据物体(或结点)所处的状态分析力的作用效果 (2)根据力的作用效果,确定两个实际分力的方向; (3)根据两个分力的方向画出平行四边形; (4)根据平行四边形定则,利用学过的几何知识求两个分力的大小。也可根据数学知识用计算法。 三、对一个已知力进行分解的几种常见的情况和力的分解的定解问题 将一个力F分解为两个分力,根据力的平行四边形法则,是以这个力F为平行四边形的一条对角线作一个平行四边形。在无附加条件限制时可作无数个不同的平行四边形。这说明两个力的合力可唯一确定,一个力的两个分力不是唯一的。要确定一个力的两个分力,一定有定解条件。 假设合力F一定 1、当俩个分力F1已知,求另一个分力F2,如图F2有唯一解。 2、当俩个分力F 1, F2的方向已知,求这俩个力,如图F1,F2 有唯一解 3、当俩个分力F1, F2的大小已知,求解这俩个力。

空间点、线、面位置关系(经典例题+训练)

空间点、线、面的位置关系 【基础回顾】 1.平面的基本性质 公理1:如果一条直线上的________在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过____________的一条直线. 公理3:经过____________________的三点,有且只有一个平面. 推论1:经过____________________,有且只有一个平面. 推论2:经过________________,有且只有一个平面. 推论3:经过________________,有且只有一个平面. 2.直线与直线的位置关系 * (1)位置关系的分类 ?? ? 共面直线????? 异面直线:不同在任何一个平面内 (2)异面直线判定定理 过平面内一点与平面外一点的直线,和这个平面内______________的直线是异面直线. (3)异面直线所成的角 ①定义:设a ,b 是两条异面直线,经过空间任意一点O ,作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的____________叫做异面直线a ,b 所成的角. ②范围:____________. 3.公理4 平行于____________的两条直线互相平行. 4.定理 } 如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角________.

自我检测 1.若直线a与b是异面直线,直线b与c是异面直线,则直线a与c的位置关系是____________. 2.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对. 3.三个不重合的平面可以把空间分成n部分,则n的可能取值为________. 4.直三棱柱ABC—A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成角的大小为________. 5.下列命题: ①空间不同三点确定一个平面; ] ②有三个公共点的两个平面必重合; ③空间两两相交的三条直线确定一个平面; ④三角形是平面图形; ⑤平行四边形、梯形、四边形都是平面图形; ⑥垂直于同一直线的两直线平行; ⑦一条直线和两平行线中的一条相交,也必和另一条相交; ⑧两组对边相等的四边形是平行四边形. 其中正确的命题是________(填序号). : 【例题讲解】 1、平面的基本性质 例1如图所示,空间四边形ABCD中,E、F、G分别在AB、BC、CD上,且满足AE∶EB =CF∶FB=2∶1,CG∶GD=3∶1,AH∶HD=3∶1,过E、F、G的平面交AD于H,连结EH.

动能及动能定理典型例题剖析

动能和动能定理、重力势能·典型例题剖析例1一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为S,如图8-27,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的摩擦因数相同.求摩擦因数μ. [思路点拨]以物体为研究对象,它从静止开始运动,最后又静止在平面上,考查全过程中物体的动能没有变化,即ΔEK=0,因此可以根据全过程中各力的合功与物体动能的变化上找出联系. [解题过程]设该面倾角为α,斜坡长为l,则物体沿斜面下滑时, 物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S2,则 对物体在全过程中应用动能定理:ΣW=ΔEk. mgl·sinα-μmgl·cosα-μmgS2=0 得h-μS1-μS2=0. 式中S1为斜面底端与物体初位置间的水平距离.故 [小结]本题中物体的滑行明显地可分为斜面与平面两个阶段,而且运动性质也显然分别为匀加速运动和匀减速运动.依据各阶段中动力学和运动学关系也可求解本题.比较上述两种研究问题的方法,不难显现动能定理解题的优越性.用动能定理解题,只需抓住始、末两状态动能变化,不必追究从始至末的过程中运动的细节,因此不仅适用于中间过程为匀变速的,同样适用于中间过程是变加速的.不仅适用于恒力作用下的问题,同样适用于变力作用的问题. 例2 质量为500t的机车以恒定的功率由静止出发,经5min行驶2.25km,速度达到最大值54km/h,设阻力恒定且取g=10m/s2.求:(1)机车的功率P=?(2)机车的速度为36km/h时机车的加速度a=? [思路点拨]因为机车的功率恒定,由公式P=Fv可知随着速度的增加,机车的牵引力必定逐渐减小,机车做变加速运动,虽然牵引力是变力,但由W=P·t可求出牵引力做功,由动能定理结合P=f·vm,可

2015简单线性规划典型例题

良好的开端是成功的一半 1. “平面区域”型考题 1.不等式组?? ? ??-≥≤+<31y y x x y ,表示的区域为D ,点P 1(0,-2),P 2(0,0),则 ( ) A .D P D P ??21且 B .D P D P ∈?21且 C . D P D P ?∈21且D .D P D P ∈∈21且 2.已知点P (x 0,y 0)和点A (1,2)在直线0823:=-+y x l 的异侧,则 ( ) A .02300>+y x B .<+0023y x 0 C .82300<+y x D .82300>+y x 3.已知点P (1,-2)及其关于原点的对称点均在不等式012>+-by x 表示的平面区域内,则b 的取值范围是 . 2. “平面区域的面积”型考题 1.设平面点集{} 221 (,)()()0,(,)(1)(1)1A x y y x y B x y x y x ??=--≥=-+-≤??? ? ,则A B 所表示的平 面图形的面积为 A 34π B 35π C 47π D 2 π 2.在平面直角坐标系xOy ,已知平面区域{(,)|1,A x y x y =+≤且0,0}x y ≥≥,则平面区域 {(,)|(,)}B x y x y x y A =+-∈的面积为 ( )A .2 B .1 C .12 D .1 4 3、若A 为不等式组002x y y x ≤?? ≥??-≤? 表示的平面区域,则当a 从-2连续变化到1时,动直线x y a +=扫 过A 中的那部分区域的面积为 . 4、 若不等式组0 3434 x x y x y ≥?? +≥??+≤? 所表示的平面区域被直线43y kx =+分为面积相等的两部分,则k 的值是 (A ) 73 (B ) 37 (C )43 (D ) 34 高 5、若0,0≥≥b a ,且当?? ? ??≤+≥≥1,0, 0y x y x 时,恒有1≤+by ax ,则以a ,b 为坐标点(,)P a b 所形成的平面 区域的面积等于__________. 3. “求约束条件中的参数”型考题 1.在平面直角坐标系中,若不等式组10 1010x y x ax y +-≥?? -≤??-+≥? (α为常数)所表示的平面区域内的面积等于2, 则a 的值为 A. -5 B. 1 C. 2 D. 3 2、若直线x y 2=上存在点),(y x 满足约束条件?? ???≥≤--≤-+m x y x y x 03203,则实数m 的最大值为( ) A . 21 B .1 C .2 3 D .2 3、设二元一次不等式组2190802140x y x y x y ?+-? -+??+-? ,,≥≥≤所表示的平面区域为M ,使函数(01)x y a a a =>≠,的图 象过区域M 的a 的取值范围是( )A .[1,3] B .[2,10] C .[2,9] D .[10,9] 4.设m 为实数,若{250 (,)300x y x y x mx y -+≥??-≥??+≥? }22 {(,)|25}x y x y ?+≤,则m 的取值范围是___________. 4. “截距”型考题 1. ,x y 满足约束条件241y x y x y ≤?? +≥??-≤? ,则3z x y =+的最大值为( ) ()A 12()B 11 ()C 3()D -1 2.设变量,x y 满足-100+20015x y x y y ≤?? ≤≤??≤≤? ,则2+3x y 的最大值为A .20 B .35 C .45 D .55 3.若,x y 满足约束条件1030330 x y x y x y -+≥??? +-≤??+-≥??,则3z x y =-的最小值为 。 4.设函数ln ,0 ()21,0 x x f x x x >?=?--≤?,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成

相关主题
文本预览
相关文档 最新文档