当前位置:文档之家› 弯曲河道上桥梁通航净宽的计算方法探讨

弯曲河道上桥梁通航净宽的计算方法探讨

弯曲河道上桥梁通航净宽的计算方法探讨
弯曲河道上桥梁通航净宽的计算方法探讨

01第一章 天然河道水面线推算

第一章天然河道水面线推算 百图软件既可以处理一个糙率的单式断面天然河道,又可以处理二个或任意多个糙率的复式断面天然河道,也可以处理河道某处出现江心洲或分叉情况,还可以处理整条河道上,支流汇入或流出、过桥水头跌差等情况。 缓坡河道应从下游向上游推算,根据经验及《水力学》教材的介绍,当最下游断面的起始水位无法确定时,可用该断面附近的正常水深对应的水位作为起始水位。陡坡河道应从上游向下游推算,根据经验,当最上游断面的起始水位无法确定时,可用该断面的临界水深或略小于临界水深对应的水位作为起始水位。 实际工程中,一条长距离的河道可能是缓、陡坡交替变化的情况,此时应先画出河底的纵断面图。根据纵断面图,当人工能够分辨出缓、陡坡的分界点,可人工划分成单一的缓坡或陡坡分别进行推算。当人工不能够分辨出缓、陡坡的分界点时,可假定该整条河道为缓坡,选择整条河道从下游向上游推算,若软件一直能进行推算,说明该段为缓坡;若软件不能进行推算,说明该段为陡坡。软件运行终止的断面,即为缓、陡坡的分界点,按此方法判断出整条河道上的所有缓、陡坡的分界点,把整条河道划分成单一的缓坡或陡坡分别进行推算。

第一节 一个糙率天然河道水面线推算 一、现状天然河道水面线推算 根据下式,即华东水利学院编《水力学》(1999年版)式9.9,采用分段试算法,精确推算水位。 第一步、准备现状横断面数据文件 数据文件为txt 格式,在excel 中整理数据时必须另存为文本文件(制表符分隔)类型的txt 文件。 原始横断面测量成果表的内容格式如下: 横断测量成果表中,桩号允许带“+”或“-”,但不允许有其它非数字文本,程序通过加减号来识别桩号。起点距即是累距,零点桩的起点距为0。每个点的数据占一行,包括“起点距”、“高程”和“点注释”三项,中间用空 ? ? ? ? ? ? - + ? + + = + g v g v K l Q g v z g v z 2 2 2 2 2 1 2 2 2 2 2 2 2 2 1 1 ξ α α

天然河道水面线计算的改进方法

天然河道水面线计算的一种改进方法 发表日期:2008-03-14作者:文峰竹来源:水工网评论 1条 本文章系网络收集转载,不代表本站观点,如果有谬误或者任何侵犯权益的地方,请联系QQ 31184 摘要:天然河道水面线的推算是水力学的经典问题,对于河道防洪、水库淹没有极其重要的意义。在大量采用电算后,程序算法选取的欠妥时会导致计算成果与实际情况不相符合。本文就天然水面线计算的基本公式出发,对常用的自下而上推算天然河道水面线的电算程序算法选择进行探讨,提出一种可行的预报—校正计算公式。 1、问题的由来 天然河道水面线的推算是水力学的经典问题,对于河道防洪、水库淹没有极其重要的意义。自上个世纪末以来,由于计算机的大量普及,天然河道水面线逐步由人工手算演变成程序电算,极大地提高了设计效率,把设计人员从繁琐、枯燥的数字计算中解放出来。但在计算程序算法选取欠妥也会出现一些问题,造成计算成果与实际情况产生了较大的出入,尤其是在坡降较陡的山区河道,有些程序(例如原PC1500程序集中的水面线计算程序)计算的水面线非常低,与实际情况相去甚远。本文就天然水面线计算的基本公式出发,对常用的自下而上推算天然河道水面线的电算程序算法选择进行探讨,提出一种可行的电算方法。 2、天然河道水面线基本方程的分析 天然河道水面线计算在水利工程中均采用能量法,基本方程为:z1 +=z2 +++ ()…………① 式中: Z1—上游断面的水位; Z2—下游断面的水位; v1—上游断面的流速; v2—下游断面的流速;

α1—上游断面的动能校正系数; α2—下游断面的动能校正系数; —河道平均局部阻力系数; Δs—河段的长度; —河道平均流量; K—流量模数; 将①式写成: z1 ++ -=z2 ++ …………② 式中,对于从下游向上游推算情况,式右边项均为已知项,为定值。令:f(z1)= z1 +()-…………③ 其中:=(K+ K)=(R+ R) 对③式,当z1→z0(河床高程),、R→0,→R(定值),→定值,()→+∞,故f(z1)→+∞,即z1→z0为③式的一条渐近线;当z1→+∞,、R→+∞,→+∞,→0,()→0,即f(z1)= z1为③式的一条渐近线。③式图形见图1。 比图1可见,按①式从下游向上游推算水面线时,一般情况下均会产生两个解,其中之一为假解。但在天然河道水面线计算的程序中,以采用不同步长反复计算零点的方法最为多见,这种方法在【文献1】中统称为瞎子爬山法。瞎子爬山法只能求解出其中一个解作为计算成果,不能判别真假解,导致在坡降较陡的山区河道中由于起爬点取值不当而求得假解,使计算成果与事实不符。 3、对天然河道水面线计算的改进 对于天然河道水面线的计算,可采用预报—校正法。将①式改写成: z1-=z2+[(+ )-(+ )]…………④ 式中,由于上下游河道断面水流流速差异不大,作为预报成果,[(+ ) -(+ )]可以先忽略,在校正时计入其影响。④式遂可改写成:

桥梁工程水文计算

2、水文计算 基本资料:桥位于此稳定河段,设计流量31%5500/S Q Q m s ==,设计水位 457.00S H m =,河槽流速 3.11/s c v m =,河槽流量3 C Q =4722m /s ,河槽宽度c B 159.98m =,河槽平均水深c h 9.49m =,天然桥下平均流速0 3.00/M v m s =,断 面平均流速=2.61m/s υ,水面宽度B=180m ,河岸凹凸岸曲率半径的平均值 R=430m ,桥下河槽最大水深12.39mc h m =。 2.1桥孔长度 根据我国公路桥梁最小桥孔净长度Lj 公式计算。 该桥在稳定河段,查表知K=0.84,n=0.90。有明显的河槽宽度Bc ,则有: n 0.90 j s c c L =K (Q /Q )B =0.84(55004722) 159.98=154.16m ?÷? 换算成平面半径R=1500的圆曲线上最小桥孔净长度为154.23m 。 2.2桥孔布置图 根据河床断面形态,将左岸桥台桩号布置在K52+325.00。取4孔40m 预应力混凝土T 形梁为上部结构;钻孔灌注桩双柱式桥墩,桩径为1.6m ,墩径取1.4m ;各墩位置和桩号如图1所示;右桥台桩号为K52+485.00;该桥孔布置方案的桥孔净长度为155.80m 大于桥孔净长度154.23m ,故此桥孔布置方案是合理的。 2.3桥面最低高程 河槽弗汝德系数Fr= 2 2 3.119.809.49 =0.104c c v gh ?= <1.0。即,设计流量为缓流。桥前出现 壅水而不出现桥墩迎水面的急流冲击高度。 2.3.1桥前壅水高度?Z 和桥下壅水高度?Zq

河道水面线推求及参数选取方法

设计洪水水面线推算 根据沿程比降、流量、建筑物及支流汇入情况,水面线分段进行推算。 (1)水面线推算的基本公式 水面线计算按明渠恒定非均匀渐变流能量方程,在相邻断面之间建立方程,采用逐段试算法从下游往上游进行推算。 具体如下: 式中: 1Z 、1V ——上游断面的水位和平均流速; 2Z 、2V ——下游断面的水位和平均流速; j f w h h h +=——上、下游断面之间的能量损失; l R C V h f 22=——上、下游断面之间的沿程水头损失; )22(2221g V g V h j -=ζ——上、下游断面之间的局部水头损失; ζ——局部水头损失系数,根据《水力计算手册》,由于断面逐渐扩大的ζ取 值0.333,桥渡处ζ取值0.05~0. 1。 C ——谢才系数; R ——水力半径; α——动能修正系数。 (2)河道糙率 河道的粗糙系数受到河床组成床面特性、平面形态及水流流态、植物、岸壁特性等影响,情况复杂,不易估计,本工程河道基本顺直,床面平整,经过整治的河床粗糙系 数可以采用《水工设计手册》第一卷P1-404介绍的当量粗糙系数x N xn n ∑=1当 ;设总湿周x 的各组成部分1x ,2x ,……N x 及所对应的粗糙系数分别为n 1,n 2……n N 。 1糙率的选取 河道糙率影响因素有河槽方面也有水流方面。河槽边壁及河床粗糙程度,滩地植被,河槽纵横形态的变化是主要因素。大洪水糙率小于小洪水糙率,若附近有大洪水资料时可采用河段附近现状河道纵横断面资料反推综合糙率;若河道纵横断面于大洪水有较大变化时应在河道原貌的基础上反推糙率;反推糙率实际上小于实际糙率。无资料时可根据经验参照水力计算手册确定,偏重于安全考虑,在河道整治工作中糙率适当选小些,在防洪规划中适当大一些。 2起推断面与起推水位的确定

桥涵水文分析计算

桥涵水文分析与计算 一、概述 桥涵水文分析与计算,包括河流水文资料的调查搜集整理与计算,推求出我们桥涵所需要的设计水位和流量,拟定出桥长孔径、桥高和基础埋设深度。由于桥位所处的地理位置不同以及其它复杂因素,包括天然的和人为因素如潮汐、泥石流、修水库、开挖渠道等。我们调查搜集洪水流量的计算方法各有不同。 水文计算从大的方面来分:有水文(雨量)观测资料和无水文观测资料的水文计算。 从各河段特殊情况的不同又可分为,有水库的水文计算,倒灌河流的水文计算,平原或者山丘区的水文计算,还有潮汐河段、岩溶河段、泥石流河段等。不同情况的河流我们要有针对性的调查,搜集有关资料调查搜集资料很辛苦,跑路多收效有时还很小,但工作必需要做,要有耐心。 需要调查搜集的资料综合起来有:水系图,县志和水利志、地形图、形态断面、水文站(气象站)资料水库资料,倒灌资料、河道演度、河床淤积、雨力资料、洪水调查及比降的测量,原有桥涵的调查等,通过调查为下步洪水设计流量提供有关参数。 另外还要进行地质地貌调查,有些设计流量的计算参数也和土的颗粒组成、土壤的分类、密实度吸水率熔洞泥石流等有关,有的与设计流量无关,但与桥的安全性有关如土体稳定性、山体滑坡、湿陷性黄土软土地基等,一般野外采用看挖钻的方法,下面介绍一下土壤分类的一般常识,分为三类: 1.粘性土:塑性指数>1 I p I≤7;亚砂土或轻亚粘土13.5;l I<0.5为硬塑标贯>-3.5;0≤l I<1为软塑标贯0.5≤<-7;l I≥1 为极软标贯<2;l淤泥是极软状态的粘性土,其含水量接近或大于液限,对于孔隙比大于1的轻 亚粘土或1 的粘土均称淤泥。亚粘土和孔隙比大于1.51 ≤2.砂性土:塑性指数I p;25~50% 砾砂:粒径>20mm的颗粒干燥时重量占全部重量;>0.5mm的颗粒干燥时重量占全部重量超过50% 粗砂:粒 径;>0.25mm的颗粒干燥时重量占全部重量超过50% 中砂:粒径;>0.1mm 的颗粒干燥时重量占全部重量超过75% 细砂:粒径;的颗粒干燥时重量占全部重量少于75% 粉土:粒径>0.1mm: 碎石卵石类土3. ;的颗粒干燥时的重量占全部重量超过50%碎石、卵石粒径大于20mm ;的颗粒干燥时的重量占全部重量超过50%角砾、园砾粒径大于2mm 洪水流量的计算二 小流域山丘区设计洪水流量的计算:首先要找水文分区图(一)1. 推理公式:1.1 S3 p;/s)μ)F =0.278( (m-Q p n? );(mm/小时S—设计频率暴雨雨力p );(小时—汇流时间τn—暴雨递减

桥梁设计水文计算

一、设计洪水流量计算 1、已知资料 该桥上游流域面积2.607KM2,桥址以上干流长度2.40KM(见地形图附后),河道干流坡降0.03464,该河道上游为山区,下游则为丘陵区。根据《水利水电工程等级划分及洪水标准》SK252-2000,该河道应按20年一遇洪水设计。 2、根据水文图集,该流域多年平均降雨量682毫米,多年平均24小时降雨量120毫米, 最大年降雨1466毫米。 流域特性参数K=L/J1/3×F2/5=2.40/0.250×1.467=6.571Cv=0.62。 3、20年一遇KP=2.24,H24均=120mm, 20年一遇H24均=120×2.24=268.8, 根据q m-H24-K曲线查得q m=14.0M3/S, 二十年一遇的最大洪峰流量Q=q m×F=14.0×2.40=33.6M3/S, 4、50年一遇KP=2.83, 50年一遇H24均=2.83×120=339.6, Qm=23.5M3/S 五十年一遇的最大洪峰流量Q=23.5×2.40=56.4M3/S, 二、桥孔的宽度确定 按无底坎宽顶堰计算桥孔过水能力,按水深1.2米,进行计算宽度B B=Q/1.5H3/2=33.8/1.5×1.23/2=20.0米 设计过水断面宽30-1.2×2=27.6米。 50年一遇校核水深H=[56.4÷(1.5×27.6)]2/3=1.59米。 三、冲刷计算 1、一般冲刷按以下公式计算 h p=(AQ S/UL j Ed1/6)3/5h max/h cp 式中h p桥下河槽一般冲刷后最大水深(m) Q s设计流量为56.4m3/s L j桥孔净长27.6m h max计算断面下河槽的最大水深=1.8m h cp计算断面桥下河槽的平均水深=1.2m d河床泥砂的平均粒径d=3mm μ压缩系数μ=0.850 E与汛期含砂量有关的参数E=0.66 A为单宽流量集中系数A=(B1/2/H)0.15=(91/2/1.2)0.15=1.15 h p=(AQ S/UL j Ed1/6)3/5h max/h cp=[1.15×56.4/(0.850×27.6×0.66×31/6)]3/5×1.8/1.2=3.17(m) 2、局部冲刷 采用公式:V=V z=Ed1/6Hp2/3=0.66×31/6×3.172/3=1.71(m/s) V0=(h p/d)0.14[29d+0.000000605(10+h p)/d0.72]1/2=(3.17/0.003)0.14×[29×0.003+0.000000605×(10+3.17)、0.0030.72]1/2=0.78(m/s) 1 V=0.75(d/h p)0.1(V0/Kξ)=0.75×(0.003/3.17)0.1×(0.78/0.98)=0.30(m/s) Kξ为墩型系数。 V>V0 采用h b=KξKη1B0.6(V0-1 V)(V/V0) η1

(完整word版)大工15春《桥涵水文》大作业及要求答案.doc

《桥涵水文》大作业及要求 题目一:计算题 对某水文站 22 年不连续的年最大流量进行插补和延长后,获得n=32年的连续年最大流量系列(如表 1 所示)。采用耿贝尔曲线作为理论频率曲线,试计算 Q1%和 Q2%。 表 1 年最大流量表 序号年份 3 )序号年份 3 流量(m/s 流量( m/s ) 1 1951 767 17 1967 3408 2 1952 1781 18 1968 2088 3 1953 128 4 19 1969 600 4 1954 1507 20 1970 1530 5 1955 2000 21 1971 2170 6 1956 2380 22 1972 1650 7 1957 2100 23 1973 840 8 1958 2600 24 1974 2854 9 1959 2950 25 1975 1300 10 1960 3145 26 1976 1850 11 1961 2500 27 1977 900 12 1962 1000 28 1978 3770 13 1963 1100 29 1979 1900 14 1964 1360 30 1980 1080 15 1965 1480 31 1981 1010 16 1966 2250 32 1982 1700 题目二:计算题 某公路桥梁跨越一条平原河流,桥位河段基本顺直,上游有河湾,河床平坦,两岸较为整齐,无坍塌现象。河槽土质为砂砾,河滩为耕地,表层为沙和淤泥。实测桥位河流横断面如图 1 所示,可作为水文断面进行流量计算。经调查确定, 桩号 K0+622.60 为河槽和河滩的分界,选定粗糙系数为:河槽m c 1 ,河 40 n c 滩 m t 1 。调查的历史洪水位为 63.80m,洪水比降为 0.3‰,试求其相应的 30 n t 历史洪水流量。

水面线推求的几个问题

在EXCEL中实现恒定非均匀流水面线计算,首先要判断是哪类水面线。然后根据水面线类型及控制断面水深计算第二个断面水深。主要难点在 1、断面面积计算(已经解决), 2、不同水面线类型之间的变化, 3、试算的方法是否合理, 4、程序的容错性优劣。 不过网上提供下载的较多,建议在网上下载一个得啦, 我发几句杂音 楼主所谓“变断面”其实是一个可大可小的问题,关键在与你怎么简化问题。 在EXCEL中实现恒定非均匀流水面线计算是可行的,通过变化湿周可以达到计算过水能力的要求进而推求水面线。 但是大家是否注意到,前提是恒定流,其实在天然河道的中是没有恒定流的,况且是变断面的,更加是“非恒定”的,我有个博士师姐搞非恒定流天然河道的三维水面计算,一段10几公里的河道,看上去不难,但我知道,,到她博士毕业,也没完全做好! 楼主实在要,可以看看HEC-RAS,这个软件可能能满足你的要求! 【请教】河道水面线的推求该帖被浏览了1075次|回复了3次 现在需要推求一个河道洪水时的水面线,由于景观需要,在河道的一段需设置几个溢流堰(初步确定采用折线型实用堰),向大家请教,这种情况该如何推求洪水时河道的水面线呢?我也式这样想的 但是临界水深的位置怎么确定啊因为有水跃也有水跌 坡度为0.01650m

0.012100m 0.01950m 0.016500m 0.02050mxxxx们指点一下 通过临界水深来判断我在推求过程众,水面会突变 如果用0.016的正常水深来推求的话,其实水面线就是把正常水深联起来评审的时候说这样不可以需要推水面线谢谢 请问一下河道雍水距离有计算公式没的 你的问题不在临界水深如何计算 而是在于没有一个明显的控制断面,那么推算的起始水深是多少就难以确定 所以首先要确定一个起算断面 起算断面给你两个方法 1是根据边界条件来确定,比如从缓坡到陡坡,那么交界处的水深=该断面的临界水深2是用分段试算法,可以任意假定“相当远”的一个断面的水深来计算 其理由在数学算法,具体你可以参考水工设计手册1-456页左边末尾的一段话 另外还有个问题就是,你底坡在变化,所以整个过程中,可能发生水跃或者水跌而推算水面线时,算到水跃或者水跌前后,就最好停止 水跃的高度、长度等,根据其前后水面线的成果,作为边界进行水跃计算 个人看法,大家讨论~~呵呵 有变坡点怎么会没有控制水深?

(完整版)河道水面线推求

沙河水面线推求过程 1.1 水面线计算理论基础 根据沿程比降、流量、建筑物及支流汇入情况,水面线分段进行推算。 (1)水面线推算的基本公式 水面线计算按明渠恒定非均匀渐变流能量方程,在相邻断面之间建立方程,采用逐段试算法从下游往上游进行推算。 具体如下: 2g 2g 2 1w 2221V h V Z Z αα- ++= (1-1) 式中: 1Z 、1V ——上游断面的水位和平均流速; 2Z 、2V ——下游断面的水位和平均流速; j f w h h h +=——上、下游断面之间的能量损失; l R C V h f 22 = ——上、下游断面之间的沿程水头损失; )22(2 12 2g V g V h j -=ζ——上、下游断面之间的局部水头损失; ζ——局部水头损失系数,根据《水力计算手册》 ,在收缩河段,一般局部水头损失系数ζ=0;在扩散<段,由于2V <1V ,所以ζ<0,其中在渐扩段, ζ取值-0.333,急扩段、桥渡处ζ取值-0.05~-0. 1。 C ——谢才系数; R ——水力半径; α——动能修正系数。 分段求和法计算时,应注意以下及点:第一,把已知水深的断面作为起始断面。第二,明渠中水流必须是恒定流,并且流量沿程不变。第三,渠道糙率系数n 沿程不变。 (2)河道糙率 沙河河道与滩地糙率虽然有所不同,但相差较小,沙河主槽0.027,滩地0.03

对水位影响较小,这里统一按0.027取值计算。推求中一律按河道糙率计算。 1.2 计算过程 本次计算从K0+000断面到K14+400断面,河道纵断面变化如图1-1,图1-2。 图1-1 河道纵断面图 图1-2 沙河河道图

桥涵水文分析与计算

桥涵水文分析与计算 (技术讲座稿) 一、概述 桥涵水文分析与计算,包括河流水文资料的调查搜集整理与计算,推求出我们桥涵所需要的设计水位和流量,拟定出桥长孔径、桥高和基础埋设深度。由于桥位所处的地理位置不同以及其它复杂因素,包括天然的和人为因素如潮汐、泥石流、修水库、开挖渠道等。我们调查搜集洪水流量的计算方法各有不同。 水文计算从大的方面来分:有水文(雨量)观测资料和无水文观测资料的水文计算。 从各河段特殊情况的不同又可分为,有水库的水文计算,倒灌河流的水文计算,平原或者山丘区的水文计算,还有潮汐河段、岩溶河段、泥石流河段等。不同情况的河流我们要有针对性的调查,搜集有关资料调查搜集资料很辛苦,跑路多收效有时还很小,但工作必需要做,要有耐心。 需要调查搜集的资料综合起来有:水系图,县志和水利志、地形图、形态断面、水文站(气象站)资料水库资料,倒灌资料、河道演度、河床淤积、雨力资料、洪水调查及比降的测量,原有桥涵的调查等,通过调查为下步洪水设计流量提供有关参数。 另外还要进行地质地貌调查,有些设计流量的计算参数也和土的颗粒组成、土壤的分类、密实度吸水率熔洞泥石流等有关,有的与设计流量无关,但与桥的安全性有关如土体稳定性、山体滑坡、湿陷性黄土软土地基等,一般野外采用看挖钻的方法,下面介绍一下土壤分类的一般常识,分为三类: I>1 1.粘性土:塑性指数 p I≤7; 亚砂土或轻亚粘土1< p

亚粘土 73.5; 0≤l I <0.5为硬塑 标贯>-3.5; 0.5≤l I <1为软塑 标贯<-7; l I ≥1 为极软 标贯<2; 淤泥是极软状态的粘性土,其含水量接近或大于液限,对于孔隙比大于1的轻亚粘土或亚粘土和孔隙比大于1.5的粘土均称淤泥。 2.砂性土:塑性指数p I ≤1 砾砂:粒径>20mm 的颗粒干燥时重量占全部重量25~50%; 粗砂:粒径>0.5mm 的颗粒干燥时重量占全部重量超过50%; 中砂:粒径>0.25mm 的颗粒干燥时重量占全部重量超过50%; 细砂:粒径>0.1mm 的颗粒干燥时重量占全部重量超过75%; 粉土:粒径>0.1mm 的颗粒干燥时重量占全部重量少于75%; 3.碎石卵石类土: 碎石、卵石粒径大于20mm 的颗粒干燥时的重量占全部重量超过50%; 角砾、园砾粒径大于2mm 的颗粒干燥时的重量占全部重量超过50%; 二 洪水流量的计算 (一)1.小流域山丘区设计洪水流量的计算:首先要找水文分区图

某大桥水文计算算例

大桥水文计算书 主要设计成果汇总表 项目河槽河滩 设计流量Q1%(m3/s) 2902 设计水位(m) 175.25 设计流速V(m/s) 2.32 平均流速V平(m/s) 1.68 桥孔长度(m) 330 桥前壅水(m) 0.27 一般冲刷深度(m) 1.96 0.48 局部冲刷深度(m) 2.11 梁底最低标高(m) 176.32 一、流域概况 达诺河发源于大兴安岭山脉南麓的,是黑龙江右岸一大支流,该河由西向东流经沈家营子,于平安村、团山子分别汇入溪浪河、牤牛河后折向北流入松花江。河流长度265Km,流域面积12603 Km2,流域内植被良好,中、上游山丘地带生长茂密森林和次生林,平原区为耕地,流域内支流毛沟纵横,较大支流右岸有牤牛河,左岸有溪浪河,向阳山以上为上游段,支流汇入较多,地处中山、低山、丘陵区棕山峻岭,地势较高,海拔400~600m,地面比降1.5~5.0‰,谷窄流急,向阳山至牤牛河口为中游,属丘陵及河谷平原区,高程在200~400m,地面比降为0.15~1.0‰,河谷变宽,一般在2Km 以上,最宽达5Km ,水流变缓,河道弯曲,汛期洪水泛滥成灾。牤牛河口以下为下游段,属平原区,地势较低,高程150~170m地表平坦开阔,地面比降0.2~0.5‰,河谷较宽,一般3~15Km,水流缓慢,河道蜿蜒曲折且多串沟,河水常出槽泛滥成灾,属山前区宽滩性河段。本项目路线经过之处位于河流中游,河道较顺直稳定,复式断面,砂质河床,两岸平坦宽阔,河床比降较小,流速较缓,汛期洪水泛滥宽度达2~5Km。桥位上游汇水面积F=5642Km2 二、水文气象 流域内径流主要受降雨支配,夏季雨量充沛,年最大降水量为880mm,夏秋两季降水量占全年降水的70%以上,洪汛多发生在7、8、9月份,冬季枯水多雪,春季降水较少,约占全年的15%,因此春汛较小,故洪水设计流量,采用暴雨洪水流量。洪水时河水出槽,没溢两岸,泛滥宽度达3~5Km。 项目区域内处于大陆性寒温带季风气候区,其特点春季干旱多风,夏季温热多雨,秋季降温急剧,冬季严寒,一年四季分明,而春秋两季较短,寒冷期长,年平均气温2~40C,平均湿度55~65%,年日照时数约2500小时。最高气温发生在7月份,为36.20C, 最低气温发生在1月份,为-35.40C。最大冻深1.92m,最大冰厚1.13m,封冻日期11月中旬,封冻天数130~150天,翌年4月开河 年平均降雨量600~800mm,全年分布不均,多集中在夏秋汛期,占全年的65%~70%,24小时最大降雨量为125mm,3日最大降雨225mm,最大降雪厚度100cm。桥位处主导风向为东南,平均风速3~4m/s,最大风速25.8m/s,大风日数15~25天,多发生在春季。 三、工程地质和地震 桥位附近地质构造为内陆河流新生代第四纪冲、洪积层,根据桥址地质钻探资料及现场调查,河床表层为中粗砂,其下40m内为中等密实的粗砂、砾砂及角砾层。 本项目所在地区地震烈度,根据建设部建抗字[1993]13号文及《中国地震烈度区划图》(1990),地震基本烈度为Ⅵ度,依据交通部颁发的《公路工程抗震设计规范》的规定,桥梁结构可以不考

桥梁水文计算实例

水文计算书 ZKX+XXX XXX大桥 KX+XXX XXX大桥水文计算书 一概况 该处为XXX大桥,属于蒙江水系,蜿蜒曲折,河道自然坡降大,径流补给以雨水为主,桥址处覆盖层为粉质粘土,较厚,基层为泥灰岩夹页岩。此沟汇水 。 面积3.942 km,沟长2.52km,平均比降5.550 00 二参阅文献及资料 1、《公路工程水文勘测设计规范》(JTG C30-2015) 2、《公路桥位勘测设计规范》 3、《公路小桥涵设计示例》——刘培文等编 4、《公路桥涵设计手册(涵洞)》 5、《桥涵水文》——高冬光 6、《公路涵洞设计细则》(D65-04-2007) 7、《贵州省小桥涵设计暴雨洪峰流量研究报告》——贵州省交通规划勘察设计院 三水文计算 该项目水文计算共采用四种不同的方法进行水文计算,通过分析比较确定流量。 方法1:交通部公路科学研究所暴雨径流公式推算设计流量; 方法2:交通部公路科学研究所暴雨推理公式推算设计流量; 方法3:简化公式;

方法4:贵州省交通雨洪法(H 法)经验公式。 (1) 交通部公路科学研究所暴雨径流公式: βγδφ5423 )(F z h Q p -= (3-1) φ ——地貌系数,根据地形、汇水面积F 、主河沟平均坡度决定,取0.1 h ——径流厚度(mm ),取44mm Z ——被植被或坑洼滞留的径流厚度(mm ),取10mm F ——汇水面积(km 2),取3.94 β ——洪峰传播的流量折减系数,取1 γ ——汇水区降雨量不均匀的折减系数,取1 δ——湖泊或小水库调节作用影响洪峰流量的折减系数,取1 p Q ——规定频率为p 时的洪水设计流量(m 3/s ) 将各参数带入公式3-1,可得βγδφ5423 )(F z h Q p -==59.34(m 3/s ) (2)交通部公路科学研究所暴雨推理公式: F S Q n p p )(278.0μτ-= (3-2) p Q ——频率为p 的设计流量(3/m s ) p S ——暴雨力(/mm h ) 查暴雨等值线图(p =1%),得01.0S =80mm/h τ——汇流时间(h ) 采用公式2 3K ατ??=,L 为河沟长度 2.52(km ),z I 为主河沟平均坡度5.55(000),3K =0.193,2α=0.713, τ=0.55(h )。 n ——暴雨递减指数 此处分区为I 区,取0.47。 μ——损失参数(mm/h )

桥梁工程教材 及结构简图

各种桥梁结构示意图 斜拉桥结构图 1. 桥梁按体系划分可分为梁桥、拱桥、悬索桥、组合体系桥。 2. 桥梁的建筑高度是指桥面与桥跨结构最低边缘的高差。 3. 公路桥梁总长是指桥梁两个桥台侧墙尾端间的距离。 4. 下列桥梁中不属于组合体系桥梁的结合梁桥。 5. 以公路40m简支梁桥为例,①标准跨径、②计算跨径、③梁长这三个数据间数值对比关系正确的是①> ③>②。 6. 以铁路48m简支梁桥为例,①标准跨径、②计算跨径、③梁长这三个数据间数值对比关系正确的是①=②<③。 7. 桥梁设计中除了需要的相关力学、数学等基础知识外,设计必须依据的资料是设计技术规范。 8. 我国桥梁设计程序可分为前期工作及设计阶段,设计阶段按“三阶段设计”进行,即初步设计、技术设计与施工设计。 9. 下列哪一个选项不属于桥梁总体规划设计的基本内容桥型选定。

二.判断题(判断正误,共6道小题) 10. 常规桥梁在进行孔跨布置工作中不需要重点考虑的因素为桥址处气候条件。 11. 斜腿刚构桥是梁式桥的一种形式。(×) 12. 悬索桥是跨越能力最大的桥型。(√) 13. 桥梁设计初步阶段包括完成施工详图、施工组织设计和施工预算。(×) 14. 桥位的选择是在服从路线总方向的前提下进行的。(×) 15. 一般来说,桥的跨径越大,总造价越高,施工却越容易。(×) 16. 公路桥梁的总长一般是根据水文计算来确定的。(√) 三、主观题(共3道小题) 17. 请归纳桥上可以通行的交通物包括哪些(不少于三种)请总结桥梁的跨越对象包括哪些(不少于三种) 参考答案: 桥梁可以实现不同的交通物跨越障碍。 最基本的交通物有:汽车、火车、行人等。其它的还包括:管线(管线桥)、轮船(运河桥)、飞机(航站桥)等。 桥梁跨越的对象包括:河流、山谷、道路、铁路、其它桥梁等。 18. 请给出按结构体系划分的桥梁结构形式分类情况,并回答各类桥梁的主要受力特征。 参考答案: 桥梁按结构体系可以分为:梁桥、拱桥、悬索桥、组合体系桥梁。 梁桥是主要以主梁受弯来承受荷载;拱桥主要是以拱圈受压来承受荷载;悬索桥主要是以大缆受拉来承受荷载;组合体系桥梁则是有多种受力构件按不同受力特征组合在一起共同承受荷载。 19. 请简述桥梁设计的基本原则包括哪些内容 参考答案: 桥梁的基本设计原则包括:安全、适用、经济和美观。 桥梁的安全既包括桥上车辆、行人的安全,也包括桥梁本身的安全。 桥梁的适用能保证行车的通畅、舒适和安全;桥梁运量既能满足当前需要,也可适当照顾今后发展等方面内容。 在安全、适用的前提下,经济是衡量技术水平和做出方案选择的主要因素。桥梁设计应体现出经济特

工程设计中天然河道水面线计算

=水文勘测> 工程设计中天然河道水面线计算 吴树煌,华智敏,王文彬 (内蒙古水利水电勘测设计院,内蒙古呼和浩特010020) 1摘要2 天然河道水面线计算的方法及建议。 1关键词2 水面线;计算;建议 中图分类号:TV131.4文章标识码:C文章编号:1009-0088(2008)03-0013-03 天然河道水面线的计算多采用不计局部水头损失 的能量方程(差分形式)逐段推算,计算中常遇的问题 是初始计算断面的选择及其水深的确定。当河段内或 距离不远处设有水文测站时,当然应以其实测断面为 初始计算断面,可从实测水位流量关系确定其计算水 深。但中小河流的许多河段没有测站或测站距离较 远,这种情况下,经多年实践,我院采取的计算方法是 将计算河段的最下端河段当做均匀流计算其水深,并 作为最下游端初始计算断面的水深,由下游往上游逐 段计算河道水面线。并在多次计算过程中认识到,即 使初始计算断面水深有一定误差,推算若干段后,均可 趋近正确。 对于上述认识,在此做简单的论证,提出其运用条 件并对如何使各种水面线计算更为准确提出一些建 议。 1流态为缓流的天然河道 绘制其水面线所依据的基本方程式为恒定、非均 匀缓变流的能量方程,其差分形式如公式(1)。 i-i f=v E s v L (1) 式中i)计算分段纵坡; v L)计算分段长度(m); v E s)计算分段上、下游断面的断面单能量差; v E S=E sn-E sn+1=(h n+av n2 2g )-(h n+1+ av n+12 2g ) 具有下标n和n+1分别表示各计算分段下游断 面和上游断面的水力要素。 i f)单位长度的摩阻损失。 近似按均匀流计算i f= v2 c2 R (2 ) 图1符号及下述运算符号的下标说明: 0-0表示计算河段正确的水面线; I-I表示初始计算断面1-1,假设水深h11 h01时计算的水面线; 1-1为初始计算断面,2-2、,,n-n、n+1-n +1等为从下游往上游其它计算断面的顺序编号; 01、02,,0n+1表示正确水面线1-1、2-2、 ,,n+1-n+1等断面水力要素的下标。?1、ò2 ,,?n+1和ò1、ò2,,òn+1分别表示初始断面 假设水深小于和大于正确水深时计算水面线在1-1、 2-2,,n+1-n+1等断面水力要素的下标。 13 工程设计中天然河道水面线计算吴树煌等

天然河道水面线推算方法及基本参数的分析

天然河道水面线推算方法及基本参数的分析 天然河道水面线推算是河道防洪规划和整治建设工作的基础,是河道堤防工程设计的依据,水面线推算的合理性和科学性对水利工程的投资有直接的影响。本文主要介绍天然河道水面线的计算方法及基本参数的选取原则,为今后相关工程水力计算作参考。 标签:天然河道;水面线推算;基本参数分析 1、天然河道水面线计算公式 天然河道因其断面几何尺寸、坡度、粗糙系数一般沿程均会发生变化,水流一般为非均匀流。水面线计算主要理论依据是伯努利能量守恒方程,从下游向上游断面逐段推算水位,最终得出整个河段的水面线。基本方程式如下: 2、天然河道水面线计算中参数的确定 水面线计算中参数确定很重要,关系到计算结果的准确性,如糙率、比降均沿流程都有变化,而要准确确定参数,就必须尽可能的收集水文、泥沙、断面及河道地形等基础资料,包括历史洪水调查资料。 2.1河道糙率确定 河道糙率是反应河流阻力的一个综合性系数,也是衡量河流能量损失大小的一个特征量,它是水流与河槽相互相互作用的产物。所以影响河道糙率的因素有河槽方面也有水流方面,但两者相互作用,相互影响,无明显的划分界限。 河槽边壁及河床粗糙程度,滩地植被,河槽纵横形态、水位的高低变化等是主要因素。天然河道水面线计算糙率的确定主要有两种方法:一是有实测资料时,可采用河段附近现状河道纵横断面资料反推综合糙率;二是无实测资料时可根据河道现状平面形态、河床组成、床面及滩地植被情况,参照《水力计算手册》和以往同类工程确定,偏重于安全考虑,在河道整治工作中糙率适当选小些,在防洪规划中适当大一些。 2.2起推断面与起推水位的确定 一是水流为缓流时起推断面一般选在推算河段下游,急流时选在上游;二是附近下游有水文站时以水文站为起推断面,依据实测水位资料分析不同标准洪水位,当缺乏高标准的水位流量关系时可适当将水位流量关系外延;三是附近下游有调查的历史洪水的水位流量关系时可以采用均匀法求调查断面近似的水位流量关系,从而确定起推断面水位流量关系;四是没有实测资料时,起推断面大多选定与有设计校核水位流量关系的跨河桥或其他有控制的断面,应由此修正起推断面的水位;五是当没有水文站或控制工程时,起推断面一般由河段末端向下游

河道水面线计算

4.6 洪水水面线 4.6.1计算公式 ⑴计算原理 天然河道的洪水大多属于不稳定流,水面线的计算可以近似地视为稳定流量以简化计算。稳定非均匀流按伯努利能量方程进行计算,即: j f h h g V Z g V Z +++=+222 1112 222αα 式中:Z 2、Z 1为计算段上、下游断面水位;V 2、V 1为计算段上、下游断面平 均流速,2α、1α为计算段上、下游断面的动能修正系数;h f 为沿程水头损失; h j 为局部水头损失。 在流量、控制断面水位和河段糙率确定后,即可由该式算出河道断面的水力要素。 ⑵主要参数的确定 根据一维水面线的计算公式,其关键在于沿程水头损失和局部水头损失的确定。 ①动能修正系数α α是以总流的断面平均流速V 代替过水断面上各点的点流速V i 来计算断面 的平均单位动能,为校正误差而引入的修正系数,理论上可按下式计算: A V dA V i A 33 ?=α 式中:V i 为断面单元流速(m/s );V 为断面平均流速(m/s );A 为过水面积。 α是个大于1.0的数值,其值取决于断面上流速分布不均匀的程度,流速分布越不均匀,α值越大。 ②沿程水头损失 水流在流动过程中,由于克服河床的阻滞作用,边壁的低流速层对高流速层

产生的阻力而消耗的能量,就是沿程阻力损失损失h f ,主要决定于均匀流的坡降, 可表示为: 23/42222A R L Q n L K Q L J h f === 式中:L 为计算段上下游断面间距(m ),K 为流量模数,R CA K =,一般采用22 21111K K K +=,K 1、K 2是上下两断面的流量模数;C 为谢才系数,y R n C 1=,n 为糙率,y 可取1/4~1/6。 由上式可知,欲求h f ,主要是确定糙率n 值,工程河段天然河道糙率根据河 道形态,河床组成及两岸植被情况结合,采用历史洪水反推糙率,未进行历史洪水调查段结合《天然河道糙率表》选定。 ③局部水头损失 局部水头损失即为河道的河床断面沿程不均匀引起的水头损失。局部阻力系数与河槽形态、收缩或放宽的比例以及水流情况有关,特别是在跨河桥梁河段特别明显,局部水头损失h f 可按下式计算: )22(2221g V g V h j -=ξ 式中:ξ为局部阻力系数。对于逐渐扩散段,取ξ=-0.3~-0.5;对于急剧扩散段取ξ=-0.5~-1.0;对于收缩段ξ=0。

河道水面线推求及参数选取方法

河道水面线推求及参数 选取方法 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

设计洪水水面线推算 根据沿程比降、流量、建筑物及支流汇入情况,水面线分段进行推算。 (1)水面线推算的基本公式 水面线计算按明渠恒定非均匀渐变流能量方程,在相邻断面之间建立方程,采用逐段试算法从下游往上游进行推算。 具体如下: 式中: 1Z 、1V ——上游断面的水位和平均流速; 2Z 、2V ——下游断面的水位和平均流速; j f w h h h +=——上、下游断面之间的能量损失; l R C V h f 22=——上、下游断面之间的沿程水头损失; )22(2221g V g V h j -=ζ——上、下游断面之间的局部水头损失; ζ——局部水头损失系数,根据《水力计算手册》,由于断面逐渐扩大的ζ取值 0.333,桥渡处ζ取值0.05~0. 1。 C ——谢才系数; R ——水力半径; α——动能修正系数。 (2)河道糙率 河道的粗糙系数受到河床组成床面特性、平面形态及水流流态、植物、岸壁特性等影响,情况复杂,不易估计,本工程河道基本顺直,床面平整,经过整治的河床粗糙系数可以采用《水工 设计手册》第一卷P1-404介绍的当量粗糙系数x N xn n ∑=1当 ;设总湿周x 的各组成部分1x , 2x ,……N x 及所对应的粗糙系数分别为n 1,n 2……n N 。 1糙率的选取 河道糙率影响因素有河槽方面也有水流方面。河槽边壁及河床粗糙程度,滩地植被,河槽纵横形态的变化是主要因素。大洪水糙率小于小洪水糙率,若附近有大洪水资料时可采用河段附近现状河道纵横断面资料反推综合糙率;若河道纵横断面于大洪水有较大变化时应在河道原貌的基础上反推糙率;反推糙率实际上小于实际糙率。无资料时可根据经验参照水力计算手册确定,偏重于安全考虑,在河道整治工作中糙率适当选小些,在防洪规划中适当大一些。 2起推断面与起推水位的确定

天然河道水面曲线计算问题

天然河道水面曲线计算问题 新疆水利厅张校正 在水力学教科书中,论述天然河道水面曲线计算的方法时,一般都是对河道相邻两断面列出伯努立方程,从已知断面水位,依次求解此方程,得出未知断面的水位,这些断面的水位的连线,就认为是河道的水面曲线。《程序集》中的D-14A就是按照这个原理编制的。 一、D-14A的程序功能 已知天然河道各横断面的地形点坐标及糙率,从起始断面水位开始,按照伯努里方程,逐段向上游或者向下游推算,求出各断面的水位。计算结果输出地形点坐标,绘出河道横断面图,标出水位,打印流量、平均流速值。 1,河床的糙率可以随地形点的不同而变化。 2,局部阻力系数可随不同河段选用不同值。 3,程序采用二分法,优选试算,从而加快了收敛。 二、D-14A的计算原理 1,水面曲线计算原理:

W h g V Z g V Z ++ =+ 222 112 22αα 如图示,根据伯努里方程: -------------(1) 式中: Z 1、V 1 -- 断面1的水位和流速; Z 2、V 2 -- 断面2的水位和流速; h W = h y + h j -- 断面1到断面2之间的水头损失; h y = j ×ΔL -- 沿程水头损失; j = V 2 /(C 2 R) -- 沿程摩阻坡度; V C ,R -- 断面1和断面2的平均流速、平均流速系数、平均水力半径; ΔL -- 两断面间的距离; h j =-ξ(V 12 /2g-V 22 /2g)—局部水头损失; ξ -- 河段的局部阻力系数, 在顺直河段及收缩河段ξ=0,

()0 22222121=??+??? ? ??--+-L j g V g V Z Z ξα() 022222121=??+??? ? ??--+-=L j g V g V Z Z K ξ α逐步扩散河段ξ=(0.3~0.5), 急剧扩散河段ξ=(0.5~1.0)。 将(1)式移项: --------------(2) 方程 (2) 中,Z 1,V 1,α,ξ,ΔL 均为已知,采用二分法试算求解Z 2。 令: 设有Z ,使得K=0,则此Z 即为方程的解,用二分法求解。 二分法原理如下: Z=B 时,K=D ;Z=A 时,K=J ,现令Z=(A+B )/2求出K 值 若K 〃D>0令B=Z ;D=K 若K 〃D<0令A=Z ;J=K

相关主题
文本预览
相关文档 最新文档