当前位置:文档之家› RCC开关电源设计详细讲解39308

RCC开关电源设计详细讲解39308

RCC开关电源设计详细讲解39308
RCC开关电源设计详细讲解39308

目录

摘要

ABSTRACT

绪论

第一章.RCC电路基础简介

1.1RCC电路工作原理

1.2RCC电路的稳压问题

1.3RCC电路占空比的计算

1.4RCC电路振荡频率的计算

1.5RCC电路变压器的设计

第二章.简易RCC基极驱动的缺点及改进设计

2.1 简易RCC电路的缺点

2.2 开关晶体管恒流驱动的设计

第三章.RCC电路的建模及仿真

3.1 RCC电路的建模及参数设计

3.1.1 主要技术指标

3.1.2 变压器的设计

3.1.3 电压控制电路的设计

3.1.4 驱动电路的设计

3.1.5 副边电容、二极管参数的设计

3.1.6 其他辅助电路的设计

3.2 RCC电路的仿真

3.2.1 RCC电路带额定负载时的仿真及设计标准的验证

3.2.2 RCC电路带轻载时的仿真

3.3 RCC电路的改进及改进后的仿真

3.3.1 RCC电路的恒流设计

3.3.2带有恒流源的RCC电路的仿真

第四章RCC电路间歇振荡的应用实例

4.1 三星S10型放像机中的RCC型开关电源

RCC电路间歇振荡现象的研究

摘要:RCC变换器通常是指自振式反激变换器。它是由较少的几个器件就可以组成的高效电路,已经广泛用于小功率电路离线工作状态。由于控制电路能够与少量分立元件一起工作而不会出现差错,所以电路的总的花费要比普通的PWM反激逆变器低。一方面,当其控制电流过高时就会出现一种间歇振荡现象,从而使得电路的振荡周期在很大范围内变化,类如例如从数百赫兹到数千赫兹之间变化,因而在较大功率输出时将引起变压器等产生异常的噪音,所以需要抑制这种现象的产生。另一方面,当电路的输出功率输出较小时,却可以利用这种间歇振荡,使开关电路处于低能耗状态。当需要电路工作时,只需给电路一个信号脉冲即可。电路本文主要通过实验仿真的方法在RCC电路中加入某些特定的电路从而达到抑制消除这种间歇振荡,同时还简要阐述一些利用间歇振荡的例子。

Abstract:The self-oscillating flyback converter, often referred to as the ringing choke converter (RCC), is a robust, low component-count circuit that has been widely used in low power off-line applications. Since the control of the circuit can be implemented with very few discrete components without loss of performance, the overall cost of the circuit is generally lower than the conventional PWM flyback converter that employs a commercially available integrated control .

引言

目前采用的大多数开关电源,无论是自激式还是它激式,其电路均为由PWM系统控的稳压电路。在此类开关电源中,开关管总是周期性的通/断,PWM系统只是改变每个周期的脉冲宽度。PWM系统控制是连续的控制。非周期性开关电源则不同,其脉冲控制过程并非线性连续变化,而只有两种状态:当开关电源输出电压超过额定值时,脉冲控制器输出低电平,开关管截止;当开关电源输出电压低于额定值时,脉冲控制器输出高电平,开关管导通。当负载电流减小时,滤波电容放电时间延长,输出电压不会决速降低,开关管处于截止状态,直到输出电压降低到额定值以下,开关管才再次导通。开关管的截止时间取决于负载电流的大小。开关管的导通/截止由电平开关从输出电压取样进行控制,因此这种非周期性开关电源极适合向间断性负载或变化较大的负载供电。

初期的非周期性开关电源均采用它激式电路结构,由运算放大器组成电压比较器,将输出的取样电压变成控制电平,控制它激式振荡器的输出脉冲。当输出电压维持额定电压时比较器输出高电平,振荡器关断输出脉冲,使开关管截止。当输出电压降低时,比较器输出低电平,振荡器输出脉冲,使开关管导通。非周期性开关电源进人家用电器以后,为了简化电路,大多数采用自激振荡方式,直接采用稳压管作为电平开关。由于其控制过程为振荡状态和抑制状态(或称阻塞状态)的时间比,因此称为振荡抑制型变换器( RINGING CHOKECONVERTER,简称RCC型开关稳压器)。在电路上的明显区别是:PWM开关电源由独立的取样误差放大器和直流放大器组成脉宽调制系统;RCC型电源只是由稳压管组成电平开关,控制开关管的通/断。

反激式自激变换器就是我们通常所指的RCC(Ringing Choke Converter)电路,变压器(储能电感)的工作模式处于临界连续状态,可以方便的实现电流型控制,在结构上是单极点系统,容易得到快速稳定的响应,广泛应用于50W以下的开关电源中。由于要维持临界连续模式,并且变压器原边电流上升受输入电压影响,因此开关工作频率受输入电压和输出电流的影响,占空比也受输入电压的影响。在输入电压最高和空载时,工作频率最高。也正是因为工作频率波动较大,滤波电路的设计也相应较难。

相对于它的缺点,RCC电流的优势也比较突出。首先是电路结构简单,只需要少数分离原件就可以得到需专用芯片才能实现的电压输出性能,通过良好的设计就可以获得高效和可靠的工作。其次,许多与驱动有关的困难(驱动波形、变压器饱和等)在自激变换器中得到很好的解决。而且,由于总是工作于完全能量传递模式,副边整流二极管正向导通电流到零,反向恢复电流和损耗很小,产生的振铃相对于不完全能量传递模式也要小很多,因此输出的高频杂音也要小很多。另外,原边主管开通始终是零电流,因此效率较高。

早期的RCC变换器只适用于小功率100W以下的开关电源。近年来,随着研究的深入,改进后的RCC电路解决了交叉导通和变压器饱和等许多棘手问题,其廉价、高效、可靠的性能备受人们青睐。它的工作形式是完全能量传递型,用电流容易实现。在结构上是单极点系统,容易得到快速稳定的响应。为了减少传统RCC变换器存在的开关损耗,提高效率,增大其输入电压的适应范围,改进型RCC电路加入了恒流激励以及延迟导通电路。由于增加了恒流激励以及延迟导通电路,其振荡分析与传统的RCC变换器有些不同,虽然其电路比较复杂,但其性能大有改善,能在DC127V—DC396V范围内正常工作,可提供250W以上功率,其性价比大有提高。

基于以上特点,RCC电路在低成本高性能电源设备中广泛应用,例如低压小功率模块、家用电气、手机充电器等。

第一章 RCC 电路基础简介

1.1 RCC 电路工作原理

图1.1.1 RCC 工作基本原理图

下面说明实际应用中RCC 电路的工作过程。图1.1.1给出实际应用最多的RCC 方式的基本电路图。为简化稳态分析,可做如下近似:

(1)、忽略变压器漏感对主管1r T 的集射极电压CE V 的影响,实际使用时需要RCD 箝位; (2)、主电路输出电容足够大,输出绕组电压箝位于输出电压O V ; (3)、稳态时电容2C 上的电压保持不变; (4)、稳态时电阻g R 的作用可以忽略。 1.1.1电路的起动

接通输入电源in V 后,电流g i 通过电阻g R 流向开关晶体管1r T 的基极,1r T 导通,g i 称为起动电流。在RCC 方式中,晶体管1

r T 的集电极Ic 必然由零开始逐渐增加,如图1.1.2

所示。因此g i 应尽量小一点。

图1.1.2 晶体管的电流波形

此时变压器的次级绕组s N 处于短路状态,从输入一侧看来,电流全部流进p N 线圈,电阻g R 称为起动电阻。

1.1.2开关晶体管处于ON 状态时

一旦1Tr 进入ON 状态,输入电压in V 将加在变压器的初级绕组p N 上。由在数比可知,基极线圈B N 上产生的电压B N 为 (/)B

B P IN V N N V =

该电压与1Tr 导通极性相同,因此B V 将维持 1Tr 的导通状态,此时基极电流B I 是连续的稳定电流。设晶体管 1Tr 的基极—发射极间的电压1BE V ,二极管2D 的正向电压为2F V ,则B I 可表示为

21(/)()B P IN F BE B B

N N V V V I R -+=

但是,从图1.1.3可知,1Tr 的集电极电流C I 为一次单调增函数,经过某一断时间on t 后达到C I ,集电极电流与直流电流放大倍数FE h 之间将呈现如下关系:

(/)FE C B h I I ≤

即在上述公式成立的条件下1Tr 才能维持ON 状态。在基极电流不足的区域,集电极电压由饱和区域向不饱和区域的转移。于是,P N 线圈的电压下降,导致B N 线圈的感应电压也随之降低,基极电流B I 进一步减小。

图1.1.3 RCC 方式的开关动作

因此1Tr 的基极电流不足状态不断加深,1Tr 迅速转至OFF 状态。 1.1.3晶体管处于OFF 状态时

如果晶体管处于OFF 状态,变压器各个绕组将产生反向电动势,次级绕组使4D 导通,电流2i 流过负载,经过某一时间off t 后,变压器能量释放完毕,电流2i 变为0.但是,此时S N 绕组上还有极少量残留的能量,这部分能量再一次返回,使基极绕组B N 产生电压,1Tr 再次ON ,晶体管继续重复前面的开关动作。

图1.1.4给出各个部分的动作波形。

图1.1.4 RCC 方式的动作波形

1.2输出电压O V 稳定的问题

RCC 方式的稳压器是通过反向电动势使次级的二极管导通向负载提供功率的。因

此,单位时间内变压器存储的能量与输出功率相等,设 变压器初级电感为P L ,有

21

1

()2IN P on O O V L t f V I L g g g g g 因此,欲使输出电压O V 稳定,频率f 最好随晶体管的ON 时间变化而变化。

图1.2.1所示,要使晶体管OFF ,对于集电极电流而言,只要基极电流不足即可,既然如此,那么只要阻止来自变压器B V 的驱动电流流过1Tr 的基极,让它从旁路流过即可。这就是连接稳压二极管的目的。

图1.2.1 RCC 方式稳压原理图

Z D 的阳极与电容器2C 的阴极相连。在1Tr OFF 期间,B N 线圈通过导通的3D 为2C 充

电,2C 的电压变为负电压,2C 的电压C V 为:

C Z BE V V V =-

于是齐纳二极管Z D 导通,驱动电流从它所形成的旁路流过,进而使1Tr OFF 。

经过一段时间后,由于输出电压上升,那么图1中2C 的端电压C V 也随输出电压O V 成正比上升。即在1Tr 的OFF 期间内,变压器存储的能量向负载释放,即使存在负电源,

32D C →的充电电流和次级电流S I 也会同时流动。此间B N 线圈和S N 线圈的电压值分别与

匝数比成正比,即

43()B

C O F F S

N V V V V N =

+- 式中:3F V 、4F V 分别为3D 、4D 的正向电压降。反之也可改变C V 使O V 随之改变。

假设C V 的端电压上升,那么与阴极相连的齐纳二极管Z D 导通,于是1Tr 的B I 流过旁路

Z D ,基极中没有电流。因此,此时1Tr OFF 。从电压之间的关系来分析,Z D 的齐纳电压Z

V 为:

Z C BE V V V =+

因此由Z V 与/S B N N 即可确定输出电压O V 。 即输出电压为

34()S

O Z B F F B

N V V V V V N =

-+-g 若忽略BE V 、4F V 和3F V ,则O V 与Z V 成正比,且输出电压的精度有电压Z V 的精度确定

1.3振荡占空比的计算

为了能更好地掌握RCC 方式的工作原理,下面推导占空比D 的计算公式。 在图6中,设流过初级绕组P N 的电流为1i ,变压器的电感P L ,则有

1

1p

V i t L =

g

图1.3.1 等价电路

当on t t =时,电流取得最大值1p i :

1

1p on p

V i t L =

再由变压器的基本原理,求得次级电路的最大电流值2p i 为: 121P P p p on S S p

N N V i i t N N L =

=g g 次级电流从2p i 开始以

2

S

V L 的比率减小,因而,求得其瞬间值为: 122P on S p S

N V V i t t N L L =-g g 这里RCC 方式的初始条件为

2,0off t t i ==,则有

120P on off S p S

N V V t t N L L -=g g

将1p i 式中的on t 带入上式,求得off t 为:

111212

S S

P P P off p p S p S L L N V L N t i i N L V V N V =

=g g g g g g 于是求得占空比D 为:

111112P p

on S P P on off

p p S L i V t D L L N t t i i V N V ?? ???=

==+??????+ ? ? ????

???g

1()IN CE sat V V V =-

2O F V V V =+ 带入上式得到更为使用的公式,即

D =

1.4振荡频率的计算

下面求振荡频率。由变压器初级、次级功率相等的条件得到

2121

2

P p o L i f I V =g g g 由上式,求得1p i 为:

1p i =

将上式变形,求得振荡频率f 为:

12111212111

()S P S P P on off p p p p

S f L L L L N t t i i i i V V V N V =

==+????????++ ? ? ? ??????

???g g

将1p i 带入上式整理,得

(

)

2

2212

22

2211222o o P S V V

f I I L V V V L V ??=

=+

由上述占空比及振荡频率的公式,可以进一步了解RCC 方式的基本工作原理: (1)、占空比D 与输入电压成反比,即随输入电压的增加,on

t 缩短,而off

t 不变;

(2)、负载电流对占空比没有影响; (3)、占空比D 随变压器初级线圈电感

P

L 的增加而增加,而随次级电感

S

L 的增加而减小;

(4)、振荡频率f 随输入电压的升高而上升,与负载电流o

I 成反比;

(5)、振荡频率f 随

P

L 、

S

L 的增加而降低。

上面的计算结果与实际电路的测试结果几乎一致。

1.5变压器的设计方法

开关稳压器中,变压器的设计是要点之一,它的所有动作与特性几乎都取决于变压器的设计。特别是 对于RCC 电路,甚至连振荡频率都是由变压器决定的。 1.5.1初级绕组P N 的求法

首先,求初级绕组的匝数。在R CC 方式中,因为磁通在磁芯B-H 曲线的上下半区都有变化,因此匝数的计算公式如下:

8

102IN P e V N B A f

?=

?g g 式中:IN V 为P N 线圈的外加电压;B ?为磁芯的磁通密度;e A 为磁芯的有效截面积。

磁芯通常采用铁氧体材料,但是其最大磁通密度m B 受温度影响而发生变化。因此,必须根据实际工作条件,从特征表中求得m B 。

下面计算电感值,并按最低输入电压的占空比D 来计算。如图1.5.1所示,1i 为三角波,设功率装换效率为η、输出功率为o P 、输入电压最小值为(min)IN V 初级电流的平均值为

1()ave i ,则初级电流的最大值为

1()

1(min)

22ave O

P IN i P i D

D V η=

=

g g g

图1.5.1 变压器中P N 线圈的电流1i 波形

求得初级绕组所必须电感P L 为:

2

(min)(min)12IN IN P on on P

O

V DV L t t i P η=

=

g

1.5.2其他线圈的求法

次级电流的峰值2p i 与输出电流o I 的关系为: 22

1p o i I D

=-g

那么次级绕组的电感S L 为: 2(1)2S S S off off p o

V V D L t t i I -=

=g g 求得次级绕组的匝数 2

0(min)()(1)F off S S P

P IN P

O

o on

V V D t P N N I DV t L L N η+-=

=

g

式中:F V 为次级整流二极管的正向压降。 然后来求基极绕组的匝数B N .由r1T 的EB V 条件有:

EB(max)B S o F

V N N V +V ≤

g

由上述格式确定绕组匝数,但由于输出侧存在导线电压降,因此,实际上个绕组的匝数应该比计算结果稍多一些。

第二章 简易RCC 基极驱动缺点及改进设计

2.1 简易RCC 基极驱动的缺点

在RCC 方式中,提供开关晶体管基极电流的驱动电路的损耗是非常大的。

即使在最低输入电压条件下,驱动电流B I 的大小也必须足以驱动开关晶体管r1T ON 。同时变压器绕组B N 的电压B V 的增加与输入电压IN V 成正比,IN V 上升,驱动电流B I 也随之上升,而基极电阻B R 损耗的增加与B I 的平方成正比。另一方面,驱动电流B I 增加,必然会使稳压电路之路的电流增加。有时会引起如图2.1.1所示的间歇振荡。

间歇振荡是指在某一段时间内有开关动作,而相邻的下一段时间无开关动作的现象。如此周而复始地循环下去,其周期变化可能,例如从数百赫兹到数千赫兹,因而将引起变压器等产生异常的噪音。

图2.1.1 间歇振荡动作

2.2开关晶体管的恒流驱动设计

如果能找到一种恒流驱动方式,即虽然输入电压IN V 发生变化,但驱动电流不改变,那么上述问题就会迎刃而解,而且这里对具有恒流特性的精度要求并不高,采用图2.2.1 所示的电路就足够了。

图2.2.1 基极恒流驱动

该电路即便在输入电压IN V 发生变化,流过B R 的电流B I 也是恒定的。这样不仅尅大幅度减小B R 的损耗,而且可以防止间歇振荡。

采用该方法后,即使输入电压在AC100~200V 间连续变化,电路也能正常工作。但实际上,即使采用上述方法,当输入近似为空载状态时,仍会引起间歇振荡。此时,如图9所示,应该在直流输出端连接一个泄放电阻,不过此时的功率全部为无用功率,因此应该把电流值调整到刚刚不引起间歇振荡的大小。

图2.2.2 泄放电阻的效果

第三章 RCC 电路的建模与仿真

3.1 RCC 建模及参数设计

3.1.1 主要技术参数:

(1)输入电源电压AC:150—250V ;(2)输入频率:50Hz ;(3)输出:电压5V ;

电流0.3A;(4)稳压精度:10%,(5)工作效率>75%;(6)电磁兼容:符合GB17743-1999要求;(7)功率器件过流保护功能(8)模块化、低成本。

基本电路参数的计算

图3.1.1 RCC 电路图

输入电压越低、输出电流越大,振荡频率越低。由此,本设计中取振荡频率为50kHz ,且此时晶体管的占空比D=0.4。 3.1.2变压器绕组设计

1、变压器电感及匝数的计算

变压器的初级绕组P N 的电流为三角锯齿状如图4,因此电流1i v 的峰值1P i 是输入电流平均值的2

D

倍。设功率装换效率为 =0.75%,则有

1()

1(min)22250.3

0.06670.40.75150

ave O P IN i P i A

D

D V η??=

=

==??g g g

P N 线圈的电感P L 为

(min)61150

81018.00.0667

IN P on P

V L t m i -=

=

??=g

由输出电压O V =5v ,则次级线圈电压

S V =O V +f V =5+0.7=5.7V

由变压器的伏秒平衡可以得到 (min)(1)P

IN S S

N V DT V D T N =-g 从而得到匝数比为 12N =

P S N N =(min)(1)IN S V D V D -=1500.417.545.70.6

?=? 由于磁通变化只处在B-H 曲线的一侧,由以下公式可确定所选择的RCC 方式变压器的匝数

112p p S i L N N B A

=

?g g

由于动作频率较低且输出功率很低,故采用的磁芯为TDK 生产的材质为3S H 的EI22。 所选定二次线圈的匝数S N 为

16120.066718

10 4.217.5440041

p p S i L N N B A

?=

=

?=???g g 取4匝

所选定的一次线圈匝数P N 为

P N =12N *S N =4*17.54=70.16 取71匝 设最低输入电压

B

V =6V ,则求得基极绕组匝数

B

N 为

6

71 2.84150

P N =?= 取3匝 2 变压器间隙的计算

下面计算变压器的间隙。本例中磁芯是材质为3S H 的EI22,则磁路的总间隙g l 为:

2288

g 3

0.4165l 4104100.0121810

e P P A N mm L ππ---?=?=?=?g g

实际的间隙纸板厚度为g l 的一半,即为0.006mm 。

3.1.3电压控制电路的设计

首先,当1Tr 处于OFF 时,线圈B N 的电压'

B V 为 '

3

5.7 4.34

B B S S N V V N =

=?=g V 作为电压控制用的齐纳二极管Z D 两端的电压Vz 为:

Vz ='

B V —(BE V —F V )=4.3—(0.7—0.7)=4.3V

由于变压器本身也有压降,因此实际应用的电压值稍高一些的二极管。 3.1.4驱动电路设计

开关晶体管1r T 的集射极实际电压波形如图3.1.4所示。

图3.1.4 开关管集电极电压波形

1r V 由on T 变为off T 时,因变压器漏感磁通影响,而由一次侧自二次则传输的能量产生。

近似利用公式

2212121

1.5

r V V

V N N =+ 求得

21210.5

r V V N == 5.7

0.50.057

=50V 1S V 是由一次电路的电感成分所生成的浪涌电压。故1r T 集电极电压最高值CE V 为

211()21 5.750302504300.057

CE r S IN MAX V V V V V N =

+++=+++=V 因此本例中采用的是高速、高压开关电流用晶体管smbta06。设0.067C I A =时,考虑

一定的余裕,FE h 取10,必须的基极电流B I 约为 6.74mA 。于是基极电阻B R 为:

3

150(0.70.7)

()717260.0067

B BE F B B V V V R I ?-+-+===Ω 最后取800Ω。

3.1.5 次级电容、二极管的选定 二极管f D 关断时反向电压dr V 值为

112152500.05719.25dr O V V V N =+=+?=g V

输出电容O C 的选择

电容器O C 内所导通的文波电流0c c o i i I =-,0c i 波形如图11所示。

图3.1.5 输出电容电流波形

其有效值为

()12

22

2()3off co rms oP oP o o o T TON i I I I I I T T ??=-++????

当输入电压为最低而输出电流最大时,文波电流最大。此时纹波电流为

()1

2

222()0.4110.30.30.60.30.43co rms i A ??

=-?++?=????

3.1.6 其他参数的选定

初级绕组的RC 缓冲电路中,根据经验取R=20k ,而RC 放电常数RC T

RC T 应该小于关断时间的十分之一。因此有

1

0.10.620 1.210

RC off T T u =

=??= 则求得电容C 为

开关电源设计报告

1开关电源主电路设计 1.1主电路拓扑结构选择 由于本设计的要求为输入电压176-264 V 交流电,输出为24V 直流电,因此中间需要将输入侧的交流电转换为直流电,考虑采用两级电路。前级电路可以选用含电容滤波的单相不可控整流电路对电能进行转换,后级由隔离型全桥Buck 电路构成。总体要求是先将AC176-264V 整流滤波,然后再经过BUCK 电路稳压到24V 。考虑到变换器最大负输出功率为1000W ,因此需采用功率级较高的Buck 电路类型,且必须保证工作在CCM 工作状态下,因此综合考虑,本文采用全桥隔离型Buck 变换器。其主电路拓扑结构如下图所示: 图1-1 主电路拓扑结构 1.2开关电源电路稳态分析 下面将对全桥隔离型BUCK 变换器进行稳态分析,主要是推导前级输出电压g V 与后级输出电压V 之间的关系,为主电路参数的设计提供参考。将前级输出电压g V 代替前级电路,作为后级电路的输入,且后级BUCK 变换器工作在CCM 模式,BUCK 电路中的变压器可以用等效电路代替。 由于全桥隔离型BUCK 变换器中变压器二次侧存在两个引出端,使得后级BUCK 电路的工作频率等同于前级二倍的工作频率,如图1-1所示。在S T 2的工作时间内,总共可分为四种开关阶段,其具体分析过程如下: 1) 当S DT t <<0时,此时1Q 、4Q 和5D 导通,其等效电路图如图1-2所示。

i () t R v i ‘ 图1-2 在S DT t <<0时等效电路 g nv v =s (1-1) v nv v g -L = (1-2) R v i i /-C = (1-3) 2) 当S S T t DT <<时,此时1Q ~4Q 全部关断,6D 和5D 导通,其等效电路图如图1-3 所示。此时前级输出g V 为0,假设磁化电流为0,则流过6D 和5D 电流相等,均为L i 2 1 。。 i () t R i ‘ 图1-3 在S S T t DT <<时等效电路 0=s v (1-4) v v -L = (1-5) R v i i /-C = (1-6) 3) 当S S T D t T )( +1<<时,此时2Q 、3Q 和6D 导通,其等效电路图如图1-2所示。

开关电源设计与实现毕业设计(论文)

毕业论文(设计) 题目开关电源设计 英文题目switch source design

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

开关电源设计步骤(精)

开关电源设计步骤 步骤1 确定开关电源的基本参数 ① 交流输入电压最小值u min ② 交流输入电压最大值u max ③ 电网频率F l 开关频率f ④ 输出电压V O (V ):已知 ⑤ 输出功率P O (W ):已知 ⑥ 电源效率η:一般取80% ⑦ 损耗分配系数Z :Z 表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级, Z=1表示发生在次级。一般取Z=0.5 步骤2 根据输出要求,选择反馈电路的类型以及反馈电压V FB 步骤3 根据u ,P O 值确定输入滤波电容C IN 、直流输入电压最小值V Imin ① 令整流桥的响应时间tc=3ms ② 根据u ,查处C IN 值 ③ 得到V imin 步骤4 根据u ,确定V OR 、V B ① 根据u 由表查出V OR 、V B 值 ② 由V B 值来选择TVS 步骤5 根据Vimin 和V OR 来确定最大占空比Dmax V OR D m a x = ×100% V OR +V I m i n -V D S (O N ) ① 设定MOSFET 的导通电压V DS(ON) ② 应在u=umin 时确定Dmax 值,Dmax 随u 升高而减小 步骤6 确定C IN ,V Imin 值

步骤7 确定初级波形的参数 ① 输入电流的平均值I A VG P O I A VG= ηV Imin ② 初级峰值电流I P I A VG I P = (1-0.5K RP )×Dmax ③ 初级脉动电流I R ④ 初级有效值电流I RMS I RMS =I P √D max ×(K RP 2/3-K RP +1) 步骤8 根据电子数据表和所需I P 值 选择TOPSwitch 芯片 ① 考虑电流热效应会使25℃下定义的极限电流降低10%,所选芯片的极限电流最小值 I LIMIT(min)应满足:0.9 I LIMIT(min)≥I P 步骤9和10 计算芯片结温Tj ① 按下式结算: Tj =[I 2RMS ×R DS(ON)+1/2×C XT ×(V Imax +V OR ) 2 f ]×R θ+25℃ 式中C XT 是漏极电路结点的等效电容,即高频变压器初级绕组分布电容 ② 如果Tj >100℃,应选功率较大的芯片 步骤11 验算I P IP=0.9I LIMIT(min) ① 输入新的K RP 且从最小值开始迭代,直到K RP =1 ② 检查I P 值是否符合要求 ③ 迭代K RP =1或I P =0.9I LIMIT(min) 步骤12 计算高频变压器初级电感量L P ,L P 单位为μH 106P O Z(1-η)+ η L P = × I 2P ×K RP (1-K RP /2)f η 步骤13 选择变压器所使用的磁芯和骨架,查出以下参数: ① 磁芯有效横截面积Sj (cm 2),即有效磁通面积。 ② 磁芯的有效磁路长度l (cm ) ③ 磁芯在不留间隙时与匝数相关的等效电感AL(μH/匝2) ④ 骨架宽带b (mm ) 步骤14 为初级层数d 和次级绕组匝数Ns 赋值 ① 开始时取d =2(在整个迭代中使1≤d ≤2) ② 取Ns=1(100V/115V 交流输入),或Ns=0.6(220V 或宽范围交流输入) ③ Ns=0.6×(V O +V F1) ④ 在使用公式计算时可能需要迭代 步骤15 计算初级绕组匝数Np 和反馈绕组匝数N F ① 设定输出整流管正向压降V F1 ② 设定反馈电路整流管正向压降V F2 ③ 计算N P

简易风力摆报告设计

设计了一个简易风力摆控制装置,由直流风机组,陀螺仪,直流减速电机以及激光笔等组成。以MSP430F14单片机为核心,用PW波控制控制电机转速,调节风力大小,并以四个风机上下与左右同面两两并在一起对碳素管及激光笔进行工作,使细杆及激光笔在 风机的作用下可进行自由摆动且进一步可控摆动在地上划线,具有很好的重复性,并且可 以设定摆动方向且画短线,已经能够在将风力摆拉起一定角度放开后可以在规定时间内达到平衡。 关键词:风力控制摆、陀螺仪、轴流风机、PWM B速、MSP43C单片机 风力摆控制系统(B题) 1方案设计与选择 1.1设计内容 要求一个下端悬挂有(2~4只)直流风机的细管上端固定在结构支架上,只由风机提供动力,构成一个风力摆,风力摆上安装一个向下的激光笔。通过单片机代码指令控制驱动风机使风力摆按照一定的规律运动,并使激光笔在地面画出要求的轨迹,风力摆结构图如图1所示。 图1风力摆结构图 1.2设计要求 1.2.1基本要求 (1)从静止开始,15s内控制风力摆做类似自由摆运动,使激光笔稳定地在地面画出一条长度不短于50cm的直线段,其线性度偏差不大于土 2.5cm,并且具有较好的重复性; ⑵从静止开始,15s内完成幅度可控的摆动,画出长度在30~60cm间可设置,长度偏差不大于土 2.5cm的直线段,并且具有较好的重复性; (3)可设定摆动方向,风力摆从静止开始,15s内按照设置的方向(角度)摆动,画

出不短于20cm的直线段; (4)将风力摆拉起一定角度(30~45 ° )放开,5s内使风力摆制动达到静止状态。 1.2.2发挥部分 (1) 以风力摆静止时激光笔的光点为圆心,驱动风力摆用激光笔在地面画圆,30s内 需重复3次;圆半径可在15~35cm范围内设置,激光笔画出的轨迹应落在指定半径 ± 2.5cm的圆环内; (2) 在发挥部分(1)后继续作圆周运动,在距离风力摆1~2m距离内用一台50~60W台扇在水平方向吹向风力摆,台扇吹5s后停止,风力摆能够在5s内恢复发挥部分(1)规定的圆周运动,激光笔画出符合要求的轨迹; (3) 其他。 2总体方案设计与选择 2.1单片机选择 方案一:采用STC89S51芯片,该款芯片具有高性能低功耗的特点,具有32位输入/ 输出,可以实现处理、存储等功能⑴,但是其灵活性不高,需实时保护软件现场,否则易丢失信息,存储能力较弱。 方案二:采用MSP430F14芯片,该款芯片具有高性能,低功耗的特点,其抗干扰能力比较强,存储空间较大,稳定性较强。 二者比较之下,选择方案二作为此次设计的核心控制部分。 2.2直流风机选择 方案一:采用12V 4.5A的轴流风机,风力很大,可以将自身轻松吹起,但是体积较大,质量较重。 方案二:采用12V 1.5A的小风机,体积小,质量轻。但是风力足够大,单电机产生 的风力可吹起4个相同电机

毕业设计--12V5A开关电源设计

毕业综合实践 课题名称: 12V/5A开关电源设计 作者:学号: 09034224系别:电气电子工程系 专业:电子工程信息技术 指导老师:专业技术职务教授

毕业综合实践开题报告 姓名:学号: 09034224 专业:电子信息工程技术 课题名称: 12V/5A开关电源设计 指导教师: 2011 年 12 月 19 日

本课题意义及现状、需解决的问题和拟采用的解决方案 随着电子技术的高速发展、电子系统的应用领域越来越广泛,电子设备的种类也越来越多,电子设备与人们的工作、生活的关系日益紧密,任何电子设备都离不开可靠的电源,他们对电源的要求也越来越高。特别是随着小型电子设备的应用越来越广泛,也要求能够提供稳定的电源,以满足小型电子设备的用电需要。现状:电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。 本设计基于这个思想,设计、制作了一个开关稳压电源,输入交流电220V,输出12V/5A的直流稳压电源,具有过电流、过电压、短路保护。 本电路采用自激式震荡电路(RCC),它是经济开关电源、安装方便、调试简单,元器件少。这个电路的功能适用于手机充电器和一些仪表电源是很实用的一个电路。 指导教师意见: 指导教师: 年月日 专业教研室审查意见: 教研室负责人: 年月日

课题摘要 随着开关电源在计算机、通信、航空航天、仪器仪表及家用电器等方面的广泛应用, 人们对其需求量日益增长, 并且对电源的效率、体积、重量及可靠性等方面提出了更高的要求。开关电源以其效率高、体积小、重量轻等优势在很多方面逐步取代了效率低、又笨又重的线性电源。电力电子技术的发展,特别是大功率器件IGBT和MOSFET的迅速发展,将开关电源的工作频率提高到相当高的水平,使其具有高稳定性和高性价比等特性。开关电源技术的主要用途之一是为信息产业服务,信息技术的发展对电源技术又提出了更高的要求,从而促进了开关电源技术的发展。本次设计采用典型的正激式开关电源结构设计形式,以(RCC)作为控制核心器件,运用脉宽调制的基本原理,并采用辅助电源供电方式为其供电,有利于增大主电源的输出功率。采用场效应管作为开关器件,其导通和截止速度很快,导通损耗小,这就为开关电源的高效性提供保障。同时,电路中辅以过压过流保护电路,为系统的安全工作提供保障,本电路注意改善负载调整率,降低了电磁串扰,达到绿色环保的目的。输出电压可调,使其可适用于不同场合。 关键词高频变压器场效应管正激式变换器脉宽调制

影视制作收费及流程标准范文

影视小组关于影视业务开展方案日来在网络上、朋友间问讯搜索的资料,具体数据整理如下: 一、 拍摄和制作企业影视专题片,广告片,功能演示片,相约洽谈,必要时我们也可登门拜访,安排主创人员出谋划策,介绍以往成功作品。 二、若双方沟通成功,准备合作,则须签订《企业专题片摄制合同》,并由委托方支付预定金。 三、 我方在收到预定金之日起一周内,充分听取委托方的意见并与委托方共同商讨拍摄脚本或制作方案,反复研究修改,最终由委托方审阅,确认。 四、摄制脚本或制作方案一经确认,我方将根据被确认之方案进行正式拍摄或制作。 五、摄制过程是一个技术和艺术再创作的过程,建议委托方有负责人参与关键内容研讨和审阅。 客户可能需要提供的资料 类别名称要求主要用途 文案类制作专题片的意图说清楚要解决什么问题,字数不限专题片市场定位专题片的主要内容可以结合解说词来写,字数不限专题片创作定位片名字数12个字以内片头制作 落幕名字数200字以内片尾制作 解说词录音长度约每一分钟240个字(中速)录制话外音 图片类专题片中出现的图片电子文件(300dpi),照片(光面)界面设计制作专题片中出现的标识电子文件,照片,印刷品等界面设计制作有关客户的VI形象手册电子文件,照片、高质量印刷品界面设计制作 音像类专题片中出现的背景音乐.wav格式,磁带,mid格式,(无版权问题)音频处理专题片中出现的录像素材 avi或mov格式的电子文件或录像带(高质量 无版权问题) 视频处理其它相关音频、视频资料(高质量无版权问题)视频处理 主要服务项目与报价 项目明细价格预算参考质量标准

广告片 由国内资深广告编导、高级摄像师、高级剪辑师共同参 与创作,广播电视级质量标准(不含电视台广告播出费) 18000元/每秒钟广播级、高清晰 企业宣传片 由专业摄像师和编辑师负责,DVCAM机拍摄,视频采集,视 频修正,后期非线编辑、艺术转场,背景音效等。重在企业宣 传介绍或产品介绍。 3000-5000元/分钟企业级、DVD、VCD 动画特效 根据客户提交的动画要求原创角色,动作,背景、文 字、LOGO片头、配解说和音效等,表现效果分二维和三维。 二维200-400元/每秒 钟 出版级、高清或标清 三维500-1500元/每秒 钟 产品演示片 互动图文演示使用动画软件或PPT文稿,可适当插入少 量视频。详情可浏览首页“演示文稿PPT设计” 500元/主页面 100元/幻灯页面 电脑、投影仪 多媒体 互动程序设计,页面链接,光盘启动,详情可浏览首页 “多媒体光盘制作” 800元/主页面 200元/页面 电脑、多媒体光盘 旁白配音 中文:由市级电台、电视台(男或女)播音员标准国语配 音。 1500元/每5分钟 电脑、CD、MP3英文:由英美籍电台、电视台(男或女)播音员标准英语 配音。 2500元/每5分钟 拍摄专业DVCAM、3CCD数码摄像机跟踪摄像850元/小时(关内)352×288或720×576分辩率专业HDV高清专业数码摄像机跟踪摄像2600元/小时 720×576或1440×1080分辩 率 BETACAM或HDV高清广播级摄像机跟踪摄像3000元/小时 1440×1080或1920×1080分 辩率 简单编辑可按“点菜”方式收费、廉价实惠 特别说明:本收费方式只适用于简单、无需规划或自主作好规划的客户,如果客户能够提供可编辑的影像文件.AVI.MPEG.MOV等,可按如下方式收费.我们根据客户的“点菜”数量按件计费。如果是高清视频(1080分辩率),编辑费用是以下报价的三倍。 片段剪切 20元/段加背景音乐50元/分加卡啦OK字幕 200元/分加普通字幕 50元/每1-24个字/屏去原音 20元/分选配录制音效200元/段转场及效果20元/段动画文字片头 180元/秒电脑同步录音(自助)150元/10分钟 声画对位20元/段视频转换/生成100元/10分钟DVD加刻一张母盘 20元/盘 照片修改 10元/张加照片 10元/张VCD加刻一张母盘 10元/盘

开关电源课程设计报告

现代电源技术课程实践报告 院系:物理与电气工程学院 班级:电气自动化一班 姓名: 李向伟 学号: 111101007 指导老师:苗风东

一、设计要求 (1)输入电压:AC220±10%V (2)输出电压: 12V (3)输出功率:12W (4)开关频率: 80kHz 二、反激稳压电源的工作原理

图2-1 反激稳压电源的电路图 三、 反激电路主电路设计 (1)(1)Np Vdc Ton Vo Tr Nsm -=+ (3-1) 1. 反激变压器主电路工作原理 反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载条件下变压器会工作在连续电流模式(CCM),而在高输入电压,轻负载条件下变压器又会工作在不连续电流模式(DCM);另外关于CCM 模式反激变压器设计的论述文章极少,在大多数开关电源技术书籍的论述中, 反激变压器的设计均按完全能量传递方式(DCM

模式)或临界模式来计算,但这样的设计并未真实反映反激变压器的实际工作情况,变压器的工作状态可能不是最佳.因此结合本人的实际调试经验和心得,讲述一下不完全能量传递方式(CCM) 反激变压器的设计. 1)工作过程: S 开通后,VD 处于断态,W1绕组的电流线性增长,电感储能增加; S 关断后,W1绕组的电流被切断,变压器中的磁场能量通过W2绕组和VD 向输出端释放。 反激电路的工作模式: 反激电路的理想化波形 S u S i S i V D t o t o ff t t t t U i O O O O 反激电路原理图

(完整版)高频开关电源设计毕业设计

目录 引言......................................................... 1本文概述 ................................................. 1.1选题背景............................................................................................................................ 1.2本课题主要特点和设计目标 ........................................................................................... 1.3课题设计思路.................................................................................................................... 2SABER软件................................................ 2.1SABER简介 ..................................................................................................................... 2.2SABER仿真流程 ............................................................................................................. 2.3本章小结............................................................................................................................ 3三相桥式全控整流器的设计.................................. 3.1工作原理............................................................................................................................ 3.1.1 三相桥式全控整流电路的特点 ..................................................................................... 3.2保护电路............................................................................................................................ 3.2.1 过电压产生的原因.......................................................................................................... 3.2.2 过压保护 (1) 3.2.3 过电流产生的原因 (1) 3.2.4 过流保护 (1) 3.3SABER仿真 (1) 3.3.1 设计规范 (1) 3.3.2 建立模型 (1)

最新uc3842开关电源设计流程

u c3842开关电源设计 流程

目的 希望以简短的篇幅,将公司目前设计的流程做介绍,若有介绍不当之处,请不吝指教. 设计步骤: 绘线路图、PCB Layout. 变压器计算. 零件选用. 设计验证. 设计流程介绍(以DA-14B33为例): 线路图、PCB Layout 请参考资识库中说明. 变压器计算: 变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,以下即就DA-14B33变压器做介绍. 决定变压器的材质及尺寸: 依据变压器计算公式 Gauss x NpxAe LpxIp B 100(max )= B(max) = 铁心饱合的磁通密度(Gauss) Lp = 一次侧电感值(uH) Ip = 一次侧峰值电流(A) Np = 一次侧(主线圈)圈数 Ae = 铁心截面积(cm 2) B(max) 依铁心的材质及本身的温度来决定,以TDK Ferrite Core PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的power 为 Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以做较大瓦数的Power 。 决定一次侧滤波电容: 滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power ,但相对价格亦较高。 决定变压器线径及线数: 当变压器决定后,变压器的Bobbin 即可决定,依据Bobbin 的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm 2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准。 决定Duty cycle (工作周期): 由以下公式可决定Duty cycle ,Duty cycle 的设计一般以50%为基准,Duty cycle 若超过50%易导致振荡的发生。 xD Vin D x V Vo Np Ns D (min))1()(-+= N S = 二次侧圈数

开关电源设计与制作

《自动化专业综合课程设计2》 课程设计报告 题目:开关电源设计与制作 院(系):机电与自动化学院 专业班级:自动化0803 学生姓名:程杰 学号:20081184111 指导教师:雷丹 2011年11月14日至2011年12月2日 华中科技大学武昌分校制

目录 1.开关电源简介 (2) 1.1开关电源概述 (2) 1.2开关电源的分类 (3) 1.3开关电源特点 (4) 1.4开关电源的条件 (4) 1.5开关电源发展趋势 (4) 2.课程设计目的 (5) 3.课程设计题目描述和要求 (5) 4.课程设计报告内容 (5) 4.1开关电源基本结构 (5) 4.2系统总体电路框架 (6) 4.3变换电路的选择 (6) 4.4控制方案 (7) 4.5控制器的选择 (8) 4.5.1 C8051F020的内核 (8) 4.5.2片内存储器 (8) 4.5.312位模/数转换器 (9) 4.5.4 单片机初始化程序 (9) 4.6 输出采样电路 (10) 4.6.1 信号调节电路 (10) 4.6.2 信号的采样 (11) 4.6.3 ADC 的工作方式 (11) 4.6.4 ADC的程序 (12) 4.7 显示电路 (13) 4.7.1 显示方案 (13) 4.7.2 显示程序 (14) 5.总结 (16) 参考文献 (17)

1.开关电源简介 1.1开关电源概述 开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源。它运用功率变换器进行电能变换,经过变换电能,可以满足各种对参数的要求。这些变换包括交流到直流(AC-DC,即整流),直流到交流(DC-AC,即逆变),交流到交流(AC-AC,即变压),直流到直流(DC-DC)。广义地说,利用半导体功率器件作为开关,将一种电源形式转变为另一种电源形式的主电路都叫做开关变换器电路;转变时用自动控制闭环稳定输出并有保护环节则称为开关电源(SwitchingPower Supply)。 将一种直流电压变换成另一种固定的或可调的直流电压的过程称为DC-DC交换完成这一变幻的电路称为DC-DC转换器。根据输入电路与输出电路的关系,DC-DC 转换器可分为非隔离式DC-DC转换器和隔离式DC-DC转换器。降压型DC-DC 开关电源属于非隔离式的。降压型DC-DC转换器主电路图如1: 图1 降压型DC-DC转换器主电路 其中,功率IGBT为开关调整元件,它的导通与关断由控制电路决定;L和C为滤波元件。驱动VT导通时,负载电压Uo=Uin,负载电流Io按指数上升;控制VT关断时,二极管VD可保持输出电流连续,所以通常称为续流二极管。负载电流经二极管VD续流,负载电压Uo近似为零,负载电流呈指数曲线下降。为了使负载电流连续且脉动小,通常串联L值较大的电感。至一个周期T结束,在驱动VT导通,重复上一周期过程。当电路工作于稳态时,负载电流在一个周期的初值和终值相等。负载电压的平均值为:

开关电源设计

& 课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 开关电源设计 初始条件: 输入交流电源:单相220V,频率50Hz。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)? 1、输出两路直流电压:12V,5V。 2、直流最大输出电流1A。 3、完成总电路设计和参数设计。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 ) 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 ) 引言 (1) 1设计意义及要求 (2) 设计意义 (2) 开关电源的组成部分 (2) 开关电源的工作过程 (2) 开关电源的工作方式 (3) 脉宽调制器的基本原理 (3) 2方案设计 (5) ) 设计要求 (5) 方案选择 (5) 整流滤波部分 (6) 降压斩波电路 (7) 脉宽调制电路 (8) MOSFET管的驱动电路 (9) 总电路图 (11) 3主电路参数设定 (12) { 变压器、二极管、MOSFET管选择 (12) 反馈回路的设计 (13) MOSFET的驱动设计 (14) 结束语 (15) 参考文献 (16)

附录一 (17) ]

引言 随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,远程控制交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IGBT和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。 开关电源根据输入输出的性质不同可分为AC/DC和DC/DC两大类。AC/DC称为一次电源,也常称为开关整流器。值得指出的是,AC-DC变换不单是整流的意义,而是整流后又做DC-DC变换。所以说,DC-DC变换器是开关电源的核心。DC/DC称为二次电源,其设计技术及生产工艺在国内外均已成熟和标准化,所以学习设计开关电源有重要的意义。

电影制作的流程图

电影制作流程图解析 2008-09-30 01:12:21 电影制作流程图 将真正拍摄的阶段全部砍掉,从毛片(此毛片非彼毛片)已经拍完开始说。但这基本上是一个真空假设,因为一般情况下电影都是一边拍一边剪的。 声音和画面是分开处理的,但首先需要做一个时间码的同步,便于最后将声音和画面合起来。首先,冲洗出一个原底。这个原底就是拍的所有画面,不管这一个镜头是拍了70条还是80条。然后由原底翻印出一个工作样片,由工作样片做胶转磁,配上同期声,然后导演制片人七七八八

一群人坐在一起看工作样片,开始选,这一条不错,那一条还可以,选这一条吧。全部选好以后,这些素材进入非线性编辑工作站把所有的画面按照时间排列到一起,拼成一个电影。在这里导出所谓的EDL和CUTLIST,据说就是一个TXT文档,里面记录着时间线、磁带码、胶片码等等。将这个TXT转给两边,一边是用原底进行正式的剪接,最终间接完毕的底片要重新配光及印片,印片自然是翻成了正片,因此还要再重新翻回去一次变成底片;另一边找到对应的音频制成数字多路音轨,最终印成声底片。这样,影像底片和声底片通过声画对位合成印制成最终的拷贝。 那么大家一定就有几个问题: 1.为什么要印工作样片呢? 因为原底是最重要最重要的东西,如果用原底直接胶转磁相当于拿江南丝绸擦桌子擦完以后还要做丝巾。 2.红色的步骤是什么意思呢? 是80年代的剪辑方法,做工作样片之后直接导演自己摇着看,觉得哪儿好就剪下来拿透明胶条沾上。老师说,那会儿剪完的工作样片那叫一个热闹啊,整个全是胶条手印,有时候中午吃完包子回来下午就直接上手接着剪,送走的时候恨不得你看看那样片就知道这阵子导演吃的都是什么。本条惨不忍睹的胶片讲直接被送回去套底。 3.数字中间片是什么呢? 数字中间片就是指这个画面一会儿翻正一会儿翻负的浪费资源,于是将这部分数字化,首先由原底转数字,在这个过程当中制作特技效果并且加字幕。 大概这个图就解释完了。啊……累死我了。

基于TL494的开关电源设计_毕业设计

毕业设计报告书设计题目:基于TL494的开关电源制作系部:电子信息系 专业:新能源应用技术 班级:能源1001

基于TL494的12V开关电源制作 摘要 随着电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备与人们的工作、生活的关系日益密切。近年来 ,随着功率电子器件(如GTR、MOSFET)、PWM技术以及电源理论发展 ,新一代的电源开始逐步取代传统的电源电路。该电路具有体积小,控制方便灵活,输出特性好、纹波小、负载调整率高等特点。开关电源中的功率调整管工作在开关状态,具有功耗小、效率高、稳压范围宽、温升低、体积小等突出优点,在通信设备、数控装置、仪器仪表、视频音响、家用电器等电子电路中得到广泛应用。开关电源的高频变换电路形式很多, 常用的变换电路有推挽、全桥、半桥、单端正激和单端反激等形式。本论文是基于TL494的12V开关电源设计,利用MOSFET管作为开关管,可以提高电源变压器的工作效率,有利于抑制脉冲干扰,同时还可以减小电源变压器的体积。 关键词:直流磁偏自激振荡TL494

目录 第1章开关电源基础技术 (1) 1.1 开关电源概述 (1) 1.1.1 开关电源的工作原理 (1) 1.1.2 开关电源的组成 (2) 1.1.3 开关电源的特点 (3) 1.2 关电源典型结构 (3) 1.2.1 串联开关电源结构 (3) 1.2.2 并联开关电源结构 (4) 第2章开关电源主控元件 (6) 2.1 功率晶体管(GTR) (6) 2.1.1 功率晶体管的结构 (6) 2.1.2 功率晶体管的工作原理 (7) 2.1.3 功率晶体管的特性与参数 (7) 2.2 电力场效应晶体管(MOSFET) (8) 2.2.1 电力场效应晶体管特点 (8) 2.2.2 MOSFET的结构和工作原理 (8) 第3章开关电源中的TL494 (10) 3.1 TL494的内部功能 (10) 3.2 TL494的特点 (10) 3.3 TL494的工作原理 (11) 3.4 TL494内部电路 (12) 第4章开关电源的原理图设计 (14) 4.1 交流滤波设计 (14) 4.2 整流桥电路设计 (14) 4.3 半桥逆变和全波整流设计 (16) 4.4 变压器电路设计 (16) 4.5 主控电路设计 (17) 4.6 滤波电路设计 (18)

影视制作流程

影视制作流程。 一、剧本的研发与影视剧策划。 1、剧本的创作方式。 (1)编剧独立完成的剧本创作; (2)根据文学作品改编成剧本; (3)集体创作剧本;(注:制片单位确定某一题材之后,由制片人组织策划人员、专业编剧、导演组成团队来构思和创作作品。) 2、剧本研发要考虑的因素。 (1)受众期望;(根据不同的收视群体的不同审美趣味,积极考虑受众的接受心理和收看期望。 (2)市场状况;(制片人要明确作品的市场定位,紧紧把握市场脉搏,和发展方向,密切关注影视剧交易市场的动向和各类电影、电视节等活动,避免项目的重复和资源的浪费。) (3)政策因素;(剧本研发时,必须密切关注国家关于影视剧的政策法规,避免因违反或不符合国家的政策法规,而造成拍完的影视作品在审查时不能通过。) 3、市场调研。 在有了选题后,制作人可根据个人经验和近期同类题材影视剧的成本和投资回报率,制作出初步的预算和项目策划书,

市场调研能够给成本和投资回报率寻求依据,通过对目标受众群体的预先调查,为剧本创作和影视剧拍摄提供明确的依据,也为广告招标和融资提供必要参照。 4、剧本创作过程。 四个步骤:撰写故事梗概、分集大纲、初稿、第二稿、润色 剧本创作大致两种情况: (1)故事梗概—分集梗概—文学剧本; (2)人物小传—人物关系设置—故事梗概—分集梗概—(分场景提纲)—文学剧本 导演及早确定参与的创作可以提高效率,节省修改剧本时间、开支。 二、筹拍期的组织与任务。 1、组建摄制组。(如下图)

(1)制片部门;制片部门是整个摄制组正常运作的基础和保障。(2)导演部门;导演部门的核心人物是导演,他是影视剧艺术创作的灵魂对已经完成的剧本提出自己的修改意见,并根据自己的理解和拍摄风格进行二度创作。 (3)摄影部门;摄影部门负责影视剧的拍摄并保证画面的效果。(4)美术部门;美术部门负责整部影视剧的美术设计,统筹整个剧的美术风格,包括和演员有关的服装、化妆、道具组,也包括前期准备布景的美术组,拍摄时营造气氛的烟火组。

开关电源的制作流程

开关电源的制作流程 开关电源(Switch Mode Power Supply,SMPS)具有高效率、低功率、体积小、重量轻等显著优点,代表了稳压电源的发展方向,现已成为稳压电源的主流产品。开关电源的设计与制作要求设计者具有丰富的实践经验,既要完成设计制作,又要懂得调试、测试与分析等。本文章介绍开关电源组成及制作、调试所需的基本步骤和方法。 第一节开关电源的电路组成 开关电源一般是指输入与输出隔离的电源变换器,包括AC/DC电源变换器和DC/DC电源变换器,也称为AC/DC开关电源和DC/DC开关电源。非隔离式DC/DC变换器也属于开关电源,通常称之为开关稳压器。 1、AC/DC开关电源的组成 AC/DC开关电源的典型结构如图1-1-1所示。电源由输入电磁干扰(EMI)滤波器、输入整流/滤波电路、功率变换电路、PWM控制器电路、输出整流/滤波电路和输出电压反馈电路组成。 图1-1-1 AC/DC开关电源的典型结构 其中输入整流/滤波电路、功率变换电路、输出整流/滤波电路和PWM控制器电路是主要电路,其他为辅助电路。有些开关电源中还有防雷击电路、输入过压/欠压保护电路、输出过压保护电路、输出过流保护电路、输出短路保护电路等其他辅助电路。 2. DC/DC开关电源的组成 DC/DC开关电源的组成相对AC/DC开关电源要简单一点,其典型结构如图1-1-2所示。电源由输入滤波电路、功率变换电路、PWM控制器电路、输出整流/滤波电路和输出电压反馈电路组成。当然,有些DC/DC开关电源也会包含其他辅助电路。 图1-1-2 DC/DC开关电源的典型结构

第二节开关电源的制作流程 开关电源的设计与制作要从主电路开始,其中功率变换电路是开关电源的核心。功率变换电路的结构也称开关电源拓扑结构,该结构有多种类型。拓扑结构也决定了与之配套的PWM控制器和输出整流/滤波电路。下面介绍开关电源设计与制作一般流程。 1.解定电路结构(DC/DC变换器的结构) 无论是AC/DC开关电源还是DC/DC开关电源,其核心都是DC/DC变换器。因此,开关电源的电路结构就是指DC/DC变换器的结构。开关电源中常用的DC/DC变换器拓扑结构如下: (1)降压式变换器,亦称降压式稳压器。 (2)升压式变换器,亦称升压式稳压器。 (3)反激式变换器。 (4)正激式变换器。 (5)半桥式变换器。 (6)全桥式变换器。 (7)推挽式变换器。 降压式变换器和升压式变换器主要用于输入、输出不需要隔离的DC/DC变换器中;反激式变换器主要用于输入、输出需要隔离的小功率AC/DC或DC/DC变换器中;正激式变换器主要用于输入/输出需要隔离的较大功率AC/DC或DC/DC变换器中;半桥式变换器和全桥式变换器主要用于输入/输出需要隔离的大功率AC/DC或DC/DC变换器中,其中全桥式变换器能够提供比半桥式变换器更大的输出功率;推挽式变换器主要用于输入/输出需要隔离的较低输入电压的DC/DC或DC/AC变换器中。 顾名思义,降压式变换器的输出电压低于输入电压,升压式变换器的输出电压高于输入电压。在反激式、正激式、半桥式、全桥式和推挽式等具有隔离变压器的DC/DC变换器中,可以通过调节高频变压器的一、二次匝数比,很方便地实现电源的降压、升压和极性变换。此类变换器既可以是升压型,也可以是降压型号,还可以是极性变换型。在设计开关电源时,首先要根据输入电压、输出电压、输出功率的大小及是否需要电气隔离,选择合适的电路结构。 2.选择控制电路(PWM) 开关电源是通过控制功率晶体管或功率场效应管的导通与关断时间来实现电压变换的,其控制方式主要有脉冲宽度调制、脉冲频率调制和混合调制三种。脉冲宽度调制方式,简称脉宽度调制,缩写为PWM;脉冲频率调制方式,简称脉频调制,缩写PFM;混合调制方式,是指脉冲宽度与开关频率均不固定,彼此都能改变的方式。 PWM方式,具有固定的开关频率,通过改变脉冲宽度来调节占空比,因此开关周期也是固定的,这就为设计滤波电路提供了方便,所以应用最为普通。目前,集成开关电源大多采用此方式。为便于开关电源的设计,众多厂家将PWM控制器设计成集成电路,以便用户选择。开关电源中常用的PWM控制器电路如下: (1)自激振荡型PWM控制电路。 (2)TL494电压型PWM控制电路。 (3)SG3525电压型PWM控制电路。 (4)UC3842电流型PWM控制电路。 (5)TOPSwitch-II系列的PWM控制电路。 (6)TinySwitch系列的PWM控制电路。 3.确定辅助电路

开关电源课程设计

目录 前言 (1) 第一章开关电源技术课程设计任务书 (2) 第二章主电路原理设计 (7) 第三章开关变压器设计 (9) 第四章主要元器件的选型 (16) 第五章电路仿真及结果 (23) 总结 参考文献 附表一 附表二

前言 电源装置是电力电子技术应用的一个重要领域,其中高频开关式直流稳压电源由于具有效率高、体积小和重量轻等突出优点,获得了广泛的应用。开关电源的控制电路可以分为电压控制型和电流控制型,前者是一个单闭环电压控制系统,系统响应慢,很难达到较高的线形调整率精度,后者,较电压控制型有不可比拟的优点。 UC3842是由Unitrode公司开发的新型控制器件,是国内应用比较广泛的一种电流控制型脉宽调制器。所谓电流型脉宽调制器是按反馈电流来调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈电流的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环、电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是比较理想的新型的控制器闭。

第一章开关电源技术课程设计任务书 一、课程设计的目的 通过开关电源技术的课程设计达到以下几个目的: 1、培养学生文献检索的能力,特别是如何利用Internet检索需要的文 献资料。 2、培养学生综合分析问题、发现问题和解决问题的能力。 3、培养学生运用知识的能力和工程设计的能力。 4、培养学生运用仿真工具的能力和方法。 5、提高学生课程设计报告撰写水平。 二、课程设计的要求 一、题目 题目:反激型开关电源电路设计 注意事项: ①学生也可以选择规定题目方向外的其它开关电源电路设计。 ②通过图书馆和Internet广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计方案。首先要明确自己课程设计的设计内容。 设计装置(或电路)的主要技术数据

相关主题
文本预览
相关文档 最新文档