当前位置:文档之家› 浅谈智能计算及其研究方法_周清艳

浅谈智能计算及其研究方法_周清艳

浅谈智能计算及其研究方法_周清艳
浅谈智能计算及其研究方法_周清艳

多元智能理论及研究现状

多元智能理论及研究现状 一、多元智能理论 1983年,美国心理学教授霍华德?加德纳在其专著《智 能的结构》中,对智力进行了重新阐述。他认为,智力除传统的语言和数学智能外,还包含节奏、空间、动觉、自省、交流等七种智能,它是基于特定的社会及文化环境价值标准,个体用于解决自身遇到的问题,或创造出有效产品时所必需的能力。每个人都具有不同的智力,智力通常是以复杂的方式进行组合运作的,这是对于传统的“一元理论”的挑战。多元智能理论的提出及发展,为我国传统教育注入了活力,也为我国教育实践改革提供了契机。 二、多元智能理论研究现状 多元智能理论对我国传统教育产生了深刻影响。相关研究如下: 1.课程改革 多元智能理论对新一轮课程评价的改革具有积极的影响,这不仅表现在对新课程改革评价体系的理论构建上,还体现为对其评价标准、原则和方法的完善上。 2004年,福格蒂等在《多元智能与课程整合》中阐述了多元智能和跨学科课程整合的基本理论,探讨了实施跨学科

课程整合的方法策略与课堂案例,对于发展学生的多元智能,建立有意义的教育和评价方式具有重要意义。霍力岩在《多元智力理论与多元智力课程研究》中对多元智力理论与多元智力课程做了较深入的研究。谢世谦则在《多元智能理论对新课程改革的启示》中指出,课程评价在注重学生学业成绩的同时,更要关注学生各方面的潜能发展,这与基础教育课程改革纲要有着异曲同工之处。 2.教学改革 与传统的一元论智力观不同,多元智能理论认为智力是多元的,它是多种不同智能在不同人身上的特殊组合,受个体所属社会文化的影响具有独特性。这一新的智能观对我国教学观念的变革产生了很大影响。 钟祖荣等主编的《多元智能理论解读》一书在对多元智能理论进行深入细致分析的基础上,着重论述了多元智能理论对教育观念变革的影响。Linda Campbell等在《多元智能 教与学的策略》书中,将多元智力理论运用到中小学教学实践中,为教师的教学活动提供了新的视角。而在《多元智能理论在教学中的运用》中,为拓展教师的思维,林宪生详细阐述了多元智能理论在中小学各学科中的应用。托马斯?阿 姆斯特则在《课堂中的多元智能――开展以学生为中心的教学》一书中总结了许多教学案例,为中小学教师将多元智能运用到教学实践的各个领域提供了有益的启示。而柏灵则在

人工智能算法综述

人工智能算法综述 人工智能算法大概包括五大搜索技术,包括一些早期的搜索技术或用于解决比较简单问题的搜索原理和一些比较新的能够求解比较复杂问题的搜索原理,如遗传算法和模拟退火算法等。 1、盲目搜索 盲目搜索又叫做无信息搜索,一般只适用于求解比较简单的问题。包括图搜索策略,宽度优先搜索和深度优先搜素。 1、图搜索(GRAPH SERCH)策略是一种在图中寻找路径的方法。在有关图的表示方法中,节点对应于状态,而连线对应于操作符。 2、如果搜素是以接近其实节点的程度依次扩展节点的,那么这种搜素就叫做宽度优先搜素(breadth-first search 。 3、深度优先搜索属于图算法的一种,英文缩写为DFS即Depth First Search.其过程简要来说是对每一个可能的分支路径深入到不能再深入为止,而且每个节点只能访问一次。 二、启发式搜索 盲目搜索的不足之处是效率低,耗费过多的时间和空间。启发信息是进行搜索技术所需要的一些有关具体问题的特性的信息。利用启发信息的搜索方法叫做启发式搜索方法。 启发式搜索就是在状态空间中的搜索对每一个搜索的位置进行评估,得到最好的位置,再从这个位置进行搜索直到目标。这样可以省略大量无谓的搜索路径,提高了效率。在启发式搜索中,对位置的估价是十分重要的。采用了不同的估价可以有不同的效果。 3、博弈树搜索 诸如下棋、打牌、竞技、战争等一类竞争性智能活动称为博弈。博弈有很多种,我们讨论最简单的"二人零和、全信息、非偶然"博弈,其特征如下: (1 对垒的MAX、MIN双方轮流采取行动,博弈的结果只有三种情况:MAX方胜,MIN方败;MIN方胜,MAX方败;和局。 (2 在对垒过程中,任何一方都了解当前的格局及过去的历史。

《商务智能方法与应用》教学大纲

商务智能方法与应用 (含实验) () 教学大纲 (2018版) 曙光瑞翼教育 2018年8月

前言 一、大纲编写依据 《商务智能方法与应用》是高校面向全校的公选课,是一门理论结合实践,专业性并不强的大数据相关课程。通过该课程的学习,培养学生设计和使用商务智能相关技术的能力,熟悉商务智能的基本概念及构成,重点掌握商务智能在各个领域的应用,以及如何进行建立数据仓库、如何进行在线分析处理、如何实现数据挖掘与数据可视化。通过这一系类的技术如何帮助决策者进行决策。 二、课程目的 1、知识目标 本课程目的是通过讲授及有关讨论使学生掌握在当今商务环境下如何整合和优化企业的信息资源,充分发挥企业的“知识资本”优势,将信息转换成企业智能,并进一步转换为企业利润。通过本课程的学习及讨论,将培养学生如何整合企业内部资源并部署实施商务智能战略的能力。主要重点在于大数据行业内的商务智能工具的应用以及行业实践。 2、能力目标 (1) 实践能力 通过本课程的学习,对学生进行实践技能的训练,巩固其在课堂上所学书本知识,加深对商务智能的基本概念、基本原理和分析方法的理解,掌握商务智能的核心技术与工具,并能运用典型的商务智能工具处理、解决一些实际问题。同时,通过实践教学活动,拓宽学生的知识领域,锻炼学生的实践技能,培养科学严谨、求真务实的工作作风。 (2) 创新能力 通过使用商务智能原理与应用的学习,从数据采集、数据分析、数据挖掘、数据可视化的工作原理与应用等方面,使学生具备一定的使用商务智能主流工具进行数据分析的能力。 三、教学方法 1、课堂教学 (1) 讲授 本课程的教学内容以讲授为主,讲授的主要内容有商务智能关键技术:数据仓库、在线分析处理、维度建模。根据教学大纲的要求,突出重点和难点。 (2) 教师指导下的学生自学 指导学生自主学习商务智能相关技术与主流商务智能相关工具。教师通过给出一些相关的实例程序帮助学生理解和进行方案设计,并布置相应的上机习题让学生进行练习。 (3) 其它教学方法 采用多媒体辅助教学手段,结合传统教学方法,解决好教学内容多、信息量大与学时少的矛盾;充分利用学校的图书馆的资源优势,查阅与课程相关的资料;通过布置课程设计来提高学生的综合处理问题的能力和软件开发的能力。 2、课外学习

河北工业大学_计算方法_期末考试试卷_C卷

2012 年(秋)季学期 课程名称:计算方法 C卷(闭卷)

2012 年(秋)季学期

2012 年(秋)季学期

2012 年(秋)季学期

2012 年 秋 季 (计算方法) (C) 卷标准答案及评分细则 一、 填空题 (每题2分,共20分) 1、 截断 舍入 ; 2、则 ()0n k k l x =∑= 1 ,()0 n k j k k x l x =∑= j x , 4、 12 。 4、 2.5 。 5、10 次。 6、A 的各阶顺序主子式均不为零。 7 、1A ρ=+() ,则6 A ∞ =。 二、综合题(共80分) 1. (本题10分)已知f (-1)=2,f (1)=3,f (2)=-4,求拉格朗日插值多项式)(2x L 及f (1,5)的近似值,取五位小数。 解: )12)(12() 1)(1(4)21)(11()2)(1(3)21)(11()2)(1(2)(2-+-+? --+-+?+------? =x x x x x x x L (6分) )1)(1(34 )2)(1(23)2)(1(32-+--+---= x x x x x x (2分) 04167.024 1 )5.1()5.1(2≈= ≈L f (2分) 2. (本题10分)用复化Simpson 公式计算积分()?=1 0sin dx x x I 的近似值,要求误差限为5105.0-?。 ()()0.9461458812140611=???? ??+??? ??+= f f f S (3分) ()()0.94608693143421241401212=???? ??+??? ??+??? ??+??? ??+= f f f f f S (4分) 5-12210933.0151 ?=-≈ -S S S I 94608693.02=≈S I (3分) 或利用余项:()() -+-+-==!9!7!5!31sin 8 642x x x x x x x f () -?+?-=!49!275142) 4(x x x f ()51 )4(≤ x f

智能材料的研究现状与未来发展趋势

龙源期刊网 https://www.doczj.com/doc/a318726854.html, 智能材料的研究现状与未来发展趋势 作者:邓焕 来源:《科学与财富》2017年第36期 摘要:智能材料这一概念在上世纪80年代首次被提出,近年来,关于智能材料在航空航天领域的研究与应用被频繁提及。由于智能材料具备着结构整体性强、可塑性高、功能多样化等优点,因此在航空航天领域得到了广泛的研究与使用,首先根据功能性的不同对智能材料进行了系统的分类与概述,然后对当前智能材料在航空航天领域的主要应用进行了系统性的分析与总结,最后对智能材料在未来的航空航天的应用前景中进行了进一步地展望。 关键词:智能材料;复合材料;航空航天;功能多样化 1 引言 进入二十一世纪以来,全球各大航空航天强国在航天航空领域投入了大量的研发资金,而作为航空航天领域重要环节的航天材料,近年来也不断有着新的突破,而其中被提及最多的就是智能材料在航空航天领域的应用。在智能材料的范畴中,智能复合材料最具有代表性,智能复合材料主要具备着:外界环境感知功能;判断决策功能;自我反馈功能;执行功能等。此外,由于当前智能复合材料都向着轻量化、低成本化的方向发展,因此在航天领域复合材料的设计结构以及使用用途上都有着不同的侧重发展方向。而近年来国内外各国也均加快了各自在该领域的研发使用发展进度,主要的研究大方向还是集中在了智能检测、结构稳定性、低成本化等方向上,本文着重对相关部分进行系统性的概述与总结。 2 航空航天领域智能复合材料的功能介绍 在航空航天领域中,国内外普遍利用智能复合材料以实现在降低航空航天飞行器的自身重量的前提下保证系统结构的稳定性,其次根据复合智能材料具备智能检测自身系统内部工作状态和自愈合等功能实现航空航天材料在微电子与智能应用方向的交叉发展。 2.1 智能复合材料在航天结构检测方向的应用 智能复合材料在航空航天器中的应用,主要是通过将传感器以嵌入的方式与原始预浸料铺层以及湿片铺层等智能复合材料紧密键合,最终集成在控制芯片控制器上实现对整个系统的实时监控诊测、自我修复等供能,值得注意的是,在这一过程中,智能化不仅仅是符合材料的必要功能,复合材料在很大程度上可以有效承受比传统应用材料更大外界机械压力[1]。 除此之外,由于智能复合材料作为传感器的铺放衬底,因此智能复合材料还可以实现对整个材料内部结构的状况进行收集并且将出现的诸如温度异常、结构异常、表面裂痕等隐患及时反馈至中央处理器,这在一定程度上可以有效实现整个系统内部的检测与寿命预测,在这方面的技术上,美国的Acellent公司研发的缠绕型复合材料以压力感应的形式,按照矩形布线形式

文献综述_人工智能

人工智能的形成及其发展现状分析 冯海东 (长江大学管理学院荆州434023) 摘要:人工智能的历史并不久远,故将从人工智能的出现、形成、发展现 状及前景几个方面对其进行分析,总结其发展过程中所出现的问题,以及发展现状中的不足之处,分析其今后的发展方向。 关键词:人工智能,发展过程,现状分析,前景。 一.引言 人工智能最早是在1936年被英国的科学家图灵提出,并不为多数人所认知。 当时,他编写了一个下象棋的程序,这就是最早期的人工智能的应用。也有著名的“图灵测试”,这也是最初判断是否是人工智能的方案,因此,图灵被尊称为“人工智能之父”。人工智能从产生到发展经历了一个起伏跌宕的过程,直到目前为止,人工智能的应用技术也不是很成熟,而且存在相当的缺陷。 通过搜集的资料,将详细的介绍人工智能这个领域的具体情况,剖析其面临的挑战和未来的前景。 二.人工智能的发展历程 1. 1956年前的孕育期 (1) 从公元前伟大的哲学家亚里斯多德(Aristotle)到16世纪英国哲学家培根(F. Bacon),他们提出的形式逻辑的三段论、归纳法以及“知识就是力量”的警句,都对人类思维过程的研究产生了重要影响。 (2)17世纪德国数学家莱布尼兹(G..Leibniz)提出了万能符号和推理计算思想,为数理逻辑的产生和发展奠定了基础,播下了现代机器思维设计思想的种子。而19世纪的英国逻辑学家布尔(G. Boole)创立的布尔代数,实现了用符号语言描述人类思维活动的基本推理法则。 (3) 20世纪30年代迅速发展的数学逻辑和关于计算的新思想,使人们在计算机出现之前,就建立了计算与智能关系的概念。被誉为人工智能之父的英国天才的数学家图灵(A. Tur-ing)在1936年提出了一种理想计算机的数学模型,即图灵机之后,1946年就由美国数学家莫克利(J. Mauchly)和埃柯特(J. Echert)研制出了世界上第一台数字计算机,它为人工智能的研究奠定了不可缺少的物质基础。1950年图灵又发表了“计算机与智能”的论文,提出了著名的“图灵测试”,形象地指出什么是人工智能以及机器具有智能的标准,对人工智能的发展产生了极其深远的影响。 (4) 1934年美国神经生理学家麦克洛奇(W. McCulloch) 和匹兹(W. Pitts )建立了第一个神经网络模型,为以后的人工神经网络研究奠定了基础。 2. 1956年至1969年的诞生发育期 (1)1956年夏季,麻省理工学院(MIT)的麦卡锡(J.McCarthy)、明斯基(M. Minshy)、塞尔夫里奇(O. Selfridge)与索罗门夫(R. Solomonff)、 IBM的洛

智能计算平台应用开发(中级)-第8章-机器学习基础算法建模-集成学习算法

第8章?机器学习基础算法建模

目录 1.机器学习 2.分类算法 3.回归算法 4.集成学习算法 5.聚类算法 6.关联规则算法 7.智能推荐算法

l 在机器学习的有监督学习算法中,目标是学习出一个稳定的且在各个方面表现都较好的模型,但实际情况往往达不到理想状态,有时只能得到多个有偏好的模型(弱分类器,在某些方面表现较好)。 ?集成学习是组合多个弱分类器,得到一个更好且更全面的强分类器,即将多个分 类器聚集在一起,以提高分类的准确率。 ?这些分类器可以是不同的算法,也可以是相同的算法。如果把单个分类器比作一 个决策者,那么集成学习的方法就相当于多个决策者共同进行一项决策。 集成学习

l集成学习的作用 将多个弱分类器合并,实现更好的效果。 l分类器间存在一定的差异性,会导致分类的边界不同,可以理解为分类器是一个比较专精的专家,它有它自己一定的适用范围和特长。 l通过一定的策略将多个弱分类器合并后,即可拓展模型的适用范围,减少整体 的错误率,实现更好的效果。

l 数据过大时会导致训练一个模型太慢,而集成学习可以分别对数据集进行划分和有放回的操作,从而产生不同的数据子集,再使用数据子集训练不同的分类器, 最终再将不同的分类器合并成为一个大的分类器。 l 数据过小时则会导致训练不充分,而集成学习可以利用Bootstrap 方法进行抽样,得到多个数据集,分别训练多个模型后再进行组合。如此便可提高训练的准确度 和速度,使得之前很难利用的数据得到充分的利用。集成学习在各个规模的数据集上都有很好的策略。

将多个模型进行融合。 l对于存在多个异构的特征集的时候,很难进行融合,可以考虑使用集成学习的方式,将每个数据集构建一个分类模型,然后将多个模型进行融合。

《计算方法》期末考试试题

《计算方法》期末考试试题 一 选 择(每题3分,合计42分) 1. x* = 1.732050808,取x =1.7320,则x 具有 位有效数字。 A 、3 B 、4 C 、5 D 、6 2. 取7 3.13≈(三位有效数字),则 ≤-73.13 。 A 、30.510-? B 、20.510-? C 、10.510-? D 、0.5 3. 下面_ _不是数值计算应注意的问题。 A 、注意简化计算步骤,减少运算次数 B 、要避免相近两数相减 C 、要防止大数吃掉小数 D 、要尽量消灭误差 4. 对任意初始向量)0(x 及常向量g ,迭代过程g x B x k k +=+)() 1(收敛的充分必要条件是_ _。 A 、11< B B 、1<∞ B C 、1)(

商务智能的发展和应用

商务智能的发展和应用 聂迪 (宝鸡文理学院计算机科学系,陕西宝鸡721016) 摘要 所为商务智能,是明显区别于商业智能的一种分析数据的技术,其内容的获取和显示方面都有终端技术。现今,商务智能已发展成不仅仅只是软件产品和工具,而是一种整体应用的解决方案,甚至升华为一种管理思想,体现的是一种理性的经营管理决策的能力,即全面、准确、及时、深入分析和处理数据与信息的能力。 关键字 商务智能;分析;管理;技术 引言 商务智能的出现是一个渐进的复杂的演变过程,而且仍在发展之中,最早的商务智能被称为决策支持系统,它经历了事务处理系统(TPS)、高级管理人员信息系统(EIS),管理信息系统(MIS)和决策支持系统(DSS)等系统,最终演变成为今天的商务智能。随着计算机应用的不断发展和深入,软件系统的大型化、复杂化,软件的开发与应用已相当的广泛。近年来,商务智能技术日趋成熟,越来越多的企业决策者意识到需要商务智能才能保持和提升企业的竞争力。在美国,500强企业里面已经有90%以上的企业利用企业管理和商务智能软件帮助管理者做出决策。国外己经有很多成功实施商务智能的案例。可在我国,商务智能还处于导入期,商务智能应用的程度和实际效果都与国外企业有很大差距。。 商务智能的定义 商务智能是指利用数据仓库、数据挖掘技术对客户数据进行系统地储存和管理,并通过各种数据统计分析工具对客户数据进行分析,提供各种分析报告,如客户价值评价、客户满意度评价、服务质量评价、营销效果评价、未来市场需求等,为企业的各种经营活动提供决策信息。它是企业利用现代信息技术收集、管理和分析结构化的商务数据和信息,创造和累计商务知识和见解,改善商务决策

关于智能家居的研究综述[文献综述]

文献综述 通信工程 关于智能家居的研究综述 摘要:本文主要对智能家居的相关技术及发展进行了综述。首先介绍了智能家居的概念,然后对其市场环境及应用功能进行了阐述,再比较了分别基于PC机、单片机、嵌入式架构系统的智能家居网络控制器,并对远程控制技术中的有线技术与无线技术进行了对比,论述了其中GSM技术和Zigbee技术。文中最后也对未来智能家居发展进行了预测。 关键词:智能家居;架构系统;网络控制器;Zigbee技术 一、智能家居概述 20世纪80年代末,智能家居原型在美国产生,被称为Smart Home。因其布线简单、功能灵活、扩展容易而被人们广泛接受和应用。经过这几十年的发展,智能家居已经形成一套成熟的理论体系,基于各种技术的智能家居系统更是层出不穷,使人们享受到了舒适、便利和安全的家居生活。 那么什么是智能家居呢?智能家居是以家为平台,兼备自动化、智能化于一体的高效、舒适、安全、便利的住宅环境。智能家居网络控制系统是一个完整的集家庭通信、家庭设备互联和控制、家庭安全防范等功能于一体的网络系统[1]。当然其功能也随着科技的进步正变得越来越新颖与强大。 二、智能家居的现状及应用 随着人们对高质量生活水平的要求和消费电子技术的发展,传统的家居控制方式已经成为家庭信息智能化进程的绊脚石。所以,开发更加先进、智能的家居控制系统在满足家居生活更加舒适、安全、有效的同时也迎合了人们追求个性化、自动化、智能化、高档化的心理需求。据有关机构统计表明,在2006 年,国际智能家居产品销售额达到184 亿美元,2008 年高达648 亿美元。目前,全球家庭智能化市场正在以8% 的速度增长[2]。中国人首次接触“智能家居”一词是在20 世纪90 年代中期,经过几年的发展,我国在智能家居技术领域与欧美国家的差距逐渐减小, 目前, 仅滞后2 - 3 年的时间, 已有包括海尔、TCL、清华同方等大型企业在内的数千家中国企业正日益成为此行业中的生力军[3]。

智能优化算法综述

智能优化算法的统一框架 指导老师:叶晓东教授 姓名:李进阳 学号:2 班级:电磁场与微波技术5班 2011年6月20日

目录 1 概述 (3) 2群体智能优化算法.................................. 错误!未定义书签。 人工鱼群算法 (4) 蚁群算法 (5) 混合蛙跳算法 (9) 3神经网络算法 (10) 神经网络知识点概述 (10) 神经网络在计算机中的应用 (11) 4模拟退火算法 (15) 5遗传算法.......................................... 错误!未定义书签。 遗传算法知识简介 (17) 遗传算法现状 (18) 遗传算法定义 (19) 遗传算法特点和应用 (20) 遗传算法的一般算法 (21) 遗传算法的基本框架 (26) 6总结 (28) 7感谢 (29)

1概述 近年来,随着人工智能应用领域的不断拓广,传统的基于符号处理机制的人工智能方法在知识表示、处理模式信息及解决组合爆炸等方面所碰到的问题已变得越来越突出,这些困难甚至使某些学者对强人工智能提出了强烈批判,对人工智能的可能性提出了质疑。众所周知,在人工智能领域中,有不少问题需要在复杂而庞大的搜索空间中寻找最优解或准优解。像货朗担问题和规划问题等组合优化问题就是典型的例子。在求解此类问题时,若不能利用问题的固有知识来缩小搜索空间则会产生搜索的组合爆炸。因此,研究能在搜索过程中自动获得和积累有关搜索空间的知识,并能自适应地控制搜索过程,从而得到最优解或准有解的通用搜索算法一直是令人瞩目的课题。智能优化算法就是在这种背景下产生并经实践证明特别有效的算法。 2群体智能优化算法 自然界中群体生活的昆虫、动物,大都表现出惊人的完成复杂行为的能力。人们从中得到启发,参考群体生活的昆虫、动物的社会行为,提出了模拟生物系统中群体生活习性的群体智能优化算法。在群体智能优化算法中每一个个体都是具有经验和智慧的智能体 (Agent) ,个体之间存在互相作用机制,通过相互作用形成强大的群体智慧来解决复杂的问题。自 20世纪 90年代模拟蚂蚁行为的蚁群算法(ACO)提出以来,又产生了模拟鸟类行为的微粒群算法 ( PSO)、模拟鱼类生存习性的人工鱼群算法、模拟青蛙觅食的混合蛙跳算法 ( SFLA)等。这些群体智能优化算法的出现,使原来一些复杂的、难于用常规的优化算法进行处理的问题可以得到解决,大大增强了人们解决和处理优化问题的能力,这些算法不断地用于解决工程实际中的问题,使得人们投入更大的精力对其理论和实际应用进行研究。群体智能优化算法本质上是一种概率搜索,它不需要问题的梯度信息具有以下不同于传统优化算法的特点: ①群体中相互作用的个体是分布式的,不存在直接的中心控制,不会因为个别个体出现故障而影响群体对问题的求解,具有较强的鲁棒性; ②每个个体只能感知局部信息,个体的能力或遵循规则非常简单,所以群体智能的实现简单、方便; ③系统用于通信的开销较少,易于扩充; ④自

智能算法综述

摘要:随着计算机技术的飞速发展,智能计算方法的应用领域也越来越广泛,本文介绍了当前存在的一些智能计算方法,阐述了其工作原理和特点,同时对智能计算方法的发展进行了展望。关键词:人工神经网络遗传算法模拟退火算法群集智能蚁群算法粒子群算1什么是智能算法智能计算也有人称之为“软计算”,是们受自然(生物界)规律的启迪,根据其原理,模仿求解问题的算法。从自然界得到启迪,模仿其结构进行发明创造,这就是仿生学。这是我们向自然界学习的一个方面。另一方面,我们还可以利用仿生原理进行设计(包括设计算法),这就是智能计算的思想。这方面的内容很多,如人工神经网络技术、遗传算法、模拟退火算法、模拟退火技术和群集智能技术等。 2人工神经网络算法“人工神经网络”(ARTIFICIALNEURALNETWORK,简称ANN)是在对人脑组织结构和运行机制的认识理解基础之上模拟其结构和智能行为的一种工程系统。早在本世纪40年代初期,心理学家McCulloch、数学家Pitts就提出了人工神经网络的第一个数学模型,从此开创了神经科学理论的研究时代。其后,FRosenblatt、Widrow和J.J.Hopfield等学者又先后提出了感知模型,使得人工神经网络技术得以蓬勃发展。神经系统的基本构造是神经元(神经细胞),它是处理人体内各部分之间相互信息传递的基本单元。据神经生物学家研究的结果表明,人的一个大脑一般有1010~1011个神经元。每个神经元都由一个细胞体,一个连接其他神经元的轴突和一些向外伸出的其它较短分支——树突组成。轴突的功能是将本神经元的输出信号(兴奋)传递给别的神经元。其末端的许多神经末梢使得兴奋可以同时传送给多个神经元。树突的功能是接受来自其它神经元的兴奋。神经元细胞体将接受到的所有信号进行简单处理(如:加权求和,即对所有的输入信号都加以考虑且对每个信号的重视程度——体现在权值上——有所不同)后由轴突输出。神经元的树突与另外的神经元的神经末梢相连的部分称为突触。 2.1人工神经网络的特点人工神经网络是由大量的神经元广泛互连而成的系统,它的这一结构特点决定着人工神经网络具有高速信息处理的能力。人脑的每个神经元大约有103~104个树突及相应的突触,一个人的大脑总计约形成1014~1015个突触。用神经网络的术语来说,即是人脑具有1014~1015个互相连接的存储潜力。虽然每个神经元的运算功能十分简单,且信号传输速率也较低(大约100次/秒),但由于各神经元之间的极度并行互连功能,最终使得一个普通人的大脑在约1秒内就能完成现行计算机至少需要数10亿次处理步骤才能完成的任务。人工神经网络的知识存储容量很大。在神经网络中,知识与信息的存储表现为神经元之间分布式的物理联系。它分散地表示和存储于整个网络内的各神经元及其连线上。每个神经元及其连线只表示一部分信息,而不是一个完整具体概念。只有通过各神经元的分布式综合效果才能表达出特定的概念和知识。由于人工神经网络中神经元个数众多以及整个网络存储信息容量的巨大,使得它具有很强的不确定性信息处理能力。即使输入信息不完全、不准确或模糊不清,神经网络仍然能够联想思维存在于记忆中的事物的完整图象。只要输入的模式接近于训练样本,系统就能给出正确的推理结论。 [!--empirenews.page--]正是因为人工神经网络的结构特点和其信息存储的分布式特点,使得它相对于其它的判断识别系统,如:专家系统等,具有另一个显著的优点:健壮性。生物神经网络不会因为个别神经元的损失而失去对原有模式的记忆。最有力的证明是,当一个人的大脑因意外事故受轻微损伤之后,并不会失去原有事物的全部记忆。人工神经网络也有类似的情况。因某些原因,无论是网络的硬件实现还是软件实现中的某个或某些神经元失效,整个网络仍然能继续工作。人工神经网络是一种非线性的处理单元。只有当神经元对所有的输入信号的综合处理结果超过某一门限值后才输出一个信号。因此神经网络是一种具有高度非线性的超大规模连续时间动力学系统。它突破了传统的以线性处理为基础的数字电子计算机的局限,标志着人们智能信息处理能力和模拟人脑智能行为能力的一大飞跃。 2.2几种典型神经网络简介 2.2.1多层感知网络(误差逆传播神经网络) 在1986年以Rumelhart和McCelland为首的科学家出版的《ParallelDistributedProcessing》一书中,完整地提出了误差逆传播学习算法,并被广泛

商务智能

商务智能是企业利用现代信息技术收集、管理和分析结构化和非结构化的商务数据和信息,创造和累计商务知识和见解,改善商务决策水平,采取有效的商务行动,完善各种商务流程,提升各方面商务绩效,增强综合竞争力的智慧和能力。 商务智能的要素有三点,第一点,企业——这里用“组织机构”或“实体”会显得更加完整,因为所有的组织机构和实体(不只是企业)都可以而且应该利用商务智能;之所以仍用“企业”是为保持与“商务”的一致性。各行各业,包括非企业性机构,比如政府部门、教育机构、医疗机构和公用事业等,都应该而且能够利用商务智能。第二点,利用现代信息技术——商务智能过程中所涉及的信息技术主要有:从不同的数据源(交易系统或其他内容储存系统)收集的数据中提取有用的数据,对数据进行清理以保证数据的质量,将数据经转换、重构后存入数据仓库和数据集市(这时数据变为信息),然后寻找合适的查询、报告和分析工具和数据挖掘工具对信息进行处理(这时信息变为辅助决策的知识),最后将知识呈现于用户面前,转变为决策。第三点,收集——收集数据是管理和分析数据的前提,数据收集工作是十分重要的,必须引起企业的充分重视。数据和信息的收集主要是通过各种交易系统进行的,比如企业资源管理规划(ERP)、客户关系管理(CRM)、供应链管理(SCM)和电子商务等系统。 商务智能的核心主要有三方面,一方面,改善商务决策水平——这是商务智能的更高一层的目的和功能,企业能否利用好这一功能、实现这一目的在很大程度上取决于领导者的意识和胸襟以及企业文化中决策科学化和民主化的成分。另一方面,采取有效的商务行动——采取有效的商务行动是创造和累计商务知识和见解、改善商务决策水平的目的和动力。最后,完善各种商务流程——残缺、散乱、僵化、低效的商务流程是企业的顽疾,商务智能能够为这一顽疾的诊断和治疗做出一定的贡献;优化后自动化(请注意先后顺序)的商务流程反过来也会促进商务智能的发展。 商务智能的体系结构主要有数据源、智能工具、应用系统、知识获取和行动四个部分构成。数据源系统——包括前后端OLTP(在线事务处理)、电子商务系统和外部信息提供者等等。这些不仅是数据源,而且是知识和行动的操作对象。商业智能工具系统——包括数据仓库模型和构造工具、访问工具、决策支持工具OLAP和数据挖掘工具。商务智能应用系统——包括人力资源管理、分析和报告、财务管理、客户资源管理、分析和报告供应链管理、企业计划管理的分析和报告。知识和行动应用系统——包括企业知识管理门户、商业信息和建议和知识行动。 商务智能的支撑技术主要有数据仓库(DW)、在线分析处理(OLAP)以及数据挖掘(DM)三部分组成。数据仓库——数据仓库是为企业所有级别的决策制定过程提供支持的所有类型数据的战略集合。它是单个数据存储,出于分析性报告和决策支持的目的而创建。为企业提供需要业务智能来指导业务流程改进和监视时间、成本、质量和控制。在线分析处理——操作储存在静态数据仓储(Data Warehouse)内广泛资源的软件技术。其透过快速、一致、交谈式的界面对同一数据提供各种不同的呈现方式,供不同层面的使用者使用,使其具备透析数据反应出来信息的能力。数据挖掘——是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。 商业智能技术正是一种能够帮助企业迅速地完成信息采集、分析的先进技术。它包含了决策过程中所有的查询和报告、在线分析处理(OLAP)和信息采集应用程序及工具。商业智能解决方案在企业经营中的作用主要表现在三个领域: 一、市场营销关系:通过有效的交流和良好的服务维持客户对企业来讲是至关重要的。商业智能通过帮助企业完成客户划分、客户获得、交叉销售、客户保留等工作,使企业的目标、人员、商务处理流程和基础设施集中到根据客户的需要来定制产品、服务以及"面对面"

智能控制文献综述

智能控制的发展,应用及展望 周杰 21225062 摘要:智能控制是当今控制学领域研究和发展的热点之一。本文论述了智能控制的发展过程,相比传统控制的优势,在低压电器中的应用,并对其未来发展做了展望。 关键词:发展历史;智能控制;低压电器技术;模糊控制;人工智能;展望 1.智能控制的发展历史 从20世纪60年代起,由于空间技术、计算机技术及人工智能技术的发展,控制界学者在研究自组织、自学习控制的基础上,为了提高控制系统的自学习能力,开始注意将人工智能技术与方法应用于控制系统。 1965年,美国著名控制论专家Zadeh 创立了模糊集合论,为解决复杂系统的控制问题提供了强有力的数学工具;同年,美国著名科学家Feigenbaum着手研制世界上第一个专家系统;就在同年,傅京孙首先提出把人工智能中的直觉推理方法用于学习控制系统。1996年,Mendl进一步在空间飞行器的学习控制系统中应用了人工智能技术,并提出了“人工智能控制”的概念。直到1967年,Leondes和Mendel才首先正式使用“智能控制”一词,并把记忆、目标分解等一些简单的人工智能技术用于学习控制系统、提高了系统处理不确定性问题的能力。 从20世纪70年代开始,傅京孙、Glorios 和Saridis等人从控制论角度进一步总结了人工智能技术与自适应、自组织、自学习控制的关系,正式提出了智能控制就是人工智能技术与控制理论的交叉,并创立了人—机交互式分级递阶智能控制的系统结构。在70年代中后期,以模糊集合论为基础,从模仿人的控制决策思想出发,智能控制在另一个方向—规则控制上也取得了重要的进展。进入80年代以来,由于微机的迅速发展以及人工智能的重要领域—专家系统技术的逐渐成熟,使得智能控制和决策的研究及应用领域逐步扩大,并取得了一批应用成果。80年代后期,神经网络的研究获得了重要进展,为智能控制的研究起到了重要的促进作用。 2.智能控制的分支 目前关于智能控制的研究和应用沿着几个主要的分支发展,主要有专家控制、模糊控制、神经网控制、学习控制、基于知识的控制、复合智能控制、基于进化机制的控制、自适应控制等等。有的已在现代工业生产过程与智能自动化方面投入应用。主要介绍如下:专家控制是由K.J.Astrom将人工智能中的专家系统技术引入到控制系统。组成的一种类型的智能控制。借助专家系统技术,将常规的RLS 控制、最小方差控制等不同方法有机结合起来P 能根据不同的情况分别采取不同的控制策略。 模糊控制自1965年Zadeh 教授创建模糊集理论和1974年英国的Mamdani成功地将模糊控制应用于蒸汽机控制以来,模糊控制得到了很大的发展和广泛的应用。模糊控制是基于模糊推理、模仿人的思维方式、对难以建立精确数学模型的对象实施的一种控制,成为处理推理系统和控制系统中不精确和不确定性的一种有效方法,构成了智能控制的重要组成部分。 神经网络控制是另一类智能控制的重要形式。神经网络模拟人的大脑神经结构和功能,

可视化空间数据挖掘研究综述

可视化空间数据挖掘研究综述 贾泽露1,2 刘耀林2 (1. 河南理工大学测绘与国土信息工程学院,焦作,454000;2. 武汉大学资源与环境科学学院,武汉,430079)摘要:空间数据挖掘针对的是更具有可视化要求的地理空间数据的知识发现过程,可视化能提供同用户对空间目标心理认知过程相适应的信息表现和分析环境,可视化与空间数据挖掘的结合是该领域研究发展的必然,并已成为一个研究热点。论文综述了空间数据挖掘和可视化的研究现状,重点阐述了空间数据挖掘中的可视化化技术及其应用,并对可视化空间数据挖掘的发展趋势进行了阐述。 关键词:数据挖掘;空间数据挖掘;数据可视化;信息可视化;GIS; 空间信息获取技术的飞速发展和各种应用的广泛深入,多分辨率、多时态空间信息大量涌现,以及与之紧密相关的非空间数据的日益丰富,对海量空间信息的综合应用和处理技术提出了新的挑战,要求越来越高。空间数据挖掘技术作为一种高效处理海量地学空间数据、提高地学分析自动化和智能化水平、解决地学领域“数据爆炸、知识贫乏”问题的有效手段,已发展成为空间信息处理的关键技术。然而,传统数据挖掘“黑箱”作业过程使得用户只能被动地接受挖掘结果。可视化技术能为数据挖掘提供直观的数据输入、输出和挖掘过程的交互探索分析手段,提供在人的感知力、洞察力、判断力参与下的数据挖掘手段,从而大大地弥补了传统数据挖掘过程“黑箱”作业的缺点,同时也大大弥补了GIS重“显示数据对象”轻“刻画信息结构”的弱点,有力地提高空间数据挖掘进程的效率和结果的可信度[1]。空间数据挖掘中可视化技术已由数据的空间展现逐步发展成为表现数据内在复杂结构、关系和规律的技术,由静态空间关系的可视化发展到表示系统演变过程的可视化。可视化方法不仅用于数据的理解,而且用于空间知识的呈现。可视化与空间数据挖掘的结合己成为必然,并已形成了当前空间数据挖掘1与知识发现的一个新的研究热点——可视化空间数据挖掘(Visual Spatial Data Mining,VSDM)。VSDM技术将打破传统数据挖掘算法的“封闭性”,充分利用各式各样的数据可视化技术,以一种完全开放、互动的方式支持用户结合自身专业背景参与到数据挖掘的全过程中,从而提高数据挖掘的有效性和可靠性。本文将对空间数据挖掘、可视化的研究概况,以及可视化在空间数据挖掘中的应用进行概括性回顾总结,并对未来发展趋势进行探讨。 一、空间数据挖掘研究概述 1.1 空间数据挖掘的诞生及发展 1989年8月,在美国底特律市召开的第一届国际联合人工智能学术会议上,从事数据库、人工智能、数理统计和可视化等技术的学者们,首次出现了从数据库中发现知识(knowledge discovery in database,KDD)的概念,标志着数据挖掘技术的诞生[1]。此时的数据挖掘针对的 作者1简介:贾泽露(1977,6-),男,土家族,湖北巴东人,讲师,博士,主要从事空间数据挖掘、可视化、土地信息系统智能化及GIS理论、方法与应用的研究和教学工作。 作者2简介:刘耀林(1960,9- ),男,汉族,湖北黄冈人,教授,博士,博士生导师,武汉大学资源与环境科学学院院长,现从事地理信息系统的理论、方法和应用研究和教学工作。

人工智能算法综述

人工智能算法综述人工智能算法大概包括五大搜索技术,包括一些早期的搜索技术或用于解决比较简单问题的搜索原理和一些比较新的能够求解比较复杂问题的搜索原理,如遗传算法和模拟退火算法等。 1、盲目搜索 盲目搜索又叫做无信息搜索,一般只适用于求解比较简单的问题。包括图搜索策略,宽度优先搜索和深度优先搜素。 1、图搜索(GRAPH SERCH)策略是一种在图中寻找路径的方法。在有关图的表示方法中,节点对应于状态,而连线对应于操作符。 2、如果搜素是以接近其实节点的程度依次扩展节点的,那么这种搜素就叫做宽度优先搜素( breadth-first search。 3、深度优先搜索属于图算法的一种,英文缩写为DFS即Depth First Search其过程 简要来说是对每一个可能的分支路径深入到不能再深入为止,而且每个节点只能访问一次。 二、启发式搜索 盲目搜索的不足之处是效率低,耗费过多的时间和空间。启发信息是进行搜索技术所需要的一些有关具体问题的特性的信息。利用启发信息的搜索方法叫做启发式搜索方法。 启发式搜索就是在状态空间中的搜索对每一个搜索的位置进行评估,得到最好的位置,再从这个位置进行搜索直到目标。这样可以省略大量无谓的搜索路径,提高了效率。在启发式搜索中,对位置的估价是十分重要的。采用了不同的估价可以有不同的效果。 3、博弈树搜索 诸如下棋、打牌、竞技、战争等一类竞争性智能活动称为博弈。博弈有很多种,我们讨论最简单的"二人零和、全信息、非偶然" 博弈,其特征如下: (1对垒的MAX MIN双方轮流采取行动,博弈的结果只有三种情况:MA)方胜,MIN方败;MIN方胜,MAX方败;和局。 (2 在对垒过程中,任何一方都了解当前的格局及过去的历史。 (3 任何一方在采取行动前都要根据当前的实际情况,进行得失分析,选取对自 已为最有利而对对方最为不利的对策,不存在掷骰子之类的"碰运气"因素即双方都是很理智地决定自己的行动。 在博弈过程中,任何一方都希望自己取得胜利。因此,当某一方当前有多个行

计算智能:技术、特点、集成及展望

计算智能:技术、特点、集成及展望 摘要:作为一种新兴的智能处理技术,计算智能受到各学科领域越来越多研究者的关注。本文简要概括了计算智能主要技术的理论框架和特点,介绍了计算智能技术的综合集成的一些情况及突现的特性,并对进一步的理论和应用研究做了一些展望。 关键词:计算智能;综合集成;突现的特性 Computational Intelligence:Technologies,Characteristics,Integration and Prospect Abstract:As a rising technology of Intelligent Processing,Computational Intelligence is becoming more and more observable in many fields.This paper makes a brief summary of the theories and characteristics of technologies in Computational Intelligence, and gives a introduction of some situations and unexpected traits of integration in Computational https://www.doczj.com/doc/a318726854.html,stly,some prospects of further research on theory and application in Computaional Intelligence are given. Key words:Computational Intelligence;Integration;Unexpected Traits 1 引言 工业革命的伟大历史意义在于使生产机械化,从而使人类从体力劳动中解脱了出来;作为信息革命中主要的计算机处理技术,如果使计算机具有了人类的智能,从机器智能到最终的智能机器,人工智能如若可以使人类在生产中从脑力劳动中解脱出来,那么,这样的革命意义无疑将是划时代的。 传统的人工智能是基于符号处理的,通常也称为符号智能,它以知识为基础,偏重于逻辑推理,以顺序离散符号推理为特征,强调知识表示和推理及规则的形成和表示。而随着科学的发展和时代的进步,人们在工业生产和工程实践中遇到的问题,越来越多地具有规模大、复杂性、约束性、非线性、不确定性等特点,传统的人工智能在感知、理解、学习、联想及形象思维等方面遇到了严重的困难,同时,计算机容量和计算速度的不断提高及大规模并行处理技术的产生,使得智能模拟方法进入了一个全新的发展时期。由诸多智能模拟方法组成的计算智能(Computational Intelligence)技术,是一种借鉴和利用自然界中自然现象或生物体的各种原理和机理而开发的并具有自适应环境能力的计算方法,具有分布、并行、仿生、自学习、自组织、自适应等特性[1-3]。下面,本文将在计算智能研究领域和研究热点中对主要技术的理论框架和特点做一下简要概括,并对计算智能各方面的综合集成及由此而突现的特性做一些介绍。 2 计算智能的主要技术及特点 2.1 进化计算 进化计算(Evolutionary Computing)是基于自然选择和自然遗传等生物进化机制的一种 搜索算法。它以生物界的“优胜劣态、适者生存”作为算法的进化规则,结合达尔文的自然选择与孟德尔的遗传变异理论,将生物进化中的四个基本形式:繁殖、变异、竞争和选择引入到算法过程中。目前研究的进化计算技术主要有四种算法:遗传算法(Genetic Algorithm)、进化规划(Evolutionary Programming)、进化策略(Evolutionary Strategy)和遗传规划(Genetic Programming)。前三种算法是彼此独立发展起来的,最后一种是在遗传算法的基础上发展起来的一个分支[4]。

相关主题
文本预览
相关文档 最新文档