当前位置:文档之家› 为什么汽轮机进汽量增加时,汽轮机转速不变,发电机负荷会升

为什么汽轮机进汽量增加时,汽轮机转速不变,发电机负荷会升

为什么汽轮机进汽量增加时,汽轮机转速不变,发电机负荷会升
为什么汽轮机进汽量增加时,汽轮机转速不变,发电机负荷会升

首先说下发电机的工作原理:我们都知道一个物理现象:就是一个线圈在磁场内旋转,做切割磁力线的运动,在电磁作用下,线圈中会产生感应电流,通俗点说就是产生了电能。发电机就是根据此原理进行设计制造的,不过比较复杂而已,但基本原理是相同的.

发电机的转子为磁极,转子内部装有励磁绕组,当通上直流电后就会励磁,产生磁场,通俗的说就变为电磁铁,一般给转子供给直流电的设备我们叫励磁机,就是接在发电机后部的那个,它的作用就是在运行中发出直流电,供给转子励磁线圈使用,以便产生磁场,这种供给直流电的方式在电气专业叫他励方式,还有一种自励方式,就是不要励磁机(所以有的会员所用的发电机后部并没有励磁机),而是使用发电机所发的交流电,经励磁变(硅整流)后改成直流电,供给转子线圈使用。顺便说下,我们经常看到的发电机转子上的碳刷,就是供给转子直流电的设备,当发电机直流电供给过大时(也就是电气专业所说的无功较高),此时碳刷就易出现打火现象(这只是打火的原因之一,我只是顺便说说,让大家了解下)。

在发电机定子铁芯上嵌有三相对称绕组,就是我们日常所说的定子线圈,发电机工作时,汽轮机带动发电机转子(磁极)旋转,使定子线圈绕组不断切割转子磁场而感应出三相交流电动势,即发出电能了。这个过程其实就是磁场在旋转而线圈是固定的,但其产生电能的作用和我前面所说的原理是一样的.

我们国家的交流电的频率为50HZ,根据这个公式:f=pn/60(f为频率,p为磁极对数,n为发电机转速)可知,如想得到想要的频率,只要

根据机组工作转速设置合适的磁极对数即可。汽轮发电机组的工作转速为3000r/min,有上述公式可知其对应50Hz的频率,设置一对磁极对数即可。另根据上述所说的,大家也可算算核电站机组的工作转速为:1500r/min,水电站水轮机组的工作转速为750r/min,要发出的50HZ频率交流电来,应装多少磁极对数?发电机当其磁极数固定不变时,其频率f和转速n成正比关系,这是同步发电机的最大特点,也是同步发电机的调频原理。发电机孤网运行时,调节其转速可以改变其频率,一旦与电网并网后,由于并上电网的机组频率都是保持在50Hz运行,所以发电机也就保持其额定转速运行,并且机组的转速根据电网频率的波动而变化。因此作为发电机原动机汽轮机,进汽量的改变,只是将能量用在克服发电机的电磁力矩,故只会改变发电机输出功率,将机械能转化为电能,而不会提高转速。

(首先应该明白是发电机的负荷变了,汽轮机的出力才会跟着作调整. 原因:当发电机的负荷增加时,其线圈里的电流是增加的,产生的阻碍

转子转动的磁力也就增加了,这时汽轮机要被减速的,其要维持正常

转速就必须增加进气量才能平衡发电机带来的反向的力矩.最后的结果是两个力矩平衡了, 汽轮机的进气量增加了.原因就是发电机的负荷增加引起的.)

这里再说下,当增加汽轮机的进汽后,发电负荷增加,电气专业也会相应的增加励磁电流,用他们的专业术语叫加无功,而汽机所看到的负荷在电气专业叫有功。

另补充下:我以前在一个帖子里曾说过:当汽轮机遇到紧急情况需迅

速停下来时,除了破坏真空外,也可要电气增加励磁,其实就是增大机组的旋转阻力,使之能够迅速停下来而已.

汽轮机发电机本体结构及功能

汽轮机发电机本体结构及功能 一、发电机结构及功能 氢冷发电机在本体上主要由定子和转子两大部分组成,在附属系统上主要有励磁系统、冷却系统、密封油系统和氢气系统。 二、发电机定子 定子由机座、铁芯、定子绕组、端盖等部分组成。 1、机座及端盖 定子机座为中段机座和两端端罩组成的三段式组合结构,中间段与铁芯长度相近。沿轴向布置的环形板既是铁芯的支撑件,也是风区隔板,隔板间有圆形风

管。两端端罩罩住定子线圈端部,4个卧式冷却器置于两端罩顶部的冷却器罩内。 三段式机座之间用螺栓把合,各接合面处除用橡胶圆条密封外,还用气密罩封焊,端罩两侧下部设有排水法兰,接液位信号器,冷却器漏水可及时报警。 整个机座按防爆要求设计,具有足够的强度和良好的气密性,经受1.0兆帕30分钟的水压试验和4×105帕气密试验。 2、机座的作用: 主要是支持和固定铁芯绕组。如果用端盖轴承,它还要承受转子的重量和电磁力以及分配冷却气流力矩。(特别是在发电机出口短路后要承受10倍以上的短路力矩的作用),除此以外,还要防止漏氢和承受住氢气的爆炸力。 3、定子弹性支撑: 为了减少发电机运行时定子铁芯所产生的双倍频的振动对发电机基础的影响,铁芯与机座之间采用轴向组合式弹性定位筋作为隔振结构。 两个主要振动源:一是铁芯振动,其振动频率为二倍频100HZ。这因为在二极发电机中,由于发电机转子磁场的影响,机座和定子铁芯将受到100HZ的交变电磁力的作用,并使定子铁芯变成一个不断变化的椭圆,使机座发生倍频振动。二是转子振动,这通常只发生在轴承与端盖合成一体的发电机上,它起因于转子的各种不平衡,其频率为50HZ,即转子的机械旋转频率。所以说机座都是为高

汽轮机参数(TRL、THA、T-MCR、VWO等)

1.额定功率(铭牌功率TRL)是指在额定的主蒸汽及再热蒸汽参数、背压11.8KPa 绝对压力,补给水率3%以及回热系统正常投入条件下,考虑扣除非同轴励磁、润滑及密封油泵等所耗功率后,制造厂能保证在寿命期内任何时间都能安全连续地在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。此时调节阀应仍有一定裕度,以保证满足一定调频等需要。在所述额定功率定义条件下的进汽量称为额定进汽量。 2.最大连续功率(T-MCR)是指在1.额定功率条件下,但背压为考虑年平均水温等因素确定的背压,(设计背压)补给水率为0%的情况下,制作厂能保证在寿命期内安全连续在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。该功率也可作为保证热耗率和汽耗率的功率。保证热耗率考核工况:系指在上述条件下,将出力为额定功率时的热耗率和汽耗率作为保证,此工况称为保证热耗率的考核工况。 3.阀门全开功率(VWO)是指汽轮机在调节阀全开时的进汽量以及所述T-MCR 定义条件下发电机端输出的功率。一般在VWO下的进汽量至少应为额定进汽量的1.05倍。此流量应为保证值。上述所指是由主汽轮机机械驱动或由主汽轮机供汽给小汽轮机驱动的给水泵,所需功率不应计算在额定功率中,但进汽量是按汽动给水泵为基础的,如果采用电动给水泵时,所需功率应自额定功率中减除(但在考核热耗率和汽耗率时是否应计入所述给水泵耗工,可由买卖双方确定)。 二.锅炉 1.锅炉额定蒸发量,即是汽轮机在TRL工况下的进汽量。对应于:汽轮机额定功率TRL,指在额定进汽参数下,背压11.8KPa,3%的补给水量时,发电机端带额定电功率MVA。

2.锅炉额定蒸发量,也对应汽轮机TMCR工况。对应于:汽轮机最大连续出力TMCR,指在额定进汽参数下,背压4.9KPa,0%补给水量,汽轮机进汽量与TRL 的进汽量相同时在发电机端所带的电功率MVA。 3.锅炉最大连续出力(BMCR),即是汽轮机在VWO工况下的汽轮机最大进汽量。对应于:汽轮机阀门全开VWO工况,指在额定进汽参数下,背压 4.9KPa,0%补给水量时汽轮机的最大进汽量。 注: a.汽机进汽量和锅炉蒸发量是按机组采用汽动给水泵考虑的。 b.在TMCR工况下考核汽机热耗和锅炉效率的保证值。在VWO工况下考核汽机最大进汽量和锅炉最大连续出力保证值。 c.一般说,汽机TMCR时的出力比之TRL时的出力大5%左右。汽机VWO时的进汽量比之TMCR时的进汽量多3~5%,出力则多4~4.5%。 d.如若厂用汽需用量较大时,锅炉BMCR的蒸发量考虑比汽机VWO时的进汽量再增多3%左右。 e.不考虑超压条件。 f.TMCR工况下汽机背压4.9KPa为我国北方地区按冷却水温为20℃的取值。在我国南方地区可根据实际冷却水温取值,调整为5.39KPa或更高些。 600MW机组 1机组热耗保证工况(THA工况)机组功率(已扣除励磁系统所消耗的功率)为600MW时,额定进汽参数、额定背压、回热系统投运、补水率为0%.2铭牌工况(TRL工况)机组额定进汽参数、背压11.8KPa、补水率3%,回热系统投运下安全连续运行,发电机输出功率(已扣除励磁系统所消耗的

背压式、抽背式及凝汽式汽轮机的区别

背压式、抽背式及凝汽式汽轮机的区别 1、背压式汽轮机 背压式汽轮机是将汽轮机的排汽供热用户运用的汽轮机。其排汽压力(背压)高于大气压力。背压式汽轮机排汽压力高,通流局部的级数少,构造简略,同时不用要巨大的凝汽器和冷却水编制,机组轻小,造价低。当它的排汽用于供热时,热能可得到充足使用,但这时汽轮机的功率与供热所需蒸汽量直接联系,因此不或许同时餍足热负荷和电(或动力)负荷变更的必要,这是背压式汽轮机用于供热时的部分性。 这种机组的主要特点是打算工况下的经济性好,节能结果昭着。其它,它的构造简略,投资省,运行可靠。主要缺点是发电量取决于供热量,不克独立调理来同时餍足热用户和电用户的必要。因此,背压式汽轮机多用于热负荷整年安稳的企业自备电厂或有安稳的根本热负荷的地区性热电厂。 2、抽汽背压式汽轮机 抽汽背压式汽轮机是从汽轮机的中间级抽取局部蒸汽,供必要较高压力品级的热用户,同时保留必定背压的排汽,供必要较低压力品级的热用户运用的汽轮机。这种机组的经济性与背压式机组相似,打算工况下的经济性较好,但对负荷改变的合适性差。 3、抽汽凝汽式汽轮机 抽汽凝汽式汽轮机是从汽轮机中间抽出局部蒸汽,供热用户运用的凝汽式汽轮机。抽汽凝汽式汽轮机从汽轮机中间级抽出具有必定压力的蒸汽提供热用户,平常又分为单抽汽和双抽汽两种。此中双抽汽汽轮机可提供热用户两种分别压力的蒸汽。 这种机组的主要特点是当热用户所需的蒸汽负荷猛然下降时,多余蒸汽可以通过汽轮机抽汽点以后的级持续扩张发电。这种机组的长处是灵敏性较大,也许在较大范畴内同时餍足热负荷和电负荷的必要。因此选用于负荷改变幅度较大,改变屡次的地区性热电厂中。它的缺点是热经济性比背压式机组的差,并且辅机较多,价钱较贵,编制也较庞杂。 背压式机组没有凝固器,凝气式汽轮机平常在复速机后设有抽气管道,用于产业用户运用。另一局部蒸汽持续做工,最后劳动完的乏汽排入凝固器、被冷却凝固成水然后使用凝固水泵把凝固水打到除氧器,除氧后提供汽锅用水。两者区别很大啊!凝气式的由于尚有真空,因此监盘时还要注意真空的境况。背压式的排气高于大气压。趁便简略说一下凝固器设置的作用:成立并维持汽轮机排气口的高度真空,使蒸汽在汽轮机内扩张到很低的压力,增大蒸汽的可用热焓降,从而使汽轮机有更多的热能转换为机械功,抬高热效果,收回汽轮机排气凝固水

汽轮发电机结构及原理

第四节汽轮发电机 汽轮发电机是同步发电机的一种,它是由汽轮机作原动机拖动转子旋转,利用电磁感应原理把机械能转换成电能的设备。 汽轮发电机包括发电机本体、励磁系统及其冷却系统等。 一、汽轮发电机的工作原理 按照电磁感应定律,导线切割磁力线感应出电动势,这是发电机的基本工作原理。汽轮发电机转子与汽轮机转子高速旋转时,发电机转子随着转动。发电机转子绕组内通入直流电流后,便建立一个磁场,这个磁场称主磁极,它随着汽轮发电机转子旋转。其磁通自转子的一个极出来,经过空气隙、定子铁芯、空气隙、进入转子另一个极构成回路。 根据电磁感应定律,发电机磁极旋转一周,主磁极的磁力线北装在定子铁芯内的U、V、W三相绕组(导线)依次切割,在定子绕组内感应的电动势正好变化一次,亦即感应电动势每秒钟变化的次数,恰好等于磁极每秒钟的旋转次数。 汽轮发电机转子具有一对磁极(即1个N极、一个S极),转子旋转一周,定子绕组中的感应电动势正好交变一次(假如发电机转子为P对磁极时,转子旋转一周,定子绕组中感应电动势交变P次)。当汽轮机以每分钟3000转旋转时,发电机转子每秒钟要旋转50周,磁极也要变化50次,那么在发电机定子绕组内感应电动势也变化50次,这样发电机转子以每秒钟50周的恒速旋转,在定子三相绕组内感应出相位不同的三相交变电动势,即频率为50Hz的三相交变电动势。这时若将发电机定子三相绕组引出线的末端(即中性点)连在一起。绕组的首端引出线与用电设备连接,就会有电流流过,这个过程即为汽轮机转子输入的机械能转换为电能的过程。 二、汽轮发电机的结构 火力发电厂的汽轮机发电机皆采用二极、转速为3000r/min的卧式结构。发电机与汽轮机、励磁机等配套组成同轴运转的汽轮发电机组。 发电机最基本的组成部件是定子和转子。 为监视发电机定子绕组、铁芯、轴承及冷却器等各重要部位的运行温度,在这些部位埋置了多只测温元件,通过导线连接到温度巡检装置,在运行中进行监控,并通过微机进行显示和打印。

汽轮机与发电机配套

N6-3.43汽轮机与QF6-2 6.3KV发电机配套存在的问题及解决实践 作者:周家海 二○一五年六月

汽轮机和发电机,均为目前发电行业中的主要设备,而N6-3.43汽轮机及QF6-2 6.3KV发电机为制造厂家的定型产品,由于其功率较小,主要应用于钢铁、化工等工厂的余热回收、废气发电、垃圾发电等循环经济领域,因而其行业往往不是生产企业的主业,在技术、人才方面难以得到足够的重视,在余热发电设备选型、设备配套时只注重技术参数的匹配,而设备外形、安装尺寸等细微工作往往会被忽略,直到设备吊装前才发现问题,阻碍了工程项目的顺利实施。那么这类问题怎么解决,我们以某钢铁公司自备电厂的建设为例进行探讨分析。 某钢铁公司为回收利用高炉煤气,拟建两台6000KW发电机组,汽轮机为东方汽轮机厂生产的N6-3.43汽轮机,发电机为杭州发电设备厂生产的QF6-2 6.3KV发电机,其基础为+6000平台整体式框架型基础,设备吊装前,分别复核基础螺栓孔,发现汽轮机与发电机的联轴器无法联接,具体问题如下: 一、汽轮机及其立键架基础上,冷凝器中心线至立键架螺栓中心 线之距为785mm,而设备上,汽轮机冷凝口中心线至立键架螺栓中心 线之距为810mm,若按原方案安装,冷凝器与汽轮机冷凝口对接,立 键架螺栓孔将与基础螺栓孔错位25mm而无法安装。见下图:

二、汽轮机3#轴承中心线至立键架背部之距为384mm,发电机中心线至汽轮机方向的的垫板之距为1695mm,所以,当立键架背部端面与发电机垫板相贴时,汽轮机3#轴承中心线与发电机中心线之距为1695mm+384mm=2079mm。但是,若以汽轮机、发电机两半联轴器相贴进行测量,汽轮机3#轴承中心线与发电机中心线之距应为1985mm,也就是说,当发电机轴颈正常落位于汽轮机3#轴承时(此时汽轮机、发电机两半联轴器相贴),实际上汽轮机的立键架已经和发电机的垫板相撞(空间位置交叉)2079mm-1985mm=94mm,在斜面处相撞60mm。见下图:

汽轮机本体结构(低压缸及发电机)

第一章600WM汽轮机低压缸及发电机结构简介 一、汽轮机热力系统得工作原理 1、汽水流程: 再热后得蒸汽从机组两侧得两个中压再热主汽调节联合阀及四根中压导汽管从中部进入分流得中压缸,经过正反各9 级反动式压力级后,从中压缸上部四角得4 个排汽口排出,合并成两根连通管,分别进入Ⅰ号、Ⅱ号2个低压缸。低压缸为双分流结构,蒸汽从中部流入,经过正反向各7 级反动式压力级后,从2个排汽口向下排入凝汽器。排入凝汽器得乏汽在凝汽器内凝结成凝结水,由凝结水泵升压后经化学精处理装置、汽封冷却器、四台低压加热器,最后进入除氧器,除氧水由给水泵升压后经三台高压加热器进入锅炉省煤器,构成热力循环。 二、汽轮机本体缸体得常规设计 低压汽缸为三层缸结构,能够节省优质钢材,缩短启动时间。汽机各转子均为无中心孔转子,采用刚性联接,,提高了转子得寿命及启动速度。#1 低压转子得前轴承采用两瓦块可倾瓦轴承,这种轴承不仅有良好得自位性能,而且能承受较大得载荷,运行稳定。低压转子得另外三个轴承为圆筒轴承,能承受更大得负荷。 三、岱海电厂得设备配置及选型 汽轮机有两个双流得低压缸;通流级数为28级。低压汽缸为三层缸结构,能够节省优质钢材,缩短启动时间。汽机各转子均为无中心孔转子,采用刚性联接,提高了转子得寿命及启动速度。低压缸设有四个径向支持轴承。#1 低压缸得前轴承采用两瓦块可倾瓦轴承,这种轴承不仅有良好得自位性能,而且能承受较大得载荷,运行稳定。低压转子得另外三个轴承为圆筒轴承,能承受更大得负荷。 汽轮机低压缸有4级抽汽,分别用于向4 台低压加热器提供加热汽源。N600-16、7/538/538汽轮机采用一次中间再热,其优点就是提

汽轮机配汽主要业绩及专利成果(新)

序号 项目委托单位 机组类型 配汽优化时间 所改造过的电厂及相应机组型号 1 吉林长山热电厂 ( 2 台)200MW 1995 年, 1996 年 2 吉林热电厂 (1 台)200MW 1996 年 3 锦州电厂 (2 台)200MW 1997 年 4 锦州电厂 (2 台)200MW 1998 年 5 锦州电厂 (2 台)200MW 1999 年 6 富拉尔基电厂 (3 台)200MW 199 7 年, 2001 年 7 长春第二热电厂 (1 台)200MW 1999 年 8 清河发电厂 (2 台)210MW 1999 年, 2000 年 9 牡丹江第二发电厂 (3 台)100MW 1999 年~2001 年 10 牡丹江第二发电厂 (4 台)210MW 1999 年~2001 年 11 淮北电厂 (1 台)210MW 2002 年 12 珲春发电厂 (2 台)100MW 1999 年, 2000 年 13 北安发电厂 (2 台)50MW 1999 年, 2000 年 14 佳木斯发电厂 (4 台)100MW 1999 年, 2001 年 15 双鸭山发电厂 (1 台)210MW 2001 年 16 浑江发电厂 (2 台)100MW 1998 年, 1999 年 17 长春第一热电厂 (1 台)50MW 1998 年 18 三门峡电厂 (2 台)300MW 2000 年,2001 年 19 信阳电厂 (2 台)300MW 2001 年,2002 年 20 龙岗电厂 (2 台)300MW 2001 年、2002 年 21 德州电厂 (2 台)300MW 2001 年 22 哈尔滨第三发电厂 (2 台)200MW 2009 年,2010 年 23 哈尔滨第三发电厂 (2 台)600MW (亚临界空冷) 2003 年,2004 年 24 国华沧东电厂 (2 台)600MW (亚临界空冷) 2006 年,2007 年 25 陕西国华锦界电厂 (1 台)600MW (亚临界空冷) 2008 年 26 陕西国华锦界电厂 (3 台)600MW (亚临界空冷) 2009 年 27 国华沧东电厂 2 台 660MW (超临界机组) 2009 年,2010 年 28 牡丹江第二发电厂 (1 台)215M 2010 年 哈尔滨工业大学先进动力技术研究所 表 1 技术推广及应用成果

汽轮机、发电机知识

汽轮机的分类方式 作者:佚名文章来源:不详点击数:59 更新时间:2008-9-26 19:52:42 1、按照汽轮机的热力特征分类 (1)凝汽式汽轮机:蒸汽在汽轮机内膨胀做功以后,除小部分轴封漏气外,全部进入凝汽器凝结成水的汽轮机。实际上为了提高汽轮机的热效率,减少汽轮机排汽缸的直径尺寸,将做过功的蒸汽从汽轮机内抽出来,送入回热加热器,用以加热锅炉给水,这种不调整抽汽式汽轮机,也统称为凝汽式汽轮机。 (2)抽汽凝汽式汽轮机:蒸汽进入汽轮机内部做过功以后,从中间某一级抽出来一部分,用于工业生产或民用采暖,其余排入凝汽器凝结成水的汽轮机,称为一次抽汽式或单抽式汽轮机。从不同的级间抽出两种不同压力的蒸汽,分别供给不同的用户或生产过程的汽轮机称为双抽式(二次抽汽式)汽轮机。 (3)背压式汽轮机:蒸汽进入汽轮机内部做功以后,以高于大气压力排出汽轮机,用于工业生产或民用采暖的汽轮机。 (4)抽汽背压式汽轮机:为了满足不同用户和生产过程的需要,从背压式汽轮机内部抽出部分压力较高的蒸汽用于工业生产,其余蒸汽继续做功后以较低的压力排除,供工业生产和居民采暖的汽轮机。 (5)中间再热式汽轮机:对于高参数、大功率的汽轮机,主蒸汽的除温、初压都比较高,蒸汽在汽轮机内部膨胀到末几级,其湿度不断增大,对汽轮机的安全运行很不利,为了减少排气湿度,将做过部分功的蒸汽从高压缸中排出,在返回锅炉重新加热,使温度接近初

始状态,然后进入汽轮机的的低压缸继续做功,这种汽轮机称为中间再热式汽轮机。 2、按用途分 (1)电站汽轮机:仅用来带动发电机发电的汽轮机称为电站汽轮机。 (2)供热式汽轮机:既带动发电机发电又对外供热的汽轮机称为供热式汽轮机,又称为热电联产汽轮机。 (3)工业汽轮机:用来驱动风机、水泵、压缩机等机械设备的汽轮机称为工业汽轮机。 (4)船用汽轮机:专门用于船舶推进动力装置的汽轮机称为船用汽轮机。 3、按汽轮机的进汽压力分 (1)低压汽轮机:进汽压力为1.2~1.5Mpa (2)中压汽轮机:进汽压力为2.0~4.0Mpa (3)次高压汽轮机:进汽压力为5.0~6.0Mpa (4)高压汽轮机:进汽压力为6.0~10.0Mpa (5)超高压汽轮机:进汽压力为12.0~14.0Mpa (6)亚临界汽轮机:进汽压力为16.0~18.0Mpa (7)超临界汽轮机:进汽压力大于22.17MPa

汽轮机配汽设计的优化分析

汽轮机配汽设计的优化分析 发表时间:2019-10-28T15:49:56.883Z 来源:《电力设备》2019年第12期作者:陈亮 [导读] 摘要:汽轮机的配汽方式影响着整个机组的稳定性、可控性和经济性。 (国家电投集团山西铝业有限公司山西省原平市 034100) 摘要:汽轮机的配汽方式影响着整个机组的稳定性、可控性和经济性。本文主要针对汽轮机配汽的问题进行阐述,通过多种方法提出解决方案,为后续研究起到借鉴作用。 关键词:汽轮机;配汽方式;优化分析 一般而言,大型的汽轮机包含三种蒸汽分配方式,节流、喷嘴以及混合三种配汽方式。节流配汽也叫单阀配汽,简而言之即汽轮机的所有调节阀都是通过相同的开口来调节蒸汽的流量。喷嘴配汽也叫顺序阀配汽,顾名思义即汽轮机中的调节阀按照安装的先后顺序来对蒸汽的流量进行调节。混合配齐则是两种方式的组合,负荷较低的过程中各个汽轮机的调节阀按照节流配器的方式,同时对蒸汽流量进行控制。当负载上升到一定的控制点时,其中某些控制阀关闭,再随着负载的逐渐增加,关闭的控制阀再次打开来调节蒸汽流量。 一、配汽方式对汽轮机的影响 1.1不平衡汽流力 当蒸汽通过调节控制阀门时,调节阀的机翼产生汽流力。汽轮机中调节级主要分为几个喷嘴组。当调蒸汽均匀进入时,处于对角两个位置的喷嘴组将会产生相反方向的汽流力。如果两个喷嘴组具有相同的面积,则调节级的汽流力不仅可以用来驱动转子之间的扭,将会产生轴向汽流力和经过转轴中心的力,汽流力将直接切向二者之间的整个圆周中,实现完全自平衡。如果出现在调节级的部分进汽时,不通过蒸汽的喷嘴组则不会产生相应的汽流力。如果进汽的方向不是对角时,汽轮机无法实现自平衡,从而出现调节级蒸汽分布不够平衡的情况,进而产生增加轴承负荷的汽流力。 1.2大容量高参数机组之间的不平衡汽流力 通过对以上情况的研究可知,主蒸汽压力的调整会直接影响调节级蒸汽分配不平衡而产生的汽流力大小。如果主蒸汽压力不断增加,调节剂蒸汽分配将会出现不平衡的情况,导致汽流力不断增大。若单元机组的容量不断增加,该单元机组的参数也将不断接近超临界,主蒸汽的压力也不断攀升。通过对调节级的可变工作情况进行计算,可以得出在全部负荷变化的情况中,额定主蒸汽参数下,调节级产生的不平衡汽流力对不同轴承在水平和垂直方向产生的附加负荷。在汽轮机负荷变化的过程中,调节级蒸汽分配不平衡所产生的汽流力最高接近150KN。而密封间隙内部,存在转子之间径向不平衡和压力径向分布不均匀的情况。导致汽流激振的主要原因是汽缸中又不对称的位置和轴承不稳定。调节级蒸汽分配不平衡将会产生汽流力,从而进一步导致转子的抬升和轴心的偏离,在一定程度上降低轴承整体的稳定。 二、汽轮机配汽设计的优化 2.1顺序阀投运试验 想要实现顺序阀成功投运,需要保证汽轮机轴承的振动与温度等参数在限定范围内。随着主蒸汽参数不断提升,轴系便会逐渐变得轻盈,不断显现对汽轮机转子的影响。如果汽轮机的调节阀之间存在开度的差异,在内部负荷不断变化的情况下,调节剂的蒸汽流动情况也将随之改变,尤其引起高压转子的受力变化,从而进一步影响汽轮机振动、金属温度以及轴向位移,严重时会影响整个汽轮机的顺利运行。通过顺序阀方式的投运实验能够避免出现以上情况,该试验主要包含了以下几个方面: 2.1.1阀门关闭 通过该实验,针对各个情况制定可行的顺序阀顺序。如果转子出现振动较大的情况,选择上部喷嘴组优先出汽的方式。在轴承温度较高时,选用下方喷嘴组优先出汽的方法。如果设备允许,可以优先选择调节级对角喷嘴。通过这项实验,可以针对不同的情况来寻找合适的顺序。在阀门顺序确认之后可以进行切换实验,可以直接观察该顺序情况下个主要参数的实际运行情况,将不同负荷情况下的参数都控制在合理范围内。 2.1.2配汽方式的切换 一般而言,配汽方式的切换主要包含了两种,即单阀与顺序阀之间的互相切换,这种试验可以观察不同机组负荷情况下,主蒸汽压力等参数的变化。如果出现不正常的变动,说明需要再次整理配汽曲线用以反映机组实际的流量特性。 2.1.3负荷变动试验 一般而言,负荷的变动主要观察整理机组的协调能力。如果汽轮机内部各个机组在同一配汽方式,相异负荷阶段的协调能力相差较远,或者在不同的配汽方式下差别明显,就说明需要重新整理配汽曲线。 2.2流量特性试验 汽轮机流量特性主要是用以描述流量与调节阀开度之间的关系。流量特性一般需要通过现场测试记录的方式得到。测试汽轮机的流量特性主要为了更好地整理配汽函数,而不同配汽函数的流量特性在实验过程中基本表现相同,但是数据处理过程略有不同。 2.3整理配汽函数 一般而言,汽轮机的配汽函数曲线主要用以描述调节阀开度及流量二者指令之间的关系。如果二者之间的表现一致,那么汽轮机将会体现较好的控制性能,否则将会产生严重的后果。根据汽轮机的流量特性可以将配汽函数整理出来。 2.4 滑压曲线优化 通过上述两种试验可以进一步确保喷嘴控制的安全性,但是想要实现这种方式的经济型,还需要对滑压曲线进行优化。滑压优化常通过现场实验或者理论推算的方式得出。理论的推算主要是在确定可行压的范围之后,通过改变主蒸汽的压力来计算变工况,从而获取在不同负载情况下,耗电耗能最低的主蒸汽压力,并将其作为最优蒸汽压力,由此得出汽轮机的滑压曲线。而现场实验主要通过两种方法,分别是比较法和耗差分析法。前者主要是指在汽轮机正常运行的参数范围内,选取其中的典型负荷带你,并设置不同的压力来对比调节阀的开度。后者则是通过机组的耗能的差异程度,将耗能最小的作为节点完成最优的滑压曲线。 2.5混合配汽方式的优化 混合配汽的方式是将节流配汽和喷嘴配汽两种方式结合在一起,兼顾二者之间的经济性,比较实用某些带基本负荷的机组,如果机组需进行调峰运行的过程,就会产生较大的损失。同时,混合配汽的方式一般只能运行于某个单一的阀点下滑压,目前大部分采用三阀点滑

煤气发电(燃气锅炉、汽轮机组)自动化控制汇编

钢厂转炉煤气回收发电(燃气锅炉、汽轮机组)自动化控制 轧一钢厂原转炉煤气一直处于放散状态,2009年开始建一80000m 3转炉煤气回收柜,另厂区的多余的高炉煤气也引过来,配套建一台75t/h 燃气锅炉,分两层(八个烧嘴,每层4个,上高炉煤气,下转炉煤气)燃烧,产生450℃、3.82MPa 过热蒸汽,配一套15MW 汽轮发电机组,N15-3.43(南 汽),主汽门前蒸汽压力:196.0296.043.3+-MPa(a);主汽门前蒸汽温度1015435+-℃。 DCS 控制系统采用罗克韦尔Contrologx5000系统,CPU 、以态网、IO 总线采用冗余方式,2个主站(FSSS 和汽机站)一个远程站(循环水站);对锅炉火检、点火(单枪自动、单层,双层全程自动、手动)、吹扫、MFT (FSSS );燃烧、负荷、气包液位(双调节阀无扰动三冲量自动切换)、送引风、过热器、安全联锁等控制;对汽机启动、升速(冷、暖态全程自动、半自动、手动)、转速(去掉woodward 505,在控制系统上实现)、同期并网,跳闸自动切换、自动转速跟踪、功率(炉跟机)、压力(机跟炉);ETS 、TSI 、大联锁;同期调整、油泵、冷凝泵、汽封、热井液位、安全联锁;除氧器等控制;对循环水系统冷却风机组、水泵、阀等控制;温度、压力、流量(差压开方、温压补偿)、液位、分子含量、震动位移等参数监视。 系统除化学水有单独的控制系统,其他工艺系统全部在DCS 上实现控制,无其他额外控制系统(DCS 、PLC 、控制单元),真正实现集中控制,程序功能考虑详细、周密,经过反复测试、修改,补掉了已知的所有漏洞,避免给生产运行造成安全隐患,系统操作简便、直观,运行平稳,维护简单,节省总投资。 另:在下做过转炉煤气回收控制(艾默生DELTAV ,昆钢二、三炼钢转炉煤气回收混合加压),对间断回收、联锁,柜位,混合加压,除尘等控制亦很熟悉,可考虑统一集成控制,以便数据传输,统一操作,维护方便。 现传些图片供参考。

第三章汽轮机配汽系统

第三章 汽轮机配汽系统 汽轮机的配汽方式对汽轮机的运行性能、结构,特别是汽缸高中压部分的布置和结构有很大的影响。汽轮机最常采用的配汽方式为喷嘴配汽和节流配汽。在一般情况下,节流配汽的汽轮机在设计工况下的效率稍高于喷嘴配汽的汽轮机,而在部分负荷工况下,前者的效率则低于后者。图3-1表示了这两种汽轮机的热耗(h )随流量(G ,即机组功率)而变化的曲线。在设计工况下节流配汽的汽轮机效率高的原因在于,节流配汽的汽轮机没有调节级,不存在调节级中的部分进汽损失,另外,它的第一级的余速可被下一级利用。而在部分负荷下效率的降低,则是由于节流损失的增大引起的。 节流损失的大小与机组流量(功率)变化的程度有关,也和机组总理想焓降的大小有关。流量变化越大,阀门节流程度越大,节流损失就越大,机组的总理想焓降越大,即初压/背压比越大,节流损失则越小(占总焓降的比例越小)。 对于中间再热机组,节流损失仅存在于中间再热之前的高压级内。由于高压机组的背压远大于凝汽机组的背压,所以,对高压 缸来讲,节流损失是相当大的。中低压缸的焓降一般要占机组总焓降的2/3~3/4,而这 一部分不受节流损失的影响,因此对整个汽 轮机来讲,节流损失将大为减小。对于中间再热机组,节流损失的大小随初压力的提高 而有所降低。这是因为初压力的提高对高压 级组的初压/背压影响不大(随着初压力的提 高,高压级组的背压也将按比例增长),但 却会扩大中低压级组焓降在汽轮机总焓降中所占的比例,从而使整个机组的节流损失 有所减少。喷嘴配汽汽轮机在部分负载下的经济性优于节流配汽汽轮机,但它的高压级组在变工况下的蒸汽温度变化比较大,从而会引起较大的材料热应力,因此调节级汽缸壁可能产生的热应力常成为限制这种汽轮机迅速改变负荷的重要因素之一。而节流配汽汽轮机的情况则与此不同,各级温度随负荷变化的幅度大体相等,而且都很小。所以节流配汽的汽轮机 虽然部分负荷下的效率较低,但它适应工况变化的能力却高于喷嘴配汽的汽轮机。大功率汽轮机从安全着眼,控制机组在运行中的热应力具有很大意义,所以带基本负荷的大功率汽轮机目前倾向于采用节流配汽方式。节流配汽汽轮机在部分负荷下效率低这一缺点,可通过采用滑压运行的方式在一定程度上予以克服。 最为优越的配汽方式是采用了所谓双重配汽方式。兼顾喷嘴和节流两种配汽方式的优点,将汽轮机设计成高负荷段为喷嘴配汽,低负荷段转为节流配汽的节流-喷嘴混合配汽方式。 国外实践表明,随着蒸汽参数的提高,汽轮机结构的柔性应相应提高。特别是汽轮机的进汽部分,不管是高压进汽部分还是中压进汽部分,这点都尤为重要,因为该部位是汽轮机的高温区域,尽可能地减小其在变动工况下所固有的热应力,对适应高温运行有很重要的意义。经验表明,和高参数机组相比,在进汽部分采取一些新的结构方式,增强相互膨胀,防止汽缸与喷嘴室之间产生裂纹等。这些新的结构方式包括:蒸汽室和汽缸分离并铰接在基础上,蒸汽室和汽缸采用柔性很大的导汽管连接,喷嘴汽室与汽缸采用装配式联接等。 高参数大功率汽轮机多采用喷嘴配汽。习惯做法是,蒸汽室与喷嘴室单独铸出,然后再分别汽轮机的热耗曲线及其比较图3-1 喷嘴配汽和节流配汽节流配汽 喷嘴配汽 热耗 K G 流量

汽轮机发电机保护的应用论文

钢铁中小型发电机组继电气保护的设置与整定 摘要:钢铁行业发电机组大多采用工业煤气原料为能源燃料,其他的能源,利用高炉产生的煤气、转炉煤气、焦炉煤气等,通过锅炉产生蒸汽发电等;利用煤气压差发电,形成在循环经济,节省了能源的浪费,降低了钢铁行业的成本,利用钢铁的各类能源余热形成自备发电机组,在钢铁行业显得越来越重要,这就需要进一步完善发电机组的各类生产运行保护。 发电机机组由于结构复杂,在运行中可能发生故障和异常运行状态,这样会对发电机造成危害,同时,由于系统故障也可能损伤发电机,特别是现代的大中型发电机,由于容量大,出现故障维修困难,因此,要对发电机可能发生的故障类型及不正常的运行状态进行分析,并针对性设置相应的必要的保护措施,来保证发电机组的正常运行。 关键词:差动保护;比例差动保护;过负荷保护;过流保护;失磁保护。 振动保护;油系统保护;轴移位保护;超速保护 目录: 1、引用标准和规范 1、1 《电力装置的继电保护和自动装置设计规范》BS50062-92 1、2 《电力预防性试验规程》DL/596-1996 1、3 《继电保护和自动装置技术规程》DL400-91 1、4 《护技术规程》14285-2006 1、5 《继电保护装置运行整定规程》D L T584-95 1、6 《继电保护技术规程》GB14285-2006 2、电力能源的发展 2、1 电力系统:就是指发电厂、变电所、送电线路、用电设备所构成的整体。 2、2 电力能源:水力发电、火力发电、核电、太阳能发电(环保型)、风力发电(环保型)。 3、钢铁行业电力能源的循环经济发展 3、1 利用剩余煤气发电(焦炉煤气、高炉煤气、转炉煤气)、煤气余压发电等 3、2 锅炉生产蒸汽推动汽轮机发电(即汽轮机发电机组,装机量10MW—100MW)。 3、2、1 利用高炉煤气压差TRT发电机(4500KW—8000KW) 3、2、2 CCPP发电10000kW –50MW) 3、2、3 干熄焦发电机 4、继电保护的发展状况 4、1 第一代的继电保护是电磁式继电器。 4、1 第二代的继电器装置加装的晶体管保护装置。 4、3 第三代的继电器装置是以集成电路为保护装置。 4、4 第四代是以微机继电器保护装置的检测、控制、显示、保护遥控等综合保护装置。 5、电气继电保护概论 4、1 继电保护的作用 5、1、1 继电保护的概念及任务 电力系统继电保护是反映电力系统中电气设备发生故障或不正常运行状态而动作于断路器跳闸或发生信号的一种自动装置。 继电保护的基本任务是:电力系统发生故障时,自动、快速、有选择地将故障设备从电力系统中切除,保证非故障设备继续运行,尽量缩小停电范围;电力系统出现异常运行状态时,根据运行维护的要求能自动、及时、有选择地发出告警信号或者减负荷、跳闸。 5、2 继电保护的基本原理和保护装置的组成 5、2、1 反应系统正常运行与故障时电器元件(设备)一端所测基本参数的变化而构成的原理(单端测量原理,也称阶段式原理)

为什么汽轮机进汽量增加时

为什么汽轮机进汽量增加时,汽轮机转速不变,发电机负荷会 升? 首先必须明白发电机的工作原理:我们都知道一个物理现象:就是一个线圈在磁场内旋转,做切割磁力线的运动,在电磁作用下,线圈中会产生感应电流,通俗点说就是产生了电能。发电机就是根据此原理进行设计制造的,不过比较复杂而已,但基本原理是相同的。 发电机的转子为磁极,转子内部装有励磁绕组,当通上直流电后就会励磁,产生磁场,通俗的说就变为电磁铁,一般给转子供给直流电的设备我们叫励磁机,就是接在发电机后部的那个,它的作用就是在运行中发出直流电,供给转子励磁线圈使用,以便产生磁场,这种供给直流电的方式在电气专业叫他励方式,还有一种自励方式,就是不要励磁机(所以有的会员所用的发电机后部并没有励磁机),而是使用发电机所发的交流电,经励磁变(硅整流)后改成直流电,供给转子线圈使用。顺便说下,我们经常看到的发电机转子上的碳刷,就是供给转子直流电的设备,当发电机直流电供给过大时(也就是电气专业所说的无功较高),此时碳刷就易出现打火现象(这只是打火的原因之一,我只是顺便说说,让大家了解下)。 在发电机定子铁芯上嵌有三相对称绕组,就是我们日常所说的定子线圈,发电机工作时,汽轮机带动发电机转子(磁极)旋转,使定子线圈绕组不断切割转子磁场而感应出三相交流电动势,即发出电能了。这个过程其实就是磁场在旋转而线圈是固定的,但其产生电能的作用和我前面所说的原理是一样的。 我们国家的交流电的频率为50HZ,根据这个公式:f=pn/60(f为频率,p 为磁极对数,n为发电机转速)可知,如想得到想要的频率,只要根据机组工作转速设置合适的磁极对数即可。汽轮发电机组的工作转速为3000r/min,有上述公式可知其对应50Hz的频率,设置一对磁极对数即可。另根据上述所说的,大家也可算算核电站机组的工作转速为:1500r/min,水电站水轮机组的工作转速为750r/min,要发出的50HZ频率交流电来,应装多少磁极对数?发电机当其磁极数固定不变时,其频率f和转速n成正比关系,这是同步发电机的最大特点,也是同步发电机的调频原理。发电机孤网运行时,调节其转速可以改变其频率,一旦与电网并网后,由于并上电网的机组频率都是保持在50Hz运行,所以发电机也就保持其额定转速运行,并且机组的转速根据电网频率的波动而变化。因此作为发电机原动机汽轮机,进汽量的改变,只是将能量用在克服发电机的电磁力矩,故只会改变发电机输出功率,将机械能转化为电能,而不会提高转速。这里再说下,当增加汽轮机的进汽后,发电负荷增加,电气专业也会相应的增加励磁电流,用他们的专业术语叫加无功,而汽机所看到的负荷在电气专业叫有功。 这也是我们曾经说过的:当汽轮机遇到紧急情况需迅速停下来时,除了破坏真空外,也可要电气增加励磁,其实就是增大机组的旋转阻力,使之能够迅速停下来而已。 机组在运行中,开大调门增大进汽,对于电气专业来说就是增大有功功率,也就是我们通常说得电负荷增加了。与此同时,电气专业也会相应增加发电机的励磁电流,这个电气专业叫增大无功,从而达到你说的维持新的电磁力矩平衡,在电气专业来说也就是保证发电机在规定的功率因数下工作。如果你们的机组并

汽轮机配汽机构资料+PPT课件

汽轮机配汽机构
配汽机构是指调节汽门及带动调节汽门的传动机构。 一、调节汽门
作用:在油动机控制下,通过改变阀门开启的个数及开度,来改变进入汽轮机的 蒸汽量(或焓降),以达到改变功率的目的。 所以首先结构设计要尽量合理, 如能自由开关, 关闭时密封性好, 结构简单可靠, 蒸汽流动的压力损失要小。 从运行上讲,我们关心的是:阀门开启过程中流量特性要满足运行的要求。 阀门的提升力要小,而且全开时不会受到向上的推力。 <1>调节汽门的流量计算: 1. 计算的任务:根据已知条件 a、必要的热力计算数据 b、汽门的型线及基 本尺寸 计算不同汽门开度 L 下,蒸汽的流量 Dn 或者根据不同蒸汽流量 Dn 下确定阀门开度 L。 2. 特点: 一只球阀为了把蒸汽流过阀门的速度能转换成压力能, 阀座上常有 一段扩压管,然后蒸汽进入喷嘴室,通过喷嘴膨胀形成高速气流,使调节 级叶片冲转,以后再进入非调节级工作。设汽门前压力 p0’,比容 v0’阀后 扩压管后压力,也就是喷嘴前压力为 p0″,调节级喷嘴后压力为 p1,调节 级叶片后压力为 p2,再设扩压管喉部面积为 Av= Dv2
式中: Av-公称面积 Dv-公称直径(对不同型式的阀门定义不同的概念) 特点:1)汽门在不同开启位置时,汽门的最小通流面积不是常数 2)汽门喉部压力 pv 汽门后压力,而是有扩压,而且扩压效率随 工况而变,汽门前后压力比不是常数。

这样汽门的流量不能简单认为是阀门前后压力比的函数,给理论计算带来困 难,一般采用理论分析+试验方法,给出经验公式。 1. 试验: 定义: 在一定压力差 p=p0′-p0″及开度 L 条件下的实际流量为 G, 可以通过 对具体的阀门进行试验而求得。 在初压 p0′及阀门公称面积 Av 条件下的临界流量 Gc。公式为:
GC=0.648Av χ= 为汽门相对流量系数。
试验曲线的求取: 通过试验求取不同汽门压差 p,及升程 L 下的真实流量 G 以后,根据上述定义 可以作出相对流量系数的曲线。

汽轮机参数

三、汽轮机主要技术规范 (一)汽轮机铭牌主要技术参数 汽轮机型号 C12-3.43/0.981 型式抽汽凝汽式汽轮机 主汽门前蒸汽压力额定3.43(+0.2 )MPa(a) -0.3 最高3.63MPa(a) (可长期连续运行) 主汽门前蒸汽温度额定435(+5 )℃ -15 最高445℃ (可长期连续运行) 额定进汽量 87t/h 最大进汽量 127t/h(可长期连续运行)额定抽汽量 50t/h 最大抽汽量 80t/h 额定抽汽压力 0.981MPa(G) 抽汽压力范围 0.785~1.275MPa(G) 额定抽汽温度317.2 ℃ 抽汽温度范围 250~330℃ 额定功率 12 MW 汽轮机铭牌功率 12 MW 最大功率 15 MW 汽轮机转向(机头向机尾看)顺时针方向 汽轮机额定转速 3000r/min 汽轮机一发电机轴系临界转速 1735r/min 汽轮机单个转子的临界转速 1470r/min 汽轮机轴承座允许最大振动 0.03mm(双振幅值) 过临界转速时轴承座允许最大振动 0.10mm(双振幅值) 允许电频率变化范围50±0.5Hz 汽轮机中心高(距运转平台) 750mm 汽轮机本体总重 57t 汽轮机上半总重(连同隔板上半等) 15t 汽轮机下半重(包括隔板下半等) 19t 汽轮机转子总重 7.83t 汽轮机本体最大尺寸(长×宽×高)mm 6021×3590×3635

(二)汽轮机技术要求; 本汽轮机实际运行条件:进汽量为72 t/h,最大进汽量83 t/h;额定抽汽量45 t/h;无高加、除氧器回热抽汽;循环水温度≤33℃。 锅炉正常运行时,保证C12机组纯凝工况下发电量能达到12MW并长期稳定运行。并考虑两台锅炉运行时,其中一台汽机故障时另一台汽机在保证供汽条件下,抽凝状态运行能达到15MW。 12MW抽凝式汽轮发电机组的实际运行工况: 型式抽汽凝汽式汽轮机 )MPa(a) 主汽门前蒸汽压力额定3.43(+0.2 -0.3 最高3.63MPa(a) (可长期连续运行) )℃ 主汽门前蒸汽温度额定435(+5 -15 最高445℃ (可长期连续运行) 额定进汽量 71t/h 最大进汽量 83t/h(可长期连续运行) 额定抽汽量 35t/h 最大抽汽量 45t/h 额定抽汽压力 0.981MPa(G) 抽汽压力范围 0.785~1.275MPa(G) 额定抽汽温度317.2 ℃ 抽汽温度范围 250~330℃ 四、发电机技术规范 (一)发电机参数 型号 QFW-15-2A 额定功率15MW 额定功率因数 0.8 额定电压10.5kV 额定转速 3000r/min 频率 50Hz 相数 3 极数 2 定子线圈接法 Y 效率不低于 97% 短路比 0.48

汽轮机抽汽逆止阀介绍详解

图 1 图 3 图2 汽轮机抽汽逆止阀介绍 一值 丁湧 抽汽逆止阀的作用 抽汽逆止阀是保证汽轮机安全运行的重要设备之一,当汽轮机甩负荷时,它们迅速关闭,保护汽轮机不致因蒸汽的回流而超速,并防止加热器及管路带水进入汽轮机。机组正常运行中,运行人员要特别注意各抽汽逆止阀在正常状态,以保证在事故情况下能可靠动作,保护汽轮机。 抽汽逆止阀的结构特点 1、采用倾斜阀座,如图1。 1)倾斜角度为30°,开启角度为45°,开启角度小,关闭行程短。 2)倾斜阀瓣对密封面有下压力,有利于密封。 3)介质压降小。 2、由于阀瓣下面斜向布置,不用专门设疏水点,积水直接由逆止阀后的疏水管路疏出。 3、根据不同用途配备不同结构 1)高排逆止阀采用双气缸,即一个辅助关闭气缸,一个强迫开启气缸。 2)小管径抽汽管道采用气缸连杆上下部都带螺母的结构,如1段抽汽、2段抽汽逆止阀,结构如图2。 3)大管径抽汽管道采用气缸连杆上部带螺母,下部不带螺母的结构,如3段抽汽、4段抽汽、5段抽汽和6段抽汽逆止阀,结构如图3。 4)根据阀门尺寸大小,配备适当的重锤。 重锤的重量为阀瓣重量的50%,以平衡50%阀瓣重量,一方面保证阀瓣能自由摆动,另一方面减小逆止阀前后压降。

抽汽逆止阀的工作过程 宁海电厂二期工程采用阿德伍德—莫利公司生产的抽汽逆止阀,阀门的基本构成为一摆动的阀瓣,允许流体从进口进入,自由通过阀体进入管路。该阀门是一种自由摆动,重力关闭的止回阀。当进口压力稍高于出口压力时,阀瓣会开启;当进口压力稍低于出口压力或回流发生时,阀瓣会关闭。阀门通常配备一个侧装气缸,也叫辅助关闭气缸,它的作用是当失气时给阀瓣提供一个正向关闭力,在管内流体倒流前,由于阀瓣紧靠住管壁,这个正向关闭力可以先让阀瓣先关闭一定角度,有助于逆止阀快速关闭。在正常条件下,利用气缸下部进口提供的压缩空气,推动活塞压缩弹簧,使连杆处于伸出位置,这时阀瓣可以自由开关。排除气缸中的压缩空气,弹簧使活塞和杠杆臂向下运动,从而使轴和阀门阀瓣朝关闭方向转动。如果发生逆向流体,阀门将以正常方式关闭。向气缸进口提供压缩空气时,阀门将恢复正常工作。 逆止阀的开启和关闭完全靠管道内介质在阀瓣前后产生的压差,辅助气缸的作用只是在逆止阀需要关闭的时候可以起到辅助关闭的作用。如图4中A部分,是一个特殊的结构,气缸连杆与阀瓣的轴通过两个带60°角度空缺的圆环套在一起,在供气电磁阀带电时,将气缸的连杆向上提起,而实际与阀瓣连接的轴在A的作用下只走了60°的空行程,阀瓣实际并没有动作。当汽轮机需要快速关闭抽汽逆止阀的时候,同时让供气电磁阀失电,这样A又向关闭方向走60°的行程,给逆止阀一个正向关闭的力,如果管道内介质不存在了,则逆止阀快速关闭。 图4 图4

汽轮机跳闸后如何跳发电机

现在机组大多是由程跳逆功率来实现汽机跳发电机,这种方式的优点是最突出的,而且也是反措等推荐的.能够最大程度上避免汽机跳闸由于汽门关闭不严而解列发电机造成机组超速.程跳逆功率虽然比热工跳闸的动作速度慢一些,但是时间也是很短的,如此短的逆功率不会对机组造成太大影响,反而能有效避免超速.所以现在大多首选程跳逆功率为的正常停机方式. 但是以前的一些老机组,特别是200MW级及以下的,仍然有相当一部分采用热工跳闸的,也就是不经过逆功率的判别了,热工跳闸主要的依据是主汽门关闭信号来,也有带其它判据的,比如说ETS母管油压低,AST电磁阀动作等等.采用热工跳闸这种停机方式的确可以比程跳逆功率更快速的实现汽机跳发电机,但是一旦主汽门关闭不严,但辅助行程开关已经到位,便会联跳发电机,这时就很有可能会超速了.不过以前的设计理念还是担心逆功率会对机组造成一定影响,而且逆功率继电器也不一定会很可靠(每次打闸前的负荷不同逆功率程度不同,我们曾经出现过多次逆功率达不到定值机组迟迟无法解列最后被迫手动解列,还有一次手动解列厂用电忘记切换了,灭磁开关也忘断了,结果厂用失压发电机还过激磁了,最终一再的改小定值)而且对一些老的机组,或者特殊的机组,比如我们老厂俄罗斯的机组,厂家要求不能逆功率,我们也只好仍然采用热工跳闸,再比如秦山二核,为了防止逆功率损坏汽轮机叶片,连程序跳闸的短时逆功率也不愿接受,所以采用的是正向低功率,也就是主汽门关闭之后机组等不到逆功率只要功率还是正的低于一定值经过一个短延时就立刻解列发电机.这种设计理念也挺独到的,即避免了逆功率,还是在一定程度上能避免超速,经过测算达到正向低功率的机组即使是主汽门没关严也不会严重超速.但是还是牺牲了一定的可靠性. 总之,每个厂都不一定一样,虽然程跳逆功率似乎成为首选,不用简直就是错误的,但是也确实因为某些机组具有特殊要求等等,热工跳闸联跳发电机的机组也存在不少,如果明显的不合理,恐怕早就淘汰了. 有的机组在手动打闸的时候是靠程跳逆功率的,但是如果汽机ETS动作了,直接还是热工跳闸的,这是考虑了一些故障是希望使转速尽快将下来的,这就要求发电机快速解列.所以我前边提到过"热工跳闸主要的依据是主汽门关闭信号来,也有带其它判据的,比如说ETS母管油压低,AST电磁阀动作等等",之所以引入其它判据的意义正如此。您所提到您厂的热工跳闸判据为"汽机主气门或者同侧高、中主气门关到位反馈",如果仅仅是取汽门关闭,这样我觉得有些欠妥。我们以前老厂的热工跳闸判据是主汽门关闭和ETS几个保护(比如润滑油压低、瓦温高等)的出口,也就是说光主汽门关闭信号来,不会造成热工跳闸动作。必须是由于润滑油压低等ETS保护动作了,并且主汽门关闭了,两种条件同时存在,才会热工跳闸瞬时解列发电机。其它厂也大多带有什么ETS母管油压低等作为热工跳闸的判据之一,这的确比单纯主汽门关闭信号要合理些。其实现在的机组大多不设计热工跳闸,汽机联跳发电机,唯一途径就是靠程跳逆功率保护,其实程跳逆功率动作时间也是很短的,对于即使是断油烧瓦等恶性事故,希望转速快点降下来,而因为逆功率动作耽误的一点点时间也应该没有太大的影响。 200MW级的机组很多还带有热工跳闸保护,既然带有热工跳闸,就可以把它优化一些,使其存在的更有意义。比如不再单纯的以主汽门关闭信号作为热工跳闸判据,而是引入一些希望使汽机转速尽快降下来的故障保护的ETS出口和主汽门关闭共同作为热工跳闸的判据。比如说润滑油压低等保护,可以把ETS中的润滑油压低保护出口和主汽门关闭信号取与然后动作热工跳闸。这样在手动停机或者因为汽温高等保护动作跳汽轮机后,只有主汽门关闭信号,此时热工跳闸不会动作,而是靠程跳逆功率来联跳发电机,既可实现程跳逆功率作为正常停机方式,也避免了一些不必要的故障仓促解列发电机而引起超速。而在润滑油压低时,ETS动作跳汽轮机,主汽门也关闭了,立刻热工跳闸解列发电机,使转速快速能够更早的降下来,尽管此时超速的几率增加了,但是机组断油了立刻降转速冒这个风险比正常停机就冒

相关主题
文本预览
相关文档 最新文档