当前位置:文档之家› 导数微分不定积分公式

导数微分不定积分公式

导数微分不定积分公式
导数微分不定积分公式

导数微分不定积分公式公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

一、导数的概念及其计算

1.导数的概念

函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值

x

y

??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x

y ??=x x f x x f ?-?+)()(00。

如果当0→?x 时,

x

y

??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0

lim

→?x x

y

??=0lim →?x x x f x x f ?-?+)()(00。 说明:

(1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x

y

??不存在极限,就说函数在点x 0处不可导,或说无导数

(2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率

x

y ??=x x f x x f ?-?+)()(00;

(3)取极限,得导数f’(x 0)=x

y

x ??→?0lim 。

2.导数的几何意义

函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0)) 处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f /(x 0)(x -x 0)。

3.常见函数的导出公式.

(1)0)(='C (C 为常数) (2)1)(-?='n n x n x (3)x x cos )(sin =' (4)x x sin )(cos -='

4.两个函数的和、差、积的求导法则

法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: (.)'''v u v u ±=±

法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:.)('''uv v u uv +=

若C 为常数,则'''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu =

法则3两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除

以分母的平方:??

?

??v u ‘=2

''v uv v u -(v ≠0)。 二、定积分的概念及其计算(牛顿—莱布尼茨公式)

1.定积分

(1)概念

设函数f (x )在区间[a ,b ]上连续,用分点a =x 0

i f 1=(ξi )△x (其中

△x 为小区间长度),把n →∞即△x →0时,和式I n 的极限叫做函数f (x )在区间[a ,b ]上的定积分,记作:?b a

dx x f )(,即?b

a

dx x f )(=∑=∞

→n

i n f 1

lim (ξi )△x 。

这里,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )dx 叫做被积式

定理 若函数)(x f 在],[b a 上连续,且存在原函数)(x F ,则)(x f 在],[b a 上可积,且

?

-=b

a

a F

b F dx x f )()()(

这即为牛顿—莱布尼茨公式,也常记为?-==b

a

b

a a F

b F x F dx x f )()()()(。

基本的积分公式:?dx 0=C ;?dx x m =

11

1++m x m +C (m ∈Q , m ≠-1);?x 1

dx =ln x +C ;

?dx e x

=x

e +C ;?dx a x

=a a x

ln +C ;?xdx cos =sin x +C ;?xdx sin =-cos x +C (表中C 均为常数)

(2)定积分的性质

①??=b

a

b

a

dx x f k dx x kf )()((k 为常数);

②???±=±b a

b a

b

a

dx x g dx x f dx x g x f )()()()(;

③???+=b a

c a

b

c

dx x f dx x f dx x f )()()((其中a <c <

b )。

(3)定积分求曲边梯形面积

由三条直线x =a ,x =b (a

围成的曲边梯的面积?=b

a dx x f S )(。

如果图形由曲线y 1=f 1(x ),y 2=f 2(x )(不妨设f 1(x )≥f 2(x )≥0),及S =S 曲边梯形AMNB -S 曲边梯形

直线x =a ,x =b (a

DMNC

=??-b a

b

a

dx x f dx x f )()(21。

一、基本导数公式:

()()()()()()()()()()()()(

)(

)()'

'1

'

'

'

'

'

'

'2

'

2

'

'

''

'

2

1.2.3.ln 4.1

5.log ln 1

6.ln

7.sin cos

8.cos sin

9.tan sec 10.cot csc 11.sec sec tan 12.csc csc cot 1

13.arcsin 114.arccos 115.arctan 11n n x x

x x

a kx k

x

nx a a a e e

x x a x x

x x x x x x

x

x x x x x x x x x x -=====

=

==-==-==-=

=-

=

+()'

2

16.a cot 1rc x =-

+

二、基本微分公式:

()()()()()()()()()()()()(

)()1221.2.3.ln 4.1

5.ln 1

6.log ln

7.sin cos

8.cos sin

9.tan sec 10.cot csc 11.sec sec tan 12.csc csc cot 1

13.arcsin 14.arccos n n x

x

x

x

a d kx k

d x nx dx d a

a adx d e e dx

d x dx

x d x dx

x a

d x xdx d x xdx d x xdx d x xdx d x x xdx d x x xdx d x dx

d x -========-==-==-=

()()2

2

1

1

15.arctan 11

16.cot 1dx

d x dx x

d arc x dx x

=-=+=-+

三、不定积分基本公式:

11.2.1

3.1

4.ln 1

5.ln ||

6.sin cos

7.cos sin

8.tan ln |cos |

9.cot ln |sin |10.csc ln |csc cot |11.sec ln |sec tan |n n x x x

x

kdx kx c

x

x dx c

n e dx e c a dx a c

a

dx x c x

xdx x c

xdx x c xdx x c xdx x c xdx x x c xdx x x c

+=+=++=+=+=+=-+=+=-+=+=-+=++??????

?????

2

2

32121311xdx x c

x dx x c

dx c

x x =+=+=-+???

222

22

22

22

1

12.c cot sin 1

13.sec tan cos

114.arctan 115.

arcsin 16.sec tan

sec 17.csc cot csc 118.arctan 119.ln ||220.dx cs xdx x c

x dx xdx x c x

dx x c x dx x c

x xdx x c x xdx x c

dx x c x a a a dx x a c x a a x a

==-+==+=++=+=+=-+=++-=+-+??????????arcsin 21.ln ||22.ln ||x

c a dx x c x c

=+=++=++???

(

)2

21ln 112x dx x c x =+++? 21

arctan 1dx x c x =++?

高等数学常用导数和积分公式

高等数学常用导数和积分公式 导数公式:基本积分表:三角函数的有理式积分: (一)含有的积分() 1.= 2.=() 3.= 4.= 5.= 6.= 7.= 8.= 9.= (二)含有的积分10.=11.=12.=13.=14.=15.=16.=17.=18.= (三)含有的积分19.=20.=21.= (四)含有的积分22.=23.=24.=25.=26.=27.=28.= (五)含有的积分29.=30.= (六)含有的积分31.==32.=33.=34.=35.=36.=37.=38.=39.=40.=41.=42.=43.=44.= (七)含有的积分45.==46.=47.=48.=49.=50.=51.=52.=53.=54.=55.=56.=57.=58.=

(八)含有的积分59.=60.=61.=62.=63.=64.=65.=66.=67.=68.=69.=70.=71.=72.=(九)含有的积分73.=74.=75.=76.=77.=78.=()含有或的积分79.=80.=81.=82.=(一)含有三角函数的积分83.=84.=85.=86.=87.==88.==89.=90.=91.=92.=93.=94.=95.=96.=97.=98.=99.==100.=101.=102.=103.=104.=105.=106.=107.=108.=109.=110.=111.=112.=(二)含有反三角函数的积分(其中)113.=114.=115.=116.=117.=118.=119.=120.=121. =(三)含有指数函数的积分122.=123.=124.=125.=126.=127.=128.=129.=130.=131.=(四)含有对数函数的积分132.=133.=134.=135.=136.=(五)含有双曲函数的积分137.=138.=139.=140.=141.=(六)定积分142.==0143.=0144.=145.=146.==147. ===(为大于1的正奇 数),=1 (为正偶数),=

常用求导与定积分公式(完美)

一.基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2 csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则 若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数 )(x f y =在对应区间 x I 内也可导,且

)(1)(y x f ?'= ' 或 dy dx dx dy 1= 复合函数求导法则 设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为 dy dy du dx du dx =g 或()()y f u x ?'''=g 二、基本积分表 (1)kdx kx C =+? (k 是常数) (2)1 ,1 x x dx C μμ μ+= ++? (1)u ≠- (3)1 ln ||dx x C x =+? (4)2 tan 1dx arl x C x =++? (5) arcsin x C =+? (6)cos sin xdx x C =+? (7)sin cos xdx x C =-+?

常用基本初等函数求导公式积分公式

基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则 若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应 区间 x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1= 复合函数求导法则

设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为 dy dy du dx du dx = 或 2. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出. 可以推出下表列出的公式:

高中数学导数与积分知识点

高中数学教案—导数、定积分 一.课标要求: 1.导数及其应用 (1)导数概念及其几何意义 ① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ① 能根据导数定义求函数y=c ,y=x ,y=x 2,y=x 3 ,y=1/x ,y=x 的导数; ② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax+b ))的导数; ③ 会使用导数公式表。 (3)导数在研究函数中的应用 ① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; ② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 (5)定积分与微积分基本定理 ① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。 二.命题走向 导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值 x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

大一微积分公式

有关高等数学计算过程中所涉及到的数学公式(集锦) 一、0 101101lim 0n n n m m x m a n m b a x a x a n m b x b x b n m --→∞?=??+++? =??? (系数不为0的情况) 二、重要公式(1)0sin lim 1x x x →= (2)()1 0lim 1x x x e →+= (3 ))1n a o >= (4 )1n = (5)lim arctan 2x x π→∞= (6)lim tan 2 x arc x π →-∞=- (7)lim arc cot 0x x →∞ = (8)lim arc cot x x π→-∞ = (9)lim 0x x e →-∞ = (10)lim x x e →+∞ =∞ (11)0 lim 1x x x + →= 三、下列常用等价无穷小关系(0x →) sin x x tan x x a r c s i n x x arctan x x 2 11c o s 2 x x - ()ln 1x x + 1x e x - 1l n x a x a - ()11x x ? +-? 四、导数的四则运算法则 ()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-??= ??? 五、基本导数公式 ⑴()0c '= ⑵1 x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2 tan sec x x '= ⑹()2 cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1 ln x x '=

高中导数公式大全

C'=0(C为常数函数); (x^n)'= nx^(n-1) (n∈Q*);熟记1/X的导数 (sinx)' = cosx; (cosx)' = - sinx; (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx (cscx)'=-cotx·cscx (arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=-1/(1+x^2) (arcsecx)'=1/(|x|(x^2-1)^1/2) (arccscx)'=-1/(|x|(x^2-1)^1/2) (sinhx)'=hcoshx (coshx)'=-hsinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2 (sechx)'=-tanhx·sechx (cschx)'=-cothx·cschx (arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2 (artanhx)'=1/(x^2-1) (|x|<1) (arcothx)'=1/(x^2-1) (|x|>1) (arsechx)'=1/(x(1-x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2) (e^x)' = e^x; (a^x)' = a^xlna (ln为自然对数) (Inx)' = 1/x(ln为自然对数) (logax)' =(xlna)^(-1),(a>0且a不等于1) (x^1/2)'=[2(x^1/2)]^(-1) (1/x)'=-x^(-2) .y=c(c为常数) y'=0 .y=x^n y'=nx^(n-1) .y=a^x y'=a^xlna y=e^x y'=e^x y=lnx y'=1/x .y=sinx y'=cosx .y=cosx y'=-sinx .y=tanx y'=1/cos^2x .y=cotx y'=-1/sin^2x

(整理)导数微积分公式大全.

导数、微分、积分公式总结 【导数】 (1)(u ± v)′=u′±v′ (2)(u v)′=u′v+ u v′(记忆方法:u v + u v ,分别在“u”上、“v”上加′)(3)(c u)′= c u′(把常数提前) ╭u╮′u′v- u v′ (4)│——│=———————( v ≠ 0 ) ╰v╯v2 【关于微分】 左边:d打头 右边:dx置后 再去掉导数符号′即可 【微分】 设函数u=u(x),v=v(x)皆可微,则有: (1)d(u ± v)= du ± dv (2)d(u v)= du·v + u·dv ╭u╮du·v - u·dv (3)d│——│=———————( v ≠ 0 ) ╰v╯v2 (5)复合函数(由外至里的“链式法则”) dy ——=f′(u)·φ′(x) dx 其中y =f(u),u =φ′(x) (6)反函数的导数: 1 [ fˉ1(y)]′=————— f′(x) 其中,f′(x)≠ 0 【导数】 注:【】里面是次方的意思 (1)常数的导数: (c)′=0 (2)x的α次幂: ╭【α】╮′【α -1】 │x│=αx ╰╯ (3)指数类: ╭【x】╮′【x】

│a│=alna(其中a >0 ,a ≠ 1) ╰╯ ╭【x】╮′【x】 │e│=e ╰╯ (4)对数类: ╭╮′1 1 │logx│=——log e=———(其中a >0 ,a ≠ 1) ╰a╯x a xlna 1 (lnx)′=—— x (5)正弦余弦类: (sinx)′=cosx (cosx)′=-sinx 【微分】 注:【】里面是次方的意思 (1)常数的微分: dC =0 (2)x的α次幂: 【α】【α -1】 dx=αxdx (3)指数类: 【x】【x】 da=alnadx(其中a >0 ,a ≠ 1) 【x】【x】 de=edx (4)对数类: 1 1 dlogx=——log e=———dx(其中a >0 ,a ≠ 1) a x a xlna

基本高数导数 不定积分公式

基本导数公式 三角公式: x x x cos sin 2)2sin(= 1cos sin 2 2 =+x x 1 cos 2sin 21sin cos )2cos(2 2 2 2-=-=-=x x x x x 1tan sec 2 2 =-x x x x x 2 tan 1tan 2)2tan(-= 1cot csc 2 2=-x x 2cos 12sin x x -= 1csc sin =x x 2 cos 12 cos x x += 1sec cos =x x x x x cos 1cos 12tan +-= 1cot tan =x x x x x cos 1cos 12 cot -+= 幂、指、对、三角、反三角 导数公式 幂:1)(-='a a ax x 指:x x e e =')( a a a x x ln )(=' 对:a x x a ln 1)(log = ' x x 1)(ln = ' 三角函数导数公式:正: 余: 正弦:x x cos )(sin =' 余弦:x x sin )(cos -=' 正切:x x 2 sec )(tan =' 余切:x x 2 csc )(cot -=' 正割:x x x sec tan )(sec =' 余割:x x x csc cot )(csc -=' 反三角函数导数公式: 反正弦:2 11)(arcsin x x -= ' 反余弦:2 11)(arccos x x -- =' 反正切:2 11)(arctan x x += ' 反余切:2 11)cot (x x arc +- =' 反正割:1 1)sec (2 -= 'x x x arc 反余割:1 1)csc (2 -- ='x x x arc

高等数学常用导数积分公式查询表好

(1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- +

三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , , (一)含有ax b +的积分(0a ≠) 1. d x ax b +?=1 ln ax b C a ++ 2. ()d ax b x μ +?= 11 ()(1) ax b C a μμ++++(1μ≠-) ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

常用微积分公式大全

常用微积分公式大全 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

常用微积分公式 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式.。 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有. 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式.

公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式. 解:由于,所以 (为任意常数) 例3 求不定积分.

角函数及其导数积分公式的六边形记忆法

从俞诗秋的文章修改而来,原来的口诀不太好记 原文:三角函数双曲函数及其导数积分公式的六边形记忆法 三角函数及其导数积分公式的六边形记忆法 2. 三角函数的定义 名称 正弦 余弦 正切 余切 正割 余割 定 义 r y ==斜边对边αsin r x ==斜边邻边αcos x y == 邻边对边αtan y x ==对边邻边αcot x r ==邻边斜边αsec y r ==对边斜边αcsc 符 号 与 增 减 变 化 Ⅰ +↑ +↓ +↑ +↓ +↑ +↓ Ⅱ +↓ -↓ -↑ -↓ -↑ +↑ Ⅲ -↓ -↑ +↑ +↓ -↓ -↑ Ⅳ -↑ +↑ -↑ -↓ +↓ -↓ 1 sinx cosx cscx cotx secx tanx + -

1. 三角函数的记忆: 对角线倒数:对角线互为倒数sinx=1/cscx,指在三角函数六边形中,过中点且连接两个顶点的线段中,两端点处的函数乘积等于中间的数1,即sinxcscx=1, cosxsecx=1, tanxcotx=1. 倒三角形平方和:指在三角函数六边形中,每个有阴影的三角形下顶处函数的平方等于上面两个顶处函数平方的和.即sin2x+cos2x=1, tan2x+1=sec2x, cot2x+1=csc2x. 邻点积:指在三角函数六边形中,任何一个顶处的函数等于相邻两个顶处函数的乘积.即sinx=tanxcosx, cosx=sinxcotx, cotx=cosxcscx, cscx= cotxsecx, secx=cscxtanx, tanx=secxsinx. 2.三角函数求导数 图中左面“+”号表示六边形左面三个顶角处函数的导数为正值,右面“-”号表示六边形右面三个顶角处函数的导数为负值。 上互换:指在三角函数求导六边形中,上顶角处函数的导数为另一上顶角处函数的导数.即:(sinx)’=cosx, (cosx)’=-sinx。 中下2:指在三角函数求导六边形中,中间顶角处函数的导数为对应边下顶角处函数导数的平方.即:(tanx)’=sec2x,(cotx)’=-csc2x。 下中下:指在三角函数求导六边形中,下顶角处函数的导数为对应边中间顶角处函数的导数与下顶角处函数的导数之乘积。 即:(secx)’=tanxsecx,(cscx)’=-cotxcscx。

求导公式大全

求导公式大全 1、原函数:y=c(c为常数) 导数: y'=0

导数:y'=nx^(n-1) 3、原函数:y=tanx 导数: y'=1/cos^2x 4、原函数:y=cotx 导数:y'=-1/sin^2x 5、原函数:y=sinx 导数:y'=cosx 6、原函数:y=cosx 导数: y'=-sinx 7、原函数:y=a^x 导数:y'=a^xlna 8、原函数:y=e^x 导数: y'=e^x

导数:y'=logae/x 10、原函数:y=lnx 导数:y'=1/x 求导公式大全整理 y=f(x)=c (c为常数),则f'(x)=0 f(x)=x^n (n不等于0) f'(x)=nx^(n-1) (x^n表示x的n次方) f(x)=sinx f'(x)=cosx f(x)=cosx f'(x)=-sinx f(x)=tanx f'(x)=sec^2x f(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0) f(x)=e^x f'(x)=e^x f(x)=logaX f'(x)=1/xlna (a>0且a不等于1,x>0) f(x)=lnx f'(x)=1/x (x>0) f(x)=tanx f'(x)=1/cos^2 x f(x)=cotx f'(x)=- 1/sin^2 x f(x)=acrsin(x) f'(x)=1/√(1-x^2)

f(x)=acrcos(x) f'(x)=-1/√(1-x^2) f(x)=acrtan(x) f'(x)=-1/(1 x^2) 高中数学导数学习方法 1、多看求导公式,把几个常用求导公式记清楚,遇到求导的题目,灵活运用公式。 2、在解题时先看好定义域,对函数求导,对结果通分,这么做可以让判断符号变的比较容易。 3、一般情况下,令导数=0,求出极值点;在极值点的两边的区间,分别判断导数的符号,是正还是负;正的话,原来的函数则为增,负的话就为减,然后根据增减性就能大致画出原函数的图像。 根据图像就可以求出你想要的东西,比如最大值或最小值等。 4、特殊情况下,导数本身符号可以直接确定,也就是导数等于0无解时,说明在整个这一段上,原函数都是单调的。如果导数恒大于0,就增;如果导数恒小于0,就减。

最新导数微积分公式

导数微积分公式

导数、微分、积分公式总结 【导数】 (1)(u ± v)′=u′±v′ (2)(u v)′=u′v+ u v′(记忆方法:u v + u v ,分别在“u”上、“v”上加′)(3)(c u)′= c u′(把常数提前) ╭u╮′u′v- u v′ (4)│——│=———————( v ≠ 0 ) ╰v╯v2 【关于微分】 左边:d打头 右边:dx置后 再去掉导数符号′即可 【微分】 设函数u=u(x),v=v(x)皆可微,则有: (1)d(u ± v)= du ± dv (2)d(u v)= du·v + u·dv ╭u╮du·v - u·dv (3)d│——│=———————( v ≠ 0 ) ╰v╯v2 (5)复合函数(由外至里的“链式法则”) dy ——=f′(u)·φ′(x)

dx 其中y = f(u),u =φ′(x) (6)反函数的导数: 1 [ fˉ1(y)]′=————— f′(x) 其中,f′(x)≠ 0 【导数】 注:【】里面是次方的意思 (1)常数的导数: (c)′= 0 (2)x的α次幂: ╭【α】╮′【α - 1】 │x│=αx ╰╯ (3)指数类: ╭【x】╮′【x】 │a│=a lna(其中a > 0 ,a ≠ 1) ╰╯ ╭【x】╮′【x】 │e│=e ╰╯ (4)对数类:

╭╮′ 1 1 │logx│=——log e=———(其中a > 0 ,a ≠ 1) ╰a╯ x a xlna 1 (lnx)′=—— x (5)正弦余弦类: (sinx)′= cosx (cosx)′=-sinx 【微分】 注:【】里面是次方的意思 (1)常数的微分: dC = 0 (2)x的α次幂: 【α】【α - 1】 dx=αxdx (3)指数类: 【x】【x】 da=a lnadx(其中a > 0 ,a ≠ 1) 【x】【x】 de=e dx

高等数学必背公式大全一目了然版

高 等数 学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

微积分公式与定积分计算练习大全

微积分公式与定积分计算练习(附加三角函数公式) 一、基本导数公式 ⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼ ()x x e e '= ⑽ ()ln x x a a a '= ⑾ ()1 ln x x '= ⑿ () 1log ln x a x a '= ⒀ ( )arcsin x '= ⒁( )arccos x '= ⒂ ()21arctan 1x x '=+ ⒃() 21arccot 1x x '=-+⒄()1 x '= ⒅ '= 二、导数的四则运算法则 ()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v ''' -??= ??? 三、高阶导数的运算法则 (1)()()() () () () () n n n u x v x u x v x ±=±??? ? (2)()() ( ) ()n n cu x cu x =??? ? (3)()() () ()n n n u ax b a u ax b +=+??? ? (4) ()()() ( ) ()() ()0 n n n k k k n k u x v x c u x v x -=?=???? ∑ 四、基本初等函数的n 阶导数公式 (1) ()() ! n n x n = (2) ()() n ax b n ax b e a e ++=? (3) ()() ln n x x n a a a = (4) ()() sin sin 2n n ax b a ax b n π??+=++??? ??? ??(5) ()()cos cos 2n n ax b a ax b n π??+=++??? ???? ? (6) () () () 1 1! 1n n n n a n ax b ax b +???=- ?+?? + (7) ()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-???? + 五、微分公式与微分运算法则

导数、微分、不定积分公式

一、导数的概念及其计算 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值 x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+) ()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0 x x =。 即f (x 0)=0 lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明: (1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函数在点x 0处不可导,或说无导数 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率 x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 2.导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0)) 处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f /(x 0)(x -x 0)。 3.常见函数的导出公式. (1)0)(='C (C 为常数) (2)1)(-?='n n x n x

导数公式证明大全

导数的定义:f'(x)=lim Δy/Δx Δx→0(下面就不再标明Δx→0了) 用定义求导数公式 (1)f(x)=x^n 证法一:(n为自然数) f'(x) =lim [(x+Δx)^n-x^n]/Δx =lim (x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]/Δx =lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)] =x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+ ...x^(n-2)*x+x^(n-1) =nx^(n-1) 证法二:(n为任意实数) f(x)=x^n lnf(x)=nlnx (lnf(x))'=(nlnx)' f'(x)/f(x)=n/x f'(x)=n/x*f(x) f'(x)=n/x*x^n f'(x)=nx^(n-1) (2)f(x)=sinx

f'(x) =lim (sin(x+Δx)-sinx)/Δx =lim (sinxcosΔx+cosxsinΔx-sinx)/Δx =lim (sinx+cosxsinΔx-sinx)/Δx =lim cosxsinΔx/Δx =cosx (3)f(x)=cosx f'(x) =lim (cos(x+Δx)-cosx)/Δx =lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx =lim -sinxsinΔx/Δx =-sinx (4)f(x)=a^x f'(x) =lim (a^(x+Δx)-a^x)/Δx =lim a^x*(a^Δx-1)/Δx (设a^Δx-1=m,则Δx=loga^(m+1)) =lim a^x*m/loga^(m+1) =lim a^x*m/[ln(m+1)/lna] =lim a^x*lna*m/ln(m+1) =lim a^x*lna/[(1/m)*ln(m+1)]

积分基本公式

2.基本积分公式表 (1)∫0d x=C (2)=ln|x|+C (3)(m≠-1,x>0)

(4)(a>0,a≠1) (5) (6)∫cos x d x=sin x+C (7)∫sin x d x=-cos x+C (8)∫sec2x d x=tan x+C (9)∫csc2x d x=-cot x+C (10)∫sec x tan x d x=sec x+C (11)∫csc x cot x d x=-csc x+C

(12)=arcsin x+C (13)=arctan x+C

注.(1)不是 在m=-1的特例. (2)=ln|x|+C,ln后面真数x要加绝对值,原因是(ln|x|)' =1/x. 事实上,对x>0,(ln|x|)' =1/x;若x<0,则

(ln|x|)' =(ln(-x))' =. (3)要特别注意与 的区别:前者是幂函数的积分,后者是指数函数的积分. 下面我们要学习不定积分的计算方法,首先是四则运算.

6. 复合函数的导数与微分 大量初等函数含有复合函数的成分,它们的导数与微分计算法则具有特别重要的意义. 定理.(链锁法则)设z=f(y),y=?(x)分别在点y0=?(x0)与x0可导,则复合函数z=f[?(x)]在x0可导,且 或(f o?)' (x0)=f '(y0)??'(x0). 证.对应于自变量x0处的改变量?x,有中间变量y在y0=?(x0)处的改变量?y及因变量z在z0=f(y0)处的改变量?z,(注意?y可能为0).现 ?z=f'(y0)??y+v,?y='?(x0)?x+u,

导数及定积分知识点总结及练习经典

导数的应用及定积分 (一)导数及其应用 1.函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0 Δy Δx =lim Δx → f (x 0+Δx )-f (x 0)Δx .我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0 Δy Δx =lim Δx → f (x 0+Δx )-f (x 0)Δx 。 2.导数的几何意义 函数y =f (x )在x =x 0处的导数,就是曲线y =f (x )在x =x 0处的切线的斜率 ,即k =f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0) Δx . 3.函数的导数 对于函数y =f (x ),当x =x 0时,f ′(x 0)是一个确定的数.当x 变化时,f ′(x )便是一个关于x 的函数,我们称它为函数y =f (x )的导函数(简称为导数),即f ′(x )=y ′=lim Δx →0 f (x 0+Δx )-f (x 0) Δx . 4.函数y =f(x)在点x 0处的导数f ′(x 0)就是导函数f ′(x)在点x =x 0处的函数值,即f ′(x 0)=f ′(x)|x =x 0。 5.常见函数的导数 (x n )′=__________.(1 x )′=__________.(sin x )′=__________.(cos x )′=__________. (a x )′=__________.(e x )′=__________.(log a x )′=__________.(ln x )′=__________. (1)设函数f (x )、g (x )是可导函数,则: (f (x )±g (x ))′=________________;(f (x )·g (x ))′=_________________. (2)设函数f (x )、g (x )是可导函数,且g (x )≠0,?? ?? f (x ) g (x )′=___________________. (3)复合函数y =f(g(x))的导数和函数y =f(u),u =g(x)的导数间的关系为yx ′=y u ′·u x ′.即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 6.函数的单调性 设函数y =f(x)在区间(a ,b)内可导, (1)如果在区间(a ,b)内,f ′(x)>0,则f(x)在此区间单调__________; (2)如果在区间(a ,b)内,f ′(x)<0,则f(x)在此区间内单调__________. (2)如果一个函数在某一范围内导数的绝对值较大,那么这个函数在这个范围内变化较__________,其图象比较__________. 7.函数的极值

高等数学导数、微分、不定积分公式

一、基本导数公式: ()()()()()()()()()()()()( )( )()' '1 ' ' ' ' ' ' '2 ' 2 ' ' '' ' 2 1.2.3.ln 4.1 5.log ln 1 6.ln 7.sin cos 8.cos sin 9.tan sec 10.cot csc 11.sec sec tan 12.csc csc cot 1 13.arcsin 114.arccos 115.arctan 11n n x x x x a kx k x nx a a a e e x x a x x x x x x x x x x x x x x x x x x x -===== = ==-==-==-= =- = +()' 2 16.a cot 1rc x =- + 二、基本微分公式: ()()()()()()()()()()()()( )()12 21.2.3.ln 4.1 5.ln 1 6.log ln 7.sin cos 8.cos sin 9.tan sec 10.cot csc 11.sec sec tan 12.csc csc cot 1 13.arcsin 14.arccos n n x x x x a d kx k d x nx dx d a a adx d e e dx d x dx x d x dx x a d x xdx d x xdx d x xdx d x xdx d x x xdx d x x xdx d x dx d x -========-==-==-= ()()2 2 1 1 15.arctan 11 16.cot 1dx d x dx x d arc x dx x =-=+=-+

相关主题
文本预览
相关文档 最新文档