当前位置:文档之家› 实验一双极型晶体管特性参数测量

实验一双极型晶体管特性参数测量

实验一双极型晶体管特性参数测量
实验一双极型晶体管特性参数测量

实验一、双极型晶体管(BJT)特性参数测量

一、实验设备

(1)半导体管特性图示仪(XJ4810A 型),(2)BJT 晶体管(S9014、S8050、S8550),

(3)二极管(1N4001)

二、实验目的

1、熟悉 BJT 晶体管特性参数测试原理;

2、掌握使用半导体管特性图示仪测量 BJT 晶体管特性参数的方法;

3、学会利用手册的特性参数计算 BJT 晶体管的混合π型EM1 模型参数的方

法。

三、实验仪器介绍:

XJ4810型/XJ4810A型半导体管特性图示仪采用示波管显示半导体器件的各种特性曲线,并测量其静态参数。本仪器具有二簇曲线显示,双向集电极扫描电路,可以对被测半导体器件的特司长进行对比分析,便于对管或配件配对。本仪器IR测量达200nA/div,配备扩展装置后,VC可达3KV;可测试CMOS及TTL 门电路传输特性;可对场效应管进行配对或对管测试;可测试三端稳压管特性。

图1为XJ4810A型晶体管测试仪图片

四、BJT 晶体管特性参数测试原理

晶体管的输出特性曲线如图1所示,这就是一组曲线族,对于其中任一条曲线,相当于Ib =常数(即基极电流Ib不变)。曲线显示出集电极与发射极之间的电压Vcc增加时,集电极电流Ic的变化。因此,为了显示一条特性曲线,可以采用如图2所示的方法,既固定基极电流Ib为:

Ib=(Eb-Vbe)/Rb

在集电极到发射极的回路中,接入一个锯齿波电压发生器Ec与一个小的电阻Rc,晶体管发射极接地。由于电阻R很小,锯齿波电压实际上可以瞧成就是加在晶体管的集电极与发射极之间。晶体管的集电极电流从电阻Rc上流过,电阻Rc上的电压降就正比于Ic。如果把晶体管的c、e两点接到示波管的x偏转板上,把电阻Rc两端接到示波管的y偏转板上,示波器便显示出晶体管的Ic随Vcc变化的曲线。(为了保证测量的准确性,电阻Rc应该很小)。用这种方法只能显示出一条特性曲线,因为此时晶体管的基极电流Ib就是固定不变的。如果要测量整个特性曲线族,则要求基极电流Ib改变。基极电流Ib的改变采用阶梯变化,每一个阶梯维持的时间正好等于作用在集电极的锯齿波电压的周期,如图3所示。阶梯电压每跳一级,电流Ib 便增加一级。(每一级阶梯的增幅可根据不同的晶体管的做相应的调整)。

晶体管特性图示仪便就是按照上述原理设计的,它包括阶梯电压发生器(供基极或发射极阶梯波)、锯齿波电压发生器(供集电极扫描电压)、x轴放大器、y轴放大器、示波管系统等组成,其单元作用如图4所示。作用在垂直偏转板上的除Ic(实际上就是IcRc)外,还可以就是基极电压、基极电流、外接或校正电压。由于x轴与y轴作用选择的不同,在示波器荧光屏上显示出的特性就完全不同。例如:若x轴作用为集电极电压,y轴作用选择集电极电流,得到晶体管的输出特性曲线;若x轴作用为基极电流,y轴作用选择集电极电流,得到晶体管的电流增益特性(即β特性);若y轴作用为基极电流,x轴作用就是基极电流,得到晶体管的输入特性曲线。

五、BJT 晶体管特性参数测试过程

为了不使被测晶体管与仪器损坏,在测试前必须充分了解仪器的使用方法与晶体管的规格,测试中,在调整仪器的各个选择开关与转换量时,必须注意使加于被测晶体管的电压、电流(并配合功耗电阻)从低量程漫漫提高,直到满足测量要求。(不然会烧) 以XJ4810A型晶体管特性曲线图示仪为例,仪器操作程序如下:

1、开启电源,预热5分钟。

2、调整示波器:

(1)拉—电源开。 (2)调整辉度到适中的亮度; (3)调整聚焦与辅助聚焦,使线迹清晰。

(4)调整x、y移位,使光点停留在适于观察的位置。

3、基极控制面板调节(阶梯调零与极性选择)

首先根据被测晶体管的类型(npn或pnp)及接地方式(共基极或共发射极)选取阶梯极性npn pnp 发射极接地 + —基极接地然后进行阶梯调零(即调整阶梯信号的起始级在零电位的位置):先将y轴作用置于“基极电流或基极电源电压”,阶梯选择置于0、01V/级,阶梯作用为“重复”,x轴作用置于集电极电压(V/度)。调峰值电压为10V,这时荧光屏上出现阶梯信号。

将y轴放大器校正置于“零点”位置,调y轴移位,使基线位于零线上;再将校正复位,使阶梯信号零位

至y轴零线上。这样,零电位即被准确校正。此外,将串联电阻、阶梯选择(mA/级或V/级)调到预先需要的范围,阶梯作用根据需要选择重复、单族或关。

4、集电极控制面板调节

将集电极扫描全部旋钮(峰值电压范围、极性、峰值电压、功耗电阻)都调到预先需要的范围。(极性选择方法参考表一)

5、显示面板Y轴调节

y轴作用,将“毫安伏/度”开关与“倍频”开关调到读测需要的范围。

6、显示面板X轴调节

x轴作用,将“V/度”开关调到读测需要的范围。

7、测试台,将接地开关按需要选择,然后插上晶体管,然后调节峰值电压等,此时即有曲线显示。再经过y轴、x轴、阶梯三部分的适当修正,即可进行有关测量。

8、测试完毕后关闭电源前,将集电极扫描的峰值电压范围调至0 – 20V、峰值电压至0、功耗电阻至1K左右,y轴作用“mA/度”、 x轴作用“V/度”、基极阶梯信号“mA/级”、阶梯作用“关”,示波器的辉度减暗后,关闭整机电源。

六、测量结果图

结构动力特性测试方法及原理

结构动力特性的测试方法及应用(讲稿) 一. 概述 每个结构都有自己的动力特性,惯称自振特性。了解结构的动力特性是进行结构抗震设 计和结构损伤检测的重要步骤。目前,在结构地震反应分析中,广泛采用振型叠加原理的反 应谱分析方法,但需要以确定结构的动力特性为前提。n 个自由度的结构体系的振动方程如 下: [][][]{}{})()()()(...t p t y K t y C t y M =+? ?????+?????? 式中[]M 、[]C 、[]K 分别为结构的总体质量矩阵、阻尼矩阵、刚度矩阵,均为n 维矩阵; {})(t p 为外部作用力的n 维随机过程列阵;{})(t y 为位移响应的n 维随机过程列阵;{} )(t y &为速度响应的n 维随机过程列阵;{})(t y && 为加速度响应的n 维随机过程列阵。 表征结构动力特性的主要参数是结构的自振频率f (其倒数即自振周期T )、振型Y(i)和 阻尼比ξ,这些数值在结构动力计算中经常用到。 任何结构都可看作是由刚度、质量、阻尼矩阵(统称结构参数)构成的动力学系统, 结构一旦出现破损,结构参数也随之变化,从而导致系统频响函数和模态参数的改变,这种 改变可视为结构破损发生的标志。这样,可利用结构破损前后的测试动态数据来诊断结构的破损,进而提出修复方案,现代发展起来的“结构破损诊断”技术就是这样一种方法。其最 大优点是将导致结构振动的外界因素作为激励源,诊断过程不影响结构的正常使用,能方便 地完成结构破损的在线监测与诊断。从传感器测试设备到相应的信号处理软件,振动模态测 量方法已有几十年发展历史,积累了丰富的经验,振动模态测量在桥梁损伤检测领域的发展 也很快。随着动态测试、信号处理、计算机辅助试验技术的提高,结构的振动信息可以在桥 梁运营过程中利用环境激振来监测,并可得到比较精确的结构动态特性(如频响函数、模态 参数等)。目前,许多国家在一些已建和在建桥梁上进行该方面有益的尝试。 测量结构物自振特性的方法很多,目前主要有稳态正弦激振法、传递函数法、脉动测试 法和自由振动法。稳态正弦激振法是给结构以一定的稳态正弦激励力,通过频率扫描的办法 确定各共振频率下结构的振型和对应的阻尼比。 传递函数法是用各种不同的方法对结构进 行激励(如正弦激励、脉冲激励或随机激励等),测出激励力和各点的响应,利用专用的分 析设备求出各响应点与激励点之间的传递函数,进而可以得出结构的各阶模态参数(包括振 型、频率、阻尼比)。脉动测试法是利用结构物(尤其是高柔性结构)在自然环境振源(如 风、行车、水流、地脉动等)的影响下,所产生的随机振动,通过传感器记录、经谱分析, 求得结构物的动力特性参数。自由振动法是:通过外力使被测结构沿某个主轴方向产生一定 的初位移后突然释放,使之产生一个初速度,以激发起被测结构的自由振动。 以上几种方法各有其优点和局限性。利用共振法可以获得结构比较精确的自振频率和阻 尼比,但其缺点是,采用单点激振时只能求得低阶振型时的自振特性,而采用多点激振需较 多的设备和较高的试验技术;传递函数法应用于模型试验,常常可以得到满意的结果,但对 于尺度很大的实际结构要用较大的激励力才能使结构振动起来,从而获得比较满意的传递函 数,这在实际测试工作中往往有一定的困难。 利用环境随机振动作为结构物激振的振源,来测定并分析结构物固有特性的方法,是近 年来随着计算机技术及FFT 理论的普及而发展起来的,现已被广泛应用于建筑物的动力分 析研究中,对于斜拉桥及悬索桥等大型柔性结构的动力分析也得到了广泛的运用。斜拉桥或 悬索桥的环境随机振源来自两方面:一方面指从基础部分传到结构的地面振动及由于大气变 化而影响到上部结构的振动(根据动力量测结果,可发现其频谱是相当丰富的,具有不同的

结构试验期末复习题

1、结构试验按试验目的可分为生产检验性试验和科学研究性试验;按试验对象可分为真型试验和模型试验;按荷载性质可分为静力试验和动力试验;按试验场所可分为现场试验和实验室试验;按试验持续时间可分为短期荷载试验和长期荷载试验。 2、动载试验主要包括:疲劳试验、动力特性试验、地震模拟振动台试验和风洞试验 3、结构试验一般可分4个阶段:试验规划和设计、试验技术准备、试验实施过程、试验数据分析和总结 4、重力加载包括:直接重力加载、杠杆重力加载 5.水可作为对建筑结构施加的重力荷载。 6.荷载支承装置分为竖向荷载支承装置和水平荷载支承装置。 7、气压加载有正压加载和负压加载两种方式。 8、可采用卷扬机、绞车、螺旋千斤顶、螺旋弹簧、倒链等方式实现机械加载。 9.在结构构件安装位置和实际工作状态不相一致的情况下进行的试验称为异位试验。 10.试件设计所以要注意它的形状,主要是要求满足在试验时形成和实际工作相一致的应力状态。 11.结构试验中,采用分级加载一方面可控制加载速度,另一方面便于观测结构变形随荷载变化的规律。 12.应变测量方法包括:电阻应变测量方法;手持式应变仪测量方法和振弦式应变计测量方法。 13.测量挠度的仪器包括:①百分表及挠度计;②电子百分表;③电阻应变式位移传感器; ④差动变压器式位移传感器;⑤刻度尺和水准仪。 14.电液伺服阀能根据输入电流的极性控制液压油的流向,根据输入电流的大小控制液压油的流量。 15.液压加载法的最大优点是利用油压使 液压加载器产生较大的荷载。 16.测定结构的动力特性的方法包括:自由振动法、共振法、脉动法 17.冲击力加载的特点是荷载作用时间极为短促,在它的作用下使被加载结构产生振动响应,适用于进行结构动力特性的试验。 18.在低周反复加载试验中为了能再现地震力作用下,墙体经常出现的斜裂缝或交叉裂缝的破坏现象,在墙体安装及考虑试验装置时必须要满足边界条件的模拟。 1、下列(D )不属于科学研究性试验。 A.验证结构计算理论的假定 B.为制订设计规范提供依据 C.为发展和推广新结构、新材料和新工艺提供实践经验 D.服役结构的可靠性鉴定 2、下列(E )不属于长期荷载试验。 A 混凝土的徐变 B 预应力钢筋的松弛 C 混凝土的碳化 D 钢筋的锈蚀 E 混凝土试块150×150×150抗压试验 3.结构试验中,常用科研性试验解决的问题是( D ) A.综合鉴定重要工程和建筑物的设计和施工质量 B.鉴定预制构件的产品质量 C.已建结构可靠性检验、推断和估计结构的剩余寿命

常见大中功率管三极管参数(精)

常见大中功率管三极管参数 晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SD1402 1500V 5A 120W * * NPN 2SD1399 1500V 6A 60W * * NPN 2SD1344 1500V 6A 50W * * NPN 2SD1343 1500V 6A 50W * * NPN 2SD1342 1500V 5A 50W * * NPN 2SD1941 1500V 6A 50W * * NPN 2SD1911 1500V 5A 50W * * NPN 2SD1341 1500V 5A 50W * * NPN 2SD1219 1500V 3A 65W * * NPN 2SD1290 1500V 3A 50W * * NPN 2SD1175 1500V 5A 100W * * NPN 2SD1174 1500V 5A 85W * * NPN 2SD1173 1500V 5A 70W * * NPN 2SD1172 1500V 5A 65W * * NPN 2SD1143 1500V 5A 65W * * NPN 晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SD1142 1500V 3.5A 50W * * NPN 2SD1016 1500V 7A 50W * * NPN 2SD995 2500V 3A 50W * * NPN 2SD994 1500V 8A 50W * * NPN 2SD957A 1500V 6A 50W * * NPN 2SD954 1500V 5A 95W * * NPN 2SD952 1500V 3A 70W * * NPN 2SD904 1500V 7A 60W * * NPN 2SD903 1500V 7A 50W * * NPN 2SD871 1500V 6A 50W * * NPN 2SD870 1500V 5A 50W * * NPN 2SD869 1500V 3.5A 50W * * NPN 2SD838 2500V 3A 50W * * NPN 2SD822 1500V 7A 50W * * NPN 2SD821 1500V 6A 50W * * NPN 晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SD348 1500V 7A 50W * * NPN 2SC4303A 1500V 6A 80W * * NPN 2SC4292 1500V 6A 100W * * NPN 2SC4291 1500V 5A 100W * * NPN 2SC4199A 1500V 10A 100W * * NPN 2SC3883 1500V 5A 50W * * NPN 2SC3729 1500V 5A 50W * * NPN 2SC3688 1500V 10A 150W * * NPN

晶体管的特性曲线

晶体管的特性曲线 晶体管特性曲线即管子各电极电压与电流的关系曲线,是管子内部载流子运动的外部表现,反映了晶体管的性能,是分析放大电路的依据。为什么要研究特性曲线: (1) 直观地分析管子的工作状态 (2) 合理地选择偏置电路的参数,设计性能良好的电路重点讨论应用最广泛的共发射极接法的特性曲线 1.测量晶体管特性的实验线路 图1 共发射极电路 共发射极电路:发射极是输入回路、输出回路的公共端。如图1所示。 2.输入特性曲线 输入特性曲线是指当集-射极电压U CE为常数时,输入电路( 基极电路)中基极电流I B与基-射极电压U BE之间的关系曲线I B = f (U BE),如图2所示。 图2 3DG100晶体管的输入特性曲线 U CE=0V时,B、E间加正向电压,这时发射结和集电结均为正偏,相当于两个二极管正向并联的特性。 U CE≥1V时,这时集电结反偏,从发射区注入基区的电子绝大部分都漂移到

集电极,只有小部分与空穴复合形成I B。U CE>1V以后,I C增加很少,因此I B 的变化量也很少,可以忽略U CE对I B的影响,即输入特性曲线都重合。 由输入特性曲线可知,和二极管的伏安特性一样,晶体管的输入特性也有一段死区。只有在发射结外接电压大于死区电压时,晶体管才会导通,有电流I B。 晶体管死区电压:硅管0.5V,锗管0.1V。晶体管正常工作时发射结电压:NPN型硅管U BE0.6 ~ 0.7) V PNP型锗管U BE0.2 ~ 0.3) V 3.输出特性曲线 输出特性曲线是指当基极电流I B为常数时,输出电路(集电极电路)中集电极电流I C与集-射极电压U CE之间的关系曲线I C = f (U CE),如图3所示。 变化曲线,所以晶体管的输出特性曲在不同的I B下,可得出不同的I C随U CE 线是一族曲线。下面结合图4共发射极电路来进行分析。 图3 3DG100晶体管的输出特性曲线图4 共发射极电路 晶体管有三种工作状态,因而输出特性曲线分为三个工作区 (1) 放大区 在放大区I C=βI B,也称为线性区,具有恒流特性。在放大区,发射结处于正向偏置、集电结处于反向偏置,晶体管工作于放大状态。 对NPN 型管而言, 应使U BE> 0, U BC< 0,此时,U CE> U BE。 (2) 截止区I B = 0 的曲线以下的区域称为截止区。 I B = 0 时, I C = I CEO(很小)。(I CEO<0.001mA)。对NPN型硅管,当U BE<0.5V 时, 即已开始截止, 为使晶体管可靠截止, 常使U BE≤0。截止时, 集电结也处于反向偏置(U BC≤ 0),此时, I C≈0, U CE≈U CC。 (3) 饱和区当U CE< U BE时,集电结处于正向偏置(U BC> 0),晶体管工作于饱和状态。

半导体管特性图示仪的使用和晶体管参数测量

半导体管特性图示仪的使用和晶体管参数测量 一、实验目的 1、了解半导体特性图示仪的基本原理 2、学习使用半导体特性图示仪测量晶体管的特性曲线和参数。 二、预习要求 1、阅读本实验的实验原理,了解半导体图示仪的工作原理以及XJ4810 型半导体管图示仪的各旋钮作用。 2、复习晶体二极管、三极管主要参数的定义。 三、实验原理 (一)半导体特性图示仪的基本工作原理 任何一个半导体器件,使用前均应了解其性能,对于晶体三极管,只要知道其输入、输出特性曲线,就不难由曲线求出它的一系列参数,如输入、输出电阻、电流放大倍、漏电流、饱和电压、反向击穿电压等。但如何得到这两组曲线呢?最早是利用图4-1 的伏安法对晶体管进行逐点测试,而后描出曲线,逐点测试法不仅既费时又费力,而而且所得数据不能全面反映被测管的特性,在实际中,广泛采用半导体特性图示仪测量的晶体管输入、输出特性曲线。 图4-1 逐点法测试共射特性曲线的原理线路用半导体特性图示仪测量晶体管的特性曲线和各种直流参量的基本原理是用图4-2(a)中幅度随时间周期性连续变化的扫描电压UCS代替逐点法中的可调电压EC,用图4-2(b)所示的和扫描电压UCS的周期想对应的阶梯电流iB来代替逐点法中可以逐点改变基极电流的可变电压EB,将晶体管的特性曲线直接显示在示波管的荧光屏上,这样一来,荧光屏上光点位置的坐标便代替了逐点法中电压表和电流表的读数。

1、共射输出特性曲线的显示原理 当显示如图4-3 所示的NPN 型晶体管共发射极输出特性曲线时,图示仪内部和被测晶体管之间的连接方式如图4-4 所示. T是被测晶体管,基极接的是阶梯波信号源,由它产生基极阶梯电流ib 集电极扫描电压UCS直接加到示波器(图示仪中相当于示波器的部分,以下同)的X轴输入端,,经X轴放大器放大到示波管水平偏转板上集电极电流ic经取样电阻R得到与ic成正比的电压,UR=ic,R加到示波器的Y轴输入端,经Y轴放大器放大加到垂直偏转板上.子束的偏转角与偏转板上所加电压的大小成正比,所以荧光屏光点水平方向移动距离代表ic的大小,也就是说,荧光屏平面被模拟成了uce-ic 平面. 图4-4 输出特性曲线显示电路输出特性曲线的显示过程如图4-5 所示 当t=0 时, iB =0 ic=0 UCE =0 两对偏转板上的电压均为零,设此时荧光屏上光点的位置为坐标原点。在0-t1,这段时间内,集电极扫描电压UCS 处于第一个正弦半波周期。

结构动力特性测试方法及原理

结构动力特性的测试方法及应用(讲稿) 一. 概述 每个结构都有自己的动力特性,惯称自振特性。了解结构的动力特性就是进行结构抗震设 计与结构损伤检测的重要步骤。目前,在结构地震反应分析中,广泛采用振型叠加原理的反应谱分析方法,但需要以确定结构的动力特性为前提。n 个自由度的结构体系的振动方程如下: [][][]{}{})()()()(...t p t y K t y C t y M =+??????+?????? 式中[]M 、[]C 、[]K 分别为结构的总体质量矩阵、阻尼矩阵、刚度矩阵,均为n 维矩阵;{} )(t p 为外部作用力的n 维随机过程列阵;{})(t y 为位移响应的n 维随机过程列阵;{})(t y &为速度响应的n 维随机过程列阵;{})(t y && 为加速度响应的n 维随机过程列阵。 表征结构动力特性的主要参数就是结构的自振频率f (其倒数即自振周期T )、振型Y(i)与阻尼比ξ,这些数值在结构动力计算中经常用到。 任何结构都可瞧作就是由刚度、质量、阻尼矩阵(统称结构参数)构成的动力学系统,结构一旦出现破损,结构参数也随之变化,从而导致系统频响函数与模态参数的改变,这种改变可视为结构破损发生的标志。这样,可利用结构破损前后的测试动态数据来诊断结构的破损,进而提出修复方案,现代发展起来的“结构破损诊断”技术就就是这样一种方法。其最大优点就是将导致结构振动的外界因素作为激励源,诊断过程不影响结构的正常使用,能方便地完成结构破损的在线监测与诊断。从传感器测试设备到相应的信号处理软件,振动模态测量方法已有几十年发展历史,积累了丰富的经验,振动模态测量在桥梁损伤检测领域的发展也很快。随着动态测试、信号处理、计算机辅助试验技术的提高,结构的振动信息可以在桥梁运营过程中利用环境激振来监测,并可得到比较精确的结构动态特性(如频响函数、模态参数等)。目前,许多国家在一些已建与在建桥梁上进行该方面有益的尝试。 测量结构物自振特性的方法很多,目前主要有稳态正弦激振法、传递函数法、脉动测试法与自由振动法。稳态正弦激振法就是给结构以一定的稳态正弦激励力,通过频率扫描的办法确定各共振频率下结构的振型与对应的阻尼比。 传递函数法就是用各种不同的方法对结构进行激励(如正弦激励、脉冲激励或随机激励等),测出激励力与各点的响应,利用专用的分析设备求出各响应点与激励点之间的传递函数,进而可以得出结构的各阶模态参数(包括振型、频率、阻尼比)。脉动测试法就是利用结构物(尤其就是高柔性结构)在自然环境振源(如风、行车、水流、地脉动等)的影响下,所产生的随机振动,通过传感器记录、经谱分析,求得结构物的动力特性参数。自由振动法就是:通过外力使被测结构沿某个主轴方向产生一定的初位移后突然释放,使之产生一个初速度,以激发起被测结构的自由振动。 以上几种方法各有其优点与局限性。利用共振法可以获得结构比较精确的自振频率与阻尼比,但其缺点就是,采用单点激振时只能求得低阶振型时的自振特性,而采用多点激振需较多的设备与较高的试验技术;传递函数法应用于模型试验,常常可以得到满意的结果,但对于尺度很大的实际结构要用较大的激励力才能使结构振动起来,从而获得比较满意的传递函数,这在实际测试工作中往往有一定的困难。 利用环境随机振动作为结构物激振的振源,来测定并分析结构物固有特性的方法,就是近年来随着计算机技术及FFT 理论的普及而发展起来的,现已被广泛应用于建筑物的动力分析研究中,对于斜拉桥及悬索桥等大型柔性结构的动力分析也得到了广泛的运用。斜拉桥或悬索桥的环境随机振源来自两方面:一方面指从基础部分传到结构的地面振动及由于大气变化而影响到上部结构的振动(根据动力量测结果,可发现其频谱就是相当丰富的,具有不同的脉动卓越周期,反应了不同地区地质土壤的动力特性);另一方面主要来自过桥车辆的随机振动。

(整理)常用晶体管参数表

常用晶体管参数表 索引晶体管型号反压Vbeo 电流Icm 功率Pcm 放大系数特征频率管子类型9011 50V 0.03A 0.4W * 150MHZ NPN 9012 50V 0.5A 0.6W * * PNP 9013 50V 0.5A 0.6W * * NPN 9014 50V 0.1A 0.4W * 150MHZ NPN 9015 50V 0.1A 0.4W * 150MHZ PNP 9018 30V 0.05A 0.4W * 1GHZ NPN 2N2222 60V 0.8A 0.5W 45 * NPN 2N2369 40V 0.5A 0.3W * 800MHZ NPN 2N2907 60V 0.6A 0.4W 200 * NPN 2N3055 100V 15A 115W * * NPN2N 2N3440 450V 1A 1W * * NPN 2N3773 160V 16A 150W * * NPN 2N5401 160V 0.6A 0.6W * 100MHZ PNP 2N5551 160V 0.6A 0.6W * 100MHZ NPN 2N5685 60V 50A 300W * * NPN 2N6277 180V 50A 300W * * NPN 2N6678 650V 15A 175W * * NPN 2SA 2SA1009 350V 2A 15W ** PNP 2SA1012Y 60V 5A 25W ** PNP 2SA1013R 160V 1A 0.9W * * PNP 2SA1015R 50V 0.15A 0.4W * * PNP 2SA1018 150V 0.07A 0.75W * * PNP 2SA1020 50V 2A 0.9W * * PNP 2SA1123 150V 0.05A 0.75W * * PNP 2SA1162 50V 0.15A 0.15W * * PNP 2SA1175H 50V 0.1A 0.3W * * PNP 2SA1216 180V 17A 200W * * PNP 2SA1265 140V 10A 30W ** PNP 2SA1266Y 50V 0.15A 0.4W * * PNP 2SA1295 230V 17A 200W * * PNP 2SA1299 50V 0.5A 0.3W * * PNP 2SA1300 20V 2A 0.7W * * PNP 2SA1301 200V 10A 100W * * PNP 2SA1302 200V 15A 150W * * PNP 2SA1304 150V 1.5A 25W ** PNP 2SA1309A 25V 0.1A 0.3W * * PNP 2SA1358 120V 1A 10W *120MHZ PNP 2SA1390 35V 0.5A 0.3W * * PNP 2SA1444 100V 1.5A 2W * 80MHZ PNP 2SA1494 200V 17A 200W * 20MHZ PNP 2SA1516 180V 12A 130W * 25MHZ PNP

结构动力特性试验

第七章结构动力特性试验 7.1概述 建筑结构动力特性是反映结构本身所固有的动力性能。它的主要内容包括结构的自振频率、阻尼系数和振型等一些基本参数,也称动力特性参数或振动模态参数。这些特性是由结构形式、质量分布、结构刚度、材料性质,构造连接等因素决定,但与外荷载无关。 建筑结构动力特性试验量测结构动力特性参数是结构动力试验的基本内容,在研究建筑结构或其他工程结构的抗震、抗风或抗御其它动荷载的性能和能力时,都必须要进行结构动力特性试验,了解结构的自振特性。 1.在结构抗震设计中,为了确定地震作用的大小,必须了解各类结构的自振周期。同样,对于已建建筑的震后加固修复,也需了解结构的动力特性,建立结构的动力计算模型,才能进行地震反应分析。 2测量结构动力特性,了解结构的自振频率,可以避免和防止动荷载作用所产生的干扰与结构产生共振或拍振现象。在设计中可以便结构避开干扰源的影响,同样也可以设法防止结构自身动力特性对于仪器设备的工作产生干扰的影响,可以帮助寻找采取相应的措施进行防震,隔震或消震。 3.结构动力特性试验可以为检测、诊断结构的损伤积累提供可靠的资料和数据。由于结构受动力作用,特别是地震作用后,结构受损开裂使结构刚度发生变化,刚度的减弱使结构自振周期变长,阻尼变大。由此,可以从结构自身固有特性的变化来识别结构物的损伤程度,为结构的可靠度诊断和剩余寿命的估计提供依据。 建筑结构的动力特性可按结构动力学的理论进行计算。但由于实际结构的组成,材料和连接等因素,经简化计算得出的理论数据往往会有一定误差。对于结构阻尼系数一般只能通过试验来加以确定。因此,建筑结构动力特性试验就成为动力试验中的一个极为重要的组成部分,而引起人们的关注和重视。 结构动力特性试验是以研究结构自振特性为主,由于它可以在小振幅试验下求得,不会使结构出现过大的振动和损坏,因此经常可以在现场进行结构的实物试验,正如本章所介绍的试验实例。当然随着对结构动力反应研究的需要,目前较多的结构动力试验,特别是研究地震,风震反应的抗震动力试验,也可以通过试验室内的模型试验来测量它的动力特性。 结构动力特性试验的方法主要有人工激振法和环境随机振动法。人工激报法又可分为自由振动法和强迫振动法。 人工激振法是一种早期使用的方法,试验得到的资料数据直观简单,容易处理;环境随机振动法是一种建立在计算机技术发展基础上采用数理统计处理数据的新方法,由于它是利用环境脉动的随机激振,不需要激振设备,对于现场测试特别有利。以上任何一种方法都能测得结构的各种自振特性参数,由于计算机技术的发展和数据分析专用仪器的普及使用,为各种方法所测得的资料数据提供了快速有效的处理分析条件。 7.2人工激振法测量结构动力特性 7.2.且结构自振频率测量 一、自由振动法 在试验中采用初位移或初速度的突卸或突加荷载的方法,使结构受一冲击荷载作用而产生自由振动。在现场试验中可用反冲激振器对结构产生冲击荷载;在工业厂房中可以通过锻锤、

晶体管输入输出特性曲线测试电路实验报告

实验题目:晶体管输入输出特性曲线测试电路的设计 班级: 学号: 姓名: 日期:

一、实验目的 1. 了解测量双极型晶体管输出特性曲线的原理与方法 2. 熟悉脉冲波形的产生和波形变换的原理与方法 3. 熟悉各单元电路的设计方法 二、实验电路图及其说明 晶体管共发射极输出特性曲线如图所示,它是由函数i c=f (v CE)|i B=常数,表示的一簇曲线。它既反映了基极电流i B对集电极电流i C 的控制作用,同时也反映出集电极和发射极之间的电压v CE对集电极电流i C的影响。 如使示波器显示图那样的曲线,则应将集电极电流i C取样,加至示波器的Y轴输入端,将电压v CE加至示波器的X轴输入端。若要显示i B为不同值时的一簇曲线,基极电流应为逐级增加的阶梯波形。通常晶体管的集电极电压是从零开始增加,达到某一数值后又回到零值的扫描波形,本次实验采用锯齿波。 测量晶体管输出特性曲线的一种参考电路框图如图所示。 矩形波震荡电路产生矩形脉冲输出电压v O1。该电路一方面经锯齿波形成电路变换成锯齿波v O2,作为晶体管集电极的扫描电压;另一方面经阶梯波形成电路,通过隔离电阻送至晶体管的基极,作为积极驱动电流i B,波形见图3的第三个图(波形不完整,没有下降)。 电阻R C将集电极电流取样,经电压变换电路转换成与电流i C成正比的对地电压V O3,加至示波器的Y轴输入端,则示波器的屏幕上便会显示出晶体管输出特性曲线。 需要注意,锯齿波的周期与基极阶梯波每一级的时间要完全同步(用同一矩形脉冲

产生的锯齿波和阶梯波可以很好的满足这个条件)。阶梯波有多少级就会显示出多少条输出特性曲线。另外,每一整幅图形的显示频率不能太低,否则波形会闪烁。 选作:晶体管特性曲线数目可调: 主要设计指标和要求: 1、矩形波电压(V O1)的频率f大于500Hz,误差为±10Hz,占空比为4%~6%,电压幅度 峰峰值大约为20V。 2、晶体管基极阶梯波V O3的起始值为0,级数为10级,每极电压0.5V~1V。 3、晶体管集电极扫描电压V O2的起始电压为0V,幅度大约为10V。 三、预习 理论计算:电路设计与仿真: 1.矩形波电路:仿真图如下:

常用场效应管和晶体管参数大全

常用场效应管和晶体管参数大全 常用场效应管和晶体管参数大全 IRFU020 50V 15A 42W * * NMOS场效应IRFPG42 1000V 4A 150W * * NMOS场效应IRFPF40 900V 4.7A 150W * * NMOS场效应IRFP9240 200V 12A 150W * * PMOS场效应IRFP9140 100V 19A 150W * * PMOS场效应IRFP460 500V 20A 250W * * NMOS场效应IRFP450 500V 14A 180W * * NMOS场效应IRFP440 500V 8A 150W * * NMOS场效应IRFP353 350V 14A 180W * * NMOS场效应IRFP350 400V 16A 180W * * NMOS场效应IRFP340 400V 10A 150W * * NMOS场效应IRFP250 200V 33A 180W * * NMOS场效应IRFP240 200V 19A 150W * * NMOS场效应IRFP150 100V 40A 180W * * NMOS场效应IRFP140 100V 30A 150W * * NMOS场效应IRFP054 60V 65A 180W * * NMOS场效应IRFI744 400V 4A 32W * * NMOS场效应IRFI730 400V 4A 32W * * NMOS场效应IRFD9120 100V 1A 1W * * NMOS场效应IRFD123 80V 1.1A 1W * * NMOS场效应IRFD120 100V 1.3A 1W * * NMOS场效应IRFD113 60V 0.8A 1W * * NMOS场效应IRFBE30 800V 2.8A 75W * * NMOS场效应IRFBC40 600V 6.2A 125W * * NMOS场效应IRFBC30 600V 3.6A 74W * * NMOS场效应IRFBC20 600V 2.5A 50W * * NMOS场效应IRFS9630 200V 6.5A 75W * * PMOS场效应IRF9630 200V 6.5A 75W * * PMOS场效应IRF9610 200V 1A 20W * * PMOS场效应IRF9541 60V 19A 125W * * PMOS场效应IRF9531 60V 12A 75W * * PMOS场效应IRF9530 100V 12A 75W * * PMOS场效应IRF840 500V 8A 125W * * NMOS场效应IRF830 500V 4.5A 75W * * NMOS场效应IRF740 400V 10A 125W * * NMOS场效应IRF730 400V 5.5A 75W * * NMOS场效应IRF720 400V 3.3A 50W * * NMOS场效应IRF640 200V 18A 125W * * NMOS场效应IRF630 200V 9A 75W * * NMOS场效应IRF610 200V 3.3A 43W * * NMOS场效应IRF541 80V 28A 150W * * NMOS场效应

晶体管特性曲线测试电路

近代电子学实验之晶体管特性曲线测试电路

2、锯齿波:幅度0—10V连线可调,输出极性可变。 3、阶梯波:3—10阶连线可调。 4、电压—电流变换器:0.001<=I1<=0.2(mA),输出电流方向可变(每阶0.001<=Ib<=0.02(mA))。 实验设计的基本原理: 三极管特性曲线测量电路的基本原理: 晶体三极管为电流控制器件,他们特性曲线的每一根表示当Ib一定时Vc与Ic的关系曲线,一簇表示不同Ib时Vc与Ic的关系曲线的不同关系曲线,就称为单晶体三极管的输出特性曲线,所以在晶体三极管的基级加上阶梯电流源表示不同 Ib。在每级阶梯内测量集射极电压 Vc和集电极定值负载电阻上的电压 Vr,通过电压变换电路将 Vr换算成集电极电流 Ic, 以 Ic作为纵轴, Vc 为横轴, 在数字示波器上即可显示一条晶体管输出特性曲线。示波器的地线与测量电路地不可相通。即测量电路的稳压电源不能接大地。(因为示波器外壳已接大地) 晶体三极管特性曲线测量电路原理框图如下: 框图 在本测量电路中,两种波形的准确性直接影响到了输出曲线的好坏。故在实验中需准确调整主要电阻电容的参数。

电阻R10右边输出的波形就是脉冲方波,之后经过U6积分后,在U6的6脚即可输出锯齿波。 电路中,R5和C1的参数会直接影响到输出锯齿波的波形好坏,所以应注意参数。 2、阶梯波产生部分电路 产生阶梯波的原理: 阶梯波电路如下, 十进制同步计数器 (异步清零 ) 74ls161构成八进制计数器, 将比较器 U1 输出矩形波接至其脉冲端作为触发信号,进行计数。八进制计数器四位输出经过八位 DAC0832进行转换成八级阶梯波电压信号, 再经过放大电路进行放大。 电路中的与非门用于调节阶梯波的阶数,从而实现输出特性曲线中的曲线条数可调。由于74ls161的输出Q0—Q3是四个数的组合,对于该电路使用二输入端与非门作为闸门控制,那么可以得到3—10阶之间的任意数字的阶梯。譬如:Q1、Q0组合,分别接入与非门的两端,那么就可以得到3阶的阶梯波;若Q2、Q3组合,分别接到与非门的两端,即可得到10阶的阶梯波。 该阶梯波是下降的阶梯波,对于实验的结果是不会影响的。 电路图如下:

“结构动力特性测量实验”辅导资料

结构动力特性测量实验辅导资料 主题:结构动力特性测量实验的辅导资料 学习时间:2013年6月24日-7月21日 内容: 这周我们将学习结构动力特性测量实验的相关内容。 一、学习要求 学习要求及需要掌握的重点内容如下: 1、掌握实验的目的; 2、掌握实验主要的仪器和设备; 3、掌握实验的整个实验步骤; 4、掌握实验数据的处理方法。 二、主要内容 结构动力特性是反映结构本身所固有的动力性能,主要包括结构的自振频率、阻尼系数和振型等,这些参数与外荷载无关。 测量结构动力特性参数是结构动力试验的基本内容,在研究建筑结构或其他工程结构的抗震、抗风或抵御其它动荷载的性能和能力时,都必须要进行结构动力特性试验。 通过结构动力特性的测量,能够得到结构的自振频率,可以避免和防止动荷载所产生的干扰与结构共同作用产生的共振现象。此外,受损开裂结构的刚度减小,导致结构自振周期变长,阻尼变大,因此结构动力特性试验可以为检测、诊

断结构的损伤积累提供可靠的资料和数据。 本次实验的题目为《结构动力特性测量实验》。 (一)本次试验的目的 1、了解动力参数的测量原理; 2、掌握传感器、仪器及使用方法; 3、通过振动衰减波形求出简支梁的固有频率和阻尼比; (二)本次试验使用的仪器、设备及试验构件 本次实验需要用到的仪器和设备主要包括三个: 1、振动传感器DH105,也叫拾振器,主要是用来将振动信号转换成电荷信号输出;优点是体积小、重量轻、对被测物体影响小,频率范围宽、动态范围大,主要参数如表所示,我们在振动传感器的选择上最关心的指标是灵敏度、频率范围和量程。 2、与之配套的电荷适配器,主要作用是将压电传感器的电荷信号转换成电压信号; 3、东华DH5922动态信号测试分析仪,主要用来采集振动传感器输出的电信号,并将其转换成数字量传递给计算机。 除了上述传感器和数据采集设备,试验中还用到了用于数据记录的笔记本电脑、锤子和木制简支梁,其参数如下表所示:

最新常用晶体管参数查询

常用晶体管参数查询

常用晶体管参数查询 Daten ohne Gewahr 2N109 GE-P 35V 0.15A 0.165W | 2N1304 GE-N 25V 0.3A 0.15W 10MHz 2N1305 GE-P 30V 0.3A 0.15W 5MHz | 2N1307 GE-P 30V 0.3A 0.15W B>60 2N1613 SI-N 75V 1A 0.8W 60MHz | 2N1711 SI-N 75V 1A 0.8W 70MHz 2N1893 SI-N 120V 0.5A 0.8W | 2N2102 SI-N 120V 1A 1W <120MHz 2N2148 GE-P 60V 5A 12.5W | 2N2165 SI-P 30V 50mA 0.15W 18MHz 2N2166 SI-P 15V 50mA 0.15W 10MHz | 2N2219A SI-N 40V 0.8A 0.8W 250MHz 2N2222A SI-N 40V 0.8A 0.5W 300MHz | 2N2223 2xSI-N 100V 0.5A 0.6W >50 2N2223A 2xSI-N 100V 0.5A 0.6W >50 | 2N2243A SI-N 120V 1A 0.8W 50MHz 2N2369A SI-N 40V 0.2A .36W 12/18ns | 2N2857 SI-N 30V 40mA 0.2W >1GHz 2N2894 SI-P 12V 0.2A 1.2W 60/90ns | 2N2905A SI-P 60V 0.6A 0.6W 45/100 2N2906A SI-P 60V 0.6A 0.4W 45/100 | 2N2907A SI-P 60V 0.6A 0.4W 45/100 2N2917 SI-N 45V 0.03A >60Mz | 2N2926 SI-N 25V 0.1A 0.2W 300MHz 2N2955 GE-P 40V 0.1A 0.15W 200MHz | 2N3019 SI-N 140V 1A 0.8W 100MHz 2N3053 SI-N 60V 0.7A 5W 100MHz | 2N3054 SI-N 90V 4A 25W 3MHz 2N3055 SI-N 100V 15A 115W 800kHz | 2N3055 SI-N 100V 15A 115W 800kHz 2N3055H SI-N 100V 15A 115W 800kHz | 2N3251 SI-P 50V 0.2A 0.36W 2N3375 SI-N 40V 0.5A 11.6W 500MHz | 2N3439 SI-N 450V 1A 10W 15MHz 2N3440 SI-N 300V 1A 10W 15MHz | 2N3441 SI-N 160V 3A 25W POWER

结构动力性能及试验技术

第9章结构动力性能及试验技术 结构动力性能包括结构的自振频率、振型、阻尼比、滞回特性等,是结构本身的特性。在进行结构抗震设计和研究结构的地震反应时必须同时了解和掌握地震动的特性和结构动力性能。关于地震动的特性在前面已讲,下面介绍结构的动力特性和为获得这些特性所需的相关试验技术。 9.1地震作用下结构的受力和变形特点 地震作用下结构的受力和变形是复杂的时间过程,其主要特点体现在以下三个方面:1、低频振动 结构的自振频率(基频)范围较窄,一般在0.05s~15s(20Hz~0.07Hz)之间,例如, 0.05s—基岩上的设备、单层房屋竖向振(震)动时; 15s—大跨度悬索桥。 在结构的地震反应中,高阶振型有影响,但第一振型,或较低阶振型所占的比例较大,因此结构的整体反应以低频振动为主。 2、多次往复(大变形) 在地震作用下,结构反应可能超过弹性,产生大变形,并导致结构的局部破坏。地震作用是一种短期的往复动力作用,其持续时间可达几十秒到一、二分钟,结构的反应可以往复几次或者几十次,在往复荷载作用下,结构的破坏不断累加、破坏程度逐渐发展,可经历由弹性阶段→开裂(RC,砖结构)→屈服→极限状态→倒塌的过程,称为低周疲劳。 在地震作用下结构的变形(位移)速度较低,约为几分之一秒量级。 而爆炸冲击波:正压,负压为一次,无往复,材料快速变形(为毫秒量级); 车辆荷载:多次重复,但应力水平低(无屈服),高周次(>100万次)。 3、累积破坏 地震造成的结构积累破坏可以表现在以下三中情况中: ① 一次地震中,结构在地震作用下发生屈服,以后每一个振动循环往复都将造成结构破坏积累。 ② 主震时,结构发生破坏,但未倒塌;余震时,结构变形增加,破坏加重,甚至发生倒塌。 ③ 以前地震中结构发生轻微破坏,未予修复;下次地震时产生破坏严重。 从结构地震反应的特点可以看出,要正确进行结构地震反应分析计算,必须了解结构的阻尼,振型,自振频率等基本动力特性,同时必须研究材料、构件和结构的强非线性或接近破坏阶段的动力特性,以及强度与变形的发展变化规律等。

工程结构动力特性及动力响应检测技术

江苏省工程建设标准DGJ JXXXXX-2010DGJ32/JXX-2010 工程结构动力特性及动力响应检测技术规程 Technical specification for testing dynamic characteristic and dynamic response of engineering structures 2010-XX-XX发布2010-XX-XX实施江苏省建设厅审定发布 江苏省工程建设标准 工程结构动力特性及动力响应检测技术规程 DGJ32/JXX-2010 JXXXXX-2010 主编单位: 批准单位: 江苏省建设厅 批准日期: 2010年XX月XX日

前言 近年来,结构的安全评估及抗震性能评价越来越受到人们的重视,结构的动力检测由于其自身的优点逐渐成为工程界和学术界十分关注的一个研究领域。结构动力检测方法可不受结构规模和隐蔽的限制,高效模块化、数字化的结构动力响应测量技术为结构动力检测方法提供了有效的技术支持。为规范工程结构动力特性和动力响应检测方法和程序,提高检测结果的可靠性,特编制本规程。 根据江苏省建设厅《关于印发<江苏省2009年度工程建设标准和标准设计图集编制、修订计划>的通知》(苏建科[2009]99号)的要求,规范编制组在前期相关科研的基础上,经广泛调查研究,认真总结实践经验,参考国内外有关先进标准,开展专题研究、试验研究和典型工程应用,并在广泛征求意见的基础上,制定本规程。 本规程的主要技术内容是:1 总则;2术语和符号;3基本规定;4仪器设备;5工程结构动力特性检测;6工程结构动力响应检测;7检测报告的编写。 本规程在使用过程中如发现需要修改或补充之处,请随时将意见反馈至南京工业大学(南京市中山北路200号,邮政编码:210009),以供今后修订时参考。本标准主编单位、参编单位和主要起草人:主编单位: 主要起草人:

晶体管的输入输出特性曲线详解

晶体管的输入输出特性曲线详解 届别 系别 专业 班级 姓名 指导老师

二零一二年十月 晶体管的输入输出特性曲线详解 学生姓名:指导老师: 摘要:晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。 根据晶体管的结构进行分类,晶体管可以分为:NPN型晶体管和PNP 型晶体管。依据晶体管两个PN结的偏置情况,晶体管的工作状态有放大、饱和、截止和倒置四种。晶体管的性能可以有三个电极之间的电压和电流关系来反映,通常称为伏安特性。 生产厂家还给出了各种管子型号的参数也能表示晶体管的性能。利用晶体管制成的放大电路的可以是把微弱的信号放大到负载所需的数值 晶体管是一种半导体器件,放大器或电控开关常用。晶体管是规范操作电脑,手机,和所有其他现代电子电路的基本构建块。由于

其响应速度快,准确性,晶体管可用于各种各样的数字和模拟功能,包括放大,开关,稳压,信号调制和振荡器。晶体管可独立包装或在一个非常小的的区域,可容纳一亿或更多的晶体管集成电路的一部分。 关键字:晶体管、输入输出曲线、放大电路的静态分析和动态分析。 【Keywords】The transistor, the input/output curve, amplifying circuit static analysis and dynamic analysis. 一、晶体管的基本结构 晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,如图 1-1(a)、(b)所示。从三个区引出相应的电极,发射极,基极,集电极,各用“E”(或“e”)、“B”(或“b”)、“C”(或“c”)表示。 发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。发射极箭头向外。发射极箭头指向也是PN结在正向电压下的导通方向。硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。当前国内生产的锗管多为PNP型(3A

相关主题
文本预览
相关文档 最新文档