当前位置:文档之家› 解析几何中求曲线轨迹方程的常见方法总结(学生用)

解析几何中求曲线轨迹方程的常见方法总结(学生用)

解析几何中求曲线轨迹方程的常见方法总结(学生用)
解析几何中求曲线轨迹方程的常见方法总结(学生用)

解析几何中求曲线轨迹方程的常见方法总结

一.直接法:直接法是将动点满足的几何条件或者等量关系直接坐标化,列出等式,化简即得动点轨迹方程。它的基本步骤是建系、设点、列式、代换、化简、证明。

例1.已知线段6=AB ,直线BM AM ,相交于M ,且它们的斜率之积是49

,求点M 的轨迹方程。

习题:1.(2011新课标全国理)在平面直角坐标系xOy 中,已知()1,0-A ,B 点在直线3-=y 上,M 点满足,,//BA MB AB MA OA MB ?=?M 点的轨迹为曲线C ,求C 的方程。

2.(2010年北京卷)在平面直角坐标系xOy 中,点B 与点()1,1-A 关于原点O 对称,P 是动点,且直线AP 与直线BP 的斜率之积等于3

1-

,求动点P 的轨迹方程。

3.(2012四川理)如图,动点M 到两定点(1,0)A -、(2,0)B 构成MAB ?,且

2MBA MAB

∠=∠,设动点M 的轨迹为C ,求轨迹C 的方程;

y x

B A O M

4.(2012年江西)已知三点()0,0O ,()1,2-A ,()1,2B ,曲线C 上任意一点()y x M ,满足()2MA MB OM OA OB +=?++ ,求曲线C 的方程;

二.定义法:若动点轨迹的条件符合某一基本曲线的定义(如椭圆、双曲线、抛物线、圆等),则可先设出轨迹方程,再根据已知条件,求出待定方程中的常数,即可得到轨迹方程

例2.若(8,0),(8,0)B C -为ABC ?的两顶点,AC 和AB 两边上的中线长之和是30,则ABC ?的重心轨迹方程是_______________。

变式:1.方程222(1)(1)|2|x y x y -+-=++表示的曲线是 ( )

A .椭圆

B .双曲线

C .线段

D .抛物线

2.一动圆与已知圆1Q :()1322=++y x 外切,与圆2Q :()813-2

2=+y x 内切,试求这个动圆圆心的轨迹方程。

三、代入法:代入法又称转移法或相关点发,即如果点P 的运动轨迹或所在曲线已知,而点Q 与点P 之间的坐标又可以建立某种关系,则借助点P 的轨迹可以得到点Q 的轨迹 转移法求曲线方程时一般有两个动点,一个是主动的,另一个是次动的。

当题目中的条件同时具有以下特征时,一般可以用转移法求其轨迹方程:

①某个动点P 在已知方程的曲线上移动;

②另一个动点M 随P 的变化而变化;

③在变化过程中P 和M 满足一定的规律

例3.(2011年陕西卷)如图,设P 是圆2225x y +=上的动点,点D 是在x 轴上的射影,M 为PD 上一点,且45

MD PD =

,当P 在圆上运动时,求点M 的轨迹C 的方程;

变式:1.在圆422=+y x 上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足,当点P

在圆上运动时,线段PD 的中点M 的轨迹是什么?

2.已知P 是以12,F F 为焦点的双曲线22

1169

x y -=上的动点,求12F F P ?的重心G 的轨迹方程。

3.抛物线24x y =的焦点为F ,过点(0,1)-作直线l 交抛物线A 、B 两点,再以AF 、BF 为邻边作平行四边形AFBR ,试求动点R 的轨迹方程。

4.已知(1,0),(1,4)

A B -,在平面上动点Q 满足4QA QB ?= ,点P 是点Q 关于直线2(4)y x =-的对称点,求动点P 的轨迹方程。

四、参数法:若动点P 的坐标()y x ,中的y x ,分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程,最后消去参数,就可以得到轨迹方程。

注:用参数法求轨迹方程要注意合理选择参数,作参数的量通常是直线斜率、动点的坐标。求曲线的轨迹方程是解析几何的两个基本问题之一,求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,通过“坐标互化”将其转化为寻求变量间的关系。在确定了轨迹方程之后,有时题目会就方程中的参数进行讨论;参数取值的变化使方程表示不同的曲线;参数取值的不同使其与其他曲线的位置关系不同;参数取值的变化引起另外某些变量的取值范围的变化等等。

例4:已知直线l 过()0,1M ,与抛物线y x 22

=交于B A ,两点,O 为坐标原点,点P 在y 轴的右侧,且满足OB OA OP 2

121+=

,求P 点的轨迹C 的方程。

1.设点A 和B 为抛物线2

4(0)y px p =>上原点O 以外的两个动点,且OA OB ⊥,过O 作OM AB ⊥于M ,求点M 的轨迹方程。

五、交轨法:若动点是两曲线的交点,可以通过这两曲线的方程直接求出交线的方程,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去得到轨迹方程,可以说是参数法的一种变形。

例 5.(2012年辽宁理) 如图,椭圆0C :22

221(0x y a b a b

+=>>,a ,b 为常数),动圆22211:C x y t +=,1b t a <<。点12,A A 分别为0C 的左,右顶点,1C 与0C 相交于A ,B ,C ,

D 四点。求直线1AA 与直线2A B 交点M 的轨迹方程;

变式:1.(2010广东理)已知双曲线2

212

x y -=的左、右顶点分别为21,A A ,点11(,)P x y ,11(,)Q x y -是双曲线上不同的两个动点,求直

线P A 1与Q A 2交点的轨迹E 的方程

2.已知MN 是椭圆122

22=+b

y a x 中垂直于长轴的动弦,A 、B 是椭圆长轴的两个端点,求直线MA 和NB 的交点P 的轨迹方程。

总结归纳

1.要注意有的轨迹问题包含一定隐含条件,也就是曲线上点的坐标的取值范围.由曲线和方程的概念可知,在求曲线方程时一定要注意它的“完备性”和“纯粹性”,即轨迹若是曲线的一部分,应对方程注明x 的取值范围,或同时注明,x y 的取值范围。

2.“轨迹”与“轨迹方程”既有区别又有联系,求“轨迹”时首先要求出“轨迹方程”,然后再说明方程的轨迹图形,最后“补漏”和“去掉增多”的点,若轨迹有不同的情况,应分别讨论,以保证它的完整性

高考数学一轮复习(北师大版理科):第8章平面解析几何第8节曲线与方程学案

第八节 曲线与方程 [考纲传真] (教师用书独具)1.了解方程的曲线与曲线的方程的对应关系.2.了解解析几何的基本思想和利用坐标法研究几何问题的基本方法.3.能够根据所给条件选择适当的方法求曲线的轨迹方程. (对应学生用书第146页) [基础知识填充] 1.曲线与方程 一般地,在直角坐标系中,如果某曲线C (看作满足某种条件的点的集合或轨迹)上的点与一个二元方程f (x ,y )=0的实数解建立了如下的关系: (1)曲线上点的坐标都是这个方程的解. (2)以这个方程的解为坐标的点都是曲线上的点. 那么,这条曲线叫作方程的曲线;这个方程叫作曲线的方程. 2.求动点轨迹方程的一般步骤 (1)建立适当的坐标系,用有序实数对(x ,y )表示曲线上任意一点M 的坐标. (2)写出适合条件p 的点M 的集合P ={M |p (M )}. (3)用坐标表示条件p (M ),列出方程f (x ,y )=0. (4)化方程f (x ,y )=0为最简形式. (5)说明以化简后的方程的解为坐标的点都在曲线上. 3.圆锥曲线的共同特征 圆锥曲线上的点到一个定点的距离与它到一条定直线的距离之比为定值e . (1)当0<e <1时,圆锥曲线是椭圆. (2)当e >1时,圆锥曲线是双曲线. (3)当e =1时,圆锥曲线是抛物线. 4.两曲线的交点 设曲线C 1的方程为f 1(x ,y )=0,曲线C 2的方程为g (x ,y )=0,则 (1)曲线C 1,C 2的任意一个交点坐标都满足方程组? ?? ?? f 1(x ,y )=0, g (x ,y )=0. (2)反之,上述方程组的任何一组实数解都对应着两条曲线某一个交点的坐标. [基本能力自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)f (x 0,y 0)=0是点P (x 0,y 0)在曲线f (x ,y )=0上的充要条件.( ) (2)方程x 2 +xy =x 的曲线是一个点和一条直线.( )

求轨迹方程的几种常用方法

求轨迹方程的几种常用方法 求轨迹的方程,是学习解析几何的基础,求轨迹的方程常用的方法主要有: 1直接法: 若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为( x, y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有x,y 的关系式。从而得到轨迹方程,这种求轨迹方程的方法称作直接法。 例1 :在直角△ ABC中,斜边是定长2a (a 0),求直角顶点C的轨迹方程。 解:由于未给定坐标系,为此,首先建立直角坐标系,取AB所在的直线为X轴,AB的中点0为坐 标原点,过0与AB垂直的直线为y轴(如图).则有A ( a,0), B (a,0)。 设动点C为(x, y), ??? | AC |2 |BC |2 |AB|2, a)2y2]2h(x a)2y2]24a2, 即x2 由于C点到达A、B位置时直角三角形ABC不存在,轨迹中应除去A、B两点, 故所求方程为x2y2a2( x a )。 2?代入法(或利用相关点法): 即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。 例2 :已知一条长为6的线段两端点A、B分别在x、y轴上滑动,点M在线段AB上,且AM : MB 1:2,求动点M的轨迹方程。 解:设 A (a,0) , B (0, b), M (x, y), 一方面,. 另一方面, 36 , M分AB的比为 1 , 2

评注:本例中,由于 M 点的坐标随着 A 、B 的变化而变化,因而动点 M 的坐标(x, y)可以用A 、B 点 的坐标来表示,而点 M 又满足已知条件,从而得到 M 的轨迹方程。此外,与上例一样,求曲线的方程时, 要充分注意化简过程是否完全同解变形,还要考虑曲线上的一些特殊点。 3.几何法: 求动点轨迹问题时,动点的几何特征与平面几何中的定理及有关平面几何知识有着直接或间接的联 系,且利用平面几何的知识得到包含已知量和动点坐标的等式,化简后就可以得到动点的轨迹方程,这种 求轨迹方程的方法称作几何法。 求动点P 的轨迹方程。 解:设P (x, y),由题 APO BPO ,由三角形角平分线定理有 L P A | ^A 0-1 |PB| |BO| ..(x 6)2 y 2 3 3 , (x 2)2 y 2 整理得x 2 y 2 6x 0,当x 0时,y 0, P 和O 重合,无 意义,??? x 0, 又易知P 落在x 轴上时,除线段AB 以外的任何点均有 APO BPO 00 , ? y 0 ( x 6或x 2)也满足要求。 综上,轨迹方程为 x 2 y 2 6x 0 ( x 0)或y 0 (x 6或x 2 )。 评注:本例利用平面几何的知识(三角形的角平分线定理进行解题) ,方便了求轨迹的方程。 4.参数法: 有时很难直接找出动点的横、纵坐标之间关系。如果借助中间量(参数) 联系,然后再从所求式子中消去参数,这便可得动点的轨迹方程。 0 -b _2_ 1 - -b 3 a x 2 b 3y ②代入①得: 3 2 2 (評(3y) 2 36,即一 16 例3 :如图,已知两定点 A ( 6,0 ), B ( 2,0 ), O 为原点,动点 P 与线段AO 、BO 所张的角相等, ,使(x, y)之间的关系建立起

求轨迹方程的常用方法(例题及变式)

求轨迹方程的常用方法: 题型一 直接法 此法是求轨迹方程最基本的方法,根据所满足的几何条件,将几何条件)}(|{M P M 直接翻译成y x ,的形式0),(=y x f ,然后进行等价变换,化简0),(=y x f ,要注意轨迹方程的纯粹性和完备性,即曲线上没有坐标不满足方程的点,也就是说曲线上所有的点适合这个条件而毫无例外(纯粹性);反之,适合条件的所有点都在曲线上而毫无遗漏(完备性)。 例1 过点)3,2(A 任作互相垂直的两直线AM 和AN ,分别交y x ,轴于点N M ,,求线段MN 中点P 的轨迹方程。 解:设P 点坐标为),(y x P ,由中点坐标公式及N M ,在轴上得)2,0(y M ,)0,2(x N ),(R y x ∈ ∴12 0322230-=--?--y x )1(≠x ,化简得01364=-+y x )1(≠x 当1=x 时,)3,0(M ,)0,2(N ,此时MN 的中点)2 3,1(P 它也满足方程01364=-+y x ,所以中点P 的轨迹方程为01364=-+y x 。 变式1 已知动点(,)M x y 到直线:4l x =的距离是它到点(1,0)N 的距离的2倍。 (1) 求动点M 的轨迹C 的方程; (2) 过点(0,3)P 的直线m 与轨迹C 交于,A B 两点。若A 是PB 的中点,求直线m 的斜 率。 题型二 定义法 圆锥曲线定义所包含的几何意义十分重要,应特别重视利用圆锥曲线的定义解题,包括用定义法求轨迹方程。 例2 动圆M 过定点)0,4(-P ,且与圆08:2 2=-+x y x C 相切,求动圆圆心M 的轨迹方程。 解:根据题意4||||||=-MP MC ,说明点M 到定点P C 、的距离之差的绝对值为定值,故点M 的轨迹是双曲线。 ∴2=a ,4=c 故动圆圆心M 的轨迹方程为112 42 2=-y x 变式2 在ABC △中,24BC AC AB =,,上的两条中线长度之和为39, 求ABC △的重心的轨迹方程.

高中解析几何知识点

解析几何知识点 一、基本内容 (一)直线的方程 1、直线的方程 确定直线方程需要有两个互相独立的条件,而其中一个必不可少的条件是直线必须经过一已知点.确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围. 2、两条直线的位置关系 两条直线的夹角,当两直线的斜率k1,k2都存在且k1·k2≠ 外注意到角公式与夹角公式的区别. (2)判断两直线是否平行,或垂直时,若两直线的斜率都存在,可用斜率的关系来判断.但若直线斜率不存在,则必须用一般式的平行垂直条件来判断. 3、在学习中注意应用数形结合的数学思想,即将对几何图形的研究,转化为对代数式的研究,同时又要理解代数问题的几何意义. (二)圆的方程 (1)圆的方程 1、掌握圆的标准方程及一般方程,并能熟练地相互转化,一般地说,具有三个条件(独立的)才能确定一个圆方程.在求圆方程时,若条件与圆心有关,则一般用标准型较易,若

已知圆上三点,则用一般式方便,注意运用圆的几何性质,去简化运算,有时利用圆系方程也可使解题过程简化. 2、 圆的标准方程为(x -a )2+(y -b )2=r 2;一般方程x 2+y 2+Dx+Ey +F =0,圆心坐标 (,)22D E -- 3、 在圆(x -a )2+(y -b )2=r 2,若满足a 2+b 2 = r 2条件时,能使圆过原点;满足a=0,r >0条件时,能使圆心在y 轴上;满足b r =时,能使圆与x 轴相切;r =条件时, 能使圆与x -y =0相切;满足|a |=|b |=r 条件时,圆与两坐标轴相切. 4、 若圆以A (x 1,y 1)B (x 2,y 2)为直径,则利用圆周上任一点P (x ,y ), 1PA PB k k =-求出圆方程(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0 (2) 直线与圆的位置关系 ①在解决的问题时,一定要联系圆的几何性质,利用有关图形的几何特征,尽可能简化运算,讨论直线与圆的位置关系时,一般不用△>0,△=0,△<0,而用圆心到直线距离d <r ,d=r ,d >r ,分别确定相关交相切,相离的位置关系.涉及到圆的切线时,要考虑过切点与切线垂直的半径,计算交弦长时,要用半径、弦心距、半弦构成直角三角形,当然,不失一般性弦长式 ③已知⊙O 1:x 2+y 2 = r 2,⊙O 2:(x -a )2+(y -b )2=r 2;⊙O 3:x 2+y 2+Dx+Ey +F =0则以M (x 0,y 0)为切点的⊙O 1切线方程为xx 0+yy 0=r 2;⊙O 2切线方程 条切线,切线弦方程:xx 0+yy 0=r 2. (三)曲线与方程 (1)在平面内建立直角坐标系以后,坐标平面内的动点都可以用有序实数对x 、y 表示,这就是动点的坐标(x ,y ).当点按某种规律运动而形成曲线时,动点坐标(x ,y )中的变量x ,y 存在着某种制约关系.这种制约关系反映到代数中,就是含有变量x ,y 方程F (x ,y )=0. 曲线C 和方程F (x ,y )=0的这种对应关系,还必须满足两个条件: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都在曲线上,这时,我们才能把这个方程叫做曲线的方程,

高考数学百大经典例题 曲线和方程(新课标)

典型例题一 例1 如果命题“坐标满足方程()0=y x f ,的点都在曲线C 上”不正确,那么以下正确的命题是 (A )曲线C 上的点的坐标都满足方程()0=y x f ,. (B )坐标满足方程()0=y x f ,的点有些在C 上,有些不在C 上. (C )坐标满足方程()0=y x f ,的点都不在曲线C 上. (D )一定有不在曲线C 上的点,其坐标满足方程()0=y x f ,. 分析:原命题是错误的,即坐标满足方程()0=y x f ,的点不一定都在曲线C 上,易知答案为D . 典型例题二 例2 说明过点)1,5(-P 且平行于x 轴的直线l 和方程1=y 所代表的曲线之间的关系. 分析:“曲线和方程”的定义中所列的两个条件正好组成两个集合相等的充要条件,二者缺一不可.其中“曲线上的点的坐标都是方程0),(=y x f 的解”,即纯粹性;“以方程的解为坐标的点都是曲线上的点”,即完备性.这是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则. 解:如下图所示,过点P 且平行于x 轴的直线l 的方程为1-=y ,因而在直线l 上的点的坐标都满足1=y ,所以直线l 上的点都在方程1=y 表示的曲线上.但是以1=y 这个方程的解为坐标的点不会都在直线l 上,因此方程1=y 不是直线l 的方程,直线l 只是方程 1=y 所表示曲线的一部分. 说明:本题中曲线上的每一点都满足方程,即满足纯粹性,但以方程的解为坐标的点不都在曲线上,即不满足完备性. 典型例题三

例3 说明到坐标轴距离相等的点的轨迹与方程x y =所表示的直线之间的关系. 分析:该题应该抓住“纯粹性”和“完备性”来进行分析. 解:方程x y =所表示的曲线上每一个点都满足到坐标轴距离相等.但是“到坐标轴距离相等的点的轨迹”上的点不都满足方程x y =,例如点)3,3(-到两坐标轴的距离均为3,但它不满足方程x y =.因此不能说方程x y =就是所有到坐标轴距离相等的点的轨迹方程,到坐标轴距离相等的点的轨迹也不能说是方程x y =所表示的轨迹. 说明:本题中“以方程的解为坐标点都在曲线上”,即满足完备性,而“轨迹上的点的坐标不都满足方程”,即不满足纯粹性.只有两者全符合,方程才能叫曲线的方程,曲线才能叫方程的曲线. 典型例题四 例 4 曲线4)1(2 2 =-+y x 与直线4)2(+-=x k y 有两个不同的交点,求k 的取值范围.有一个交点呢?无交点呢? 分析:直线与曲线有两个交点、一个交点、无交点,就是由直线与曲线的方程组成的方程组分别有两个解、一个解和无解,也就是由两个方程整理出的关于x 的一元二次方程的判别式?分别满足0>?、0=?、0?即0)52)(12(<--k k ,即 25 21<--k k ,即21k 时,直线与曲线没有公共点. 说明:在判断直线与曲线的交点个数时,由于直线与曲线的方程组成的方程组解的个数 与由两方程联立所整理出的关于x (或y )的一元方程解的个数相同,所以如果上述一元方程是二次的,便可通过判别式来判断直线与曲线的交点个数,但如果是两个二次曲线相遇,两曲线的方程组成的方程组解的个数与由方程组所整理出的一元方程解的个数不一定相同,所以遇到此类问题时,不要盲目套用上例方法,一定要做到具体问题具体分析. 典型例题五

解析几何求轨迹方程的常用方法

解析几何求轨迹方程的常用方法 求轨迹方程的一般方法: 1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 一:用定义法求轨迹方程 例1:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 4 5 sin sin C A B =+求点C 的轨迹。

例2: 已知ABC ?中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>, 2=AB ,求顶点C 的轨迹方程. 【变式】:已知圆 的圆心为M 1,圆 的圆心为M 2,一动圆与这两个圆外切,求动 圆圆心P 的轨迹方程。 【变式】:⊙C :22(3)16x y ++=内部一点(3,0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于P ,求点P 的轨迹方程. 二:用直译法求轨迹方程 例3:一条线段两个端点A 和B 分别在x 轴和y 轴上滑动,且BM=a ,AM=b ,求AB 中点M 的轨迹方程?

求曲线轨迹方程的五种方法

求曲线轨迹方程的五种方法 一、直接法 如果题目中的条件有明显的等量关系,或者可以利用平面几何知 识推出等量关系,求方程时可用直接法。 例1长为2a的线段AB的两个端点分别在x轴、y轴上滑动,求AB 中点P的轨迹方程。 /解:设点P的坐标为(x, y),\ 则A(2x,0),B(0,2y),由|AB|=2a 得\、(2x 0)2(0 2y)2=2a 化简得x2+y2=a,即为所求轨迹方程 点评:本题中存在几何等式|AB|=2a,故可用直接法解之。 二、定义法 如果能够确立动点的轨迹满足某种已知曲线的定义,则可用曲线定义写出方程,这种方法称为定义法。 例2动点P到直线x+4=0的距离减去它到M (2, 0)的距离之 差等于2,则点P的轨迹是() A、直线 B、椭圆 C、双曲线 D、抛物线 解法一:由题意,动点P到点M (2,0)的距离等于这点到直 线x=-2的距离,因此动点P的轨迹是抛物线,故选D。 解法二:设P点坐标为(x,y),则/ |x+4|- (x 2)2 y2=2

当x > -4 时,x+4- (x 2)2 y2=2 化简得

当时,y2=8x 当x V -4 时,-X-4- .. (x 2)2 y2=2 无解 所以P点轨迹是抛物线y2=8x 点评:解法一与解法二分别用定义法和直接法求轨迹方程,明显, 解法一优于后一种解法,对于有些求轨迹方程的题目,若能采用定义法,则优先采用定义法,它能大量地简化计算。 三、代入法 如果轨迹点P(x,y)依赖于另一动点Q(a, b),而Q(a, b)又在某已知曲线上,则可先列出关于x、y、a、b的方程组,利用x、y表示出a、b,把a、b代入已知曲线方程便得动点P的轨迹方程,此法称为代入法。 2 2 例3 P 在以F1、F2为焦点的双曲线16七1上运动,则厶F1F2P 、k2 (x2 y2) ? . x2 y2=12 ??? k (x2+y2) =12,又点M在已知圆上, ??? 13k2x2+13k2y2-15kx-36ky=0 由上述两式消去x2+y2得 5x+12y-52=0 点评:用参数法求轨迹,设参尽量要少,消参较易。 五、交轨法 若动点是两曲线的交点,可以通过这两曲线的方程直接求出交点方程,

高考数学专题复习曲线与方程

第8讲 曲线与方程 一、选择题 1.若点P 到直线x =-1的距离比它到点(2,0)的距离小1,则点P 的轨迹为( ). A .圆 B .椭圆 C .双曲线 D .抛物线 解析 依题意,点P 到直线x =-2的距离等于它到点(2,0)的距离,故点P 的轨迹是抛物线. 答案 D 2. 动点P (x ,y )满足5x -1 2 y -2 2 =|3x +4y -11|,则点P 的轨迹 是 ( ). A .椭圆 B .双曲线 C .抛物线 D .直线 解析 设定点F (1,2),定直线l :3x +4y -11=0,则|PF |= x -1 2 y -2 2 ,点P 到直线l 的距离d =|3x +4y -11| 5 . 由已知得|PF | d =1,但注意到点F (1,2)恰在直线l 上,所以点P 的轨迹是直 线.选D. 答案 D 3.设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点.线段AQ 的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为 ( ). A.4x 221-4y 2 25=1 B.4x 221+4y 2 25=1 C.4x 225-4y 2 21 =1 D.4x 225+4y 2 21 =1 解析 M 为AQ 垂直平分线上一点,则|AM |=|MQ |,∴|MC |+|MA |=|MC |+|MQ |=|CQ |=5,故M 的轨迹为椭圆,∴

a =52,c =1,则 b 2=a 2- c 2=214 , ∴椭圆的标准方程为4x 225+4y 2 21=1. 答案 D 4.在△ABC 中,A 为动点,B ,C 为定点,B ? ? ???- a 2,0,C ? ????a 2,0且满足条件 sin C -sin B =1 2sin A ,则动点A 的轨迹方程是( ) A.16x 2 a 2-16y 2 15a 2=1(y ≠0) B.16y 2a 2-16x 2 3a 2=1(x ≠0) C.16x 2a 2-16y 2 15a 2=1(y ≠0)的左支 D.16x 2a 2-16y 2 3a 2=1(y ≠0)的右支 解析:sin C -sin B =12sin A ,由正弦定理得|AB |-|AC |=12|BC |=12a (定值). ∴A 点的轨迹是以B ,C 为焦点的双曲线的右支,其中实半轴长为a 4,焦距为 |BC |=a . ∴虚半轴长为? ????a 22-? ?? ??a 42 =34a ,由双曲线标准方程得动点A 的轨迹方程 为16x 2 a 2-16y 2 3a 2=1(y ≠0)的右支. 答案:D 5.正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =3 7 .动点 P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为( ). A .16 B .14 C .12 D .10 解析 当E 、F 分别为AB 、BC 中点时,显然碰撞的结果为4,当E 、F 分别为

解析几何专题03圆锥曲线的定义方程及几何性质

解析几何专题03圆锥曲线的定义、方程及几何性质 学习目标 (1)理解圆锥曲线的定义,并能正确运用圆锥曲线的定义解决一些简单的问题; (2)掌握圆锥曲线的标准方程,并能熟练运用“待定系数法”求圆锥曲线的方程; (3)能根据圆锥曲线的方程研究圆锥曲线的一些几何性质(尤其是焦点、离心率以及双曲线的渐近线等)。 知识回顾及应用 1.圆锥曲线的定义 (1)椭圆 (2)双曲线 (3)抛物线 2.圆锥曲线的方程 (1)椭圆的标准方程 (2)双曲线的标准方程 (3)抛物线的标准方程 3.圆锥曲线的几何性质 (1)椭圆的几何性质 (2)双曲线的几何性质 (3)抛物线的几何性质 4.应用所学知识解决问题: 【题目】已知椭圆的两个焦点坐标分别是(-2,0),(2,0),并且经过点53 (,)22 -, 求椭圆的方程。 答案:22 1106 x y + = 【变式1】写出适合下列条件的椭圆的标准方程: (1)离心率14 e b = =,焦点在x 轴上; (2)4,a c ==焦点在y 轴上; (3)10,a b c +== 答案:(1)22116x y +=;(2)22 116y x +=;(3)2213616x y + =或2213616 y x +=。 【变式2】写出适合下列条件的椭圆的标准方程: (1)3a b =,且经过点(3,0)P ; (2)经过两点3(2-。 答案:(1)22 19x y +=或221819y x +=;(2)2214 x y +=。

问题探究(请先阅读课本,再完成下面例题) 【类型一】圆锥曲线的方程 例1.已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆 和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.求这三条曲线的方程。 解:设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p = 24y x ∴= 抛物线方程为: 由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1 对于椭圆,1222a MF MF =++(2 2 2222211321 a a b a c ∴=+∴=+=+∴=-=+∴= 椭圆方程为: 对于双曲线,1222a MF MF '=-= 2222221321 a a b c a '∴='∴=-'''∴=-=∴= 双曲线方程为: 练习:1.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为 2 。过1F 的直线L 交C 于,A B 两点,且2ABF 的周长为16,那么C 的方程为 。 答案:22 1168 x y + =求圆锥曲线的方程主要采用“待定系数法” 。需要注意的是在求解此类问题时应遵循“先定位,再定量”的原则。注意:当“焦点所在轴不定”时,要有“分类讨论”意识,

求曲线轨迹方程的常用方法

求曲线轨迹方程的常用 方法 Hessen was revised in January 2021

高考数学专题:求曲线轨迹方程的常用方法 张昕 陕西省潼关县潼关高级中学 714399 求曲线的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查考生对曲线的定义、性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力.因此要分析轨迹的动点和已知条件的内在联系,选择最便于反映这种联系的形式建立等式.其常见方法如下: (1)直接法:直接法就是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程,这种求轨迹方程的方法就称为直接法,直接法求轨迹经常要联系平面图形的性质. (2)定义法:若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可以设出其标准方程,然后用待定系数法求解.这种求轨迹方程的方法称为定义法,利用定 义法求方程要善于抓住曲线的定义特征. (3)代入法:根据相关点所满足的方程,通过转换而求动点的轨迹方程.这就叫代入法.

(4) 参数法:若动点的坐标(x ,y )中的x ,y 分别随另一变量的 变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程,消去参数来求轨迹方程. (5) 几何法:根据曲线的某种几何性质和特征,通过推理列出等式 求轨迹方程,这种求轨迹的方法叫做几何法. (6) 交轨法:在求动点轨迹方程时,经常遇到求两动曲线的交点轨 迹方程问题,我们列出两动曲线的方程再设法消去曲线中的参数即可得到交点的轨迹方程. 典型例题示范讲解: 设圆C :22(1)1x y -+=,过原点作圆的弦0A ,求OA 中点B 的轨迹方程. 【解】:法一:(直接法) 如图,设B (x ,y ),由题得2OB +2BC =2OC , 即x 2+y 2 +[22(1)x y -+]=1 即OA 中点B 的轨迹方程为2211()24 x y -+=(x ≠0). 法二:(定义法) 设B (x ,y ),如上图,因为B 是OA 的中点

最全地圆锥曲线轨迹方程求法

圆锥曲线轨迹方程的解法 目录 一题多解 (3) 一.直接法 (5) 二. 相关点法 (10) 三. 几何法 (16) 四. 参数法 (19) 五. 交轨法 (22)

六. 定义法 (25)

一题多解 设圆C :(x -1)2+y 2=1,过原点O 作圆的任意弦OQ , 求所对弦的中点P 的轨迹方程。 一.直接法 设P (x,y ),OQ 是圆C 的一条弦,P 是OQ 的中点,则CP ⊥OQ ,x ≠0, 设OC 中点为M (0,21),则|MP |=21|OC |=21,得(x -21)2+y 2=4 1 (x ≠0),即 点P 的轨迹方程是(x -21)2+y 2=4 1 (0<x ≤1)。 二.定义法 ∵∠OPC =90°,∴动点P 在以M (0,2 1 )为圆心,OC 为直径的圆(除去原 点O )上,|OC |=1,故P 点的轨迹方程为(x -21)2+y 2=4 1 (0<x ≤1) 三.相关点法 设P (x,y ),Q (x 1,y 1),其中x 1≠0, ∴x 1=2x,y 1=2y ,而(x 1-1)2+y 2=1 ∴(2x -1)2+2y 2=1,又x 1≠0, ∴x ≠0,即(x - 21)2+y 2=4 1 (0<x ≤1)

四.参数法 ①设动弦PQ 的方程为y=kx ,代入圆的方程(x -1)2+kx 2=1, 即(1+k 2)x 2-2x =0,∴.12 2 21k x x +=+ 设点P (x,y ),则2 2211],1,0(112k k kx y k x x x +==∈+=+= 消去k 得(x - 21)2+y 2=4 1 (0<x ≤1) ②另解 设Q 点(1+cos θ,sin θ),其中cos θ≠-1,P (x,y ), 则,2sin ],1,0(2cos 1θθ=∈+= y x 消去θ得(x -21)2+y 2=4 1(0<x ≤1)

14高中数学解析几何问题的题型与方法

14高中数学解析几何 问题的题型与方法 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第14讲 解析几何问题的题型与方法 一、知识整合 高考中解析几何试题一般共有4题(2个选择题, 1个填空题, 1个解答题),共计30分左右,考查的知识点约为20个左右。 其命题一般紧扣课本,突出重点,全面考查。选择题和填空题考查直线、圆、圆锥曲线、参数方程和极坐标系中的基础知识。解答题重点考查圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到平几的基本知识和向量..........的基本方法..... ,这一点值得强化。 1. 能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其他形式,斜截式、两点式、截距式;能根据已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了. 2.能正确画出二元一次不等式(组)表示的平面区域,知道线性规划的意义,知道线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念,能正确地利用图解法解决线性规划问题,并用之解决简单的实际问题,了解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题. 3. 理解“曲线的方程”、“方程的曲线”的意义,了解解析几何的基本思想,掌握求曲线的方程的方法. 4.掌握圆的标准方程:222)()(r b y a x =-+-(r >0),明确方程中各字母的几何意义,能根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,掌握圆的一般方程:022=++++F Ey Dx y x ,知道该方程表示圆的充要条件并正确地进行一般方程和标准方程的互化,能根据条件,用待定系 数法求出圆的方程,理解圆的参数方程cos sin x r y r θ θ=??=? (θ为参数),明确各字母的意 义,掌握直线与圆的位置关系的判定方法. 5.正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能根据椭圆、双曲线和抛物线的定义推导它们的标准方程;记住椭圆、双曲线和抛物线的各种标准方程;能根据条件,求出椭圆、双曲线和抛物线的标准方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、顶点、离心率、准线(双曲线的渐近线)等,从而能迅速、正确地画出椭圆、双曲线和抛物线;掌握a 、b 、c 、p 、e 之间的关系及相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的标准方程,并解决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的应用;掌握直线与椭圆、双曲线和抛物线位置关系的判定方法. 二、近几年高考试题知识点分析 2004年高考,各地试题中解析几何内容在全卷的平均分值为27.1分,占 18.1%;2001年以来,解析几何内容在全卷的平均分值为29.3分,占19.5%.因此,占全卷近1/5的分值的解析几何内容,值得我们在二轮复习中引起足够的重

解析几何求轨迹方程的常用方法讲解

解析几何求轨迹方程的常用方法 求轨迹方程的一般方法: 1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 一:用定义法求轨迹方程 例1:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 4 5 sin sin C A B =+求点C 的轨迹。

例2: 已知ABC ?中,A ∠、B ∠、 C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程. 【变式】:已知圆的圆心为M 1,圆 的圆心为M 2,一动圆与这两个圆外切,求动圆 圆心P 的轨迹方程。 【变式】:⊙C :22(3)16x y ++=内部一点(3,0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于P ,求点P 的轨迹方程. 二:用直译法求轨迹方程 例3:一条线段两个端点A 和B 分别在x 轴和y 轴上滑动,且BM=a ,AM=b ,求AB 中点M 的轨迹方程?

求曲线轨迹方程专题(2)

轨 迹 方 程 问 题 常见的有六种求轨迹方程的方法: ①待定系数法:由几何量确定轨迹方程; ②定义法:根据曲线的定义,求轨迹方程; ③直接法:给出某些条件(几何、三角或向量表达式等)求轨迹方程; ④“代入法”求轨迹方程; ⑥参数法(包括解决中点弦问题的点差法)求轨迹方程. ⑤“交轨法”求轨迹方程; 1.直接法求轨迹方程.给出某种条件:平面几何、三角函数、解析几何、向量形式等.求解程序:①设动点P 的坐标为P(x ,y);②按题目的条件写出关系式;③整合关系式;④注明范围. 例1.设m R ∈,在平面直角坐标系中,已知向量(,1)a mx y =+,向量(,1)b x y =-,a b ⊥,动点 (,)M x y 的轨迹为E .求轨迹E 的方程,并说明该方程所表示曲线的形状; 解:因为a b ⊥,(,1)a mx y =+,(,1)b x y =-,所以a ·b =2210mx y +-=, 即 221mx y +=. 当m =0时,方程表示两条直线:1±=y ; 当1m =时,方程表示的是圆:221x y +=; 当m >0且1≠m 时,方程表示的是椭圆; 当m <0时,方程表示的是双曲线. 2.根据圆锥曲线的定义,求轨迹方程

P M N 例2.如图,圆O 1与圆O 2的半径都是1,O 1O 2=4,过动点P 分别作圆O 1、圆O 2的切线PM 、PN (M 、N 分别为切点) ,使得PM =试建立适当的坐标系,并求动点 P 的轨迹方程. 解:如图,以直线12O O 为x 轴,线段12O O 的垂直平分线为y 轴,建立平面直角坐标系,则两圆心 分 别 为 12(2,0),(2,0) O O -.设 (,) P x y , 则,同理 222(2)1PN x y =-+-.2222211(2)1PM O P O M x y =-=++- ∵PM =, ∴2222(2)12[(2)1]x y x y ++-=-+-, 即221230x x y -++=,即22(6)33x y -+=. 这就是动点P 的轨迹方程. 注:动圆圆心轨迹问题 ①动圆与两外离定圆均外切(含相交);②动圆过定点且定圆外切;③动圆过定点且定直线相切;④动圆与两定圆一个外切,一个内切;⑤动圆过定点且定圆相切. 3.参数法求轨迹方程: 例3.动圆P 过点A (0,1)且与直线y=-1相切,O 是坐标原点,动圆P 的圆心轨迹是曲线C. (1)求曲线C 的方程; (2)过A 作直线l 交曲线C 于,D E 两点,求弦DE 的中点M 的轨迹方程; (3)在(2)中求ODE ?的重心G 的轨迹方程。 解:(1)点P 到点A 的距离等于点P 到直线y= -1的距离,故点P 的轨迹C 是以点A 为焦点,直线y=-1为准线的抛物线,所以曲线C 的方程 x 2=4y. 2222 A , 1 4440,+=4,(+)2, 1, 2 1 2()1,1.2221l x y x x kx k x k y x x k y y x y =====+=?=?+=+?=+? 1122212122 (2)设M(x,y),D(x ,y ),E(x ,y ),依题意知过的直线的斜率存在,设该直线的方程为:y=kx+1 与联立,消整理得:--则x x 则x x kx+1=2k 2k 即,消去得:即为所求的方程k 另解:(2)

求曲线轨迹方程的五种方法

求曲线轨迹方程的五种 方法 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

求曲线轨迹方程的五种方法 一、直接法 如果题目中的条件有明显的等量关系,或者可以利用平面几何知识推出等量关系,求方程时可用直接法。 例1 长为2a的线段AB的两个端点分别在x轴、y轴上滑动,求AB中点P的轨迹方程。 解:设点P的坐标为(x,y), 则A(2x,0),B(0,2y),由|AB|=2a得 2) 2 x- 2(y + -=2a 2 0( )0 化简得x2+y2=a,即为所求轨迹方程 点评:本题中存在几何等式|AB|=2a,故可用直接法解之。 二、定义法 如果能够确立动点的轨迹满足某种已知曲线的定义,则可用曲线定义写出方程,这种方法称为定义法。 例2 动点P到直线x+4=0的距离减去它到M(2,0)的距离之差等于2,则点P的轨迹是() A、直线 B、椭圆 C、双曲线 D、抛物线 解法一:由题意,动点P到点M(2,0)的距离等于这点到直线x=-2的距离,因此动点P的轨迹是抛物线,故选D。 解法二:设P点坐标为(x,y),则 |x+4|-2 2 -=2 x+ (y )2

当x ≥-4时,x+4-22)2(y x +-=2化简得 当时,y 2=8x 当x <-4时,-x-4-22)2(y x +-=2无解 所以P 点轨迹是抛物线y 2=8x 点评:解法一与解法二分别用定义法和直接法求轨迹方程,明显,解法一优于后一种解法,对于有些求轨迹方程的题目,若能采用定义法,则优先采用定义法,它能大量地简化计算。 三、 代入法 如果轨迹点P (x ,y )依赖于另一动点Q (a ,b ),而Q (a ,b )又在某已知曲线上,则可先列出关于x 、y 、a 、b 的方程组,利用x 、y 表示出a 、b ,把a 、b 代入已知曲线方程便得动点P 的轨迹方程,此法称为代入法。 例3 P 在以F 1、F 2为焦点的双曲线19 1622=-y x 上运动,则△F 1F 2P 的重心G 的轨迹方程是 。 解:设P (x 0,y 0),G (x ,y ),则有 ??? ????++=+-=)00(31)4(3100y y x x x 即???==y y x x 3300,代入 191622=-y x 得19 91692 2=-y x 即116 922 =-y x 由于G 不在F 1F 2上,所以y ≠0

【高考】数学大一轮复习第九章平面解析几何9-8曲线与方程试题理北师大版

【高考】数学大一轮复习第九章平面解析几何 9-8曲线与方程试题理北师大版 1.曲线与方程的定义 一般地,在直角坐标系中,如果某曲线C 上的点与一个二元方程f (x ,y )=0的实数解建立如下的对应关系: 那么,这个方程叫作曲线的方程,这条曲线叫作方程的曲线. 2.求动点的轨迹方程的基本步骤 【知识拓展】 1.“曲线C 是方程f (x ,y )=0的曲线”是“曲线C 上的点的坐标都是方程f (x ,y )=0的解”的充分不必要条件. 2.曲线的交点与方程组的关系: (1)两条曲线交点的坐标是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解; (2)方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点. 【思考辨析】 判断下列结论是否正确(请在括号中打“√”或“×”) (1)f (x 0,y 0)=0是点P (x 0,y 0)在曲线f (x ,y )=0上的充要条件.( √ ) (2)方程x 2 +xy =x 的曲线是一个点和一条直线.( × ) (3)到两条互相垂直的直线距离相等的点的轨迹方程是x 2 =y 2 .( × ) (4)方程y =x 与x =y 2 表示同一曲线.( × ) (5)y =kx 与x =1 k y 表示同一直线.( × ) 1.(教材改编)已知点F (14,0),直线l :x =-1 4,点B 是l 上的动点,若过点B 垂直于y 轴 的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( ) A .双曲线 B .椭圆 C .圆 D .抛物线 答案 D 解析 由已知|MF |=|MB |,根据抛物线的定义知, 点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线. 2.(2016·广州模拟)方程(2x +3y -1)(x -3-1)=0表示的曲线是( )

求轨迹方程的常用方法例题及变式

求轨迹方程的常用方法: 题型一直接法 此法是求轨迹方程最基本的方法, 根据所满足的几何条件, 将几何条件{M | P(M )}直接翻 译成x, y 的形式f(x, y) 0 ,然后进行等价变换,化简 f (x,y) 0,要注意轨迹方程的纯 粹性和完备性,即曲线上没有坐标不满足方程的点, 也就是说曲线上所有的点适合这个条件 而毫无例外(纯粹性);反之,适合条件的所有点都在曲线上而毫无遗漏(完备性) 。 例1过点A(2,3)任作互相垂直的两直线 AM 和AN ,分别交x,y 轴于点M , N ,求线段 MN 中点P 的轨迹方程。 解:设P 点坐标为P(x, y),由中点坐标公式及M,N 在轴上得M (0,2y), AM AN k AM k AN 所以中点P 的轨迹方程为4x 6y 13 0。 变式1 已知动点M (x, y)到直线l : x 4的距离是它到点 (1) 求动点M 的轨迹C 的方程; (2) 过点P(0,3)的直线m 与轨迹C 交于A, B 两点。若A 是PB 的中点,求直线 m 的斜 率。 题型二定义法 圆锥曲线定义所包含的几何意义十分重要, 应特别重视利用圆锥曲线的定义解题, 包括用定 义法求轨迹方程。 2 2 例2 动圆M 过定点P( 4,0),且与圆C :x y 8x 0相切,求动圆圆心 M 的轨迹 方程。 解:根据题意|| MC | |MP || 4,说明点M 到定点C 、P 的距离之差的绝对值为定值, N(2x,0)(x,y R) 0 3 2y 2x 2 0 2 3 1 (x 1),化简得 4x 6y 13 0 (x 1) 当x 1时,M(0,3),N(2,0),此时MN 的中点 P(1,|)它也满足方程4x 6y 13 0, N (1,0)的距离的2倍。

相关主题
文本预览
相关文档 最新文档