当前位置:文档之家› 函数单调性奇偶性练习 补课

函数单调性奇偶性练习 补课

函数单调性奇偶性练习 补课
函数单调性奇偶性练习 补课

函数单调性奇偶性练习

一、单调性题型

高考中函数单调性在高中函数知识模块里面主要作为工具或条件使用,也有很多题会以判断单调性单独出题或有的题会要求先判断函数单调性才能进行下一步骤解答,另有部分以函数单调性质的运用为主. (一)函数单调性的判断 函数单调性判断常用方法:

121212121212()()0()()()()0()()()()()()()()()()()()f x f x f x f x x x x x f x f x f x f x f x g x f x f x g x f x g x g x g x f x ->>??

-<

???

???

?

?

?????函数的两个函数具有相同的单调性例1 证明函数23

()4

x f x x +=-在区间(4)+∞,上为减函数(定义法)

解析:用定义法证明函数的单调性,按步骤“一假设、二作差、三判断(与零比较)”进行. 解:设12(4)x x ∈+∞,,且12x x <,1221121212232311()

()()44(4)(4)

x x x x f x f x x x x x ++--=

-=

---- 214x x >> 210x x ∴->,1(4)0x ->,2(4)0x -> 12()()f x f x ∴> 故函数()f x 在区间(4)+∞,上为减函数. 练习1 证明函数21

()3

x f x x -=+在区间(3)-+∞,上为减函数(定义法)

练习1 若函数()f x 是定义在R 上的增函数,且2

()(3)f x f a >-恒成立,求实数a 的范围

练习2

求函数2()32f x x x =-+在区间1144??

-????,上的最大值 (分别判断两部分是单调增的)

练习3.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数. 解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则

f (x 1)-f (x 2)=12

1+x -12

2+x -a (x 1-x 2)=

1

12

22

122

21+++-x x x x -a (x 1-x 2)

=(x 1-x 2)(

1

12

22

12

1++++x x x x -a )

(1)当a ≥1时,∵

1

12

22

12

1++++x x x x <1,

又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)

∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=2

12a

a

-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中

1

12

22

12

1++++x x x x <1利用了121+x >|x 1|≥x 1;12

2+x >x 2;

③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现.

练习4.已知函数f (x )=x

a

x x ++22,x ∈[1,+∞]

(1)当a =2

1

时,求函数f (x )的最小值;

(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围. 解析: (1)当a =

21时,f (x )=x +x

21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+

1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2

121

x x ) ∵x 2>x 1≥1, ∴x 2-x 1>0,1-

2

121

x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=

2

7. (2)在区间[1,+∞)上,f (x )=x

a

x x ++22>0恒成立?x 2+2x +a >0恒成立

设y =x 2

+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.

练习5.试讨论函数f (x )=21x -在区间[-1,1]上的单调性. 解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.

f (x 1)-f (x 2)=2

11x --2

21x -=

2

2

2

12

22111)1()1(x x x x -+----=

2

2

2

1121211))((x x x x x x -+-+-

∵x 2-x 1>0,2

22111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).

故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数.

二 、奇偶性题型

12()()()()()3()()()()()()=f x f x f x f x f x f x f x f x f x f x f x ??

-??=-?????=--?????≠-≠--???

??=-=--???

??±()判断函数定义域是否关于原点对称()求出的表达式

偶函数函数奇偶性判断:判断步骤奇偶函数

()判断关系非奇非偶函数

即是奇函数又是函数注:判断奇偶性先求出定义域判断其是否关于原点对称可加快做小题速度奇奇基本初等函数之快速判断:==123R ????????????

??

??

???

???????

??

????????

?奇偶偶偶奇偶非奇非偶奇偶相乘除:同偶异奇()利用函数奇偶性求值函数奇偶性质运用:()利用函数奇偶性表达式

()利用奇偶性求值域定义在上任意函数均可表示为一个奇函数与一个偶函数之和:

例1 判断下列函数的奇偶性 1)

()()21f x x x =+ 2)(

)f x =

3)(

)f x 4)()2

2110

2

110

2

x x f x x x ?+>??=?

?--

解:1)()f x 的定义域为R ,()()()()2

2

11f x x

x x x -=--+=+()f x =所以原函数为偶函数。

2) ()f x 的定义域为2

210

10

x x ?-≥??-≥??即1x =±,关于原点对称,又()()110f f -==即

()()()()1111f f f f -=-=-且 ,所以原函数既是奇函数又是偶函数。

3)()f x 的定义域为20

20

x x -≥??

-≥? 即2x =,定义域不关于原点对称,所以原函数既不是奇函数又不是偶函数。

4)分段函数()f x 的定义域为()(),00,-∞?+∞关于原点对称, 当0x >时,0x -<,()()()2

22111111222f x x x x f x ??-=-

--=--=-+=- ??? 当0x <时,0x -> ,()()()2

22111111222f x x x x f x ??-=

-+=+=---=-

???

综上所述,在()(),00,-∞?+∞上总有()()f x f x -=- 所以原函数为奇函数。

注意:在判断分段函数的奇偶性时,要对x 在各个区间上分别讨论,应注意由x 的取值范围确定应用相应的函数表达式。

练习 判断下列函数的奇偶性

1)()()()()

2616x x f x x x -+=- 2)(

)f x =

3)(

)f x =

4)()22f x x x =++- 5)()22

00

x x x f x x x

x ?+

=?-+>??

例2 设()f x 是R 上是奇函数,且当[)0,x ∈+∞时(

)(

1f x x =+

,求()f x 在R 上的解析式

解: 当[)0,x ∈+∞时有(

)(

1f x x =,设(),0x ∈-∞, 则()0,x -∈+∞,从而有

()(

)(

(11f x x x -=-+=- , ()f x 是R 上是奇函数,∴()()f x f x -=-

所以()(

)(1f x f x x =--=- ,因此所求函数的解析式为(

)(

(10

10

x x f x x x ?+≥?

=?

-

注意:在求函数的解析式时,当球自变量在不同的区间上是不同表达式时,要用分段函数是形式表示出来。 练习1已知()y f x =为奇函数,当0x ≥时,()2

2f x x x =-+,求()f x 的表达式。

例3 已知函数()5

3

8f x x ax bx =++-且()210f -=,求()2f 的值

解:令()5

3g x x ax bx =++,则()()8f x g x =- ()()(

)22810218f g g -=--=?-

=

()g x 为奇函数,∴()()()2218218g g g -=-=∴=- ()()228

18826

f g =-=--=- 练习1 已知函数()7

5

3

4f x ax bx cx dx =-+--且()39f -=-,求()3f 的值

例4 设函数()f x 是定义域R 上的偶函数,且图像关于2x =对称,已知[2,2]x ∈-时,()2

1f x x =-+

求[]6,2x ∈--时()f x 的表达式。

解: 图像关于2x =对称,()()22f x f x ∴-=+, ()()()

22f x f x =--

=()()()4[4]4f x f x f x -=--=- ()(

)4f x f x =+ 4T ∴= []6,2x ∈--

[]42,2x +=- ∴()()()2

441f x x f

x

+=-+

+= 所以[]6,2x ∈--时()f x 的表达式为()f x =()2

41x -++

练习1 设函数()f x 是定义域R 上的偶函数,且(2)(4)f x f x +=-恒成立,已知[1,2]x ∈-时,()2

23f x x =-+

求[]5,8x ∈时()f x 的表达式

例5 定义在R 上的偶函数()f x 在区间(),0-∞上单调递增,且有()()

2221321f a a f a ++<-+ 求a 的取值范围。

解: 2

217212048a a a ?

?++=++> ??

?,2

2123213033a a a ??-+=-+> ???,且()f x 为偶函数,且在上(),0-∞单

调递增,()f x ∴在()0,+∞上为减函数,∴221a a ++>2321a -+?03a << 所以a 的取值范围是()0,3 作业

1.判断函数59++=x x y 的奇偶性

2.求下列函数的单调区间

(1) 2

12y x x =--; (2)2123y x x =-- ; (3)(

)()()

2231

2x f x x x x ≥=-+

3函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是

4.若函数()f x 在区间33,2a a ??-??上是奇函数,则a=( )

A.-3或1 B 。 3或-1 C 1 D -3 5已知函数(

)f x =

,则它是( )

A 奇函数

B 偶函数

C 即是奇函数又是偶函数

D 既不是奇函数又不是偶函数 6.判断下列函数的奇偶性

(1)()()2

13f x x x =-≤≤ (2)()()()()

100

01

0x x f x x x x ->??==??+

).

A.(25)(11)(80)f f f -<<

B. (80)(11)(25)f f f <<-

C.

(11)(80)(25)

f f f <<- D.

(25)(80)(11)

f f f -<<

8.已知定义在R 上的奇函数()f x 满足()()2f x f x +=-,则()6f 的值为()

A. -1

B. 0

C. 1

D. 2

函数的单调性及奇偶性(含答案)

函数的单调性及奇偶性 一、单选题(共10道,每道10分) 1.已知函数是上的增函数,若,则下列不一定正确的是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:函数单调性的定义 2.已知定义在上的函数满足:对任意不同的x1,x2,都有.若 ,则实数a的取值范围是( ) A. B. C. D. 答案:C 解题思路:

试题难度:三颗星知识点:函数单调性的定义 3.已知定义在上的函数满足:对任意不同的x1,x2,都有 .若,则实数a的取值范围是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:函数单调性的定义 4.函数的单调递减区间是( ) A. B. C. D.无减区间 答案:A 解题思路: 试题难度:三颗星知识点:含绝对值函数的单调性 5.函数的单调递减区间是( ) A., B., C., D., 答案:A 解题思路:

试题难度:三颗星知识点:函数的单调性及单调区间 6.函数的单调递增区间是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:含绝对值函数的单调性 7.若是奇函数,则实数a的值为( ) A.1 B.-1

C.0 D.±1 答案:A 解题思路: 试题难度:三颗星知识点:函数奇偶性的性质 8.若是定义在上的偶函数,则a的值为( ) A.±1 B.1 C.-1 D.-3 答案:C 解题思路: 试题难度:三颗星知识点:函数奇偶性的性质 9.设是定义在[-2,2]上的奇函数,若在[-2,0]上单调递减,则使成立的实数a的取值范围是( ) A.[-1,2] B. C.(0,1) D.

函数的单调性和奇偶性精品讲义

第三讲 函数的单调性、奇偶性 一、知识点归纳 函数的单调性 (1)定义:设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1f (x 2)),那么就说f (x )在区间D 上是增函数(减函数),区间D 为函数y =f (x )的增区间(减区间)概括起来,即 12 12121212121212()()()()()()()()x x x x f x f x f x f x x x x x f x f x f x f x ??<>????? <>???? ? ?<>??? ???>

高一函数单调性奇偶性经典练习

函数单调性奇偶性经典练习 一、单调性题型 高考中函数单调性在高中函数知识模块里面主要作为工具或条件使用,也有很多题会以判断单调性单独出题或有的题会要求先判断函数单调性才能进行下一步骤解答,另有部分以函数单调性质的运用为主. (一)函数单调性的判断 函数单调性判断常用方法: 121212121212()()0()()()()0()()()()()()()()()()()()f x f x f x f x x x x x f x f x f x f x f x g x f x f x g x f x g x g x g x f x ->>??> 210x x ∴->,1(4)0x ->,2(4)0x -> 12()()f x f x ∴> 故函数()f x 在区间(4)+∞,上为减函数. 练习1 证明函数21()3 x f x x -= +在区间(3)-+∞,上为减函数(定义法) 练习2 证明函数2()f x x =-2()3 -∞,上为增函数(定义法、快速判断法) 练习3 求函数3()2x f x x -=+定义域,并求函数的单调增区间(定义法) 练习4 求函数()f x x =定义域,并求函数的单调减区间(定义法) (复合函数,基本初等函数相加减问题,反函数问题在本章结束时再练习) (二) 函数单调性的应用 例1 若函数()f x 是定义在R 上的增函数,且2 (2)(3)f x x f a +>+恒成立,求实数a 的范围。 练习1 若函数()f x 是定义在R 上的增函数,且2()(3)f x f a >-恒成立,求实数a 的范围 练习2 若函数()f x 是定义在R 上的增函数,且2()(32)f a f a >+恒成立,求实数a 的范围 例2 若函数()f x 是定义在[]22-,上的减函数,且2(23)()f m f m +>恒成立,求实数m 的取值范围. 练习1 若函数()f x 是定义在[]13-,上的减函数,且(23)(54)f m f m +>-恒成立,求实数m 的取值范围.

(完整版)函数的单调性与奇偶性练习题基础

1 函数单调性(一) (一)选择题 1.函数x x f 3 )(= 在下列区间上不是..减函数的是( ) A .(0,+∞) B .(-∞,0) C .(-∞,0)∪(0,+∞) D .(1,+∞) 2.下列函数中,在区间(1,+∞)上为增函数的是( ) A .y =-3x +1 B .x y 2 = C .y =x 2-4x +5 D .y =|x -1|+2 3.设函数y =(2a -1)x 在R 上是减函数,则有 A .2 1≥ a B .2 1≤ a C .2 1> a D .2 1< a 4.若函数f (x )在区间[1,3)上是增函数,在区间[3,5]上也是增函数,则函数f (x )在区间[1,5]上( ) A .必是增函数 B .不一定是增函数 C .必是减函数 D .是增函数或减函数 (二)填空题 5.函数f (x )=2x 2-mx +3在[-2,+∞)上为增函数,在(-∞,-2)上为减函数,则m =______. 6.若函数x a x f = )(在(1,+∞)上为增函数,则实数a 的取值范围是______. 7.函数f (x )=1-|2-x |的单调递减区间是______,单调递增区间是______. 8.函数f (x )在(0,+∞)上为减函数,那么f (a 2-a +1)与)4 3(f 的大小关系是______。 *9.若函数f (x )=|x -a |+2在x ∈[0,+∞)上为增函数,则实数a 的取值范围是______. (三)解答题 10.函数f (x ),x ∈(a ,b )∪(b ,c )的图象如图所示,有三个同学对此函数的单调性作出如下的判断: 甲说f (x )在定义域上是增函数; 乙说f (x )在定义域上不是增函数,但有增区间, 丙说f (x )的增区间有两个,分别为(a ,b )和(b ,c ) 请你判断他们的说法是否正确,并说明理由。 11.已知函数.21 )(-= x x f (1)求f (x )的定义域; (2)证明函数f (x )在(0,+∞)上为减函数. 12.已知函数| |1)(x x f = . (1)用分段函数的形式写出f (x )的解析式;

函数的单调性和奇偶性知识归纳和典型题型

单调性与最大(小)值 要点一、函数的单调性 1.增函数、减函数的概念 一般地,设函数f(x)的定义域为A ,区间D A ?: 如果对于D 内的任意两个自变量的值x 1、x 2,当x 1f(x 2),那么就说f(x)在区间D 上是减函数. 要点诠释: (1)属于定义域A 内某个区间上; (2)任意两个自变量12,x x 且12x x <; (3)都有1212()()(()())f x f x f x f x <>或; 2.单调性与单调区间 (1)单调区间的定义 如果函数f(x)在区间D 上是增函数或减函数,那么就说函数f(x)在区间D 上具有单调性,D 称为函数f(x)的单调区间. 函数的单调性是函数在某个区间上的性质. 要点诠释: ①单调区间与定义域的关系----单调区间可以是整个定义域,也可以是定义域的真子集; ②单调性是通过函数值变化与自变量的变化方向是否一致来描述函数性质的; ③不能随意合并两个单调区间; ④有的函数不具有单调性. (2)已知解析式,如何判断一个函数在所给区间上的单调性? 基本方法:观察图形或依据定义. 3.函数的最大(小)值 一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有()f x M ≤(或()f x M ≥); (2) 存在0x I ∈,使得0()f x M =,那么,我们称M 是函数的最大值(或最小值). 要点诠释: ①最值首先是一个函数值,即存在一个自变量0x ,使0()f x 等于最值; ②对于定义域内的任意元素x ,都有0()()f x f x ≤(或0()()f x f x ≥),“任意”两字不可省; ③使函数()f x 取得最值的自变量的值有时可能不止一个; ④函数()f x 在其定义域(某个区间)内的最大值的几何意义是图象上最高点的纵坐标;最小值的几何意义是图象上最低点的纵坐标.

《函数的单调性和奇偶性》经典例题

经典例题透析 类型一、函数的单调性的证明 1.证明函数上的单调性. 证明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x1>0 则 ∵x1>0,x2>0,∴∴上式<0,∴△y=f(x2)-f(x1)<0 ∴上递减. 总结升华: [1]证明函数单调性要求使用定义; [2]如何比较两个量的大小?(作差) [3]如何判断一个式子的符号?(对差适当变形) 举一反三: 【变式1】用定义证明函数上是减函数. 思路点拨:本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径. 证明:设x1,x2是区间上的任意实数,且x10 ∴x1f(x2) 上是减函数. 总结升华:可以用同样的方法证明此函数在上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.

类型二、求函数的单调区间 2. 判断下列函数的单调区间; (1)y=x2-3|x|+2;(2) 解:(1)由图象对称性,画出草图 ∴f(x)在上递减,在上递减,在上递增. (2) ∴图象为 ∴f(x)在上递增. 举一反三: 【变式1】求下列函数的单调区间: (1)y=|x+1|;(2)(3). 解:(1)画出函数图象, ∴函数的减区间为,函数的增区间为(-1,+∞); (2)定义域为,其中u=2x-1为增函数,

在(-∞,0)与(0,+∞)为减函数,则上为减函数; (3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为(0,+∞). 总结升华: [1]数形结合利用图象判断函数单调区间; [2]关于二次函数单调区间问题,单调性变化的点与对称轴相关. [3]复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化→复合函数为增函数;内外层函数反向变化→复合函数为减函数. 类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值) 3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小. 解:又f(x)在(0,+∞)上是减函数,则. 4. 求下列函数值域: (1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1); (2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2]. 思路点拨:(1)可应用函数的单调性;(2)数形结合. 解:(1)2个单位,再上移2个单位得到,如图 1)f(x)在[5,10]上单增,;

高一数学必修1-函数的单调性和奇偶性的综合应用

高一数学必修1-函数的单调性和奇偶性的综 合应用 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

- 1 - 高一数学必修1 函数的单调性和奇偶性的综合应用(第一课时) 对称有点对称和轴对称: 数的图像关奇函于原点成点对称,偶函数的图像关于y 轴成轴对称图形。 1、函数的单调性:应用:若()y f x =是增函数,12()()f x f x > ? 1x 2x 应用:若()y f x =是减函数,12()()f x f x > ? 1x 2x 相关练习:若()y f x =是R 上的减函数,则(1)f 2(22)f a a ++ 2、熟悉常见的函数的单调性:y kx b =+、k y x = 、2y ax bx c =++ 相关练习:若()f x ax =,()b g x x =-在(,0)-∞上都是减函数,则2()f x ax bx =+在(0,)+∞上是 函数(增、减) 3、函数的奇偶性: 定义域关于原点对称,()()f x f x -= ? ()f x 是偶函数 定义域关于原点对称,()()f x f x -=- ? ()f x 是奇函数 O 点对称:对称中心O 轴对称:

- 2 - (当然,对于一般的函数,都没有恰好()()f x f x -=±,所以绝大部分函数都不具有奇偶性) 相关练习:(1)已知函数21()4f x ax bx a b =+++是定义在[1,2]a a -上的奇函数,且(1)5f =,求a 、b (2)若2()(2)(1)3f x K x K x =-+-+是偶函数,则()f x 的递减区间是 。 (3)若函数()f x 是定义在R 上的奇函数,则(0)f = 。 (4)函数()y f x =的奇偶性如下:画出函数在另一半区间的大致图像 4、单调性和奇偶性的综合应用 【类型1 转换区间】 相关练习:(1)根据函数的图像说明,若偶函数()y f x =在(,0)-∞上是减函数,则()f x 在(0,)+∞上是 函数(增、减) (2) 已知()f x 为奇函数,当0x >时,()(1)f x x x =-,则当0x <时,()x = (3)R 上的偶函数在(0,)+∞上是减函数,3()4 f - 2(1)f a a -+ (4)设()f x 为定义在((,)-∞+∞上的偶函数,且()f x 在[0,)+∞为增函数,则(2)f -、()f π-、 偶函数奇函数奇函数奇函数

高一上学期函数的单调性-奇偶性及周期性知识点和题型

(一)函数的单调性 1.函数单调性定义:对于给定区间D 上的函数f(x),若对于任意x 1,x 2∈D, 当x 1 f(x 2),则称f(x)是区间D 上的减函数,D 叫f(x)单调递减区间. 2.函数单调性的判断方法: (1)从直观上看,函数图象从左向右看,在某个区间上,图象是上升的,则此函数是增函数,若图象是下降的,则此函数是减函数。 (2)一般地,设函数)(x f y =的定义域为I .如果对于属于定义域I 内某个区间A 上的任意两个自变量的值1x , 2x ,且21x x <,则021<-x x (1)()()则0-21≠-)(x f 即在区间A 上是增函数; (2)()()则21x f x f >()() ()121212 0f x f x x x x x -? <≠-)(x f 即在区间A 上是减函数. 如果函数)(x f y =在某个区间上是增函数或减函数,那么就说函数在这一区间具有(严格的)的单调性,这一区间叫做)(x f y =的单调区间. 单调区间是函数定义域的子区间,因此函数单调性是函数的局部性质,应以定义域为前提;必须指明在某个区间上函数是增函数或减函数 (3)复合函数单调性判断方法:设()()[][],,,,,y f u u g x x a b u m n ==∈∈ 若内外两函数的单调性相同,则()y f g x =????在x 的区间D 内单调递增, 若内外两函数的单调性相反时,则()y f g x =????在x 的区间D 内单调递减. (同增异减) 3.常见结论 若f(x)为减函数,则-f(x)为增函数 ; 若f(x)>0(或<0)且为增函数,则函数) (1 x f 在其定义域内为减函数.

函数的单调性奇偶性单元测试题

函数的单调性与奇偶性 1.若)(x f y =为偶函数,则下列点的坐标在函数图像上的是 A.))(,(a f a -- B. ))(,(a f a - C. ))(,(a f a - D. ))(,(a f a --- 2.下列函数中,在区间(0,1)上是增函数的是 A. x y = B. x y -=3 C. x y 1= 42+-=x y 3.下列判断中正确的是 A .2)()(x x f =是偶函数 B .2)()(x x f =是奇函数 C .1)(2-=x x f 在[-5,3]上是偶函数 D .23)(x x f -=是偶函数 4.若函数)0()(2≠++=a c bx ax x f 是偶函数,则cx bx ax x g ++=23)(是 A .奇函数 B .偶函数 C .非奇非偶函数 D .既是奇函数又是偶函数 5.已知函数f(x)是R 上的增函数,A(0,-1)、B((3,1)是其图象上的两点,那么|f(x+1)|<1的解集是 A .(-1,2) B .(1,4) C .(-∞,-1]∪[4,+ ∞) D .(-∞,-1]∪[2,+ ∞) 6.已知函数)(x f y =为奇函数,且当0>x 时32)(2+-=x x x f ,则当0,021>+x x ,则)(1x f ,)(2x f 的大小是 A 、)()(21x f x f > B 、)()(21x f x f >- C 、)()(21x f x f -< D 、与1x ,2x 的取值有关 8.奇函数()f x 在区间[,]a b 上是减函数且有最小值m ,那么()f x 在[,]b a --上是 A 、减函数且有最大值m - B 、减函数且有最小值m - C 、增函数且有最大值m - D 、增函数且有最小值m - 9.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 10.函数f (x )= 2 1++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 A .(0,21) B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞) 11.函数y=2 x -2ax+1,若它的增区间是[2,+)∞,则a 的取值是__ _____;若它在区间[2,+)∞ 上递增,则a 的取值范围是_ __. 12.已知f(x)是奇函数,定义域为{x|x ∈R 且x ≠0},又f(x)在(0,+∞)上是增函数,且f(-1)=0,则满足f(x)>0的x 取值范围是_ __. 13.若f(x)是定义在R 上的偶函数,且当x ≥0时为增函数,那么使f(π)

高中数学必修一函数的性质单调性与奇偶性典型精讲精练

1文档收集于互联网,已整理,word 版本可编辑. 函数单调性 证明格式: ① 取任意两个数12,x x 属于定义域D ,且令12x x <(反之亦可); ② 作差12()()f x f x -并因式分解; ③ 判定 12()()f x f x -的正负性,并由此说明函数的增减性; 例 1 用定义法判定下列函数的增减性: ① y x =; ②2y x =; ③3y x =; ④y = ⑤1 y x = ; 练习:1. 判断函数()f x = 2.证明函数 3()f x x x =+在R 上是增函数; 例 2 已知函数 1 ()(0)f x x x x =+>,求证:函数的单调减区间为(0,1],增区间为[1,)+∞,并画出图像; 练习:证明函数 x x x f 2 )(+ =在),2(+∞上是增函数。 3.复合函数的单调性 复合函数的单调性判断(同增异减):构造中间过度函数,按定义比较函数大小并确定函数的单调性; 例 3 判断函数的单调性: (1 ) ()f x = (2 )()f x =; (3) 2 1 ()2 f x x = +; 练习:① y = ②2 13y x = -; ③ 2 154y x x = +-; ④ y ; 4.函数的单调性的等价关系 设[]1212,,,x x a b x x ∈≠那么 []1212()()()0x x f x f x -->?[]1212()() 0(),f x f x f x a b x x ->?-在上是增函数; []1212()()()0x x f x f x --时,()1f x >且对任意的,a b 都有()()()f a b f a f b +=? (1)求证: (0)1f = ; (2)求证:对任意的x R ∈恒有 ()0f x > ; (3)求证:f(x)是R 上的增函数 ; (4)若2()(2)1f x f x x ?->,求x 的取值范围 相关练习 1、设 ()f x 的图像关于原点对称,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ?<的解集是………………( ) A {}|303x x x -<<>或 B {}|303x x x <-<<或 C {}|33x x x <->或 D {}|3003x x x -<<<<或 2、若 )(x f 的图像关于y 轴对称,且在[)+∞,0上是减函数,则235()(2)2 2 f f a a -++与的大小关系…( ) A )2 3(-f >)25 2(2++a a f B )23 (-f <)25 2(2++a a f C ) 23 (-f ≥ )2 5 2(2++a a f D 3() 2f -≤25(2)2 f a a ++

函数的单调性和奇偶性典型例题

函数的单调性和奇偶性 例1(1)画出函数y=-x2+2|x|+3的图像,并指出函数的单调区间. 解:函数图像如下图所示,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4.在(-∞,-1]和[0,1]上,函数是增函数:在[-1,0]和[1,+∞)上,函数是减函数. 评析函数单调性是对某个区间而言的,对于单独一个点没有增减变化,所以对于区间端点只要函数有意义,都可以带上. (2)已知函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,求实数a的取值范围. 分析要充分运用函数的单调性是以对称轴为界线这一特征. 解:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a-1)2+2,此二次函数的对称轴是x =1-a.因为在区间(-∞,1-a]上f(x)是单调递减的,若使f(x)在(-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3. 评析这是涉及逆向思维的问题,即已知函数的单调性,求字母参数范围,要注意利用数形结合. 例2判断下列函数的奇偶性: (1)f(x)=- (2)f(x)=(x-1). 解:(1)f(x)的定义域为R.因为 f(-x)=|-x+1|-|-x-1| =|x-1|-|x+1|=-f(x). 所以f(x)为奇函数.

(2)f(x)的定义域为{x|-1≤x<1},不关于原点对称.所以f(x)既不是奇函数,也不是偶函数. 评析用定义判断函数的奇偶性的步骤与方法如下: (1)求函数的定义域,并考查定义域是否关于原点对称. (2)计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f(-x)=-f(x)之一是否成立.f(-x)与-f(x)的关系并不明确时,可考查f(-x)±f(x)=0是否成立,从而判断函数的奇偶性. 例3已知函数f(x)=. (1)判断f(x)的奇偶性. (2)确定f(x)在(-∞,0)上是增函数还是减函数?在区间(0,+∞)上呢?证明你的结论. 解:因为f(x)的定义域为R,又 f(-x)===f(x), 所以f(x)为偶函数. (2)f(x)在(-∞,0)上是增函数,由于f(x)为偶函数,所以f(x)在(0,+∞)上为减函数. 其证明:取x1<x2<0, f(x1)-f(x2)=- ==. 因为x1<x2<0,所以 x2-x1>0,x1+x2<0, x21+1>0,x22+1>0, 得f(x1)-f(x2)<0,即f(x1)<f(x2). 所以f(x)在(-∞,0)上为增函数. 评析奇函数在(a,b)上的单调性与在(-b,-a)上的单调性相同,偶函数在(a,b)与(-b,-a)的单调性相反. 例4已知y=f(x)是奇函数,它在(0,+∞)上是增函数,且f(x)<0,试问F(x)=在(-∞,0)上是增函数还是减函数?证明你的结论.

函数单调性、奇偶性、对称性、周期性解析

函数单调性、奇偶性、对称性、周期性解析 一、函数的单调性 1.单调函数与严格单调函数 设()f x 为定义在I 上的函数,若对任何12,x x I ∈,当12x x <时,总有 (ⅰ) )()(21x x f f ≤,则称()f x 为I 上的增函数,特别当且仅当严格不等式12()()f x f x <成立时称()f x 为I 上的严格单调递增函数。 (ⅱ) )()(21x x f f ≥,则称()f x 为I 上的减函数,特别当且仅当严格不等式12()()f x f x >成立时称()f x 为I 上的严格单调递减函数。 2.函数单调的充要条件 ★若()f x 为区间I 上的单调递增函数,1x 、2x 为区间内两任意值,那么有: 1212 ()() 0f f x x x x ->-或1212)[()()]0f f x x x x -->( ★若()f x 为区间I 上的单调递减函数,1x 、2x 为区间内两任意值,那么有: 121 2 ()() 0f f x x x x -<-或1212)[()()]0f f x x x x --<( 3.函数单调性的判断(证明) (1)作差法(定义法) (2)作商法 4复合函数的单调性的判定 对于函数()y f u =和()u g x =,如果函数()u g x =在区间(,)a b 上具有单调性,当 (),x a b ∈时(),u m n ∈,且函数()y f u =在区间(,)m n 上也具有单调性,则复合函数 (())y f g x =在区间(),a b 具有单调性。 5.由单调函数的四则运算所得到的函数的单调性的判断 对于两个单调函数()f x 和()g x ,若它们的定义域分别为I 和J ,且I J ?≠?: (1)当()f x 和()g x 具有相同的增减性时,函数1()()()F x f x g x =+、2()()()F x f x g x =?的增减性与()f x (或()g x )相同,3()()()F x f x g x =-、4() ()(()0)() f x F x g x g x = ≠的增减性

函数的单调性和奇偶性练习题

—函数的单调性和奇偶性 一、选择题: 1.在区间(0,+∞)上不是增函数的函数是 ( ) A .y =2x +1 B .y =3x 2+1 C .y = x 2 D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数, 则f (1)等于 ( ) A .-7 B .1 C .17 D .25 3.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21 ++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 2 1 ,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞) 5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数 7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式 |f (x +1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4) C .(-∞,-1)∪[4,+∞) D .(-∞,-1]∪[2,+∞) 8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5 -t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是 ( ) A .]1,(],0,(-∞-∞ B .),1[],0,(+∞-∞

函数的单调性和奇偶性教案(学生版)

函数的单调性和奇偶性 一、目标认知 学习目标: 1.理解函数的单调性、奇偶性定义; 2.会判断函数的单调区间、证明函数在给定区间上的单调性; 3.会利用图象和定义判断函数的奇偶性; 4.掌握利用函数性质在解决有关综合问题方面的应用. 重点、难点: 1.对于函数单调性的理解; 2.函数性质的应用. 二、知识要点梳理 1.函数的单调性 (1)增函数、减函数的概念 一般地,设函数f(x)的定义域为A,区间 如果对于M内的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间M上是增函数; 如果对于M内的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在区间M上是减函数. 如果函数f(x)在区间M上是增函数或减函数,那么就说函数f(x)在区间M上具有单调性,M称为函数f(x)的单调区间. 要点诠释: [1]“任意”和“都”; [2]单调区间与定义域的关系----局部性质; [3]单调性是通过函数值变化与自变量的变化方向是否一致来描述函数性质的; [4]不能随意合并两个单调区间. (2)已知解析式,如何判断一个函数在所给区间上的单调性? 基本方法:观察图形或依据定义. 2.函数的奇偶性 偶函数:若对于定义域内的任意一个x,都有f(-x)=f(x),那么f(x)称为偶函数. 奇函数:若对于定义域内的任意一个x,都有f(-x)=-f(x),那么f(x)称为奇函数. 要点诠释: [1]奇偶性是整体性质; [2]x在定义域中,那么-x在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的; [3]f(-x)=f(x)的等价形式为:, f(-x)=-f(x)的等价形式为:;

高中数学-函数的单调性、奇偶性、周期性、对称性及函数的图像

函数的单调性、奇偶性、周期性、对称性及函数的图像 (一)复习指导 单调性: 设函数y =f (x )定义域为A ,区间M ?A ,任取区间M 中的两个值x 1,x 2,改变量Δx =x 2-x 1>0,则当Δy =f (x 2)-f (x 1)>0时,就称f (x )在区间M 上是增函数,当Δy =f (x 2)-f (x 1)<0时,就称f (x )在区间M 上是减函数. 如果y =f (x )在某个区间M 上是增(减)函数,则说y =f (x )在这一区间上具有单调性,这一区间M 叫做y =f (x )的单调区间. 函数的单调性是函数的一个重要性质,在给定区间上,判断函数增减性,最基本的方法就是利用定义:在所给区间任取x 1,x 2,当x 1<x 2时判断相应的函数值f (x 1)与f (x 2)的大小. 利用图象观察函数的单调性也是一种常见的方法,教材中所有基本初等函数的单调性都是由图象观察得到的. 对于y =f [φ(x )]型双重复合形式的函数的增减性,可通过换元,令u =φ(x ),然后分别根据u =φ(x ),y =f (u )在相应区间上的增减性进行判断,一般有“同则增,异则减”这一规律. 此外,利用导数研究函数的增减性,更是一种非常重要的方法,这一方法将在后面的复习中有专门的讨论,这里不再赘述. 奇偶性: (1)设函数f (x )的定义域为D ,如果对D 内任意一个x ,都有-x ∈D ,且f (-x )=-f (x ),则这个函数叫做奇函数;设函数f (x )的定义域为D ,如果对D 内任意一个x ,都有-x ∈D ,且f (-x )=f (x ),则这个函数叫做偶函数. 函数的奇偶性有如下重要性质: f (x )奇函数?f (x )的图象关于原点对称. f (x )为偶函数?f (x )的图象关于y 轴对称. 此外,由奇函数定义可知:若奇函数f (x )在原点处有定义,则一定有f (0)=0,此时函数f (x )的图象一定通过原点. 周期性: 对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x )成立,则函数f (x )叫做周期函数,非零常数T 叫做这个函数的周期. 关于函数的周期性,下面结论是成立的. (1)若T 为函数f (x )的一个周期,则kT 也是f (x )的周期(k 为非零整数). (2)若T 为y =f (x )的最小正周期,则 | |ωT 为y =Af (ωx +φ)+b 的最小正周期,其中ω≠0. 对称性: 若函数y =f (x )满足f (a -x )=f (b +x )则y =f (x )的图象关于直线2 b a x += 对称,若函数y =f (x )满足f (a -x )=-f (b +x )则y =f (x )的图象关于点( 2 b a +,0)对称. 函数的图象: 函数的图象是函数的一种重要表现形式,利用函数的图象可以帮助我们更好的理解函数的性质,我们首先要熟记一些基本初等函数的图象,掌握基本的作图方法,如描点作图,三角函数的五点作图法等,掌握通过一些变换作函数图象的方法.同时要特别注意体会数形结合的思想方法在解题中的灵活应用. (1)利用平移变换作图:

函数的单调性、奇偶性的综合问题

函数的单调性、奇偶性综合运用 【学习目标】 1.进一步掌握函数的单调性与奇偶性综合问题; 2.利用单调性、奇偶性来解决相关问题。 【学习过程】 一.复习回顾: 1.函数单调性、奇偶性的定义 2.设()x f 为定义在()+∞∞-,上的偶函数,且()x f 在[)+∞,0上为增函数,则()2-f ,()π-f ,()3f 的大小顺序是 二.例题精讲: 题型一:知单调性求参数的范围 1.若()x f 是偶函数,其定义域为(),-∞+∞,且在 [)+∞,0上是减函数 则)43(-f ,)1(2+-a a f 的大小关系是 。 2.已知()x f 是定义在()1,1-上的奇函数,且在定义域上为增函数,若2(2)(4)0f a f a -+-<,求 a 的取值范围. 【变式】 已知()x f 是定义在()1,1-上的偶函数,且在()1,0上为增函数,若 )4()2(2a f a f -<-,求 a 的取值范围。

题型二:单调性的判断与证明: 3.已知f (x )是R 上的偶函数,且在(0,+ ∞)上单调递增,则f (x ) 在(-∞,0)上的单调性,并证明你的结论 4.已知f (x )是R 上的偶函数,且在(0,+ ∞)上单调递增,并且f (x )<0对一切R x ∈成立,试判断) (1x f -在(-∞,0)上的单调性,并证明你的结论. 【课堂巩固】 1.设()x f 是偶函数,且当[)+∞∈,0x 时, 1)(-=x x f , 则0)1(<-x f 的解是 . 2. 定义R 在的偶函数()x f 在()0,∞-上是单调递增的,若()122++a a f < ()1232+-a a f ,求a 的取值范围. 3.若奇函数)(x f 是定义域()1,1-上的减函数,且0)1()1(2<-+-m f m f 求实数 m 的取值范围 4.已知f (x )是R 上的奇函数,且在(0,+ ∞)上单调递减,则f (x) 在(-∞,0)上的单调性,并证明你的结论

《函数的单调性与奇偶性》教学设计(人教A版必修)

1.3《函数的单调性与奇偶性》教学设计 【教学目标】 1. 理解增函数、减函数、单调区间、单调性等概念;掌握增(减)函数的证明和判别;学会运用函数图象理解和研究函数的性质; 2. 理解函数单调性的概念及证明方法、判别方法,理解函数的最大(小)值及其几何意义; 3. 理解奇函数、偶函数的概念及图象的特征,能熟练判别函数的奇偶性. 【导入新课】 1.通过对函数x y 2=、x y 3-=、x y 1=及2x y =的观察提出有关函数单调性的问题. 2.阅读教材明确单调递增、单调递减和单调区间的概念. 3.实践活动:取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形,然后按如下操作并回答相应问题: ① 以y 轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形; 问题:将第一象限和第二象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系? 答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于y 轴对称; (2)若点(x ,f(x))在函数图象上,则相应的点(-x ,f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等. ② 以y 轴为折痕将纸对折,然后以x 轴为折痕将纸对折,在纸的背面(即第三象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形: 问题:将第一象限和第三象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系? 答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于原点对称; (2)若点(x ,f(x))在函数图象上,则相应的点(-x ,-f(x))也在函数图象上,即

函数单调性与奇偶性函数单调性例题及解析

函数单调性与奇偶性函数单调性例题及解析 函数单调性与奇偶性教学目标 1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法. (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念. (2)能从数和形两个角度认识单调性和奇偶性. (3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程. 2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想. 3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度.教学建议 一、知识结构 (1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系. (2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.二、重点难点分析

(1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性,奇偶性的本质,掌握单调性的证明. (2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.三、教法建议(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与 函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些 关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以 融入其中,将概念的形成与认识结合起来. (2)函数单调性证明的步骤是严格规定的,要让学生按照步 骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,

相关主题
文本预览
相关文档 最新文档