当前位置:文档之家› 目标追踪模型

目标追踪模型

目标追踪模型
目标追踪模型

目标追踪模型

例5. 设位于坐标原点的甲舰向位于x 轴上点A (1,0)处的乙舰发射导弹,导弹始终对准乙舰.如果乙舰以最大的速度0v (0v 是常数)沿平行于y 轴的直线行驶,导弹的速度是50v ,求导弹运行的曲线.又乙舰行驶多远时,导弹将它击中?

解 设导弹的轨迹曲线为()x y y =,并设经过时间t ,导弹位于点()y x P ,,乙舰位于点()t v Q 0,1.由于导弹头始终对准乙舰,故此时直线PQ 就是导弹的轨迹曲线弧OP 在点P 处的切线,即有x

y t v y --='10,亦即 ()y y x t v +'-=10

又根据题意,弧OP 的长度为AQ 的5倍,即 t v dx y x 00251='+?

由此得

()dx y y y x x ?'+=

+'-0

21511 整理得

()21511y y x '+=''- 并有初值条件()()00,00='=y y ,解得 ()()24

511251855654+-+--=x x y 当1=x 时245=y ,即当乙舰航行到点??

? ??245,1处时被导弹击中.被击中时间为0245v v y t o ==

.若1=o v ,则在21.0=t 时被击中.

多目标跟踪

多目标跟踪的基本理论 所谓多目标跟踪,就是为了维持对多个目标当前状态的估计而对所接收到的量测信息进行处理的过程。 目标模型不确定性 是指目标在未知的时间段内可能作己知的或未知的机动。一般情况下,目标的 非机动方式及目标发生机动时的不同的机动形式都可以通过不同的数学模型来加 以描述。在进行目标跟踪过程中,采用不正确的目标运动模型会导致跟踪系统跟踪 性能的严重下降。因而在目标跟踪过程中,运动模型采用的正确与否对目标的跟踪 性能是至关重要的。 观测不确定性 是指由传感器系统提供的量测数据可能是外部的干扰数据,它有可能是由杂波、虚警和相邻的目标所引起的,也可能是由被跟踪目标的对抗系统所主动发出来的虚假信息。这种不确定性在本质上显然是离散的,给目标跟踪问题提出了极大的挑战,相应地也就产生了数据关联的问题。 数据关联 数据关联的作用主要有:航迹保持、航迹建立和航迹终结。 数据关联算法主要有:“最近邻”方法,“全邻”最优滤波器方法、概率数据关联滤波器方法、多模型方法、相互作用多模型一概率数据关联滤波器方法、联合概率数据关联滤波器方法、多假设方法、航迹分裂方法。 1.“最近邻”方法的思想是:在落入跟踪波门中的所有量测中,离目标跟踪预测位置最近的量测认为是有效量测。“最近邻”方法的好处是算法最简单,但是精度差,抗杂波干扰的能力差。“最近邻”方法因为简单,算法易实现,因此也是目前广泛采用的一种数据关联算法. 2 .“全邻”最优滤波器 Singer,Sea和Housewright发展了一类“全邻”滤波器,这种滤波器不仅考虑了所有候选回波(空间累积信息),而且考虑了跟踪历史,即多扫描相关(时间累积信息)假定多余回波互不相关并且均匀分布于跟踪门内,则任何跟踪门的体积V内多余回波的数目Cx服从均值为βV的泊松分布。假定在K-1时刻,轨迹a′正确的概率为Pa(k-1)。关键问题是计算k时刻轨迹的正确概率Pa(k)。

第一章 目标跟踪基本原理与机动目标模型1

第一章目标跟踪基本原理与机动目标模型1.1 引言目标跟踪问题作为科学技术发展的一个方面,设计的主要目的是可靠而精确的跟踪目标,其历史可以追溯到第二次世界大战前夕,即1937 年世界上出现第一部跟踪雷达站SCR-28 的时候、之后各种雷达、红外、声纳和激光等目标跟踪系统相继得到发展并且日趋完善。传统的跟踪系统是一对一系统,即一个探测器仅连续地瞄准和跟踪一个目标。随着科学技术的进步和现代战略战术的发展,人们发现提出新的目标跟踪概念和体制是完全可能的,在过去20 多年中,多目标跟踪的理论和方法已经获得很大发展,并已成为当今国际上十分活跃的热门研究领域之一,有些成果也已付诸于工程实际。简单地说,目标跟踪问题可以划分为下列四类:一个探测器跟踪一个目标(OTO)一个探测器跟踪多个目标(OTM)多个探测器跟踪一个目标(MTO)多个探测器跟踪多个目标(MTM)1.2 目标跟踪的基本原理1.2.1 单机动目标跟踪基本原理发展现代边扫描边跟踪(TWS)系统的目的是,仅在一个探测器条件下同时跟踪多个目标。然而,为达此目的,边扫描边跟踪系统必须首先很好地跟踪单个目标。一般地说,常速直线运动目标的跟踪与估计问题较为简单,而且易于处理。困难的情况表现在被跟踪目标发生机动,即目标速度的大小和方向发生变化的场合。图 1.1 为单机动目标跟踪基本原理框图。图中目标动态特性由包含位置、速度和加速度的状态向量X 表示,量测(观测)量Y 被假定为含有量测噪声V 的状态向量1的线性组合(HX+V);残差(新息)向量 d 为量测(Y)与状态预测量H X k k 之差。我们约定,用大写字母XY 表示向量,小写字母xy表示向量的分量。一般情况下,单机动目标跟踪为一自适应滤波过程。首先由量测(观测)量(Y)和状态预1测量H X k 构成残差(新息)向量d,然后根据d 的变化进行机动检测或者机k动辨识.其次按照某一准则或逻辑调整滤波增益与协方差矩阵或者实时辨识出目标机动特性,最后由滤波算法得到目标的状态估计值和预测值,从而完成单机动目标跟踪功能。图 1.1 单机动目标跟踪基本原理框图1.2.2 单机动目标跟踪基本要素单机动目标跟踪基本要素主要包括量测数据形成与处理,机动目标模型,机动检测与机动辨识,滤波与预测以及跟踪坐标系和滤波状态变量的选取。现分别简述之。1.2.2.1 量测数据形成与处理量测数据通常指来自探测器输出报告的所有观测量的集合。这些观测量一般包括目标运动参数,如位置和速度,目标属性,目标类型,数目或形成以及获取量测量的时间序列等。在单机动目标跟踪技术中,量测数据主要指目标运动学参数。量测数据既可以等周期获取,也可以变周期获取。在实际问题中常常遇到等速,为了提高目标状态率数据采集。量测数据大多含有噪声和杂波(多目标检测情况)估计精度,通常采用数据预处理技术以提高信噪比。目前常用的方法有数据压缩,包括等权和变权预处理以及量测资料中野值的剔除方法等技术。1.2.2.2 机动目标模型众所周知,估计理论特别是卡尔曼滤波理论要求建立数学模型来描述与估计问题有关的物理现象。这种数学模型应把某一时刻的状态变量表为前一状态变量的函数。所定义的状态变量应为能够全面反应系统动态特性的一组维数最少的变量。一般地,状态变量与系统的能量有关,譬如在目标运动模型中,状态变量中所包含的位置元素与势能有关,速度元素与动能有关。在目标模型构造过程中,考虑到缺乏有关目标运动的精确数据以及存在着许多不可预测的现象,如周围环境的变化及驾驶员主观操作等,只是需要引入状态噪声的概念。当目标作匀速直线运动时,加速度常常被看作是具有随机特性的扰动输入(状态噪声),并假设其服从零均值白色高斯分布,这时,卡尔曼滤波可直接使用。当目标发生诸如转弯或逃避等机动现象时,上述假设则不尽合理,机动加速度变成为非零均值时间相关的有色噪声。此时,为满足滤波需要常常采用白化噪声和状态增广方法。机动目标模型除了考虑加速度非零均值时间相关噪声假设外,还要考虑加速度的分布特性。客观上,要求加速度函数应尽可能的描述目标机动的实际情况。从目前的机动目标模型来看,所有建模方法均考虑了目标发生机动的可能性,并建立了一种适合任何情况和任何类型目标的机动模型,我们称这种模型为全局统计模型,其典型代表是传统的Singer 模型。然而,根据全局统计模型思想,每一种具体战术情况下的每

位置跟踪系统ART成功案例介绍

ART:虚拟现实专家 ART概况: -成立于1999年 -独立公司, 由多个CEO共同所有 -专注于红外光学位置追踪系统 -全部产品都为“德国制造” -全世界建立有1000个以上的追踪系统 -在2011/2012财年销售已超过150套系统 ART是虚拟现实应用的专家! -虚拟现实光学追踪相关系统的市场领导者 -虚拟现实市场中众所周知的高质量追踪 -客户遍布各个领域:工业,研究机构,大学,医学和工程学 -自主研究,开发和生产制造 面向客户的解决方案 -高精度和简单易用的产品 -寿命长,稳定性高 -快速全面的现场支持 -我们的质量被我们众多合作伙伴所认可,在世界各地的虚拟现实展示中心中使用的都是ART产品(例如,达索巴黎总部,ICIDO和ESI办公室,RTT总部, Techviz总部以及很多其他场所) 达索巴黎总部

ART 产品: o洞穴系统解决方案: TRACKPACK /C o洞穴用摄像头 o35毫米直径的小型摄像头部 o捕捉范围3.5米 o Flystick2: o六自由度捕捉 o物理模拟摇杆和六个按键(包括下方的扳机) o无线信号传输(ISM频段) o保护良好的被动捕捉目标 o同时支持多个Flystick2同时使用 ? University of Siegen o Flystick3: o轻型交互设备 o六自由度捕捉 o物理模拟摇杆和4个按键(包括下方的扳机) o无线信号传输(ISM频段) o配有充电台 o同时支持多个Flystick3同时使用 ? University of Potsdam

ART 产品: o手指追踪: o我们的轻便手部追踪解决方案 o精确测量手指尖端位置信息(3或5个手指) o无线技术:主动标记点发送红外同步信号 o使用卫生,无需佩戴手套 o简单快速的两步校准过程 o软件提供多个校准配置管理功能 ? Volkswagen o安装简便的眼睛标记点: o在被动或主动立体系统中的头部位置追踪,追踪标记点必须与立体眼镜切实贴合。ART提供轻型的通用标记目标和为各类眼睛品牌型号制作的标记目标。 ? University of Potsdam o特殊定制标记目标: o在提供的标准标记目标系列之外,我们根据客户需要专业定制特殊的标记目标。 ?EADS

目标追踪基础知识

静态背景:只动目标 动态背景:动目标和camera;复杂相对运动 静态背景: 1.背景差分:先获得背景后根据差值取阈得图像(背景影响较大) 背景获得:(1)时间平均 (2)参数建模 阴影消除:色度值代替亮度值; 2.帧间差分:相邻两幅图差值进行计算获得运动物体位置与形状(部分信息,不适用于运动缓慢物体) 3.光流法:带有灰度的像素点在图像平面上运动产生的瞬时速度场(最复杂,不适于实时估计,抗噪性差) 动态背景: 基于块的运动估计与补偿:假定同一图像块上运动矢量相同,通过像素域搜索得到最佳运动 矢量估算。 关键技术:(1)匹配法则:最大相关,最小误差 (2)搜索方法:三步搜索,交叉搜索 (3)块大小确定:分级,自适应 Tracking:通过目标有效表达寻找最佳相似目标。 目标特征:(1)视觉特征:边缘,轮廓,形状,纹理,区域 (2)统计特征:直方图,各种矩特征 (3)变化系数特征:傅里叶描绘子,自回归模型 (4)代数特征:图像矩阵的奇异值分解 相似度度量算法(匹配法则):欧氏距离,街区距离,棋盘距离,加权距离,巴特查理亚系 数,Hausdorff距离。(欧氏距离最简单) 搜索算法:预测下一帧物体可能存在的位置。kalman滤波,扩展的Kalman滤波,粒子滤波。Kalman算法:线性最小方差估计。通过状态方程和观测方程来预估。无偏,稳定,最优。粒子滤波算法:非线性,非高斯系统。递归方式进行处理,节省空间,有较好鲁棒性。均值漂移算法(Meanshift):梯度优化,非刚性目标,非线性运动目标,变形,旋转均可。连续自适应均值漂移算法(Camshift):基于Meanshift,结合色彩信息。可有效解决变形 和遮挡问题。 分类:(1)基于主动轮廓追踪(Snake模型):定义可变形Snake曲线,通过对其能量函数最小化,使其轮廓逐渐变成与目标轮廓一致。跟踪可靠性增加,但计算量较大,并 且对快速运动或形变较大物体跟踪情况不理想。 (2)基于特征的跟踪: 特征提取:特征:有直观意义,有分类意义,计算相对简单,有图像平 移旋转尺度变换等不变性。主要有颜色,纹理边缘, 块特征,光流特征,周长面积,质心,角点。 特征匹配:基于二值化、边缘特征、角点特征、灰度、颜色特征匹配。 对尺度、形变、亮度变化不敏感。只要有一部分特征能被提 取就可以。但对噪声敏感,连续帧间关系难以确定。 (3)基于区域的追踪:得到人为或图像分割的矩形或不规则图形模版,再用算法跟 踪目标。费时,未被遮挡时精度很高,目标变形或有遮挡精 度下降。

目标跟踪相关研究综述

Artificial Intelligence and Robotics Research 人工智能与机器人研究, 2015, 4(3), 17-22 Published Online August 2015 in Hans. https://www.doczj.com/doc/a29158649.html,/journal/airr https://www.doczj.com/doc/a29158649.html,/10.12677/airr.2015.43003 A Survey on Object Tracking Jialong Xu Aviation Military Affairs Deputy Office of PLA Navy in Nanjing Zone, Nanjing Jiangsu Email: pugongying_0532@https://www.doczj.com/doc/a29158649.html, Received: Aug. 1st, 2015; accepted: Aug. 17th, 2015; published: Aug. 20th, 2015 Copyright ? 2015 by author and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/a29158649.html,/licenses/by/4.0/ Abstract Object tracking is a process to locate an interested object in a series of image, so as to reconstruct the moving object’s track. This paper presents a summary of related works and analyzes the cha-racteristics of the algorithm. At last, some future directions are suggested. Keywords Object Tracking, Track Alignment, Object Detection 目标跟踪相关研究综述 徐佳龙 海军驻南京地区航空军事代表室,江苏南京 Email: pugongying_0532@https://www.doczj.com/doc/a29158649.html, 收稿日期:2015年8月1日;录用日期:2015年8月17日;发布日期:2015年8月20日 摘要 目标跟踪就是在视频序列的每幅图像中找到所感兴趣的运动目标的位置,建立起运动目标在各幅图像中的联系。本文分类总结了目标跟踪的相关工作,并进行了分析和展望。

机动目标的追踪与反追踪的模型完整版123

(由组委会填写)第十一届华为杯全国研究生数学建模竞赛 学校大连理工大学 参赛队号10141005 队员姓名1.鲁欢 2.候会敏 3.程帅兵

(由组委会填写) 第十一届华为杯全国研究生数学建模竞赛 题目机动目标的跟踪与反跟踪模型的建立及求解 摘要: 本文主要对机动目标追踪与反追踪模型的建立及求解问题进行了相关计算,讨论结果大致如下: 问题一,根据附件中的数据,利用数值法求解各个时刻点处的加速度,挑出加速度数量较大的时刻,并绘出矩形图,以加速度持续较大的时刻点为机动时间范围,并进行统计其大小以及方向,追踪模型则是依据现时刻以及前一时刻估计出的的物理量如位置速度加速度等,并根据数据统计出目标的机动能力即两时刻加速度最大该变量作为下一时刻的加速度,来计算在这种极限状态下目标向四周逃离的最远边界,因而形成一个区域,其中心即为雷达天线下时刻所指方向。航迹计算将三雷达测得的数据转换到同一坐标系中在进行拟合得到。 问题二,首先进行了航迹起始的确定。采用联合概率数据关联(JPDA)算法,通过对确认矩阵拆分得到互联事件及互联矩阵,计算互联事件的概率来进行数据关联,然后按照确定航迹。为避免雷达对于仅有一个回波信号的失跟情况,采取调动多种检测手段对目标密切关注,并改进雷达的内部控制计算算法。 问题三,我们建立了微分方程模型。着重分析了在空间范围内的机动目标的切向加速度以及方向加速度随时间的变化规律。通过运用Excel进行数据的处理计算得出切向加速度以及法向加速度的数值,利用Matlab编程得出其变化规律的轨迹图像。再结合问题一中的追踪模型,得到在数据3情况下的变化规律。通过对比,得出模型一的结论应用于问题三,其结果产生较大的偏差。 问题四,我们建立了卡尔曼滤波预测模型。利用卡尔曼滤波对机动目标进行预测,经过多次循环得出200对的位置坐标,利用Matlab软件给出了模拟后的卡尔曼滤波波形图。再进行对坐标的空间及时间复杂度进行分析,得出最终的结

目标跟踪算法的分类

目标跟踪算法的分类

主要基于两种思路: a)不依赖于先验知识,直接从图像序列中检测到运动目标,并进行目标识别,最终跟踪感兴趣的运动目标; b)依赖于目标的先验知识,首先为运动目标建模,然后在图像序列中实时找到相匹配的运动目标。 一.运动目标检测 对于不依赖先验知识的目标跟踪来讲,运动检测是实现跟踪的第一步。运动检测即为从序列图像中将变化区域从背景图像中提取出来。运动目标检测的算法依照目标与摄像机之间的关系可以分为静态背景下运动检测和动态背景下运动检测 (一)静态背景 1.背景差 2.帧差 3.GMM 4.光流 背景减算法可以对背景的光照变化、噪声干扰以及周期性运动等进行建模,在各种不同情况下它都可以准确地检测出运动目标。因此对于固定

个关键技术: a)匹配法则,如最大相关、最小误差等 b)搜索方法,如三步搜索法、交叉搜索法等。 c) 块大小的确定,如分级、自适应等。 光流法 光流估计的方法都是基于以下假设:图像灰度分布的变化完全是目标或者场景的运动引起的,也就是说,目标与场景的灰度不随时间变化。这使得光流方法抗噪声能力较差,其应用范围一般局限于目标与场景的灰度保持不变这个假设条件下。另外,大多数的光流计算方法相当复杂,如果没有特别的硬件装置,其处理速度相当慢,达不到实时处理的要求。 二.目标跟踪 运动目标的跟踪,即通过目标的有效表达,在图像序列中寻找与目标模板最相似候选目标区位置的过程。简单说,就是在序列图像中为目标定位。运动目标的有效表达除了对运动目标建模外,目标跟踪中常用到的目标特性表达主要包括视觉特征 (图像边缘、轮廓、形状、纹理、区域)、统计特征 (直方图、各种矩特征)、变换系数特

目标追踪综述

01目标跟踪简介 目标跟踪是计算机视觉领域的一个重要问题,目前广泛应用在体育赛事转播、安防监控和无人机、无人车、机器人等领域。下面是一些应用的例子。 02目标跟踪任务分类 了解了目标跟踪的用途,我们接下来看目标跟踪有哪些研究领域呢?目标跟踪可以分为以下几种任务: ?单目标跟踪- 给定一个目标,追踪这个目标的位置。 ?多目标跟踪- 追踪多个目标的位置 ?Person Re-ID- 行人重识别,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。广泛被认为是一个图像检索的子问题。给定一个监控行人图像,检索跨设备下的该行人图像。旨在弥补固定的摄像头的视觉局限,并可与行人检测/行人跟踪技术相结合。 ?MTMCT - 多目标多摄像头跟踪(Multi-target Multi-camera Tracking),跟踪多个摄像头拍摄的多个人 ?姿态跟踪- 追踪人的姿态 按照任务计算类型又可以分为以下2类。 ?在线跟踪- 在线跟踪需要实时处理任务,通过过去和现在帧来跟踪未来帧中物体的位置。 ?离线跟踪- 离线跟踪是离线处理任务,可以通过过去、现在和未来的帧来推断物体的位置,因此准确率会在线跟踪高。 03目标跟踪的困难点 虽然目标追踪的应用前景非常广泛,但还是有一些问题限制了它的应用,我们看下有哪些问题呢? ?形态变化- 姿态变化是目标跟踪中常见的干扰问题。运动目标发生姿态变化时, 会导致它的特征以及外观模型发生改变, 容易导致跟踪失败。例如:体育比赛中的运动员、马路上的行人。 ?尺度变化- 尺度的自适应也是目标跟踪中的关键问题。当目标尺度缩小时, 由于跟踪框不能自适应跟踪, 会将很多背景信息包含在内, 导致目标模型的更新错误:当目标尺度增大时, 由于跟踪框不能将目标完全包括在内, 跟踪框内目标信息不全, 也会导致目标模型的更新错误。因此, 实现尺度自适应跟踪是十分必要的。 ?遮挡与消失- 目标在运动过程中可能出现被遮挡或者短暂的消失情况。当这种情况发生时, 跟踪框容易将遮挡物以及背景信息包含在跟踪框内, 会导致后续帧中的跟踪目标漂移到遮挡物上面。若目标被完全遮挡时, 由于找不到目标的对应模型, 会导致跟踪失败。 ?图像模糊- 光照强度变化, 目标快速运动, 低分辨率等情况会导致图像模型, 尤其是在运动目标与背景相似的情况下更为明显。因此, 选择有效的特征对目标和背景进行区分非常必要。 下图是上述问题的一些实例。

3_光源自动跟踪系统课程设计解答

指导教师评定成绩: 审定成绩:重庆邮电大学 自动化学院 自动控制原理课程设计报告设计题目:光源自动跟踪系统 单位(二级学院):自动化学院 学生姓名: * * * 专业: **** 班级: * * * * 学号: ****** 指导教师: * * * 设计时间:20** 年*月 重庆邮电大学自动化学院制

目录 一.题目 (3) 二.模型建立与求解 (4) 2.1控制系统结构 (4) 2.2光源检测模型 (4) 2.3直流电机模型 (5) 三.性能验证和参数设计 (6) 3.1根轨迹设计及频域分析 (6) 3.2时域检验与速度信号测试 (7) 3.3检测电路设计 (8)

一.课程设计题目 已知一光源自动跟踪系统,利用帆板上一对光敏元件检测光能,当帆板偏离光源时,光敏元件产生电压差并通过放大后驱动电机转动,使太阳能帆板对准光源,如图示,其中,电机3,1.75; 2.8310;a a c v a R L V K W -==?=*表示转子旋转产生的电动势0.093;v K =电机产生的电磁力矩*,0.0924;t t T K I K ==电机及负载的转动惯量623010J ms -=?;阻力矩为*,a T B W =其中3510B -=?. 要求完成的主要任务: 1、分析系统工作过程,建立数学模型,并画出结构图。 2、系统跟踪阶跃响应的时间为0.5秒,超调量为小于5%,设计校正系统。 3、分析当该系统跟踪太阳转动时的性能。 4、设计光源检测放大装置,画出电路图并确定主要元件参数。

二、模型建立与求解 2.1控制系统结构 依据检测、放大、电机三个模块,画出相应的控制结构图,如图2. 图 2 控制系统图 在这里,角度的输入和比较依靠物理的光线输入和检测以及系统结构布局来实现的. 2.2光源检测系统模型 该光源跟踪系统主要由光线检测电路,电机驱动放大器,直流伺服电机三个模块组成。两个完全相同的光敏传感器分别安装在帆板两边,用来检测光线是否正对该跟踪系统。当光线满足入射条件时,两个光敏传感器检测到的光辐射强度几乎相等,否则讲表明帆板偏向受辐射少的一边。两个感光器受到的辐射强度只差可以反馈给电机驱动器中,用来作为电机的误差信号,使帆板转向正确的位置。 图3. 光敏元件工作原理图 设光敏元件产生的电压和光的正投射面积成正比,系数为k*,则 : *0*0* *0*1cos(60) 2cos(60) 21(cos(60)cos(60)) 2sin 60sin sin sin v k v k v v k k k k θθθθθθθθ =-?=+?-=-?-+?=?=?=?≈? 即:帆板与阳光的偏角将产生成正比的电压差,经过放大后驱动电机转动.

目标跟踪算法的分类

运动目标跟踪就是在一段序列图像中的每幅图像中实时地找到所感兴趣的运动目标 (包括位置、速度及加速度等运动参数)。在运动目标跟踪问题的研究上,总体来说有两种思路: a)不依赖于先验知识,直接从图像序列中检测到运动目标,并进行目标识别,最终跟踪感兴趣的运动目标; b)依赖于目标的先验知识,首先为运动目标建模,然后在图像序列中实时找到相匹配的运动目标。 一、运动目标检测 对于不依赖先验知识的目标跟踪来讲,运动检测是实现跟踪的第一步。运动检测即为从序列图像中将变化区域从背景图像中提取出来。运动目标检测的算法依照目标与摄像机之间的关系可以分为静态背景下运动检测和动态背景下运动检测。 静态背景下运动检测就是摄像机在整个监视过程中不发生移动,只有被监视目标在摄像机视场内运动,这个过程只有目标相对于摄像机的运动;动态背景下运动检测就是摄像机在整个监视过程中发生了移动 (如平动、旋转或多自由度运动),被监视目标在摄像机视场内也发生了运动,这个过程就产生了目标与摄像机之间复杂的相对运动。 1、静态背景 背景差分法 背景差分法是利用当前图像与背景图像的差分来检测运动区域的一种技术。它一般能够提供最完全的特征数据,但对于动态场景的变化,如天气、光照、背景扰动及背景物移入移出等特别敏感,运动目标的阴影也会影响检测结果的准确性及跟踪的精确性。其基本思想就是首先获得一个背景模型,然后将当前帧与背景模型相减,如果像素差值大于某一阈值,则判断此像素属于运动目标,否则属于背景图像。背景模型的建立与更新、阴影的去除等对跟踪结果的好坏至关重要。 帧间差分法 相邻帧间差分法是通过相邻两帧图像的差值计算,获得运动物体位置和形状等信息的运动目标检测方法。其对环境的适应性较强,特别是对于光照的变化适应性强,但由于运动目标上像素的纹理、灰度等信息比较相近,不能检测出完整

目标检测与跟踪方法在自动跟踪装置中的应用

第33卷增刊2007年11月 光学技术OPTICAL TECHN IQU E Vol.33Suppl. Nov. 2007 文章编号:100221582(2007)S 20069203 目标检测与跟踪方法在自动跟踪装置中的应用 Ξ 伍翔,霍炬,杨明,董红红 (哈尔滨工业大学控制与仿真中心,哈尔滨 150082) 摘 要:介绍了一种应用于自动跟踪装置上的运动背景下目标检测与跟踪的方法,采用仿射模型作背景运动估计进行检测以及mean 2shift 算法跟踪目标,并将该方法应用到一套自动跟踪系统实验平台上。 关 键 词:仿射模型;mean 2shift 算法;自动跟踪装置 中图分类号:TP751 文献标识码:A Application of a moving target detecting and tracking method in the automatic 2tracking equipment WU X iang ,H UO J u ,Y ANG Ming ,DONG H ong 2hong (Control and Simulation Center ,Harbin Institute of Technology ,Harbin 150082,China ) Abstract :This paper presents a moving target detecting and tracking method in moving background for the automatic 2tracking equipment.It uses affine model to estimate the moving character of the background for detecting ,and uses mean 2shift algorithm for tracking.An automatic 2tracking experimental system is realized by using this method. K ey w ords :affine model ;mean 2shift algorithm ;automatic 2tracking equipment 0 引 言 基于图像处理的运动目标检测与跟踪,作为图像处理技术的一个分支,由于其在民用和军用上的广泛应用 [1,2] ,也逐 渐成为研究的热点。本文主要针对自动跟踪装置,研究与设计一种图像处理的方法,实现运动背景下运动目标检测与跟踪,并应用到所搭建的自动跟踪仿真系统中。 1 自动跟踪系统实验平台 利用图像处理的方法实现自动跟踪功能的跟踪系统一般由摄像机、图像采集卡、计算机、伺服系统几部分组成。摄像机、图像采集卡以及计算机都装载在伺服系统上,当摄像机的视野中出现运动目标时,计算机对图像采集卡采集到的图像进行处理分析,得出运动目标的位置等信息,传递给伺服系统,伺服系统带动相机跟踪目标,使得目标始终保持在视野的中心 。 图1 自动跟踪系统实验平台结构框图 图1即为所搭建的自动跟踪系统实验平台的结构框图, 该平台是专门根据自动跟踪装置的结构和特点设计的,对自动跟踪装置进行模拟。由图1可知,在计算机上实现的图像处理部分,是整个系统的关键。它所要完成的功能是从采集图2 图像处理部分基本流程 到的每幅视频图像中找出运动目标的位置,即运动目标的检测与跟踪。它主要包括两方面:第一,运动目标的检测与提取;第二,目标跟踪。其处理流程图如图2所示。 2 运动目标检测 2.1 背景模型选取 根据摄像机相对于场景的运动情况可以将运动目标检测分为静止背景下运动目标检测和运动背景下运动目标检测两种。由自动跟踪装置的特性可知,在跟踪目标的过程中,摄像机随着伺服系统一起运动,所以应该考虑的是运动背景下运动目标的检测。 本文采用的是运用背景运动估计进行建模的思想,将两帧图像之间的背景运动关系用仿射变换表示,建立一个仿射运动参数模型。如 x k +1=a 1x k +a 2y k +d x y k +1=a 3x k +a 4y k +d y (1) 9 6Ξ收稿日期:2006212211 E 2m ail :wuxiang602@https://www.doczj.com/doc/a29158649.html, 基金项目:国家自然科学基金资助(60434010) 作者简介:伍翔(19842),男,苗族,湖南省人,哈尔滨工业大学硕士研究生,从事图像处理研究。

动作跟踪系统介绍

动作跟踪系统

技术概述 动作跟踪顾名思义动作捕捉,动作捕捉(Motion capture),简称动捕(Mocap),是指记录并处理人或其他物体动作的技术。它广泛应用于军事,娱乐,体育,医疗应用,计算机视觉以及机器人技术等诸多领域。在电影制作和电子游戏开发领域,它通常是记录人类演员的动作,并将其转换为数字模型的动作,并生成二维或三维的计算机动画。捕捉面部或手指的细微动作通常被称为表演捕捉(performance capture)。在许多领域,动作捕捉有时也被称为运动跟踪(motion tracking),但在电影制作和游戏开发领域,运动跟踪通常是指运动匹配(match moving)。 《魔戒》里的咕噜姆、《泰迪熊》里的毛绒熊、《阿凡达》里的部落公主……电影里那些经典虚拟形象生动的表演总能深深打动观众,而它们被赋予生命的背后都源于一项重要的科技技术——动作捕捉。 多个摄影机捕捉真实演员的动作后,将这些动作还原并渲染至相应的虚拟形象身上。这个过程的技术运用即动作捕捉,英文表述为Motion Capture。这项上世纪70年代就被利用于电影动画特效制作的技术,如今正在被广泛应用在电影制作和游戏开发等领域。 以《指环王》中的虚拟数字角色咕噜为例: 第一步、捕捉真实演员的肢体和面部运动数据

第二步、将真实演员的动作赋予数字角色 图三、最终合成的效果 对于动画企业而言,在前期脚本、原画完成后,动画制作的主要工作集中在角色动画的调关键帧上,如果面对一个40集的生活动画片,那么其中角色动画部分就有最少320分钟的角色部分,需要6个高级调帧工程师调整几个月才能实现,而且后期的修改还需要很多时间。如果是动作要求更多的动画片,比如说武打题材的动画片,则需要更多的人,更长的周期。运用运动捕捉就可以完全越过这些枯燥的技术操作,将动画师的精力都放在片子的创意上,动画制作只需要找到合适的演员捕捉就可以了,运动捕捉平台可以将捕捉对象的动作实时生成动画,人物的动作、动物的动作、甚至多人的动作都能够迅速生成。可以让动画企业大大提高效率。 运动捕捉效率对比(以6人工作小组为参照)

趋势追踪策略

ETF期权趋势追踪策略 一、概述 ETF期权具有杠杆性,投资者可以用少量的资金实现丰厚的收益,如果能够追踪标的证券的趋势,则可以充分发挥ETF期权的这种特性。目前,ETF期权的标的证券为上证180ETF和上证50ETF,通过对历史数据的实证分析可知,上证180ETF与沪深300指数的相关度高达99%,上证50ETF与沪深300指数的相关度高达96%。沪深300是沪深两市最具代表性的指数,研究沪深300指数对ETF 期权投资策略的研究有重要意义。 众所周知,证券市场对于政策的敏感度是非常高的。政策影响市场表现在以下若干方面:一方面是通过改变存贷款利率来调控市场资金;另一面,政府通过大规模的投资来刺激经济,主要集中在基础建设方面(建筑、机场、铁路等)或者创新方面。当资金面宽松、基础建设红火发展时,沪深300指数一般能迎来一波上涨;当资金面收紧、基础建设停滞不前时,沪深300指数一般会有一波下跌。因此,ETF期权追踪策略选取上海银行间同业拆借利率(SHIBOR)、水泥板块指数、铁路基建板块指数、螺纹钢指数作为研究指标。同时由于市场是由机构主导,而股指期货对于证券市场有引领作用,本策略加入前20名机构“空头持仓/多头持仓”比例作为参数,以判断机构对于市场的态度。通过实证分析,上述5项指标能够验证沪深300指数走势的概率是80%。由于ETF期权是T+0交易,又带有杠杆性,因此本策略会在趋势出现后,逐步建仓,如果趋势出现反复,则立刻止损退出,以保全资金。 在实盘测试期内(2014年5月29日至2014年7月23日),

ETF期权趋势追踪策略收益率为6.5%,上证180ETF增长率为 3.36%,沪深300指数增长率为1.22%。在严格控制了风险的前提下,ETF期权趋势追踪策略实现了超额收益,达到了投资目的。 二、策略的适用群体 风险回避型的高净值客户。这类客户有足够的资金参与各种金融工具的交易,但是风险厌恶,只愿意承受非常有限的风险。综合流动性和手续费等因素,这类投资者不愿意参与高风险交易,更愿意等待趋势性机会。 三、策略目标 通过分析参数确认趋势,按照趋势逐步建仓,利用ETF期权的杠杆性,获取超越大盘的收益。在确定的趋势中获取超额收益,在趋势不确定时,空仓等待机会。基于这样的投资目的,投资者会有安全稳定的收益。 四、策略的可操作性 ETF期权趋势追踪策略的5个主要参数,都是每日收盘后,市场上能够查到的公开信息。投资者可以等待投资信号明确后,第二个交易日开盘进行操作;每天根据参数给出的方向,调整自己的仓位。对于非专业投资者来说,不需要去研究各种高深的理论,不需要每天跟踪各种消息,也不需要每时每刻盯盘,只需要收盘以后,对上述5个指标进行观察分析,第二日开盘按照投资纪律进行操作。 五、策略的构建与实证分析 1.整体思路: ETF期权具有杠杆性,投资者为了充分利用这种以少量资金获取丰厚收益的机会,需要把握住ETF期权标的证券的价格变动趋势。ETF期权的标的证券是上证180ETF和上证50ETF,这两个标的物仅仅代表上证指数的相关股票。影响市场的因素很多,但是很难确认

目标管理-目标规划模型 精品

§5.3 目标规划模型 1. 目标规划模型概述 1)引例 目标规划模型是有别于线性规划模型的一类多目标决策问题模型,通过下面的例子,我们可看出这两者的区别。 例1 某工厂的日生产能力为每天500小时,该厂生产A 、B 两种产品,每生产一件A 产品或B 产品均需一小时,由于市场需求有限,每天只有300件A 产品或400件B 产品可卖出去,每出售一件A 产品可获利10元,每出售一件B 产品可获利5元,厂长按重要性大小的顺序列出了下列目标,并要求按这样的目标进行相应的生产。 (1)尽量避免生产能力闲置; (2)尽可能多地卖出产品,但对于能否多卖出A 产品更感兴趣; (3)尽量减少加班时间。 显然,这样的多目标决策问题,是单目标决策的线性规划模型所难胜任的,对这类问题,须采用新的方法和手段来建立对应的模型。 2)相关的几个概念 (1)正、负偏差变量+d 、- d 正偏差变量+ d 表示决策值 ) ,,2,1(n i x i =超过目标值的部分;负偏差变量 -d 表示决策值),,2,1(n i x i =未达到目标值的部分;一般而言,正负偏差变量+d 、-d 的相互关系如下: 当决策值 ) ,,2,1(n i x i =超过规定的目标值时, 0 ,0=>- +d d ;当决策值),,2,1(n i x i =未超过规定的目标值时, 0 ,0>=-+d d ;当决策值) ,,2,1(n i x i =正好等于规定的目标值时, 0 ,0==- +d d 。 (2)绝对约束和目标约束 绝对约束是必须严格满足的等式约束或不等式约束,前述线性规划中的约束

条件一般都是绝对约束;而目标约束是目标规划所特有的,在约束条件中允许目标值发生一定的正偏差或负偏差的一类约束,它通过在约束条件中引入正、负偏差变量+ d 、- d 来实现。 (3)优先因子(优先级)与权系数 目标规划问题常要求许多目标,在这些诸多目标中,凡决策者要求第一位达到的目标赋予优先因子1P ,要求第二位达到的目标赋予优先因子2P ,……,并规定 1 +>>k k P P ,即 1 +k P 级目标的讨论是在 k P 级目标得以实现后才进行的(这里 n k ,,2,1 =)。若要考虑两个优先因子相同的目标的区别,则可通过赋予它们 不同的权系数 j w 来完成。 3)目标规划模型的目标函数 目标规划的目标函数是根据各目标约束的正、负偏差变量+ d 、- d 和其优先因子来构造的,一般而言,当每一目标值确定后,我们总要求尽可能地缩小与目 标值的偏差,故目标规划的目标函数只能是 ) ,( min - +=d d f z 的形式。我们可将其分为以下三种情形: (1)当决策值 ) ,,2,1(n i x i =要求恰好等于规定的目标值时,这时正、负 偏差变量+d 、-d 都要尽可能小,即对应的目标函数为: )( m in -++=d d f z ; (2)当决策值 ) ,,2,1(n i x i =要求不超过规定的目标值时,这时正偏差变 量+d 要尽可能小,即对应的目标函数为: )( min +=d f z ; (3)当决策值 ) ,,2,1(n i x i =要求超过规定的目标值时,这时负偏差变量 -d 要尽可能小,即对应的目标函数为: )( min - =d f z 。 目标规划数学模型的一般形式为: ∑∑=+ +--=+=K k k lk k lk L l l d w d w P z 1 1 ) ( min

1 目标跟踪问题

第一章 目标跟踪基本原理与机动目标模型 1.1 引言 目标跟踪问题作为科学技术发展的一个方面,设计的主要目的是可靠而精确的跟踪目标,其历史可以追溯到第二次世界大战前夕,即1937年世界上出现第一部跟踪雷达站SCR-28的时候、之后各种雷达、红外、声纳和激光等目标跟踪系统相继得到发展并且日趋完善。 传统的跟踪系统是一对一系统,即一个探测器仅连续地瞄准和跟踪一个目标。随着科学技术的进步和现代战略战术的发展,人们发现提出新的目标跟踪概念和体制是完全可能的,在过去20多年中,多目标跟踪的理论和方法已经获得很大发展,并已成为当今国际上十分活跃的热门研究领域之一,有些成果也已付诸于工程实际。 简单地说,目标跟踪问题可以划分为下列四类: 一个探测器跟踪一个目标 (OTO ) 一个探测器跟踪多个目标 (OTM ) 多个探测器跟踪一个目标 (MTO ) 多个探测器跟踪多个目标 (MTM ) 1.2 目标跟踪的基本原理 1.2.1 单机动目标跟踪基本原理 发展现代边扫描边跟踪(TWS )系统的目的是,仅在一个探测器条件下同时跟踪多个目标。然而,为达此目的,边扫描边跟踪系统必须首先很好地跟踪单个目标。一般地说,常速直线运动目标的跟踪与估计问题较为简单,而且易于处理。困难的情况表现在被跟踪目标发生机动,即目标速度的大小和方向发生变化的场合。 图1.1为单机动目标跟踪基本原理框图。图中目标动态特性由包含位置、速度和加速度的状态向量X 表示,量测(观测)量Y 被假定为含有量测噪声V 的状态向量 的线性组合(HX +V );残差(新息)向量d 为量测(Y )与状态预测量))1((k k X H +∧之差。我们约定,用大写字母X,Y 表示向量,小写字母x,y 表示向量的分量。一般情况下,单机动目标跟踪为一自适应滤波过程。首先由量测(观测)量(Y )和状态预测量))1((k k X H +∧构成残差(新息)向量d ,然后根据d 的变化进行机动检测或者机动辨识.其次按照某一准则或逻辑调整滤波增益与协方差矩阵或者实时辨识出目标机动特性,最后由滤波算法得到目标的状态估计值和预测值,从而完成单机动目标跟踪功能。

相关主题
文本预览
相关文档 最新文档