当前位置:文档之家› 点的应力状态分析

点的应力状态分析

二向应力状态分析

二向应力状态分析

程序代码 function varargout = erxyl(varargin) % ERXYL M-file for erxyl.fig % ERXYL, by itself, creates a new ERXYL or raises the existing % singleton*. % % H = ERXYL returns the handle to a new ERXYL or the handle to % the existing singleton*. % % ERXYL('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in ERXYL.M with the given input arguments. % % ERXYL('Property','Value',...) creates a new ERXYL or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before erxyl_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to erxyl_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help erxyl % Last Modified by GUIDE v2.5 05-Jan-2011 17:46:09 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @erxyl_OpeningFcn, ... 'gui_OutputFcn', @erxyl_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end

工程力学应力状态与应力状态分析样本

8 应力状态与应变状态分析 1、应力状态概念, 2、平面应力状态下应力分析, 3、主平面是切应力为零平面,主应力是作用于主平面上正应力。 (1)过一点总存在三对互相垂直主平面,相应三个主应力,主应力排列规定按代数值由大到小为: 321σσσ≥≥ 最大切应力为 13 2 max σστ-= (2)任斜截面上应力 α τασσσσσα2sin 2cos 2 2 xy y x y x --+ += α τασστα2cos 2sin 2 xy y x +-= (3) 主应力大小 2 2min max )2 ( 2 xy y x y x τσσσσσ+-±+= 主平面方位 y x xy tg σστα--= 220 4、主应变 12 2122x y x y xy xy x y ()()tg εεεεεεγγ?εε? = +±-+? = - 5、广义胡克定律

)]( [1 z y x x E σσμσε+-= )]([1 x z y y E σσμσε+-= )]([1 y x z z E σσμσε+-= G zx zx τγ= G yz yz τγ= , G xy xy τγ= 6、应力圆与单元体之间相应关系可总结为“点面相应、转向相似、夹角两倍。” 8.1 试画出下图8.1(a)所示简支梁A 点处原始单元体。 图8.1 [解](1)原始单元体规定其六个截面上应力应已知或可运用公式直接计算,因而应选用如下三对平面:A 点左右侧横截面,此对截面上应力可直接计算得到;与梁xy 平面平行一对平面,其中靠前平面是自由表面,因此该对平面应力均为零。再取A 点偏上和偏下一对与xz 平行平面。截取出单元体如图8.1(d)所示。 (2)分析单元体各面上应力: A 点偏右横截面正应力和切应力如图8.1(b)、(c)所示,将A 点坐标x 、y 代入正应力和切应力公式得A 点单元体左右侧面应力为: z M y I σ= b I QS z z *= τ 解题范例

工程力学-应力状态与应力状态分析

8 应力状态与应变状态分析 1、应力状态的概念, 2、平面应力状态下的应力分析, 3、主平面是切应力为零的平面,主应力是作用于主平面上的正应力。 (1)过一点总存在三对相互垂直的主平面,对应三个主应力,主应力排列规定按代数值由大到小为: 321σσσ≥≥ 最大切应力为 13 2 max σστ-= (2)任斜截面上的应力 α τασσσσσα2sin 2cos 2 2 xy y x y x --+ += α τασστα2cos 2sin 2 xy y x +-= (3) 主应力的大小 2 2min max )2 ( 2 xy y x y x τσσσσσ+-±+= 主平面的方位 y x xy tg σστα--= 220 4、主应变 12 2122x y x y xy xy x y ()()tg εεεεεεγγ?εε? = +±-+? = - 5、广义胡克定律 )]([1 z y x x E σσμσε+-=

)] ( [ 1 x z y y E σ σ μ σ ε+ - = )] ( [ 1 y x z z E σ σ μ σ ε+ - = G zx zx τ γ= G yz yz τ γ= ,G xy xy τ γ= 6、应力圆与单元体之间的对应关系可总结为“点面对应、转向相同、夹角两倍。” 8.1试画出下图8.1(a)所示简支梁A点处的原始单元体。 图8.1 [解](1)原始单元体要求其六个截面上的应力应已知或可利用公式直接计算,因此应选取如下三对平面:A点左右侧的横截面,此对截面上的应力可直接计算得到;与梁xy平面平行的一对平面,其中靠前的平面是自由表面,所以该对平面应力均为零。再取A点偏上和偏下的一对与xz平行的平面。截取出的单元体如图8.1(d)所示。 (2)分析单元体各面上的应力: A点偏右横截面的正应力和切应力如图8.1(b)、(c)所示,将A点的坐标x、y代入正应力和切应力公式得A点单元体左右侧面的应力为: z M y I σ= b I QS z z * = τ 由切应力互等定律知,单元体的上下面有切应力τ;前后边面为自由表面,应力为零。在单元体各面上画上应力,得到A点单元体如图8.1(d)。 8.2图8.2(a)所示的单元体,试求(1)图示斜截面上的应力;(2)主方向和主应力,画出主单元体;(3)主切应力作用平面的位置及该平面上的正应力,并画出该单元体。 解题范例

应力、应力状态分析(习题解答)

8-9 矩形截面梁如图所示,绘出1、2、3、4点的应力单元体,并写出各点的应力计算式。 解:(1)求支反力R A =,R B = (2)画内力图如图所示。 x Pl (-)(+) Pl M kN ·m) P P y (-) (-) (+) V kN) 题8-9图 (3) 求梁各点的正应力、剪应力: (4)画各点的应力单元体如图所示。 9-1 试用单元体表示图示构件的A 、B 的应力单元体。 (a )解:(1)圆轴发生扭转变形,扭矩如图所示。 111max 222222333333max 442330,22(')[()]448 11 4()12 12 00(0, 0) 16 Z Z Z Z z V p A b h h h h P P b M V S Pl h y I I b b h b h b M S M Pl W b h σττστστστ==-=-? =-??-?? ?-?= ?=? = =??????=====- =- =??

80A - + 160 80 T (kN ·m ) (2)绘制A 、B 两点的应力单元体: A 、 B 两点均在圆轴最前面的母线上,横截面上应力沿铅垂方向单元体如图所示: 3 3 1601020.216 80510.216 A A t b B t T Pa kPa W T Pa kPa W τπτπ= ==?===-? (b )解:(1)梁发生弯曲变形,剪力、弯矩图如图所示。 - + 120 V kN) 40 M kN ·m) + 120 4020 60 题9-1(b )

(2)绘制A 、B 两点的应力单元体: A 点所在截面剪力为正,A 点横截面的剪力为顺时针,同时A 点所在截弯矩为正下拉,而A 点是压缩区的点。 B 点所在截面剪力为负,B 点横截面的剪力为逆时针,同时B 点所在截弯矩为正下拉,而B 点是拉伸区的点。单元体如图所示: 3 3 3.3 3 3 3.60100.0537.50.1200.212 12010(0.1200.050.075) 5.6250.1200.20.1201220100.0512.50.1200.212 4010(0.1200.05A A A t A z A A t B B B t B z B B t M y Pa MPa I V S Pa MPa I b M y Pa MPa I V S I b στστ?=-?=-?=-??????=?==????=?=?=??-????=?=?g g 30.075) 1.8750.1200.20.12012 Pa MPa =-?? 9-2(c 解:(1)由题意知: 30,20.5030o x x y MP MPa MP στσα==-==,,。 (2)求30o 斜截面上的应力 cos 2sin 22230503050 cos 60(20)sin 6052.32() 223050sin 2cos 2sin 60(20)cos 6018.67() 22 x x x x x o o o o x x x MPa MPa αασσσσσατα σστατα+-= + -+-=+--?=--=+=+-?=- (e) 试用解析法求出(1)图示应力单元体-30o 斜截面的应力。(2)主应力与主方向,以及面内的剪应力极值;(2)在单元体上标出主平面。 解:(1)由题意知: o MPa MP x x 30.20,10-=-=-=ατσ。见图(a )

三向应力状态图解法的研究_王军

三向应力状态图解法的研究_王军 第22卷第3期 2019年6月 吉林化工学院学报 JOURNAL OF JILIN INSTITUTE OF CHEM ICAL TECHNOLOGY Vol. 22No. 3Jun. 2019 文章编号:1007-2853(2019) 03-0071-03 三向应力状态图解法的研究 王军, 马庆捷 (吉林化工学院机电工程系, 吉林吉林132022) 摘要:证明了三向应力状态斜截面上应力分量与三向应力圆阴影部分相对应, 研究了 用图解法画出三向应力状态斜截面上应力分量的方法. 关键词:三向应力状态; 应力圆; 斜截面; 应力分量; 图解法中图分类号:T B 301 文献标识码:A 应力状态包括单向应力状态, 二向和三向应力状态, 对于单向和二向应力状态的应力 分析解析法和图解法在工程力学中都有较详细的论述. 但三向应力状态的应力分析只有解 析法定性的论述, 没有图解法的分析. 而解析法又非常繁杂. 本文研究了用图解法画出三 向应力状态斜截面上应力分量的方法, 使工程力学应力分析的方法都可以应用图解法来分析, 使讲授工程力学的教师和工程技术人员解决实际问题有了既简便又准确的方法. 中三个圆周中的任意两个, 其交点的坐标即为所求斜截面上的应力. 但比较繁杂. 如 约定 1> 2> 22 3, 且l 0, 则(1) 式中有l ( 1 - 2) ( 1- 3) 0, 所以第一式所确定的圆周的半径大于和它同心的圆周BC 的半径. 1 任意斜截面上的应力计算 在三向应力状态下, 当三个主应力已知时, 其任意斜截面上的应力 n 如图1(b) 所示, 可以通n 、过理论计算得知[1]. 在以 n 为横坐标, n 为纵坐标的坐标系中, 由下列三个圆周的交点的坐标值来表达. 2+ 3

应力状态分析和强度理论

第八章 应力状态和强度理论 授课学时:8学时 主要内容:斜截面上的应力;二向应力状态的解析分析和应力圆。三向应力简介。 $8.1应力状态概述 单向拉伸时斜截面上的应力 1.应力状态 过构件上一点有无数的截面,这一点的各个截面上应力情况的集合,称为这点的应力状态 2.单向拉伸时斜截面上的应力 横截面上的正应力 A N =σ 斜截面上的应力 ασα cos cos ===A P A P p a a 斜截面上的正应力和切应力为 ασασ2cos cos ==a a p ασ ατ2sin 2 sin = =a a p 可以得出 0=α时 σσ=max 4 π α= 时 2 m a x σ τ= 过A 点取一个单元体,如果单元体的某个面上只有正应力,而无剪应力,则此平面称为主平面。主平面上的正应力称为主应力。 主单元体 若单元体三个相互垂直的面皆为主平面,则这样的单元体称为主单元体。三个主应力中有一个不为零,称为单向应力状态。三个主应力中有两个不为零,称为二向应力状态。三个主应力中都不为零,称为三向应力状态。主单元体三个主平面上的主应力按代数值的大小排列,即为321σσσ≥≥。 P P a a α

$8.2二向应力状态下斜截面上的应力 1. 任意斜截面上的应力 在基本单元体上取任一截面位置,截面的法线n 。 在外法线n 和切线t 上列平衡方程 αασαατσc o s )c o s (s i n )c o s (dA dA dA x xy a -+ 0sin )sin (cos )sin (=-+αασαατdA dA y yx αασααττ sin )cos (cos )cos (dA dA dA x xy a -- 0sin )sin (cos )sin (=++ααταασdA dA yx y 根据剪应力互等定理,yx xy ττ=,并考虑到下列三角关系 22sin 1sin ,22cos 1cos 22 α ααα-=+= , ααα2sin cos sin 2= 简化两个平衡方程,得 ατασσσσσα2sin 2cos 2 2 xy y x y x --+ += ατασστα2cos 2sin 2 xy y x +-= 2.极值应力 将正应力公式对α取导数,得 ?? ????+--=ατασσασα 2cos 2sin 22xy y x d d 若0αα=时,能使导数 0=α σα d d ,则 02cos 2sin 2 00=+-ατασσxy y x y x xy tg σστα-- =220 上式有两个解:即0α和 900±α。在它们所确定的两个互相垂直的平面上,正应力取 xy τyx τn α t

工程力学-应力状态与应力状态分析报告

8 应力状态与应变状态分析 1、应力状态的概念, 2、平面应力状态下的应力分析, 3、主平面是切应力为零的平面,主应力是作用于主平面上的正应力。 (1)过一点总存在三对相互垂直的主平面,对应三个主应力,主应力排列规定按代数值由大到小为: 321σσσ≥≥ 最大切应力为 13 2 max σστ-= (2)任斜截面上的应力 α τασσσσσα2sin 2cos 2 2 xy y x y x --+ += α τασστα2cos 2sin 2 xy y x +-= (3) 主应力的大小 2 2min max )2 ( 2 xy y x y x τσσσσσ+-±+= 主平面的方位 y x xy tg σστα--= 220 4、主应变 12 2122x y x y xy xy x y ()()tg εεεεεεγγ?εε? = +±-+? = - 5、广义胡克定律 )]([1 z y x x E σσμσε+-=

)] ( [ 1 x z y y E σ σ μ σ ε+ - = )] ( [ 1 y x z z E σ σ μ σ ε+ - = G zx zx τ γ= G yz yz τ γ= ,G xy xy τ γ= 6、应力圆与单元体之间的对应关系可总结为“点面对应、转向相同、夹角两倍。” 8.1试画出下图8.1(a)所示简支梁A点处的原始单元体。 图8.1 [解](1)原始单元体要求其六个截面上的应力应已知或可利用公式直接计算,因此应选取如下三对平面:A点左右侧的横截面,此对截面上的应力可直接计算得到;与梁xy平面平行的一对平面,其中靠前的平面是自由表面,所以该对平面应力均为零。再取A点偏上和偏下的一对与xz平行的平面。截取出的单元体如图8.1(d)所示。 (2)分析单元体各面上的应力: A点偏右横截面的正应力和切应力如图8.1(b)、(c)所示,将A点的坐标x、y代入正应力和切应力公式得A点单元体左右侧面的应力为: z M y I σ= b I QS z z * = τ 由切应力互等定律知,单元体的上下面有切应力τ;前后边面为自由表面,应力为零。在单元体各面上画上应力,得到A点单元体如图8.1(d)。 8.2图8.2(a)所示的单元体,试求(1)图示斜截面上的应力;(2)主方向和主应力,画出主单元体;(3)主切应力作用平面的位置及该平面上的正应力,并画出该单元体。 解题范例

应力状态分析

应力状态分析 一、概念题 1.判断题:(以下结论对者画√,错者画×) (1)单元体内的主平面不一定就是三个。也可能有无数个。 ( ) (2)第1主应力是单元体内绝对值最大的正应力。 ( ) (3)受扭圆轴横截面上的点只有切应力,因而均处于单向应力状态。 ( ) (4)如微元体处于纯剪切应力状态,因而微元体内任何方向的斜截面上均没有正应力。 ( ) (5)凡是产生组合变形的杆件上的点,均处于复杂应力状态。 ( ) (6)扭转与弯曲组合变形的杆件,从其表层取出的微元体处于二向应力状态。( ) (7)扭转与弯曲组合变形的杆件,在其横截面上仍能取得处于纯切应力状态的点。 ( ) (8) 杆件弯、拉组合变形时,杆内各点均处于简单应力状态。 ( ) 2、选择题: (1) 矩形截面悬臂梁受力如图所示,从1—1截面A 点处截取一微元体,该微元体上的应力情况为( )。 (2)在研究一点的应力状态时,所谓的主平面是指( )。 A 、正应力为零的平面; B 、切应力最大的平面; C 、切应力为零的平面; D 、正应力不为零的平面。 (3)下面关于主平面定义的叙述中,正确的是( )。 A 、主平面上的正应力最大; B 、主平面上的切应力最大; C 、主平面上的正应力为零; D 、主平面上的切应力为零。 (4) 矩形截面悬臂梁受力如图所示,固定端截面的下角点A 与B 的应力状态为( )。 A 、单向拉伸; B 、单向压缩; C 、双向拉伸; D 、纯剪切。 (5)矩形截面悬臂梁受力如图所示,其固定端截面形心处的应力状态是( )。 A 、单向应力状态; B 、二向应力状态; C 、三向应力状态; D 、无法判定。

应力与应力状态分析

应力与应力状态分析 拉伸模量 拉伸模量是指材料在拉伸时的弹性,其计算公式如下: 拉伸模量(㎏/c ㎡)=△f/△h(㎏/c ㎡) 其中,△f 表示单位面积两点之间的力变化,△h 表示以上两点之间的应变化。更具体地说,△h =(L-L0)/L0,其中L0表示拉伸长前的长度,L 表示拉伸长后的长度。 §4-1 几组基本术语与概念 一、变形固体的基本假设 1、均匀连续性假设:假设在变形固体的整个体积内均匀地、毫无空隙地充满着物质,并且各点处的力学性质完全相同。 根据这一假设,可从变形固体内任意一点取出微小单元体进行研究,且各点处的力学性质完全相同,因而固体内部各质点的位移、各点处的内力都将是连续分布的,可以表示为各点坐标的连续函数。 2、各向同性假设:假设变形固体在所有方向上均具有相同的力学性质。 3、小变形假设:认为构件的变形与构件的原始尺寸相比及其微小。 根据小变形假设,在研究构件上力系的简化、研究构件及其局部的平衡时,均可忽略构件的变形而按构件的原始形状、尺寸进行计算。 二、应力的概念 1、正应力的概念 分布内力的大小(或称分布集度),用单位面积上的内力大小来度量,称为应力。 由于内力是矢量,因而应力也是矢量,其方向就是分布内力的方向。 沿截面法线方向的应力称为正应力,用希腊字母σ表示。 应力的常用单位有牛/米2 (2/m N ,12/m N 称为1帕,代号a P )、千米/米2(2/m KN ,12/m KN 称为1千帕,代号K a P ),此外还有更大的单位兆帕(M a P )、吉帕(G a P )。 几种单位的换算关系为:

1 K a P =310a P 1 M a P =310K a P 1 G a P =310M a P =610K a P =910a P 2、切应力与全应力的概念 与截面相切的应力分量称为切应力,用希腊字母τ表示。 K 点处某截面上的全应力K p 等于该点处同一截面上的正应力K σ与切应力K τ的矢量和。 三、位移、变形及应变的概念 变形:构件的形状和尺寸的改变。 位移:构件轴线上点的位置变化和截面方位的改变。 变形和位移的关系:构件的变形必然会使结构产生位移,但结构的位移不一定是由构件的变形引起的,温度变化、支座移动等也会使结构产生位移。 单元体:围绕构件内某一点截取出来的边长为无限小的正六面体。 应变:描述单元体变形程度的几何量,包括线应变和角应变两类。 线应变(正应变)ε:单元体线性尺寸的相对改变量。ε=Δu / u 角应变(切应变)γ:单元体上直角的改变量。γ= 90°- θ 应力与应变的对应关系:正应力σ与正应变ε相互对应;切应力τ与切应变γ相互对应。 四、受力构件内一点处的应力状态的概念 构件内某点处的应力状态,是指通过该点的各个不同方位截面上的应力情况的总体。 研究应力状态,对全面了解受力杆件的应力全貌,以及分析杆件的强度和破坏机理,都是必需的。 为了研究一点处的应力状态,通常是围绕该点取一边长为无限小的正六面体,即单元体。 主平面:单元体上没有切应力的面称为主平面。 主应力:主平面上的正应力称为主应力。 可以证明,通过一点处的所有方向面中,一定存在三个互相垂直的主平面(即一定存在主单元体),因而每一点都对应着三个主应力。 一点处的三个主应力分别用σ1 , σ2 和σ3来表示,并按应力代数值的大小顺序排列,即σ1≥σ2≥σ3。 原始单元体:从一点处取出的各面上应力都已知的单元体,称为该点的原始单元体。对于杆件,通常用一对横截面和两对互相垂直的纵截面截取原始单元体。 主单元体:各面上没有切应力的单元体称为主单元体。 应力状态的分类: 空间(三向)应力状态:三个主应力均不为零 平面(二向)应力状态:一个主应力为零 单向应力状态:两个主应力为零

第二章 应力状态分析

第二章应力状态分析 内容介绍 知识点 体力 应力矢量 应力分量 平衡微分方程 面力边界条件 主平面与主应力 主应力性质 截面正应力与切应力三向应力圆 八面体单元 偏应力张量不变量面力 正应力与切应力 应力矢量与应力分量 切应力互等定理 应力分量转轴公式 平面问题的转轴公式 应力状态特征方程 应力不变量 最大切应力 球应力张量和偏应力张量 作用于物体的外力可以分为两种类型:体力和面力。 所谓体力就是分布在物体整个体积内部各个质点上的力,又称为质量力。例如物体的重力,惯性力,电磁力等等。 面力是分布在物体表面上的力,例如风力,静水压力,物体之间的接触力等。

为了表明物体在xyz坐标系内任意一点P 所受体力的大小和方向,在P点的邻域取一微小体积元素△V, 如图所示 设△V的体力合力为△F,则P点的体力定义为 令微小体积元素△V趋近于0,则可以定义一点P的体力为 一般来讲,物体内部各点处的体力是不相同的。 物体内任一点的体力用F b表示,称为体力矢量,其方向由该点的体力合力方向确定。 体力沿三个坐标轴的分量用F b i( i = 1,2,3)或者F b x,F b y,F b z表示,称为体力分量。体力分量的方向规定与坐标轴方向一致为正,反之为负。 应该注意的是:在弹性力学中,体力是指单位体积的力。 类似于体力,可以给出面力的定义。

对于物体表面上的任一点P,在P点的邻域取一包含P点的微小面积元素△S, 如图所示。设△S上作用的面力合力为△F,则P 点的面力定义为 面力矢量是单位面积上的作用力,面力是弹性体表面坐标的函数。一般条件下,面力边界条件是弹性力学问题求解的主要条件。 面力矢量用F s表示,其分量用F s i(i=1,2,3)或者F s x、F s y和F s z表示。 面力的方向规定以与坐标轴方向一致为正,反之为负。 弹性力学中的面力均定义为单位面积的面力。 物体在外界因素作用下,例如外力,温度变化等,物体内部各个部分之间将产生相互作用,这种物体一部分与相邻部分之间的作用力称为内力。 内力的计算可以采用截面法,即利用假想平面将物体截为两部分,将希望计算内力的截面暴露出来,通过平衡关系计算截面内力F。

应力状态分析

第二章应力状态分析 一. 内容介绍 弹性力学的研究对象为三维弹性体,因此分析从微分单元体入手,本章的任务就是从静力学观点出发,讨论一点的应力状态,建立平衡微分方程和面力边界条件。 应力状态是本章讨论的首要问题。由于应力矢量与内力和作用截面方位均有关。因此,一点各个截面的应力是不同的。确定一点不同截面的应力变化规律称为应力状态分析。首先是确定应力状态的描述方法,这包括应力矢量定义,及其分解为主应力、切应力和应力分量;其次是任意截面的应力分量的确定—转轴公式;最后是一点的特殊应力确定,主应力和主平面、最大切应力和应力圆等。 应力状态分析表明应力分量为二阶对称张量。本课程分析中使用张量符号描述物理量和基本方程,如果你没有学习过张量概念,请进入附录一,或者查阅参考资料。 本章的另一个任务是讨论弹性体内一点-微分单元体的平衡。弹性体内部单元体的平衡条件为平衡微分方程和切应力互等定理;边界单元体的平衡条件为面力边界条件。 二. 重点 1.应力状态的定义:应力矢量;正应力与切应力;应力分量; 2.平衡微分方程与切应力互等定理; 3.面力边界条件; 4.应力分量的转轴公式; 5.应力状态特征方程和应力不变量; §2.5 面力边界条件 学习思路: 在弹性体内部,应力分量必须与体力满足平衡微分方程;在弹性体的表面,应力分量必须与表面力满足面力边界条件,以维持弹性体表面的平衡。

面力边界条件的推导时,参考了应力矢量与应力分量关系表达式。只要注意到物体边界任意一点的微分四面体单元表面作用应力分量和面力之间的关系就可以得到。 面力边界条件描述弹性体表面的平衡,而平衡微分方程描述物体内部的平衡。当然,对于弹性体,这仅是静力学可能的平衡,还不是弹性体实际存在的平衡。 面力边界条件确定的是弹性体表面外力与弹性体内部趋近于边界的应力分量的关系。 学习要点: 1. 面力边界条件。 物体在外力作用下处于平衡状态,不仅整体,而且任意部分都是平衡的。在弹性体内部,应力分量必须与体力满足平衡微分方程;在弹性体的表面,应力分量须与表面力满足面力边界条件,以满足弹性体表面的平衡。 考虑物体表面任一微分四面体的平衡,如图所示。 由于物体表面受到表面力,如压力和接触力等的作用,设单位面积上的面力分量为F s x、F s y和F s z,物体外表面法线n的方向余弦为l,m,n。参考应力矢量与应力分量的关系,可得 用张量符号可以表示为 上述公式是弹性体表面微分单元体保持平衡的必要条件,公式左边表示物体表面的外力,右边是弹性体内部趋近于边界的应力分量。公式给出了应力分量与面力之间的关系,称为静力边界条件或面力边界条件。 平衡微分方程和面力边界条件都是平衡条件的表达形式,前者表示物体内部的平衡,后者表示物体边界部分的平衡。

相关主题
文本预览
相关文档 最新文档