当前位置:文档之家› 高智能温室大棚工程建设的设计参数分析

高智能温室大棚工程建设的设计参数分析

高智能温室大棚工程建设的设计参数分析
高智能温室大棚工程建设的设计参数分析

温室大棚是一种具有的保温性能的框架覆膜结构,它的出现使的人们可以吃到反季节蔬菜。一般温室大棚使用竹结构或者钢结构的骨架,上面覆上一层或多层保温塑料膜,这样就形成了一个温室空间。外膜很好地阻止内部蔬菜生长所产生的二氧化碳的流失,使棚内具有良好的保温效果。在高智能温室大棚中,我们冬季依旧可以看到绿油油的蔬菜和五颜六色的花朵,不过在大棚温室建设时我们也要注意一些问题,那么温室大棚建设要从哪几个方面考虑呢?下文为大家做具体介绍!

【温室大棚工程建设注意参数】

(高智能温室大棚工程-图例)

一、角度

温室的方位角指的是采光屋面的朝向,一般以正南为宜,或向西偏5-10度。采光屋面角,是指温室采光屋面与温室地平面的夹角。采光屋面形状为圆和抛物面组合的弧面,温室采光屋面角是由大到小连续变化的,分为地角、前角、腰角、顶角四段。地角是指温室屋面前沿与温室地面夹角,应保持在70度左右;前角是指屋面前部与地面夹角,应为40-70度;腰角是指温室屋面中部与地面的夹角,应为合理采光时段温室屋面角,不同纬度地区的采光时段屋面为:

腰角也是由大到小变化的,其大部分应大于上述角度。顶角是指温室顶部屋面与温室地面的夹角,一

般不小于12度。后屋面角指温室后屋面内侧与温室地平面的夹角,一般为35-38度。

二、长度

指温室东西长。一般为50米-90米。随着温室配套技术的提高,只要地形允许,当前温室越来越多的采用100米作为标准长度。

(高智能温室大棚工程-图例)

三、跨度

温室跨度是指温室后墙内侧到温室前沿棚膜入土处的距离,一般为6-7米,目前多采用7米。跨度不要随便加大,纬度或海拔高度越高,跨度应适当减小。

后屋面跨度是指后屋面在地面的水平投影宽度。一般为1.5米左右,其与采光屋面水平投影宽度(即前屋面跨度)的比例为温室保温比不能小于1:5,后屋面跨度要根据当地的光照等气候条件具体确定。

四、高度

主要有温室脊高、采光屋面控制点高度、立柱高度和后墙高等。脊高指的是温室屋脊到室内地面的高度,应为3.6米,采光屋面其它各点的高度如下:

立柱全长3.6米,埋深0.5米,地上部分长3.1米,垂直高度3.08米。后墙外侧高3.0米,内侧高

2.18米,除去人行道高0.2米后高度为1.9米。

五、厚度

主要指温室山墙与温室后墙体的厚度。后墙墙体的厚度应比当地大冻土层深度多50厘米。甘肃省泾河、渭河沿岸一般为100-120厘米,中部沿黄灌区与河西平川灌区为130-150厘米。温室后屋面分保温层与保护层。保温层为麦草、玉米秆,其外用旧棚膜包好,前沿厚度为20厘米,中部厚50-60厘米,底部为1米左右。保护层为干土与草泥,厚20-30厘米。

(高智能温室大棚工程-图例)

智能温室大棚整体控制设计方案

目录 、智能温室大棚简介二、智能温室大棚结构设计、温室结构设计 1. 温室结构布局 2. 温室覆盖材料 3. 温室的通风 二、温室运行机构 1. 电力系统 2. 降温增湿系统 3. 遮阳系统 4. 增温系统 5. 浇灌系统三、智能温室大棚控制系统 控制系统的主要构成 1、传感器 2、控制器 3、执行器件 4、上位机 二、具体控制过程

、智能温室大棚简介 智能温室也称作自动化温室, 是指由计算机控制温室内的执行 器件来改善温室内的环境, 营造适合农作物生长的环境。 温室内的主 要系统有可移动天窗、遮阳系统、保温系统、升温系统、降温系统、 浇灌系统等自动化设施系统。 智能温室的控制一般有信号采集系统、 中心计算机和控制系统三大 部分组成。 、智能温室大棚结构设计 、温室结构设计 首先应进行温室建筑布局、 形式、尺寸等方面设计 ,应考虑结构、 机械、覆盖与支撑材料、荷载、通风、保温、给排水以及环境调控设 备等多种因素 ,同时还应该考虑本地的地理气候条件 ,充分利用自然资 源,力图降低制造成本和运行费用。 其结构框架设计的基本特点 温室结构布局 尽量采用南北栋方式建筑可使太阳直射光 平均日总量透过率最高。 温室覆盖材料 温室材料透光率对温室的光照总量有着重 要影响 ,可采用浮法玻璃其透光率可达 90%以上。亦可采用超 1. 2.

长塑料薄膜 (阳光穿透率 85%)为覆盖材料。但其耐用性不高。 PC 塑料板在造价、使用年限、透光率等方面是一个不错的选 择。 温室的通风 应充分利用自然条件 ,确定温室开窗的朝向十分 重要 ,如地区全年平均主导风向为东南 ,则天窗的位置应设在北 在自然风收集装置上安装空气增温系统, 增加内循环的时候还 可以增肌温室内的温度。 温室运行机构 电力系统 可采用工业电网与自发电结合方式充分节省能 源与成本。 自发电可采取风力发电,风力发电占地少,转化率 高。成本相比太阳能发电低 降温增湿系统 可采取湿帘降温增湿系统,或者高压喷雾 降温系统。降温还应配合风机降温。 增温系统 可采取水电共同增温, 或单一增温系统。 水电增温 这是在用热水增温与电力增温结合方式,增加增温效率,水力 增温则是采用太阳能方式将水升温,再通过管道进入温室内增 温。电力增温则是采用电热器增温。 浇灌系统 可采用滴灌或雾化浇灌, 可充分节省水资源, 节省 成本,浇灌效率高。具体浇灌方式还应结合农作物特点,具体3. 侧。同时还可安装自然风收集装置增加温室内循环, 冬天还可 1. 2. 3. 遮阳系统 采用移动遮阳慕,进行遮阳。 4. 5.

PLC温室大棚控制系统设计开题报告

滨州学院 毕业设计(论文)开题报告题目基于PLC温室大棚控制系统设计 系(院)自动化系年级2010级 专业电气自动化技术班级4班 学生姓名石瑞学号1023091219 指导教师王国明职称助教 滨州学院教务处 二〇一三年三月 开题报告填表说明 1.开题报告是毕业设计(论文)过程规范管理的重要环节,是培养学生严谨务实工作作风的重要手段,是学生进行毕业设计(论文)的工作方案,是学生进行毕业设计(论文)工作的依据。 2.学生选定毕业设计(论文)题目后,与指导教师进行充分讨论协商,对题意进行较为深入的了解,基本确定工作过程思路,并根据课题要求查阅、收集文献资料,进行毕业实习(社会调查、现场考察、实验室试验等),在此基础上进行开题报告。 3.课题的目的意义,应说明对某一学科发展的意义以及某些理论研究所带来的经济、社会效益等。 4.文献综述是开题报告的重要组成部分,是在广泛查阅国内外有关文献资料后,对与本人所承担课题研究有关方面已取得的成就及尚存的问题进行简要综述,并提出自己对一些问题的看法。 5.研究的内容,要具体写出在哪些方面开展研究,要突出重点,实事求是,所规定的内容经过努力在规定的时间内可以完成。 6.在开始工作前,学生应在指导教师帮助下确定并熟悉研究方法。 7.在研究过程中如要做社会调查、实验或在计算机上进行工作,应详细说明使用

的仪器设备、耗材及使用的时间及数量。 8.课题分阶段进度计划,应按研究内容分阶段落实具体时间、地点、工作内容和阶段成果等,以便于有计划地开展工作。 9.开题报告应在指导教师指导下进行填写,指导教师不能包办代替。 10.开题报告要按学生所在系规定的方式进行报告,经系主任批准后方可进行下

智能温室大棚整体控制设计报告

智能温室大棚整体控制设计报告设计人员:

目录 一、智能温室大棚简介 (3) 二、智能温室大棚结构设计 (3) 一、温室结构设计 (3) 1.温室结构布局 (3) 2.温室覆盖材料 (3) 3.温室的通风 (4) 二、温室运行机构 (4) 1.电力系统 (4) 2.降温增湿系统 (4) 3.遮阳系统 (4) 4.增温系统 (4) 5.浇灌系统 (4) 三、智能温室大棚控制系统 (5) 一、控制系统的主要构成 (5) 1、传感器 (5) 2、控制器 (5) 3、执行器件 (6) 4、上位机 (6) 二、具体控制过程 (6)

一、智能温室大棚简介 智能温室也称作自动化温室,是指由计算机控制温室内的执行器件来改善温室内的环境,营造适合农作物生长的环境。温室内的主要系统主要有可移动天窗、遮阳系统、保温系统、升温系统、降温系统、浇灌系统、移动苗床等自动化设施系统。 智能温室的控制一般有信号采集系统、中心计算机和控制系统三大部分组成。 二、智能温室大棚结构设计 一、温室结构设计 首先应进行温室建筑布局、形式、尺寸等方面设计,应考虑结构、机械、覆盖与支撑材料、荷载、通风、保温、给排水以及环境调控设备等多种因素,同时还应该考虑本地的地理气候条件,充分利用自然资源,力图降低制造成本和运行费用。 其结构框架设计的基本特点 1.温室结构布局尽量采用南北栋方式建筑可使太阳直射光 平均日总量透过率最高。 2.温室覆盖材料温室材料透光率对温室的光照总量有着重 要影响,可采用浮法玻璃其透光率可达90%以上。亦可采用超 长塑料薄膜(阳光穿透率85%)为覆盖材料。但其耐用性不高。 PC塑料板在造价、使用年限、透光率等方面是一个不错的选

现代温室大棚智能设计

现代温室大棚智能设计控制系统 设计报告 项目编号: 指导教师: 组员:

摘要 本设计从使用简单、调整方便和功能完备出发,采用LPC1114处理器,开发了全程菜单操作环境,以LCD12864液晶显示,采用UAN-480射频无线传输数据。具有全中文提示和参数显示设置,4×4行列式键盘输入,采用了DS18B20温度传感器、DHT11湿度传感器和MG811二氧化碳传感器,实现对温室大棚的检测。具有DS1302实时时钟显示,人工设定温室大棚环境条件,当温室大棚环境发生改变时,系统自动记录检测数据,通过GSM模块实现短消息报警,并自动控制风机和除湿机工作,进行温室大棚的降温和除湿,及植物浸水检测。配备无线烟感、无线门禁和水浸检测器输入,增强了仓库防火防盗的能力,与移动网络的结合实现无人值守。 关键词:LPC1114;LCD液晶;GSM;UAN-480 Abstract This design from the simple to use, easy to adjust and complete functions, adopting LPC1114 processor, developed a full menu operating environment to LCD12864 liquid crystal display, a full Chinese display prompts and parameters set, 4 ×4 determinant keyboard input, using the DS18B20 temperature sensor, DHT11 humidity sensors and MG811 carbon dioxide sensor to realize the detection storage environment. With the DS1302 real time clock display, manual settings warehouse storage environmental conditions, when the storage environment changes, the system automatically records test data, through the GSM module for SMS alarm, and automatic control of fans and dehumidifiers work, the grain depots in the cooling and dehumidification. Equipped with a wireless smoke detector, flood detector, wireless access and input, and enhance the warehouse fire, water and security capacity, and the combination of mobile networks to achieve unattended. Key words: LPC1114; LCD; GSM; Wireless inpu

智能温室大棚整体控制设计方案

目录 一、智能温室大棚简介 (2) 二、智能温室大棚结构设计 (2) 一、温室结构设计 (2) 1.温室结构布局 (3) 2.温室覆盖材料 (3) 3.温室的通风 (3) 二、温室运行机构 (3) 1.电力系统 (3) 2.降温增湿系统 (3) 3.遮阳系统 (3) 4.增温系统 (4) 5.浇灌系统 (4) 三、智能温室大棚控制系统 (4) 一、控制系统的主要构成 (5) 1、传感器 (5) 2、控制器 (5) 3、执行器件 (5)

4、上位机 (6) 二、具体控制过程 (6) 一、智能温室大棚简介 智能温室也称作自动化温室,是指由计算机控制温室内的执行器件来改善温室内的环境,营造适合农作物生长的环境。温室内的主要系统有可移动天窗、遮阳系统、保温系统、升温系统、降温系统、浇灌系统等自动化设施系统。 智能温室的控制一般有信号采集系统、中心计算机和控制系统三大部分组成。 二、智能温室大棚结构设计 一、温室结构设计 首先应进行温室建筑布局、形式、尺寸等方面设计,应考虑结构、机械、覆盖与支撑材料、荷载、通风、保温、给排水以及环境调控设备等多种因素,同时还应该考虑本地的地理气候条件,充分利用自然资

源,力图降低制造成本和运行费用。 其结构框架设计的基本特点 1.温室结构布局尽量采用南北栋方式建筑可使太阳直射光 平均日总量透过率最高。 2.温室覆盖材料温室材料透光率对温室的光照总量有着重 要影响,可采用浮法玻璃其透光率可达90%以上。亦可采用超 长塑料薄膜(阳光穿透率85%)为覆盖材料。但其耐用性不高。 PC塑料板在造价、使用年限、透光率等方面是一个不错的选 择。 3.温室的通风应充分利用自然条件,确定温室开窗的朝向十分 重要,如地区全年平均主导风向为东南,则天窗的位置应设在北 侧。同时还可安装自然风收集装置增加温室内循环,冬天还可 在自然风收集装置上安装空气增温系统,增加内循环的时候还 可以增肌温室内的温度。 二、温室运行机构 1.电力系统可采用工业电网与自发电结合方式充分节省能 源与成本。自发电可采取风力发电,风力发电占地少,转化率 高。成本相比太阳能发电低 2.降温增湿系统可采取湿帘降温增湿系统,或者高压喷雾 降温系统。降温还应配合风机降温。 3.遮阳系统采用移动遮阳慕,进行遮阳。

大棚温室自动控制系统毕业设计(精)

本设计为一闭环控制系统,由89C51单片机,A/D转换电路,温度检测电路,湿度检测电路、控制系统组成。温度检测电路将检测到的温度转换成电压,该模拟电压经ADC0809转换后,进入89C51单片机,单片机通过比较输入温度与设定温度来控制风扇或电炉驱动电路,当棚内温度在设定范围内时,单片机不对风扇或电炉发出动作。实现了对大棚里植物生长温度及土壤和空气湿度的检测,监控,并能对超过正常温度、湿度范围的状况进行实时处理,使大棚环境得到了良好的控制。 该设计还具有对温度的实时显示功能,对棚内环境温度的预设功能。 第一章概述 大棚、中棚及日光温室为我国主要的设施结构类型。其主要功能是采用电路来自动控制室内的温度,以利于植物的生长。温室的性能指标: 1.温室的透光性能 温室是采光建筑,因而透光率是评价温室透光性能的一项最基本指标。透光率是指透进温室内的光照量与室外光照量的百分比。温室透光率受温室透光覆盖材料透光性能和温室骨架阴影率的影响,而且随着不同季节太阳辐射角度的不同,温室的透光率也在随时变化。温室透光率的高低就成为作物生长和选择种植作物品种的直接影响因素。一般,连栋塑料温室在 50%~60%,玻璃温室的透光率在60%~70%,日光温室可达到70%以上。 2.温室的保温性能 加温耗能是温室冬季运行的主要障碍。提高温室的保温性能,降低能耗,是提高温室生产效益的最直接手段。温室的保温比是衡量温室保温性能的一项基本指标。温室保温比是指热阻较小的温室透光材料覆盖面积与热阻较大的温室围护结构覆盖面积同地面积之和的比。保温比越大,说明温室的保温性能越好。 3.温室的耐久性

温室建设必须要考虑其耐久性。温室耐久性受温室材料耐老化性能、温室主体结构的承载能力等因素的影响。透光材料的耐久性除了自身的强度外,还表现在材料透光率随着时间的延长而不断衰减,而透光率的衰减程度是影响透光材料使用寿命的决定性因素。一般钢结构温室使用寿命在15年以上。要求设计风、雪荷载用25年一遇最大荷载;竹木结构简易温室使用寿命5~10年,设计风、雪荷载用15年一遇最大荷载。 由于温室运行长期处于高温、高湿环境下,构件的表面防腐就成为影响温室使用寿命的重要因素之一。钢结构温室,受力主体结构一般采用薄壁型钢,自身抗腐蚀能力较差,在温室中采用必须用热浸镀锌表面防腐处 理,镀层厚度达到150~200微米以上,可保证15年的使用寿命。对于木结构或钢筋焊接桁架结构温室,必须保证每年作一次表面防腐处理。 第二章比例微积分控制原理 3.1 比例积分调节器(PD 比例调节器具有误差,为解决此问题,可引入积分(Inte6raI环节,其方块图见图4—33l 比例微分调节器对误差的任何变化,都产生一个控制作用比,阻止误差的变化。c变化越快,pd越大,输出校正量也越大。它有助于减少超调,克服振荡,使系统趋于稳定;同时加快系统的响应速度,减小调整时间,从而改善了系统的动态特性。它的缺点是抗干扰能力变差。 3.2 PID调节器 积分器能消除镕差,提高精度,但使系统的响应速度变慢、稳定性变环。微分器能增加稳定性,加快响应速度。比例器为基本环节。三者合用,选择适当的参数,可实现稳定的控制。 图4—37为PID调节器的方块图。 第三章自动控制系统的设计

现代智能玻璃温室工程设计方案

现代智能玻璃温室工程设计方案 寿光远中农业科技有限公司 2018年1月

目录 一、温室概况 二、温室土(基)建工程 三、温室主体 四、遮阳系统 五、风机湿帘降温系统 六、湿帘电动外翻窗系统

一、温室概况 本项目为自能控温室,本方案以温室跨度12米,开间4米,肩高4米,顶高4.95米,外遮阳高5.5米,面积2592㎡,规格为宽72米,长36米,顶部采用特制顶部专用优质双层8mm厚PC板覆盖,四周采用5+6+5钢化玻璃覆盖,工程除主体骨架、点式基础、围裙墙、温室排水等系统工程外,还配置自动顶开窗通风系统、内遮阳系统、外遮阳系统、风机/湿帘风机降温系统、栽培床系统、灌溉系统、内循环风机、红外线供暖系统、计算机控制系统、补光照明系统等,业主需要配合完善内部基础工程、蓄水池(罐)、内外地排水系统等系统工程。 设计理念为“坚持科学、实用原则;坚持提高土地资源使用率、节能、节水、高效的原则,坚持温室结构用材以及设备选购先进、可靠、适用的原则。” 本方案拟以72米×36米温室为参照分析。

二、温室土(基)建工程(常规由业主自行完成) 1、点式基础工程 温室持力层容许承载力标准值≥100kPa,地下稳定水位在±0.000下900mm进行设计和做预算,基础埋置深度为±0.000下不小于1000mm;如果特殊地质情况,与设计依据不符,将对基础图纸及预算做相应调整。 钢筋混凝土独立基础共128个,采用C20/C25钢筋混凝土基础,现场浇铸,附温室立柱预埋件,内部加12号钢筋不小于800mm长4根,用10号钢筋扎笼,扎束间距为200mm;基础高1200mm,上部尺寸为:300mm(长)×300mm(宽),高1050mm,下部呈正方形,700mm(长)×700mm(宽),高150mm,;基础开挖至设计标高,基底素土3:7灰土层不低于100mm,夯实后压实系数不小于0.97,独立基础允许偏差不超过设计标高向地平高±10mm。 2、围裙墙 围裙墙采用24墙,立柱50公分以下全部砌筑完,地下部分深30公分,将素土夯实,5公分混凝土垫层,内外粉覆。 3、内外地排水系统 外排水采用暗管或明沟加盖板,每50-80米设立一个沉沙井,内排水根据温室用途确定,常规采用炉渣水泥砖砌排水沟,外加盖板,形成暗沟,设立尘沙井,根据每个区域的规划确定,原则是随内部主道走向,衔接于主道边上即可。 三、温室主体 1、主体结构(温室型号) sg-PCK-12.0-4.0-2.2型玻璃+PC板Venlo温室。 2、性能指标 (1)抗风载荷:0.60KN/m2 (2)抗雪载荷:0.50KN/m2

新型温室大棚自动卷帘机的设计毕业设计(论文)

图书分类号: 密级: 毕业设计(论文) 新型温室大棚自动卷帘机的设计THE DESIGN OF NEW GREENHOUSE TRELLIS AUTOMATIC SHUTTER MACHINE

学位论文原创性声明 本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用或参考的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品或成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标注。 本人完全意识到本声明的法律结果由本人承担。 论文作者签名:日期:年月日 学位论文版权协议书 本人完全了解徐州工程学院关于收集、保存、使用学位论文的规定,即:本校学生在学习期间所完成的学位论文的知识产权归徐州工程学院所拥有。徐州工程学院有权保留并向国家有关部门或机构送交学位论文的纸本复印件和电子文档拷贝,允许论文被查阅和借阅。徐州工程学院可以公布学位论文的全部或部分内容,可以将本学位论文的全部或部分内容提交至各类数据库进行发布和检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 论文作者签名:导师签名: 日期:年月日日期:年月日

摘要 自动卷帘机分为机械部分和控制部分,机械部分是电动机通过减速器带动卷轴按照预定在大棚上面的轨道滚动,这样就可以实现草帘子的卷放。控制部分是单片机通过温度传感器,光照传感器和GSM模块的信号通过控制继电器开关来控制电动机。这就是自动卷帘机,整个系统的电路结构简单,可靠性能高。管理人员可以根据需要随时随地通过发送手机短信来控制草帘子的收放 本设计大大减轻了人工的劳动强度,提高了新型温室大棚的经济效益。应该可以得到广泛的运用。 关键词自动卷帘机;短信;单片机控制

温室大棚温湿度测控系统设计毕业设计论文

温室大棚温湿度测控系统设计 [摘要]随着计算机应用技术的发展,用计算机控制的方面也涉及到各个领域,其中在塑料大棚内用单片机控制温度、湿度是应用于实践的主要方面之一。这对于农作物的生长发育有非常大的促进作用,它可以避免因为外面气候的剧烈变化对农作物造成的伤害,而使农作物能够在一个最适合它的温度、湿度的环境中生长发育,从而可以促进作物健康生长,抑制微生物的危害,提高产量,增加经济效益。本设计由AT89S52单片机,温度检测电路,湿度检测电路,控制系统,报警电路,采用LCD12864作为显示电路组成;温度检测和湿度检测采用DHT90温湿度传感器采集信息,将其采集到的数字信号传入AT89S52单片机,单片机通过比较输入温度与设定温度来控制风扇或电炉驱动电路,当棚内温度在设定范围内时,单片机不对风扇或电炉发出动作,实现了对大棚里植物生长温度及土壤和空气湿度的检测、监控,并能对超过正常温度、湿度范围的状况进行实时处理,使大棚环境得到了良好的控制。 该设计还具有对温度和湿度的显示功能,对大棚内环境温度和湿度的预设功能。 [关键词]温度检测、湿度检测、控制系统、报警系统

Design in Greenhouse Temperature and Humidity Monitoring System XX Tutor: xxx Abstract: With the development of computer application technology, the computer-controlled areas are also involved, including the plastic canopy temperature using SCM and humidity is one of the main aspects used in practice. This crop growth and development of a very large role in promoting, it could avoid severe climate change outside the damage to crops, Er Shi crops it can be one of the most suitable temperature and humidity of the environment, growth and development, which can promote healthy crop growth, inhibition of microbial hazards, increase productivity, increase economic benefits. The design by the AT89S52 microcontroller, temperature detection circuit, humidity detection circuit, control system, alarm circuit, as shown by LCD12864 circuit; temperature measurement and humidity detected by DHT90 temperature and humidity sensors to collect information, its collection to the digital signal incoming A T89S52 SCM, SCM by comparing the input temperature and set temperature to control fan or electric drive circuit, when the studio, the set temperature range, the microcontroller does not send fan or electric action, realized in the canopy and the plant growth and soil and air temperature humidity detection, monitoring, and can exceed the normal temperature and humidity range of state of real-time processing, so a good greenhouse environment control. The design also features display of temperature and humidity, ambient temperature and humidity of the shed by default. Key words: temperature testing, humidity testing, control system, alarm system.

温室大棚控制系统设计

摘要 本课题运用STC89C52单片机、DS-18B20 数字温度传感器、继电器和M4QA045电动机、ULN-2003A集成芯片、湿敏电阻,以及四位八段数码管等元器件,设计了温湿度报警电路、M4QA045电机驱动电路、电热器驱动电路,实现了温室大棚中温度和湿度的控制和报警系统,解决了温室大棚人工控制测试的温度及湿度误差大,且费时费力、效率低等问题。该系统运行可靠,成本低。系统通过对温室内的温度与湿度参量的采集,并根据获得参数实现对温度和湿度的自动调节,达到了温室大棚自动控制的目的。促进了农作物的生长,从而提高温室大棚的产量,带来很好的经济效益和社会效益。 关键词:STC89C52单片机、DS-18B20 数字温度传感器、ULN-2003A集成芯片、温室、自动控制、自动检测

目录第1章绪论 §1.1选题背景 §1.2选题的现实意义 第2章系统硬件电路的设计 §2.1系统硬件电路构成系统整体框图 §2.1.2系统整体电路图 §2.1.3系统工作原理 §2.2温度传感器的选择 §2.2.1 DS18B20简介 §2.2.2 DS18B20的性能特点 §2.2.3 DS18B20的管脚排列 §2.2.4 DS18B20的内部结构 §2.2.5 DS18B20的控制方法 §2.2.6 DS18B20的测温原理 §2.2.7 DS18B20的时序 §2.2.8 DS18B20使用中的注意事项 §2.3单片机的选择 §2.3.1单片机概述 §2.3.2 AT89C2051芯片的主要性能 §2.3.3 AT89C2051芯片的内部结构框图 §2.3.4 AT89C2051芯片的引脚说明 §2.3.5使用AT89C2051芯片编程时的注意事项§2.4 RS-485通信设计 §2.4.1串行通信的分类 §2.4.2串行通信的制式 §2.4.3串行通信的总线接口标准 §2.4.4 RS-485的硬件设计 §2.5小结 第3章系统软件的设计 §3.1系统主程序 §3.2系统部分子程序 §3.2.1 DS18B20初始化子程序 §3.2.2 DS18B20读子程序 §3.2.3 DS18B20写子程序(有具体的时序要求) §3.2.4 DS18B20定时显示子程序 §3.2.5 DS18B20温度转换子程序 §3.3 DS18B20的流程图

现代智能温室大棚

现代智能温室大棚 在互联网时代智能农业的概念已越来越多地被提及并受到高度关注,智能设施为现代农业保驾护航,设施农业是指在人工设施保护条件下,通过工程技术手段为生物提供适宜的生长环境,以达到高产优质生产目的的现代农业生产方式。传统的现代化设施农业是高投入、高耗能的产业,对环境并不友好。从发达国家来看,高投入常规现代农业已暴露出一系列问题,而且无一不与高投入大规模单一经营的农作方式直接相关,所以提高水肥利用效率是促进现代农业快速发展的关键。 在我国农业生产中,水资源和肥料利用效率低是普遍存在的问题,在很大程度上限制了农业生产的进步。为此,物联网整合了计算机技术、电子信息技术、自动控制技术、传感器技术及施肥技术,设计了一款农业一体化智能控制系统。该系统由环境智能采集、专家知识库支持、农业一体化自动灌溉三部分组成,详细功能如下: 1.环境智能采集 系统通过传感器设备智能采集农业土壤的温湿度、PH值、EC值及氮、磷、钾等环境数据,环境数据的智能采集是实现科学水肥灌溉的关键。通过对采集到的数据分析及系统知识库支持,可判断出农作物在此生长阶段对水肥的需求。 2.专家知识库支持 系统根据农作物在不同环境、不同季节、不同生长阶段的根水肥吸收规律,建立了农作物水肥一体化灌溉专家知识库。用户结合系统对种植环境的数据采集及农作物对水肥需求的分析,可制定出科学的水肥自动灌溉方案。 3.农业一体化自动灌溉 针对系统专家知识库提供的灌溉意见及农作物各生长时期的农业需求规律,通过控制水量

和肥量的供给,实现水肥在土壤的分布层与作物吸收层空间同位供给,该模块可分为控制子系统、配肥子系统和灌溉子系统三部分。控制子系统根据专家知识库提供的数据,设定配肥比重、灌溉时间、灌溉区域等数据,通过总控制器对多个控制节点进行控制,进行定量定时施肥轮灌。配肥子系统通过上位机的人机界面、PC 机或远程控制界面设定配肥方案;配肥控制系统通过控制器对直流变频器的控制实现对水泵和肥泵的控制,从而完成配肥过程。灌溉子系统通过上位机的人机界面、PC 机或远程控制界面设定控制方案,来实现定量定时定区域的灌溉。 农业一体化智能控制系统农业一体化智能控制系统将信息技术与农艺技术相结合,实现了农业的信息化和自动化控制,完成了农作物水肥一体化自动控制生产管理功能。根据农作物水肥需求规律进行施肥与灌溉,对农田水分和养分进行综合调控和一体化管理,具有肥随水走,利于作物吸收的特点,通过以水促肥、以肥调水,实现水肥耦合,全面提升农田水肥利用效率,不仅节水、节肥、节能、节省人力,而且还可大大提高农作物的产量和质量,同时减轻了增施肥料对环境的污染。

农业智能大棚控制溯源系统设计方案

农业智能大棚控制溯源系统设计方案

生态农业智能温室大棚监测、溯源及控制系统 设 计 方 案xxxxxxxx有限公司

目录 背景......................................................................错误!未定义书签。一:客户需求 ......................................................错误!未定义书签。二:系统结构及控制模式 ..................................错误!未定义书签。三:现场数据采集与控制功能...........................错误!未定义书签。四:监测软件数据平台 ......................................错误!未定义书签。五:功能应用 ......................................................错误!未定义书签。六:农产品溯源系统 ..........................................错误!未定义书签。 七、条码仓储管理系统(WMS) ...........................错误!未定义书签。 八、商品盘点 ......................................................错误!未定义书签。

背景 温室智能控制系统是利用环境数据与作物信息,指导用户进行正确的栽培管理。物联网温室环境监测系统可广泛应用于农业、园艺、畜牧业等领域,在需要特殊环境要求的场所实施监控和管理,为实现对生态作物的健康成长和及时调整栽培、管理等措施提供及时的科学的依据,同时实现监管自动化。 近年来,随着温室大棚化种植、工厂化育秧和设施栽培等农业生产技术的广泛应用,快速准确地环境参数的收集和分析就成为现实的需求,利用计算机技术对相应的农业气象参数进行采集,则一方面可及时了解作物生长的环境参数,另一方面也可根据采集的参数控制大棚环境的调节从而为农作物的生长提供适宜的生长环境。由于温室内的湿度、温度等环境条件不适合于普通PC 机工作,故这里选用单片机进行数据采集,而采集的数据可经过串口发射接收设备传送给上位PC 机进行分析处理。 一:客户需求 (1)智能温室大棚控制系统 随着国民经济的迅速发展,现代农业得到了长足的进步,全国各地根据需要普遍建设了日光温室、塑料大棚等为农作物创造出良好的生长环境。温室工程成为高效农业的重要组成。

文洛式智能玻璃温室设计方案

玻璃温室是工业革命后逐渐发展起来的一种新型的建筑样式。“文洛”一词来源于荷兰一个小镇的名称,20世纪50年代,文洛型温室就诞生在这里。经过50多年的发展,这种温室已在世界各国得到了广泛的应用,成为世界上应用地域最广、使用次数最多的玻璃温室形式。文洛型玻璃温室根据我国国内的实际使用情况进行了本土化的改进,具有外形美观、透光性好、展示效果佳、使用寿命长等优点。 【文洛式玻璃温室有什么优点】 文洛型玻璃温室结构优点:无檩屋盖系统,玻璃所承受的荷载直接作用于温室纵向天沟,由天沟将力直接传给立柱或屋面梁节点。因此,天沟承受屋盖系统传来的均布力和检修集中荷载等,屋面梁承受的外力主要由天沟传来的。 屋面排水效率高:由于文洛型温室大棚每跨度内天沟数量达2~4个,与相同跨度其他类型温室相比,每个天沟的汇水面积也就减少了60%~79%。 文洛型玻璃温室配套系统:外部电动遮阳系统、内部电动遮阳系统、内部保温幕布系统、顶部电动开窗系统、风机+水帘强制通风降温系统、水帘外电动外翻窗系统、内部加温设备等(具体根据应用要求选配)。

文洛型玻璃温室应用场景:蔬菜花卉种植育苗、水产养殖温室、休闲观光温室、生态采摘园温室、生态餐厅温室、休闲会所温室、高科技展示温室等。 【文洛式智能玻璃温室设计方案】 一、温室设计原则 (1)坚持科学性,超前性与实际相结合的原则,全面考虑到温室的实际使用功能,合理选择恰当的配套设备,实现良好的价格性能比。 (2)坚持从实际出发,合理确定设计标准,对生产工艺,主要设备和主体工程做到先进,适用,可靠。 (3)坚持因地制宜的原则,重点结合当地气候条件和内部要求设计。 二、主体结构 1、基础土建 温室四周为条形基础·,混凝土浇筑(根据当地冻土层深度,基础埋深应不小于地下1.5米,同时基础必须坐落在持力层以上,持力层深度需参照当地地质勘测报告)。温室内部为点式基础,温室四周采

温室大棚自动控制系统设计毕业论文

温室大棚自动控制系统设计毕业论文目录 第一章绪论 (1) 1.1温室大棚自动控制技术发展的背景 (1) 1.2温室大棚在国外的发展概况 (1) 1.3温室控制系统研究与开发的意义 (3) 第二章设计方案 (4) 2.1方案论述 (4) 2.1.1系统设计任务 (4) 2.2温室大棚自动控制系统设计方案 (5) 2.2.1基于PLC为基础的温室大棚自动控制系统设计 (5) 2.2.2基于单片机为基础的温室大棚自动控制系统设计 (6) 第三章硬件设计 (9) 3.1 PLC的简介 (9) 3.1.1 PLC的概述 (9) 3.1.2基本结构 (9) 3.1.3工作原理 (10) 3.1.4功能特点 (11) 3.1.5选型规则 (12) 3.1.6西门子S7- (15) 3.2温度传感器 (16) 3.2.1温度控制 (16) 3.2.2 DS18B20的主要特性 (17) 3.3湿度传感器 (17) 3.3.1 湿度定义 (17) 3.3.2湿度传感器的分类 (18) 3.3.3 TRS-1 土壤水分传感器 (19) 3.4光照强度传感器 (20) 3.4.1光照强度传感器的简介 (20)

3.3.2 HA2003 光照传感器 (21) 3.5二氧化碳浓度传感器 (22) 3.5.1 二氧化碳浓度传感器的工作原理 (23) 3.5.2 GRG5H 型红外二氧化碳传感器 (24) 3.6 EM 235模拟量输入模块 (25) 3.7 温室自动控制系统的控制量与控制措施 (26) 3.7.1 灌溉系统 (26) 3.7.2 温度控制 (27) 3.7.3 湿度控制 (27) 3.7.4 光照强度控制 (27) 3.7.5 二氧化碳控制 (27) 3.8硬件总体设计 (28) 3.8.1 I/O分配表 (28) 3.8.2硬件接线图 (29) 第四章系统软件设计 (30) 4.1 软件结构 (30) 4.2温度控制软件设计 (30) 4.2.1温度控制原理 (30) 4.2.2温度控制流程图 (30) 4.2.3温室温度控制梯形图 (32) 4.3湿度控制软件设计 (34) 4.3.1湿度控制原理 (34) 4.3.2湿度控制流程图 (34) 4.3.3温室湿度控制梯形图 (36) 4.4光照强度控制软件设计 (38) 4.4.1光照强度控制原理 (38) 4.4.2光照强度控制流程图 (39) 4.4.3温室光照强度软件控制流程图 (40) 4.5二氧化碳浓度控制软件设计 (42) 4.5.1二氧化碳浓度控制原理 (42) 4.5.2二氧化碳浓度软件控制流程图 (43) 4.5.3温室二氧化碳浓度控制流程图 (44) 总结 (46) 参考文献 (47) 附录A 外文文献 (49)

基于物联网的智能大棚灌溉系统的设计

基于物联网的智能大棚灌溉系统的设计 【摘要】本文对智能大棚的灌溉系统进行了研究,提出了基于物联网的智能大棚灌溉系统的自动控制,利用各种传感器采集信息传送到C8051F340从机,从机通过Can控制器和Can收发器,传到总线,总线再通过Can控制器和Can 收发器传到到主机,将数据信息通过以太网输送到上位机,采集的信息与数据库里的参数进行比较,实现上位机控制下位机,根据温度,湿度等配置控制配置营养液进行自动灌溉。 【关键词】C8051F340;can;物联网;cp2200 物联网就是“物物相连的互联网”,通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物体与互联网相连接,进行信息交换和通信,以实现对物体的智能化识别、定位、跟踪、监控和管理的一种网络。我国是农业大国,人口众多,对粮食蔬菜等农作物需求巨大,随着农村大量劳动力流向城市,农村劳动力长远看会出现短缺,而我国农业灌溉中大多还是采用传统的灌溉方式,不仅耗人力而且水资源也是浪费,传统的灌溉还有不及时,效率低,灌溉量不精确等问题。本文提出了智能大棚灌溉系统的设计,研究了通过传感器检测来判定是否灌溉,灌溉是否完成,充分考虑关照,温湿度等对需求量的影响,并考虑到不同季节不同作物需水量的不同,通过水位监测判定是否灌溉完成,通过vc界面选择不同季节,不同作物,通过传感器检测到的环境参数与上位机数据库中的标准参数比较,判定是否要进行灌溉,灌溉量是多少,由上位机传达命令到下位机控制执行机构工作,进行浇水灌溉,达到最佳的灌溉效果。 1.总体设计 1.1 总体框图 如图1所示,由C8051F340构成网络节点,传感器采集的信息输入到这些从机,从机通过can总线传递给主机C8051F340,主控机汇总消息,传输到网络然后传到上位机电脑,采集的数据信息与上位机中数据库内的标准参数比较,分析,优化,最后上位机发出控制命令控制下位机工作。 1.2 下位机框图 下位机(如图2)由C8051F340单片机和采集装置、执行机构组成。其中C8051F340单片机是核心,起控制作用;采集装置由一些传感器构成。灌溉时要考虑光照,空气温湿度故检测装置有光照传感器和温湿度传感器,灌溉是否完成需要水位监测;执行机构有通风装置,灌溉装置和加温装置,在灌溉时需要通风,而冬天东风温室大棚内温度会低,故要进行加热升温,当需要灌溉时,单片机从机接收指令,控制执行机构动作,实现灌溉。 2.硬件设计 C8051F340是美国Silabs公司生产的与标准8051兼容的高速单片机,它具有速度高,功耗低,有丰富的外围设备,片内还集成了数据采集和控制所常用的模拟部件、其他数字外设和功能部件,是完全集成的混合信号系统及芯片。 2.1 传感器与单片机的连接 如图3,温湿度传感器选用SHT11,这是瑞士Sensirion公司生产的具有二线串行接口的单片全校准数字式新型相对湿度和温度传感器,可用来测量相对湿度、温度等,分辨率高。光传感器选用TSC2561,它是TAOS公司推出的一种

智能大棚控制系统的设计与构想

龙源期刊网 https://www.doczj.com/doc/a28838218.html, 智能大棚控制系统的设计与构想 作者:赵杨 来源:《乡村科技》2017年第18期 [摘要] 本文介绍一种智能大棚控制系统的设计与构想。其是将智能化控制系统应用到大 棚种植上,利用最先进的生物模拟技术,模拟出最适合棚内植物生长的环境,采用温度、湿度、CO2、光照度传感器等感知大棚的各项环境指标,并通过微机进行数据分析,由微机对棚内的水帘、风机、遮阳板等设施实施监控,从而改变大棚内部的生物生长环境。 [关键词] 智能大棚;控制系统;STC89C52 [中图分类号] TP273.5 [文献标识码] A [文章编号] 1674-7909(2017)18-85-2 1 智能大棚控制系统概述 智能大棚,可以使传统农作物的种植不再受自然环境、地域、气候等多方面不可控因素的影响,对推动农业生产、提高农业生产力有着积极的作用。智能大棚的控制系统是实现这一切自动化、高效化的关键。 相比存在诸多问题的传统人工控制大棚,运用控制系统的智能大棚有着显著的优势,如可以在准确测量大棚温湿度等多种环境数据,并根据所得到的环境数据进行自动调节,达到节省人力物力,提高生产资源的使用效率,降低生产成本等多个目的。而且智能控制系统运行可靠、成本低,有着极强的功能扩展性,其直接结果就是促进农作物的生长,提高产量,在为农民带来良好经济效益的同时带来显著的社会效益。 基于单片机的智能控制系统是通过一种微处理器进行系统控制,以单片机作为控制器以实现控制功能。该系统的特点是小体积、低成本、低功耗、扩展性强及适用范围广。本构想采用目前市场应用最为广泛的STC89C52单片机作为控制器,其被广泛应用于生产生活中,有着良好的口碑和成熟的设计。 2 智能大棚控制系统的优点 ①节省人工成本,降低因人为原因导致减产等不利后果的可能性。 ②采用智能化的控制系统,能够对环境条件的改变作出及时反馈,使得大棚内的环境参数始终处于合理的范围内。 ③提高生产资源的利用效率。 ④提高农作物的产量,增加种植者的收入。

基于单片机的智能温室大棚监控系统的设计

基于单片机的智能温室大棚监控系统的设计 This model paper was revised by the Standardization Office on December 10, 2020

学科分类号: ___________ 湖南人文科技学院 本科生毕业设计 题目:基于单片机的智能温室大 棚监控系统的设计 学生姓名:胡佳欣学号 系部:信息学院 专业年级:2012级电子信息科学与技术 指导教师:张吉左 职称:工程师 湖南人文科技学院教务处制

湖南人文科技学院本科毕业设计诚信声明本人郑重声明:所呈交的本科毕业设计,是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本设计不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 作者签名:(手写) 二○年月日(手写)

目录

基于单片机的智能温室大棚监控系统的设计 摘要:在科学技术的推动下,智能温室大棚应运而生,它能让农作物拥有更好的生长 环境。将单片机运用到对大棚内温度、湿度的采集与监控,提出了基于单片机的智能 温室监控系统的设计方案。整套系统由温湿度传感器、AT89C51单片机、声光报警器、显示器等部分组成。本设计以AT89C51单片机为核心单元,温湿度传感器为测量元 件,储存并分析所测量的数据,通过与预设参数的对比,判断是否发出警报。 通过此设计可以实时有效的对农作物生长过程中的温度、湿度进行测量,并能直 观的显示出来。系统克服了人工传统温湿度采集的迟滞性、不准确性等诸多弊端,操 作更方便,效率更高。 关键词:单片机;传感器;数据传输;监控系统 Design of Intelligent Greenhouse Monitoring System Based on SCM Abstract:Under the promotion of science and technology, intelligent greenhouse came into being, it can make crops have better growing environment in the promotion of science and technology, the intelligent greenhouse came into being, it can with a better environment for the growth of crops. The SCM is applied to the collection and monitoring of temperature and humidity in the greenhouse,a design scheme of Intelligent Greenhouse Monitoring System Based on SCM is put forward. The whole system consists of sensor, AT89C51 SCM, sound and light alarm, display. Comparison of the design AT89C51 microcontroller as the core unit, temperature and humidity sensor for measuring components, connected by single chip computer, storage and analysis of the measured data with preset parameters to determine whether the alarm. Through this design, we can measure the temperature and humidity in the process of crop growth in real time. The system overcomes the disadvantages

相关主题
文本预览
相关文档 最新文档