当前位置:文档之家› 列车运行控制系统实验二_实验报告

列车运行控制系统实验二_实验报告

列车运行控制系统实验二_实验报告
列车运行控制系统实验二_实验报告

列车运行控制CTCS-2级列控系统行车许可使用

学院:电子信息工程学院

班级:自动化1301

成员:

目录

1 实验目标 (3)

1.1 实验整体目标 (3)

1.2 实验具体目标 (3)

1.2.1 正线接车 (3)

1.2.2 18号以下道岔接车 (3)

1.2.3 18号以上道岔接车 (4)

1.2.4 侧线引导接车 (4)

2 实验过程 (5)

2.1 原理分析 (5)

2.1.1 CTCS-2级列控系统行车许可生成原理 (5)

2.1.2 车载设备超速防护功能工作原理 (5)

2.2 仿真环境 (6)

2.3 程序编写 (7)

2.3.1 程序分析 (7)

2.3.2 程序框图 (7)

2.3.3 程序代码 (8)

3 实验结果分析 (9)

4 实验总结 (12)

附 ATPprotecting()源代码 (13)

1 实验目标

1.1 实验整体目标

理解CTCS-2级列车运行控制系统地面设备工作原理及车载设备MA的使用原理;掌握列控系统车载设备基本工作原理;初步具备解决列控系统实际工程问题的能力。

学会使用excel仿真环境对列车运行状况进行模拟和分析,初步了解VB编程,并能通过程序对列车运行进行超速防护。

1.2 实验具体目标

1.2.1 正线接车

排列正线接车进路,终点为出站信号机,覆盖正线股道,列车即将进入正线,停在出站信号机之前。其轨道电路码序及模式曲线如下图:

1.2.2 18号以下道岔接车

排列侧线接车进路,且接车进路上最小道岔为18号以下道岔时,覆盖侧线股道,列车即将进入侧线,终点为出站信号机。

当列车行至接近区段时,显示UU码,列车通过码序得知即将进入侧线,并且道岔要求限速为40km/h,以此为目标速度控制列车运行,并且在通过道岔后,根据实际进路长度计算至进路终点的限速曲线,控制列车运行。

其轨道电路码序及模式曲线如图:

1.2.3 18号以上道岔接车

排列侧线接车进路,且接车进路上最小道岔为18号的大号码道岔时,与侧线18号以下道岔接车类似,区别为:接近区段发UUS码,道岔要求限速为80km/h。

其轨道电路码序及模式运行曲线如图:

1.2.4 侧线引导接车

排列侧线引导接车进路,接近区段发HB码,车载设备进入引导模式,此时限速40km/h,因此车载设备需将允许速度立即设置为模式限速,且维持到通过咽喉区的无码,列车进入股道后,再根据行车许可终点计算模式曲线,控制列车运行。

其轨道电路码序及模式曲线如图:

2 实验过程

2.1 原理分析

2.1.1 CTCS-2级列控系统行车许可生成原理

CTCS-2级列控系统是基于轨道电路和应答器传输列车行车许可信息,采用目标距离模式曲线监控列车安全运行的列控系统。

CTCS-2级列控系统地面设备中,轨道电路通过发送18个低频信息,连续向车载设备发送列车前方空闲闭塞分区数量信息以及列车接近的车站信号机开放经道岔侧向位置进路信息。应答器进行闭塞分区长度信息和限速信息的传输。

当列控车载设备接收到地面设备信息后,对列车许可相关信息综合使用,生成目标—距离模式曲线控制所需要的信息。

2.1.2 车载设备超速防护功能工作原理

车载设备基本工作流程如下图所示:

其中,超速防护功能部分可进行具体展开,基本工作流程如下:

2.2 仿真环境

本实验的仿真在excel中完成,为了简化起见,将列车运行的线路设定为:该线路共由11个闭塞分区构成,线路上列车只会经过两个应答器组,固定应答器组BG1和进站口的有源应答器组BG2,当列车经过应答器组的时候,会收到它们提供的信息:(BG1:提供固定的各闭塞分区长度和线路限速;BG2:提供列车进路长度和进路处的线路限速)

具体仿真环境结构如下图所示:

2.3 程序编写

2.3.1 程序分析

若要实现列控车载设备的超速防护功能,控制程序主要分为以下几部分:测速测距;读取列车当前所在区段的轨道电路码信息;读取应答器信息,获得轨道区段长度信息;生成行车许可,并判断是否需要制动或缓解制动。其中,前三部分已由现有的仿真环境完成,实验需完成最后生成行车许可部分的程序,即ATPprotection()。

根据车载超速防护功能的原理,可得实现需完成的程序ATPprotection()部分需要各模块提供的闭塞分区长度、线路限速、轨道电路码、当前速度和当前位置的信息输入等信息。

2.3.2 程序框图

2.3.3 程序代码

(注:由于源代码较长,本部分只对部分代码进行注释说明,源代码请查看附录。)For i = 0 To 10

s = s + Blocks(i)

If s > CurrentPos Then

For j = 0 To i

L = L + Blocks(j)

Next

Exit For

End If

Next

//L为走行距离

If TrackSignal = "L5" Then //L5表示收到的码序,其他程序模块类似For k = (i + 1) To (i + 7)

TargetDistance = TargetDistance + Blocks(k)

Next

TargetDistance = TargetDistance + L – CurrentPos //得到目标距离

TargetSpeed = 0 //得到目标速度

TrainAllowSpeed = ff.CalcLimit(TargetDistance, TargetSpeed) //得到曲线限速

If CurrentPos <= LineAllowSpeed(1, 0) Then

If TrainAllowSpeed > LineAllowSpeed(0, 1) Then

TrainAllowSpeed = LineAllowSpeed(0, 1)

End If

ElseIf CurrentPos >= LineAllowSpeed(2, 0) Then

If TrainAllowSpeed > LineAllowSpeed(2, 1) Then

TrainAllowSpeed = LineAllowSpeed(2, 1)

End If

Else

If TrainAllowSpeed > LineAllowSpeed(1, 1) Then

TrainAllowSpeed = LineAllowSpeed(1, 1)

End If

End If

//通过比较得到最终限速

If CurrentSpeed > TrainAllowSpeed Then

BrakeFlag = True

Else

BrakeFlag = False //判断是否进行制动

操作系统实验报告一

重庆大学 学生实验报告 实验课程名称操作系统原理 开课实验室DS1501 学院软件学院年级2013专业班软件工程2 班学生姓名胡其友学号20131802 开课时间2015至2016学年第一学期 总成绩 教师签名洪明坚 软件学院制

《操作系统原理》实验报告 开课实验室:年月日学院软件学院年级、专业、班2013级软件工 程2班 姓名胡其友成绩 课程名称操作系统原理 实验项目 名称 指导教师洪明坚 教师 评语教师签名:洪明坚年月日 1.实验目的: ?进入实验环境 –双击expenv/setvars.bat ?检出(checkout)EPOS的源代码 –svn checkout https://www.doczj.com/doc/a250675.html,/svn/epos ?编译及运行 –cd epos/app –make run ?清除所有的临时文件 –make clean ?调试 –make debug ?在“Bochs Enhanced Debugger”中,输入“quit”退出调试 –调试指令,请看附录A 2.实验内容: ?编写系统调用“time_t time(time_t *loc)” –功能描述 ?返回从格林尼治时间1970年1月1日午夜起所经过的秒数。如果指针loc 非NULL,则返回值也被填到loc所指向的内存位置 –数据类型time_t其实就是long ?typedef long time_t; 3.实验步骤: ?Kernel space –K1、在machdep.c中,编写系统调用的实现函数“time_t sys_time()”,计算用户秒数。需要用到 ?变量g_startup_time,它记录了EPOS启动时,距离格林尼治时间1970年1午夜的秒数 ?变量g_timer_ticks

列车运行控制系统期末试题及参考答案

北京交通大学考试参考答案(A卷) 课程名称:列车运行控制系统学年学期:2013—2014学年第1学期 课程编号:50L274Q开课学院:交通运输出题教师:课程组 一、名词解释(共3小题,每题3分,共9分) 1.虚拟闭塞:是固定闭塞的一种特殊形式,以虚拟方式(设置通信模块和定位信标)将区间划分为若干个虚拟闭塞分区,并设置虚拟信号机进行防护。 2.准移动闭塞:基于固定闭塞的目标—距离控制方式,保留固定闭塞分区,以前方列车占用闭塞分区入口确定目标点,通过地车信息传输系统向列车传送目标速度、目标距离等信息。这种闭塞方式称为准移动闭塞。 3.最限制速度:综合考虑列车在区域各类限制速度得出的最低值(即最不利限制部分或最严格限制速度),简称最限制速度。 二、填空题(共12题,每空1分,共25分) 1.列车运行控制系统根据前方行车条件为每列车产生行车许可,并通过地面信号和车载信号的方式向司机提供安全运行的凭证。车载设备实施速度监控,当列车速度超过允许速度时控制列车实施制动,防止列车超速颠覆或与前方追尾,保证行车安全。 2.铁路信号安全的广义概念是指铁路信号设备或系统具有维护铁路列车(车列)安全运行的能力。狭义概念是指设备(或系统)应满足故障-安全设计原则的要求,当出现故障或误操作时,能远离危及行车安全的事故,或减少事故损失。 3.当轨道电路完整并空闲时,轨道电路的工作状态为调整,当轨道电路区段有车占用时,轨道电路的工作状态为分路(开路)。 4.目标距离控制方式根据列车制动模型,直接由目标距离、目标速度、线路参数及列车制动参数等信息生成列车的速度—距离模式曲线,并以此实时监控列车和运行速度保证列车运行安全。 5.列车安全位置是在高精度定位方法得出列车估计位置的基础上增加一定的安全包络得到,分车头(或列车前端)和车尾安全位置两部分。 级列控系统基于GSM-R实现车---地信息双向传输,RBC生成行车许可,轨道电路实现列车占用检查,应答器提供列车定位基准,并具备CTCS-2(或c-2)作为后备。7.CTCS-1级列控系统用于160km/h及以下的区段,由主体机车信号加上安全型运行监控记录装置组成。 8.在CTCS-3级列控系统中,RBC根据从联锁系统获得的进路信息,从车载设备获得的列车位置信息、以及接收到的股道占用、临时限速等信息生成列车控制命令。

控制系统仿真与设计实验报告

控制系统仿真与设计实验报告 姓名: 班级: 学号: 指导老师:刘峰 7.2.2控制系统的阶跃响应 一、实验目的 1.观察学习控制系统的单位阶跃响应; 2.记录单位阶跃响应曲线; 3.掌握时间相应的一般方法; 二、实验内容 1.二阶系统G(s)=10/(s2+2s+10)

键入程序,观察并记录阶跃响应曲线;录系统的闭环根、阻尼比、无阻尼振荡频率;记录实际测去的峰值大小、峰值时间、过渡时间,并与理论值比较。 (1)实验程序如下: num=[10]; den=[1 2 10]; step(num,den); 响应曲线如下图所示: (2)再键入: damp(den); step(num,den); [y x t]=step(num,den); [y,t’] 可得实验结果如下:

记录实际测取的峰值大小、峰值时间、过渡时间,并与理论计算值值比较 实际值理论值 峰值 1.3473 1.2975

峰值时间 1.0928 1.0649 过渡时间+%5 2.4836 2.6352 +%2 3.4771 3.5136 2. 二阶系统G(s)=10/(s2+2s+10) 试验程序如下: num0=[10]; den0=[1 2 10]; step(num0,den0); hold on; num1=[10]; den1=[1 6.32 10]; step(num1,den1); hold on; num2=[10]; den2=[1 12.64 10]; step(num2,den2); 响应曲线:

(2)修改参数,分别实现w n1= (1/2)w n0和w n1= 2w n0响应曲线试验程序: num0=[10]; den0=[1 2 10]; step(num0,den0); hold on; num1=[2.5]; den1=[1 1 2.5]; step(num1,den1); hold on; num2=[40]; den2=[1 4 40]; step(num2,den2); 响应曲线如下图所示:

操作系统实验报告-实验二

操作系统实验报告——实验二:C编程环境 实验目的 1.熟悉Linux下C程序设计的环境; 2.对系统调用有初步了解。 实验内容 1.Linux下C语言程序的开发过程 a、在用户主目录下用vi编辑C语言源程序(源程序已附后),如:$vi hello.c。 b、用gcc编译C语言源程序:$gcc ./hello.c -o example 这里gcc是Linux下的C语言程序编译器(GNU C Compiler),./hello.c表示待编译的源文件是当前工作目录下的hello.c,-o example表示编译后产生的目标代码文件名为example。 c、若编译不正确,则进入vi修改源程序,否则,运行目标代码:$./example 。注意: 这只是gcc最基本的用法,其他常用选项有:-c , -S , -O , -O2, -g 等。 2.编辑、调试下面c语言程序,说明该程序的功能。 #include #include int main() { int n,a[200],carry,temp,i,j,digit = 1; printf("Please input n:"); scanf("%d",&n); a[0] = 1; for( i = 2; i <= n; ++i) { for( j = 1, carry = 0; j <= digit; ++j) { temp = a[j-1] * i + carry; a[j-1] = temp % 10; carry = temp / 10; } while(carry) { a[++digit-1] = carry % 10; carry /= 10; } } printf("Result is:\n%d ! = ",n); for( i = digit; i >=1; --i) { printf("%d",a[i-1]); }

哈工大_控制系统实践_磁悬浮实验报告

研究生自动控制专业实验 地点:A区主楼518房间 姓名:实验日期:年月日斑号:学号:机组编号: 同组人:成绩:教师签字:磁悬浮小球系统 实验报告 主编:钱玉恒,杨亚非 哈工大航天学院控制科学实验室

磁悬浮小球控制系统实验报告 一、实验内容 1、熟悉磁悬浮球控制系统的结构和原理; 2、了解磁悬浮物理模型建模与控制器设计; 3、掌握根轨迹控制实验设计与仿真; 4、掌握频率响应控制实验与仿真; 5、掌握PID控制器设计实验与仿真; 6、实验PID控制器的实物系统调试; 二、实验设备 1、磁悬浮球控制系统一套 磁悬浮球控制系统包括磁悬浮小球控制器、磁悬浮小球实验装置等组成。在控制器的前部设有操作面板,操作面板上有起动/停止开关,控制器的后部有电源开关。 磁悬浮球控制系统计算机部分 磁悬浮球控制系统计算机部分主要有计算机、1711控制卡等; 三、实验步骤 1、系统实验的线路连接 磁悬浮小球控制器与计算机、磁悬浮小球实验装置全部采用标准线连接,电源部分有标准电源线,考虑实验设备的使用便利,在试验前,实验装置的线路已经连接完毕。 2、启动实验装置 通电之前,请详细检察电源等连线是否正确,确认无误后,可接通控制器电源,随后起动计算机和控制器,在编程和仿真情况下,不要启动控制器。 系统实验的参数调试

根据仿真的数据及控制规则进行参数调试(根轨迹、频率、PID 等),直到获得较理想参数为止。 四、实验要求 1、学生上机前要求 学生在实际上机调试之前,必须用自己的计算机,对系统的仿真全部做完,并且经过老师的检查许可后,才能申请上机调试。 学生必须交实验报告后才能上机调试。 2、学生上机要求 上机的同学要按照要求进行实验,不得有违反操作规程的现象,严格遵守实验室的有关规定。 五、系统建模思考题 1、系统模型线性化处理是否合理,写出推理过程? 合理,推理过程: 由级数理论,将非线性函数展开为泰勒级数。由此证明,在平衡点)x ,(i 00对 系统进行线性化处理是可行的。 对式2x i K x i F )(),(=作泰勒级数展开,省略高阶项可得: )x -)(x x ,(i F )i -)(i x ,(i F )x ,F(i x)F(i,000x 000i 00++= )x -(x K )i -(i K )x ,F(i x)F(i,0x 0i 00++= 平衡点小球电磁力和重力平衡,有 (,)+=F i x mg 0 |,δδ===00 i 00 i i x x F(i,x) F(i ,x )i ;|,δδ===00x 00i i x x F(i,x)F (i ,x )x 对2 i F(i,x )K()x =求偏导数得:

操作系统lab2实验报告

HUNAN UNIVERSITY 操作系统实验报告

目录 一、内容 (3) 二、目的 (3) 三、实验设计思想和练习题 (3) 练习0:填写已有实验 (3) 练习1:实现 first-fit 连续物理内存分配算法(需要编程) (3) 练习2:实现寻找虚拟地址对应的页表项(需要编程) (8) 练习3:释放某虚地址所在的页并取消对应二级页表项的映射(需要编程) (11) 运行结果 (13) 四、实验体会 (13)

一、内容 本次实验包含三个部分。首先了解如何发现系统中的物理内存;然后了解如何建立对物理内存的初步管理,即了解连续物理内存管理;最后了解页表相关的操作,即如何建立页表来实现虚拟内存到物理内存之间的映射,对段页式内存管理机制有一个比较全面的了解。 二、目的 1.理解基于段页式内存地址的转换机制; 2.理解页表的建立和使用方法; 3.理解物理内存的管理方法。 三、实验设计思想和练习题 练习0:填写已有实验 使用eclipse中的diff/merge工具将实验1的代码填入本实验中代码中有“LAB1”的注释相应部分。 练习1:实现 first-fit 连续物理内存分配算法(需要编程) 在实现first fit 内存分配算法的回收函数时,要考虑地址连续的空闲块之间的合并操作。提示:在建立空闲页块链表时,需要按照空闲页块起始地址来排序,形成一个有序的链表。可能会修改default_pmm.c 中的default_init,default_init_memmap,default_alloc_pages, default_free_pages等相关函数。请仔细查看和理解default_pmm.c中的注释。 请在实验报告中简要说明你的设计实现过程。请回答如下问题: 你的first fit算法是否有进一步的改进空间。 解答: 分析思路: (1)数据结构: A.每个物理页利用一个Page结构体表示,查看kern/mm/memlayout.h包括:

列车运行控制系统毕业设计

列车运行控制系统 铁路通信信号系统是铁路运输的基础设施,是实现铁路统一指挥调度,保证列车运行安全、提高运输效率和质量的关键技术设备,也是铁路信息化技术的重要技术领域。 现代信息类技术的迅速发展。对铁路信号、通信产品和服务产生了重要影响。铁路通信和信号技术,以及现代铁路信息化系统之间的关系和作用变得密不可分。车站、区间和列车控制的一体化,铁路通信信号技术的相互融合,以及行车调度指挥自动化等技术,冲破了功能单一、控制分散、通信信号相对独立的传统技术理念,推动了铁路通信信号技术向数字化、智能化、网络化和一体化的方向发展。 在列车运行控制技术方面,计算机、通信、控制技术与信号技术集成为一个自动化水平很高的列车运行自动控制系统(简称列控系统)。列控系统不仅在行车安全方面提供了根本保障,而且在行车自动化控制、运营效率的提高及管理自动化等方面,提供了完善的功能,并向着运输综合自动化的方向发展。列控系统技术是现代化铁路的重要标志之一。 随着列车速度的提高,列车的运行安全除了以进路保证外,还必须以专用的安全设备,监督、强迫列车(司机)执行。这些安全设备从初级的列车自动停车装置、自动告警装置、列车速度自动监督系统(或列车速度自动检查装置)发展到列车速度自动控制系统。 列车自动控制系统(A TC)—般指系统设备(包括地面设备和车载设备),同时也是一种闭塞方式,主要包括: 1.以调度集中系统CTC为核心,综合集成为调度指挥控制中心。 2.以车站计算机联锁系统为核心,综合集成为车站控制中心。 3.以列车速度防护与控制为核心,综合集成为列车(车载)运行控制系统。 4、以移动通信(例如GSM-R)平台,构建通信信号一体化的总成系统(例如CTCS)。 列车自动控制系统(A TC)的主要功能有四项: ·检查列车在线路上的位置(列车检测)。 ·形成速度信号(调整列车间隔)。 ·向列车发送速度信号或目标距离信号(信号传输)。 ·按速度或目标距离信号控制列车制动(制动控制)。 上述一至三项功能由地面没备完成,第四项功能由车载设备完成。 本章主要内容为200km/h动车组司机驾驶所需要的列控ATP技术和GSM-R系统中的无线列调功能。 第一节列控ATP系统技术原理 一.列控ATP系统的组成与功能 列控ATP是列车超速防护和机车信号系统的一体化系统,列控ATP系统主要由车载设备及地面设备两大部分组成,地面设备与车载设备一起才能完成列车运行控制的功能。 图7.1.1是列车运行控制系统地面设备原理框图。

过程控制系统实验报告

实验一过程控制系统的组成认识实验 过程控制及检测装置硬件结构组成认识,控制方案的组成及控制系统连接 一、过程控制实验装置简介 过程控制是指自动控制系统中被控量为温度、压力、流量、液位等变量在工业生产过程中的自动化控制。本系统设计本着培养工程化、参数化、现代化、开放性、综合性人才为出发点。实验对象采用当今工业现场常用的对象,如水箱、锅炉等。仪表采用具有人工智能算法及通讯接口的智能调节仪,上位机监控软件采用MCGS工控组态软件。对象系统还留有扩展连接口,扩展信号接口便于控制系统二次开发,如PLC控制、DCS控制开发等。学生通过对该系统的了解和使用,进入企业后能很快地适应环境并进入角色。同时该系统也为教师和研究生提供一个高水平的学习和研究开发的平台。 二、过程控制实验装置组成 本实验装置由过程控制实验对象、智能仪表控制台及上位机PC三部分组成。 1、被控对象 由上、下二个有机玻璃水箱和不锈钢储水箱串接,4.5千瓦电加热锅炉(由不锈钢锅炉内胆加温筒和封闭外循环不锈钢锅炉夹套构成),压力容器组成。 水箱:包括上、下水箱和储水箱。上、下水箱采用透明长方体有机玻璃,坚实耐用,透明度高,有利于学生直接观察液位的变化和记录结果。水箱结构新颖,内有三个槽,分别是缓冲槽、工作槽、出水槽,还设有溢流口。二个水箱可以组成一阶、二阶单回路液位控制实验和双闭环液位定值控制等实验。 模拟锅炉:锅炉采用不锈钢精致而成,由两层组成:加热层(内胆)和冷却层(夹套)。做温度定值实验时,可用冷却循环水帮助散热。加热层和冷却层都有温度传感器检测其温度,可做温度串级控制、前馈-反馈控制、比值控制、解耦控制等实验。 压力容器:采用不锈钢做成,一大一小两个连通的容器,可以组成一阶、二阶单回路压力控制实验和双闭环串级定值控制等实验。 管道:整个系统管道采用不锈钢管连接而成,彻底避免了管道生锈的可能性。为了提高实验装置的使用年限,储水箱换水可用箱底的出水阀进行。 2、检测装置 (液位)差压变送器:检测上、下二个水箱的液位。其型号:FB0803BAEIR,测量范围:0~1.6KPa,精度:0.5。输出信号:4~20mA DC。 涡轮流量传感器:测量电动调节阀支路的水流量。其型号:LWGY-6A,公称压力:6.3MPa,精度:1.0%,输出信号:4~20mA DC 温度传感器:本装置采用了两个铜电阻温度传感器,分别测量锅炉内胆、锅炉夹套的温度。经过温度传感器,可将温度信号转换为4~20mA DC电流信号。 (气体)扩散硅压力变送器:用来检测压力容器内气体的压力大小。其型号:DBYG-4000A/ST2X1,测量范围:0.6~3.5Mpa连续可调,精度:0.2,输出信号为4~20mA DC。 3、执行机构 电气转换器:型号为QZD-1000,输入信号为4~20mA DC,输出信号:20~100Ka气压信号,输出用来驱动气动调节阀。 气动薄膜小流量调节阀:用来控制压力回路流量的调节。型号为ZMAP-100,输入信号为4~20mA DC或0~5V DC,反馈信号为4~20mA DC。气源信号 压力:20~100Kpa,流通能力:0.0032。阀门控制精度:0.1%~0.3%,环境温度:-4~+200℃。 SCR移相调压模块:采用可控硅移相触发装置,输入控制信号0~5V DC或4~20mA DC 或10K电位器,输出电压变化范围:0~220V AC,用来控制电加热管加热。 水泵:型号为UPA90,流量为30升/分,扬程为8米,功率为180W。

列车运行控制系统结课论文报告

《列车运行控制系统》课程设计 学院:交通运输学院 指导老师:张喜 姓名:。。。 学号:。。。。。 班级:。。。。。。

磁悬浮列车运行控制系统技术方案设想 摘要:高速磁悬浮列车作为一种新型交通工具,具有快捷、安全、舒适、无磨擦、低噪声、低能耗易维护、无污染等优点. 高速磁悬浮运行控制系统就如同人的大脑,负责安排整个交通系统安全可靠有效的运转,使磁悬浮列车的特点充分展现出来. 目前,仅日德对高速磁悬浮运行控制系统的研究技术比较成熟,分别建立了山梨试验线(Y am anashi)和埃姆斯兰特(Enslard) (简称T V E )试验线,并取得了试验成功. 在国内,随着上海磁悬浮试验线的建立,对高速磁悬浮O CS 的研究则刚刚起步。本文仅对列车运行控制系统的设计方面进行简单的研究。 关键词:磁悬浮列车、列车运行控制、速度防护、车地传输技术、测速定位技术 1.磁悬浮列车的特点 由于磁悬浮列车具有快速、低耗、环保、安全等优点,因此前景十分广阔。常导磁悬浮列车可达400至500公里/小时,超导磁悬浮列车可达500至600公里/小时。它的高速度使其在1000至1500公里之间的旅行距离中比乘坐飞机更优越。由于没有轮子、无摩擦等因素,它比最先进的高速火车省电30%。在500公里/小时速度下,每座位/公里的能耗仅为飞机的1/3至1/2,比汽车也少耗能30%。因无轮轨接触,震动小、舒适性好,对车辆和路轨的维修费用也大大减少。磁悬浮列车在运行时不与轨道发生摩擦,发出的噪音很低。它的磁场强度非常低,与地球磁场相当,远低于家用电器。由于采用电力驱动,避免了烧煤烧油给沿途带来的污染。磁悬浮列车一般以4.5米以上的高架通过平地或翻越山丘,从而避免了开山挖沟对生态环境造成的破坏。磁悬浮列车在路轨上运行,按飞机的防火标准实行配置。它的车厢下端像伸出了两排弯曲的胳膊,将路轨紧紧搂住,绝对不可能出轨。列车运行的动力来自固定在路轨两侧的电磁流,同一区域内的电磁流强度相同,不可能出现几辆列车速度不同或相向而动的现象,从而排除了列车追尾或相撞的可能。 磁悬浮列车虽然具有这么多的好处,但到为止,世界上只有上海浦东磁悬浮铁路真正投入商业运营。尽管日本和德国已经有了实验路线,尽管2005年上海浦东机场到市区30公里长的线路将投入正式运营,但磁悬浮列车还是不能普及到日常生活中来。由于磁悬浮系统必须辅之以电磁力完成悬浮、导向和驱动,因此在断电情况下列车的安全就不能不是一个要考虑的问题。此外,在高速状态下运行时,列车的稳定性和可靠性也需要长期的实际检验。还有,则是建造时的技术难题。由于列车在运行时需要以特定高度悬浮,因此对线路的平整度、路基下沉量等的要求都很高。而且,如何避免强磁场对人体及环境的影响也一定要考虑到。 基于磁悬浮列车的特点,磁浮列车运行控制系统的基本功能应该包括:操作与显示、自动操纵列车、驾驶序列控制、列车防护、进路防护、道彷防护、列车安全定位、速度曲线监控和牵引安全切断等功能。以德国为例,德国的高速磁浮列车系统可分为线路、牵引、车辆和运行控制四大系统。运行控制系统采用了3

《城市轨道交通行车组织》2019期末试题及答案

《城市轨道交通行车组织》2019期末试题及答案 一、单项选择题l每小x2分,共20分,将正确答案选项的字母填入 括号内) 1.( )轨道交通规划使轨道交通建设落后于城市交通发展需求,造成城市交通发展 进入一个“恶性循环”,迫使轨道交通建设仓促上马,最终带来不良后遗症等。 A.追随型 B.满足型 C.导向型 D.复制型 2.《地铁设计规范》规定隧道内和路堑地段正线最小坡度一般不宜小于( )。 A.2‰ B.3%0 C.4%0 D.5%0 3.列车服务号为( )编码,与运营时刻表相对应。 A. -位 B.‘两位. C.三位 D.四位 4.只有在( )检查所有安全条件均已满足时,给出许可信号,车门才能被打开。 A.列车自动驾驶子系统 B.列车自动监控子系统 C.列车自动防护子系统 D.计算机联锁子系统 5.( )是城市轨道交通系统的综合性计划,城市轨道交通运营的各业务部门都需要根据列车运行图所规定的要求来安排工作。 A.列车行驶图 B.列车运行图 C.单线运行图 D.双线运行图 6.研究列车折返能力问题,只有在列车折返间隔时间( )列车追踪间隔时间时才有意义。 A.等于‘ B.小于 C.大于 D.大于等于 . ~ 7.列车进路的办理主要是通过( )完成的,它是为保证行车安全而设置的重要信号

设备。 A.联锁设备 B.信号设备 C.交路设备 D.岔道设备 8.行车调度员、电调在开始行车前与各站(含车辆段)、各变电所(站)核对( )。 A.运营时刻表 B.日期和时钟时间 C.列车出库计划 D.首班车开行时间 9.恶劣天气主要对地面车站、地面线路造成较大影响,因此,恶劣天气期间对( )做出重点安排,保证行车安全。 A.线路 B.行车 C.运营。D.地面车站和线路 10.( )是指对周计划、日变更计划和临时抢修计划内已安排施工作业项目没有进行 过调整、增加、删减的件数与计划安排件数的比值。 A.计划准确率 B.计划兑现率 C.计划上报率 D.计划执行率 二、多项选择题(每小题3分,共15分,将正确答案选项的字母填入 括号内.多选少选不得分) 1.以下对轨道交通运营生产方面相关专业的管理职能描述正确的是( )。 A.机电专业负责低压配电、照明、环控设备、电扶梯、屏蔽门的设备的维修保养 B.通信信号专业负责通信设备、传输设备、信号系统设备的维修保养 C.自动化专业负责BAS系统、门禁系统、火灾报警系统等设备的维修保养 D.车站管理专业负责车站行车组织、客运服务、票务组织等工作 E.土建专业负责轨道、房建等设备设施的维修保养 2.轨道是一个整体性工程结构,一般由( )和道岔组成。 A.钢轨 B.轨枕 C.道床

上海大学操作系统(二)实验报告(全)

评分: SHANGHAI UNIVERSITY 操作系统实验报告 学院计算机工程与科学 专业计算机科学与技术 学号 学生姓名

《计算机操作系统》实验一报告 实验一题目:操作系统的进程调度 姓名:张佳慧学号 :12122544 实验日期: 2015.1 实验环境: Microsoft Visual Studio 实验目的: 进程是操作系统最重要的概念之一,进程调度又是操作系统核心的主要内容。本实习要求学生独立地用高级语言编写和调试一个简单的进程调度程序。调度算法可任意选择或自行设计。例如,简单轮转法和优先数法等。本实习可加深对于进程调度和各种调度算法的理解。实验内容: 1、设计一个有n个进程工行的进程调度程序。每个进程由一个进程控制块(PCB)表示。进程控制块通常应包含下述信息:进程名、进程优先数、进程需要运行的时间、占用CPU的时间以及进程的状态等,且可按调度算法的不同而增删。 2、调度程序应包含2~3种不同的调度算法,运行时可任意选一种,以利于各种算法的分析比较。 3、系统应能显示或打印各进程状态和参数的变化情况,便于观察诸进程的调度过程。 操作过程: 1、本程序可选用优先数法或简单轮转法对五个进程进行调度。每个进程处于运行R(run)、就绪W(wait)和完成F(finish)三种状态之一,并假设起始状态都是就绪状态W。为了便于处理,程序进程的运行时间以时间片为单位计算。进程控制块结构如下: 进程控制块结构如下: PCB 进程标识数 链指针 优先数/轮转时间片数 占用 CPU 时间片数 进程所需时间片数 进程状态 进程控制块链结构如下:

其中:RUN—当前运行进程指针; HEAD—进程就绪链链首指针; TAID—进程就绪链链尾指针。2、算法与框图 (1) 优先数法。进程就绪链按优先数大小从高到低排列,链首进程首先投入运行。每过一个时间片,运行进程所需运行的时间片数减 1,说明它已运行了一个时间片,优先数也减 3,理由是该进程如果在一个时间片中完成不了,优先级应该降低一级。接着比较现行进程和就绪链链首进程的优先数,如果仍是现行进程高或者相同,就让现行进程继续进行,否则,调度就绪链链首进程投入运行。原运行进程再按其优先数大小插入就绪链,且改变它们对应的进程状态,直至所有进程都运行完各自的时间片数。 (2) 简单轮转法。进程就绪链按各进程进入的先后次序排列,进程每次占用处理机的轮转时间按其重要程度登入进程控制块中的轮转时间片数记录项(相当于优先数法的优先数记录项位置)。每过一个时间片,运行进程占用处理机的时间片数加 1,然后比较占用处理机的时间片数是否与该进程的轮转时间片数相等,若相等说明已到达轮转时间,应将现运行进程排到就绪链末尾,调度链首进程占用处理机,且改变它们的进程状态,直至所有进程完成各自的时间片。 (3) 程序框图

自动控制系统实验报告

自动控制系统实验报告 学号: 班级: 姓名: 老师:

一.运动控制系统实验 实验一.硬件电路的熟悉和控制原理复习巩固 实验目的:综合了解运动控制实验仪器机械结构、各部分硬件电路以及控制原理,复习巩固以前课堂知识,为下阶段实习打好基础。 实验内容:了解运动控制实验仪的几个基本电路: 单片机控制电路(键盘显示电路最小应用系统、步进电机控制电路、光槽位置检测电路) ISA运动接口卡原理(搞清楚译码电路原理和ISA总线原理) 步进电机驱动检测电路原理(高低压恒流斩波驱动电路原理、光槽位置检测电路)两轴运动十字工作台结构 步进电机驱动技术(掌握步进电机三相六拍、三相三拍驱动方法。) 微机接口技术、单片机原理及接口技术,数控轮廓插补原理,计算机高级语言硬件编程等知识。 实验结果: 步进电机驱动技术: 控制信号接口: (1)PUL:单脉冲控制方式时为脉冲控制信号,每当脉冲由低变高是电机走一步;双 脉冲控制方式时为正转脉冲信号。 (2)DIR:单脉冲控制方式时为方向控制信号,用于改变电机转向;双脉冲控制方式 时为反转脉冲信号。

(3)OPTO :为PUL 、DIR 、ENA 的共阳极端口。 (4)ENA :使能/禁止信号,高电平使能,低电平时驱动器不能工作,电机处于自由状 态。 电流设定: (1)工作电流设定: (2)静止电流设定: 静态电流可用SW4 拨码开关设定,off 表示静态电流设为动态电流的一半,on 表示静态电流与动态电流相同。一般用途中应将SW4 设成off ,使得电机和驱动器的发热减少,可靠性提高。脉冲串停止后约0.4 秒左右电流自动减至一半左右(实际值的60%),发热量理论上减至36%。 (3)细分设定: (4)步进电机的转速与脉冲频率的关系 电机转速v = 脉冲频率P * 电机固有步进角e / (360 * 细分数m) 逐点比较法的直线插补和圆弧插补: 一.直线插补原理: 如图所示的平面斜线AB ,以斜线起点A 的坐标为x0,y0,斜线AB 的终点坐标为(xe ,ye),则此直线方程为: 00 00Y Ye X Xe Y Y X X --= -- 取判别函数F =(Y —Y0)(Xe —Xo)—(X-X0)(Ye —Y0)

操作系统实验报告

操作系统教程 实 验 指 导 书 姓名: 学号: 班级:软124班 指导老师:郭玉华 2014年12月10日

实验一WINDOWS进程初识 1、实验目的 (1)学会使用VC编写基本的Win32 Consol Application(控制台应用程序)。 (2)掌握WINDOWS API的使用方法。 (3)编写测试程序,理解用户态运行和核心态运行。 2、实验内容和步骤 (1)编写基本的Win32 Consol Application 步骤1:登录进入Windows,启动VC++ 6.0。 步骤2:在“FILE”菜单中单击“NEW”子菜单,在“projects”选项卡中选择“Win32 Consol Application”,然后在“Project name”处输入工程名,在“Location”处输入工程目录。创建一个新的控制台应用程序工程。 步骤3:在“FILE”菜单中单击“NEW”子菜单,在“Files”选项卡中选择“C++ Source File”, 然后在“File”处输入C/C++源程序的文件名。 步骤4:将清单1-1所示的程序清单复制到新创建的C/C++源程序中。编译成可执行文件。 步骤5:在“开始”菜单中单击“程序”-“附件”-“命令提示符”命令,进入Windows“命令提示符”窗口,然后进入工程目录中的debug子目录,执行编译好的可执行程序: E:\课程\os课\os实验\程序\os11\debug>hello.exe 运行结果 (如果运行不成功,则可能的原因是什么?) : 有可能是因为DOS下路径的问题 (2)计算进程在核心态运行和用户态运行的时间 步骤1:按照(1)中的步骤创建一个新的“Win32 Consol Application”工程,然后将清单1-2中的程序拷贝过来,编译成可执行文件。 步骤2:在创建一个新的“Win32 Consol Application”工程,程序的参考程序如清单1-3所示,编译成可执行文件并执行。 步骤3:在“命令提示符”窗口中运行步骤1中生成的可执行文件,测试步骤2中可执行文件在核心态运行和用户态运行的时间。 E:\课程\os课\os实验\程序\os12\debug>time TEST.exe 步骤4:运行结果 (如果运行不成功,则可能的原因是什么?) : 因为程序是个死循环程序 步骤5:分别屏蔽While循环中的两个for循环,或调整两个for循环的次数,写出运行结果。 屏蔽i循环: 屏蔽j循环: _______________________________________________________________________________调整循环变量i的循环次数:

控制系统仿真实验报告

哈尔滨理工大学实验报告 控制系统仿真 专业:自动化12-1 学号:1230130101 姓名:

一.分析系统性能 课程名称控制系统仿真实验名称分析系统性能时间8.29 地点3# 姓名蔡庆刚学号1230130101 班级自动化12-1 一.实验目的及内容: 1. 熟悉MATLAB软件的操作过程; 2. 熟悉闭环系统稳定性的判断方法; 3. 熟悉闭环系统阶跃响应性能指标的求取。 二.实验用设备仪器及材料: PC, Matlab 软件平台 三、实验步骤 1. 编写MATLAB程序代码; 2. 在MATLAT中输入程序代码,运行程序; 3.分析结果。 四.实验结果分析: 1.程序截图

得到阶跃响应曲线 得到响应指标截图如下

2.求取零极点程序截图 得到零极点分布图 3.分析系统稳定性 根据稳定的充分必要条件判别线性系统的稳定性最简单的方法是求出系统所有极点,并观察是否含有实部大于0的极点,如果有系统不稳定。有零极点分布图可知系统稳定。

二.单容过程的阶跃响应 一、实验目的 1. 熟悉MATLAB软件的操作过程 2. 了解自衡单容过程的阶跃响应过程 3. 得出自衡单容过程的单位阶跃响应曲线 二、实验内容 已知两个单容过程的模型分别为 1 () 0.5 G s s =和5 1 () 51 s G s e s - = + ,试在 Simulink中建立模型,并求单位阶跃响应曲线。 三、实验步骤 1. 在Simulink中建立模型,得出实验原理图。 2. 运行模型后,双击Scope,得到的单位阶跃响应曲线。 四、实验结果 1.建立系统Simulink仿真模型图,其仿真模型为

区间信号与列车运行控制系统实验指导书2018

区间信号与列车运行控制系统 实验指导书 昆明理工大学信自学院自动化系

目录 实验一系统认知实验 (3) 实验二列车控制实验 (5) 实验三沙盘系统总体运行实验 (12) 实验四计算机联锁和计轴系统实验 (14) 实验五应答器系统实验 (22) 《区间信号与列车运行控制系统实验》教学大纲 (27)

实验一 系统认知实验 一、实验目的 1、让学生对ATS系统(沙盘列车自动监控系统)有整体了解,理解ATS 各部分的功能和作用。 2、了解实验设备操作规则,注意保护实验设备。 二、实验设备 沙盘列车自动监控系统,计算机联锁及信号控制系统 三、实验原理 沙盘列车自动监控系统(ATS) ATS系统根据系统结构和所处地点,主要分为控制中心级和车站级设备两个部分,能够自动实现连续式、点式及联锁控制方式下的行车指挥控制、列车运行监视和管理。 控制中心级设备主要指调度员工作站,车站级设备主要指车站现地工作站LOW(Local Operator Workstation)。 调度中心和车站现地工作站的控制权限能够通过操作互相切换。中心控制级时,线路各联锁区采用ATS中心控制。ATS根据列车运行图自动对全线列车进行集中监控,授权的行调人员可在控制中心通过ATS调度工作站下发人工控制命令,对运营实施控制。车站控制时,车站值班员通过设备集中站的现地控制工作站下发人工控制命令,对运营实施控制。紧急情况下,车站值班员可强行获取联锁区控制权。 四、实验内容及步骤 1、沙盘列车自动控制系统 (1)熟悉站场操作按钮的功能和作用 (2)熟悉站场图的主要操作 进路操作:进路办理操作,进路取消操作(总取消 + 始端按钮),引导进路办理(始端按钮 + 终端按钮 + 引导进路)

操作系统实验报告.

学生学号0121210680225 实验课成绩 武汉理工大学 学生实验报告书 实验课程名称操作系统 开课学院计算机科学与技术学院 指导老师姓名刘军 学生姓名李安福 学生专业班级软件sy1201 2014 — 2015 学年第一学期

《操作系统》实验教学大纲 课程编号: 课程名称:操作系统/Operating System 实验总学时数:12学时 适应专业:计算机科学与技术、软件工程 承担实验室:计算机科学与技术学院实验中心 一、实验教学的目的和任务 通过实验掌握Linux系统下常用键盘命令、系统调用、SHELL编程、后台批处理和C程序开发调试手段等基本用法。 二、实验项目及学时分配 序号实验项目名称实验学时实验类型开出要求 01 Linux键盘命令和vi 2 设计必开 02 Linux下C编程 2 设计必开 03 SHELL编程和后台批处理 2 设计必开 04 Linux系统调用(time) 2 设计必开 05 Linux进程控制(fork) 4 设计必开 三、每项实验的内容和要求: 1、Linux键盘命令和vi 要求:掌握Linux系统键盘命令的使用方法。 内容:见教材p4, p9, p40, p49-53, p89, p100 2、Linux下的C编程 要求:掌握vi编辑器的使用方法;掌握Linux下C程序的源程序编辑方法;编译、连接和运行方法。 内容:设计、编辑、编译、连接以及运行一个C程序,其中包含键盘输入和屏幕输出语句。 3、SHELL编程和后台批处理 要求:掌握Linux系统的SHELL编程方法和后台批处理方法。 内容:(1) 将编译、连接以及运行上述C程序各步骤用SHELL程序批处理完成,前台运行。 (2) 将上面SHELLL程序后台运行。观察原C程序运行时输入输出情况。 (3) 修改调试上面SHELL程序和C程序,使得在后台批处理方式下,原键 盘输入内容可以键盘命令行位置参数方式交互式输入替代原键盘输入内容, 然后输出到屏幕。 4、Linux系统调用使用方法。

(完整版)列车运行控制系统期末考试重点总结

m d i n 列控定义:列车运行全过程或一部分作业实现自动控制的系统,可以根据列车在线路上运行的客观条件和实际情况,对列车运行速度及制动方式等状态进行监督、控制和调整。 列控作用:(1)保障行车安全。识别、消除或减弱危及安全的因素。发现时,向列车发出停车或降速命令(2)保证运输效率。列控系统确定列车最小安全制动距离,最大限度提高线路通过能力。 列控原理:地面设备根据前方行车条件,包括轨道占用情况、进路状态、线路状况以及调度命令,生成行车许可,通过车地通信技术传给车载设备,结合列车数据,车载设备自动计算生成超速防护曲线,并实时与列车运行速度进行比较,超速(允许速度)后及时进行控制,防止列车超速脱轨或与前行列车追尾。列控功能:1.给司机显示允许列车运行的信号、目标距离、目标速度、允许速度等。2.防止列车超过规定的限制速度运行,包括信号显示规定的限制速度、线路限速、车辆限速、临时限速等。3.自动实施速度控制,一旦列车速度超过允许速度,应实施制动控制,使列车减速甚至停车。4.防止与同一轨道运行的列车相撞或追尾。 分级特点:1.CTCS-0干线铁路装备的既有铁路信号设备;地面设备:国产轨道电路构建三显示/四显示自动闭塞,轨道电路实现;车载设备:通用机车信号,列车运行监控记录装置LKJ ;固定闭塞 2.CTCS-1由主体机车信号+安全型运行监控装置组成,面向160km/h 及以下的区段,在既有设备基础上强化改造,增加点式设备,实现列车运行安全监控功能。 3.CTCS-2提速干线、高速铁路;应答器、ZPW-2000A 轨道电路共同完成车地通信;配置车站列控中心TCC ,根据地面信号系统计算列车移动授权凭证;车载ATP+LKJ2000,凭车载信号行车;可下线在CTCS1/0线路;准移动闭塞,地面可不设区间通过信号机 4.CTCS-3主要面向高速铁路;车载配置ATP ,凭车载信号行车;RBC 基于地面信号系统计算列车移动授权;无线通信(GSM-R )传输车地信息;轨道电路检查列车占用,应答器为列车定标;地面可不设区间通过信号机;可下线在CTCS2线路;准移动闭塞;等同于ETCS-2 5.CTCS-4面向高速铁路;CTCS 车载设备ATP ,凭车载信号行车;车载设备发送列车参数,无线闭塞中心RBC 跟踪;列车位置并计算列车移动授权;取消区间轨道电路和通过信号机(移动闭塞);无线通信(例如:GSM-R 、LTE-R 等);列车完整性检查由地面RBC 和列车完整性验证系统完成; 等同于ETCS-3 加速牵引:C=F-W 匀速惰行:C=-W 减速制动:C=-(B+W) F 牵引力,B 制动力,W 阻力 牵引力分析:轮轨间的纵向水平作用力超过最大静摩擦力时,轮轨接触点将发生相对滑动,机车动轮在强大力矩的作用下快速转动,轮轨间的纵向水平作用力变成了滑动摩擦力,其数值比最大静摩擦力小很多,而列车运行速度很低,这种状态称为“空转”。 空转的危害:局部与车轮接触的钢轨将受到严重摩擦,造成严重耗损钢轨,甚至导致车轮陷入钢轨磨损产生的深坑内。该状态下牵引力反而大幅降低,钢轨和车轮都将遭受剧烈磨损。

实验一电力拖动自动控制系统实验报告

第五章仿真及实验 第一节晶闸管直流调速系统参数和环节特性的测定 一、实验目的 1 熟悉晶闸管直流调速系统的组成及其基本结构。 2掌握晶闸管直流调速系统参数及反馈环节测定方法。 二、实验原理 晶闸管直流调速系统由整流变压器、晶闸管整流跳水装置、平波电抗器、电动机-发电机组等组成。 在本实验中,整流装置的主电路喂三相桥式电路,控制电路可直接由给定电压Ug作为触发器的移相控制电压Ua。改变Ug的大小即可改变控制角a,从而获得可调的直流电压,以满足实验要求。实验系统的组成原理如图5.1所示。 三.实验内容 1测定晶闸管直流调速系统主电路总电阻值R。 2测定晶闸管直流系统电路电感值L.. 3测定直流电机-直流发电机-测速发电机的飞轮惯量GD的平方。 4测定晶闸管直流调速系统主电路电磁时间常数Td。

5测定直流电动机电势常数Ce和转矩常数Cm。 6测定晶闸管直流调速系统机电时间常数Tm。 7测定晶闸管触发及整流装置特性Ud=f(Ue)。 8测定测速发电机特性Utg=f(n)。 四.实验仿真 晶闸管直流调速系统的原理如图5.1所示。该系统由给定信号、同步脉冲触发器、晶闸管整流桥、平波电抗器、直流电动机等部分组成。图5.2势采用面向电气原理图方法构成的晶闸管直流系统的仿真模型。下面介绍各部分建模与参数设置过程。 1.系统的建模和模型参数设置 系统的建模包括主电路的建模和控制电路的建模俩部分。 1)主电路的建模和参数设置 由图5.2可见,开环直流调速系统的主电路由三相对称交流电压器、晶闸管整流桥、平波电抗器、直流电动机等部分组成。由于同步脉冲与晶闸管整流桥是不可分割的两个环节,通常作为一个组合体讨论,所以将触发器归到主电路进行建模。 2)三相整流桥时,桥臂数取3,A,B,C三相交流电源接到整流桥的输入端,

相关主题
文本预览
相关文档 最新文档