当前位置:文档之家› RCC电路的彻底解析

RCC电路的彻底解析

RCC电路的彻底解析
RCC电路的彻底解析

小功率开关电源的经济效益提升方案

(RCC电路的彻底解析)

在输出小于50W的小型开关电源系统中,目前在设计上有很多种,但RCC方式被运用的可以说是最多的。

RCC(即Ringing choke convertor)的简称,其名称已把基本动作都附在上面了。此电路也叫做自激式反激转换器。

RCC电路不需要外部时钟的控制,由开关变压器和开关管就可以产生振荡的原因,使线路的结构非常的简单,这样就致使成本低廉。所以可以用之中电路来做出地价格的电源供应器。而市场上的小型电源供应器也是采用RCC来设计的。RCC电路的主要优缺点如下:

1、电路结构简单,价格成本低。

2、自激式振荡,不需要设计辅助电源。

3、随着输出电压或电流的变化,启动后,频率周期变化很大。

4、转换的效率不高,不能做成大功率电源。

5、噪声主要集中在低频段。

RCC电路的基本工作过程

○基本为反激式变换器

图一反激式电源的基本结构

图一为反激式电源的基本结构,由一个开关管和变压器组成,当开关管导通时,只在变压器储存能量,而在直流输出端没有功率的输出。按照图一,变压器的一次侧线圈用Lp来表示,在开关管Tr1 导通期间流过集电极电流Ic1,变压器的储能为:

P=1/2 [Lp(Ic1)2]

其次,当Tr1截止时,变压器的各线圈不但有逆向电压发生,输出侧整流二极管也导通,变压器所存储的能量则移到输出侧。也就是说Tr1在导通期间,变压器存储能量,在截止期间输出能量(电源)。又从变压器的原理可知,一次侧所流入的能量一定等于二次侧直流所输出的能量。

所以可得到以下公式:

1/2Lp*Ic12*f=Vo*Io

上式中f为工作频率Vo为输出直流电压Io为输出电流。

○RCC的启动回路

图二为RCC方式的基本原理图,当加入输入电压Vin(电阻连接Tr1的基极),电流Ig流过RG,Tr1开始导通,此时Ig为启动电流。开关管Tr1的集电极电流Ic波形如图三,一般的,必须从0开始启动。Ib变得越小越好。

图二:RCC基本原理图

图三:开关管集电极Ic波形图

Tr1一旦进入导通状态,变压器P1绕组已经加上了Vin,因此P2绕组为按照各个的圈数比所形成的电压为:

Eb=(Nb/Np)Vin

这个电压更因在Tr1导通时,极性相同,因此Tr1在导通状态时能继续维持,此时基极电流Ib为:

Ib=[(Nb/Np)*Vin —(Vf+Vbe)] / Rb

像定电流般的继续流动。

其实,Tr1的集电极电流Ic=Vin*T/Lp,Ic随时间成比例增大。在Ton期间,Tr1呈饱和状态,hfe ≥(Ic/Ib)(hfe:直流电流放大率。)见图4所示。

图4:集电极电流Ic1波形

○选择基极电阻Rb的重要性

前面的工作说明是在输出电压稳定后的初期状态。此线路的开关管基极的驱动条件极为重要,例如:输入电压Vin上升,则Ib也增加,Ic同时跟着增加,也就是说Tr1导通时间增长。反之,若输入

电压Vin下降,未达到必要的Ic,则Tr1不能导通,如此Tr1的直流电流放大率hfe也需要考虑,最低的输入电压由Ib流过的基极电阻Rb来决定。

如何决定P2 线圈的匝数?若开关管Tr1截止时,(如图5)开关管射极与基极间加上逆向电压,则使用的三极管的Veb(max)决不可超过以下条件:

Nb/Ns

图5:Tr1截止时波形

Rb有电流流过,变成像图6的方波。

图6:RCC的脉动波形

求Rb所损失的功率P RB

为开

在实际设计中,此P RB因为很大,不能被忽视,且是全体转换效率降低的最大因素。

○定电压工作的结构

经过一段时间后:侧输出电压上升,此时图2的C2的端电压也依输出电压Vo的比例上升,也就是说,Tr1在截止期间,所积的能量就放出。D3给C2的充电电流与IS同时流动,则P2线圈与S1线圈的电压与圈数比的关系如下:

其F3,V F4为D3,D4的正向电压,当V C变化时,V O也跟着变化。

VC的端电压上升,稳压二极管D1导通,则Tr1的基极电流下降,加速Tr1的截止。

以电压的关系来看,D1的电压VZ为

VZ=V C+V BE

所以VZ与的

总之,这个稳定电压的精度直接受输出电压精度的影响,即用温度系数良好,5~6V的稳压二极管。只是变压器的各组线圈的电阻,使电压下降,或D1的工作电阻D3的正向电压VF的变化等因数的影响,实际上无法得到横高的精确度。

原来Tr1的逆偏压V EB也被涉及,实际上,也是由D1的其纳电压VZ来决定的。

○启动时,集电极电流的控制

在定电压动作期间,VC的端电压很小,Tr1的基极电流未被限制,即集电极电流由I B和h FE来决定。其实开关管的h FE在制作时,差值很大,环境温度也会有很大的变化,因此,若没有任何的限制时,集电极电流会大大的流失。对线路本身,有很多的损害,为防止此原因,则增加Tr2,R1和R SC。也就是说Tr1的发射极电流增大,Tr1的基极电流下降,Tr1的导通时间件短,使输出电压下降,进行稳定化作用。总之,I E1的最大值不能超过RSC所决定的值。图8为此说明图例

图7基本的电流检测控制电流图8 设计实例

RCC振荡常数(频率)的解析

在这里,必须要了解RCC工作的振荡频率和占空比。

○占空比D:

如图9,依次绕线数N P的流出电流为

t=t ON的最大值i1P而得到

二次回路的电流最大值i1P,依变压器的基本原理:

图9:RCC电路的电流波形

二次电流因i2P随率衰 2

RCC方式的初期条件,当t=t OFF时,i2=0

以i1P式中的t ON代入而求得t OFF:

所以

下面求占空比D:

此时e1=V IN-V CE(sat),e2=V O+V F代入上式

成为较实用的公式

○如何求振荡频率f:

由于一次侧与二次侧的电量相等的条件,

1/2L1*I1P*f=I O*e2

依此求得

由此演变,可求得振荡频率f,

由以上两个结论公式,RCC方式的工作就应该很明了了。

⑴占空比D与输入的电压成反比,V IN增大,D变小,也就是说

变短

ON

t OFF不会变

⑵占空比不受负荷电流的影响。

⑶占空比随变压器一次侧电感量L P变大而增加,二次侧电感量L S的增大而减小。

⑷振荡频率f随输入电压V IN上升而上升,与负载电流成反比例而下降。

⑸振荡频率f随L P,L S成反比下降。

以上结果与实际结果非常一致。

变压器的设计

○求一次线圈N P匝数

变压器的设计方式,最先求一次线圈的圈数(匝数T)

依RCC的设计方式,图10为铁心(磁体 CORE)的B-H曲线,±Bm之点为饱和点,此点的磁通密度称为饱和磁通密度。

图10 磁 B-H曲线图11 B-H曲线的温度特性图12 I l的电流波形

一次绕组的求解公式如下:

:最大值为T/2 VIN:P1线圈的电压

ON

B:磁体的磁通密度A:磁体的有效截面积

若磁体的材质为ferrite 磁体,如图11,温度的变化,使最大的磁束磁通密度Bm产生变化,也就是说,依实际的工作条件的Bm特性求得,在100℃的Bm为3500~4000(Gauss 高斯),范围很小,大约用20~30%的值,去估计使用。若在过流状态下,t ON会很大,磁体仍在此范围内,此过度状态是因磁体未达到饱和的缘故。

○电感值的计算:

当输入电压V IN最小的占空比用1/2法去设计时,I l像(图12般)的碎波,输出功率为P O,功率转换效率为η,一次侧电流的平均值为I l(ave),最大值为I lp,

一次绕组的电感L P为

○其它线圈的计算

二次电流的峰值(peak)I2P,对于输出电流I O的关系如下:

二次绕组的电感量L S为:

如果这里t ON=t OFF=2/T的条件,则2次绕组的圈数为:

下式中V F为二次整流二极管的正向压降,其中V S=V O+V F

求解得

开关管基极驱动绕组N P2的计算:

因Tr1的V EB条件:

以上各绕组匝数已经决定,输出侧因线路电压降(line drop)的发生,实际的圈数有必要比以上值稍多.

因实际磁导率的关系,必须加入气隙(Gap)

RCC方式的变压器,在求一次侧匝数时,磁通密度为必要的条件,即以上的计算方式,较电感的实际值,通常要大一些.在固定的输出功率下,振荡频率f太低的结果,会导致磁饱和.因此,当磁体的实际导磁下降时,电感值非减到必要值不可,用实际的EE、EI磁体,则像图13一样,插入气隙(Gap).

图13 气隙的描述

气隙的求法如下:

这里要求的Lg为磁回路内合计的气隙的厚度,故中心孔(center Hole)与外部两地方,同时把距离(space)插入,也就是说气隙纸的厚度为Lg/2.

气隙纸的材质,只要是绝缘的物质就可以,这种纸,因温度的关系,厚度会改变,通常一Mylar纸或bakelite板来使用。(垫纸在低频时有可能出现噪声,稳定性也不是很理想。采用磨的方法比较好,但是磨的话在变压器工艺上会比垫纸困难。)

变压器绕线结构

变压器会因为线圈的绕线方式而在特性上有很大的差别,特别是一次绕组N P1和二次绕组N P2间的结合度,非注意不可。

结合度是一次绕组所发生的磁束,比起2次侧线圈来诱导时,没有被诱导的部分称为磁漏(leakage flux)(这句就是我们所说的漏感,即由于初、次级间,匝与匝之间,磁通不能完全偶合而出现的漏感。)

要使结合度上升,对于绕组的结构,有下列两点必须注意。

⑴各绕组要绕满

圈数若少的话,只绕一半时,可将每圈都把间隔加大,或把线径减小,2~3条线一起绕也有效,如图14。

图14 图15

⑵如图15,三明治的多层分割绕法。

绕组的顺序为:最初从一次绕组N P1绕起,其次是2次绕组N S,普通最后由基本绕组完成。在此,则由一次绕组N P1再绕一次,与底层的N P1并列,再接在一起。

其他绕组:用N P1和N P、夹着之故,一次绕组及其他绕组间的结合度就回提高。

漏感电感的影响

变压器要完全100%偶合是不可能的,尤其是RCC方式,因设有很大的气隙,漏感必然增加。如图16所示,T型等效回路的L e1,L e2的漏感就产生了。

图16

当一次与2次电流流动时,能量就开始积蓄,若其他的绕组未偶合的话,一次侧的能量就无法完全转移到2次侧,则变压器在Tr1截止的瞬间会发生很大的逆电压,与Tr1的集电极电压叠加在一起。

抑制逆电压的吸收(snabber)电路

图17

图17中,在N P1绕组两端,加入由二极管,电容构成的电路。

漏感电感Le1积蓄的能量为P1,振荡频率为f,

Tr1在截止时发生的逆电压为puese,若在电容的直流电流,就被R抵消掉。

P1由上式公式来决定,电阻值增加,则电压就会生高。电阻值低,电压就会下降。但V C与2次绕组NS和输出电压V O有关。

反激电压Vf,

这样低的电阻值就会将损耗增大。

变压器的漏感或因输出功率所引起的积蓄能量而起变化,所以这里的电阻约为10-50K最合适。

滤波电容的决定方法

○纹波(ripple)电流为主要参数

RCC方式,设计时的重点在输出侧,滤波电容的纹波电流,2次侧在开关管截止期间流通,因电流波是三角波,因此纹波电流的实际值显的更大。

当电解电容因纹波电流的流通,由于内电阻而产生损耗,因此内部温度上升,此为电容寿命缩短的原因。

电解电容在最高温度使用时,顶多能保证2000小时的寿命,当温度上升10℃,则寿命将减半。

受周围发热物的热度影响的同时,纹波电流本身发热的抑制工作非常重要。因此纹波电流的最大值必须加以规定。高频用电容,因内电阻很低,所以case,sige比较大

表1 图18

表1为电容器的纹波电流与case,sige的比较。

○纹波电流的大小

纹波电流的波形如图18,用直流bias得到的波形,也就是说:一个周期分成了3段期间,求实际值之后再合并计算。

有关其时间的推导如下:

第一期间,电流的瞬时值i1为:

从以上条件,第一期间的纹波电流Ir1,而求得以下公式。

其中

第二期,同第一期同样计算: (i2=i1)

第三期 (i3=I O)

三期的值的合并计算:

虽然计算过程繁杂,但并不难,最后若能把公式记起来,在实际设计上就足够了.

又t ON=t OFF,占空比为0.5的条件,IP=4I O之故,若记得Ir=1.3I O的话,简单的电容的纹波就可以求得.

若在实际设计时,最好选比此值以上的容许纹波电流的电容,因一只电容不够时,可多接几个。

反馈时的定电压控制

实际上,广被应用的RCC方式的开关电源变换器直接监视输出电压,开关转换的频率或导通期间使定电压能控制在图形之内。

若不如此,光靠基本电路则电压的精确度就不好,造成很多电路不能动作。

稳压器(shunt regulator)的控制回路由可调稳压调整(programable shunt regulator)和光电偶合器(photo coupler)构成,例如TL431是3断的可调稳压调整器。如图19,内部有一个QP-AMP和基准电压Vref。

图19 图20

基准电压Vref≥2.7V之故,REF的端子电压变成Vref时,就产生电压工作。如图20所示,导出输出电压Vo为:

实际在零件的容量也考虑时,插入可边电阻,就可以设定细微的电压,当输出电压Vo上升时,不但TL431的cathode 电极(K)的电压低下,流国photo coupler PC1的发光二极管的电流就增大,如此,对应photo coupler的光敏三极管的Ic电流也增加,也会流过大量的集电极电流,因此截止开关管的Tr1的基极电流,Tr1的电流被分散,也就是I b1就减小了。若Tr1的基极电流减少,则小集电极电流无法流过去,极短的导通时间后就变为截止。因此,要流入变压器的电流就减少,致使输出电压的降低。

光电偶合(photo coupler)的特性

Photo coupler就是使电压变化而来的信号,用线性(linear)方式传导,经过一段时间的变化,故意让电流传导特性劣化,直接与发光二极管连接的电阻非十分低不可。如图21表示,photo coupler的传导特性。

图21

对handing的考虑

对于因电压节制的返回系统来说,photo coupler的慢性回应(Trr)也包含在内,而发生相位延迟,定电压节制本体也是负返回节制,因为有180度的相位,更因重复有180度的相位延迟,使相位转回360度,使它振荡起来。开关调整器称它为handing,绝对要抑制症状。

Handing是因为频率的相位延迟180度之故,在对策上如图22所示,可以施以用误差放大器TL431来做正相位补偿,其方法可以数K HZ以上的多余物不产生。

在此OP AMP的交流回归工作,在coathode和REF端子间加上与CR连接的东西,C为0.047~0.22uF,R为470Ω~10KΩ的范围当成基准。

对于间歇间的振荡也要注意,若输出电流减少时,类似handing 的间歇性振荡也会发生,如图23所示,在一段期间不但switching接着的一段时间则swithing完全停止的症状,照片2则是实际的波形例子。

图22 图23 照片2

这是因为switching transistor(开关管)的基极的驱动电流过大,使linear无法控制而发生,所以不使电流过多流失,像图24,在输出直接加入电阻,如它像平常一样的流动电流,这个电阻称为breeder电阻。(此值一般取满载的0.02左右电流做为计算)

图24

过流保护

要保护哪里的电流呢?

因为输出短路或过负载的异常现象,为防止电源内部零件的破损,不得不设置过电流保护。

在RCC方式时,目的在防止启动电流过大,一次绕组必须设计电流控制回路,像这种利用来过过流保护是很平常的。

不过输出电流与一次绕组的switching电流完全没有比例的关系,基本线路的电流控制特性为可保护瞬间的短路。短路电流是非常大的,除此之外,输出电压变化时,像图25般的工作也会产生。

当输入电压上升,则switching的频率就提高,对同样的输出功率,因很小的一次电流要使Reak值达到,电流控制的工作点就提高,而成为shift。

图25 图26

过电流保护特性的改善

这些问题的解决方法如图26的电路,过电流的检出可利用switching transistor的emitter电阻的压降,这里的波形因为是三角波,控制transistor的base接着0.1uF的电容。

从base线圈开始稳压二极管DZ和R,再经过C和R,按输入电压的比例的电流,去控制三极管Tr2的基极电流大小。当输入电压上升时,这个电流增加,使Tr2的基极产生正向偏压,而有小的switching电流,Tr2的驱动电流就被分散,极短的导通时间,三极管就被转换为截止状态,如照片3。

照片3

当过电流工作时,与输入电压同时,因基极线圈的逆电压也下降,控制Tr2的基极偏压也就变得很小,促使Tr2流动方向工作起来,这样的动作,就可以防止输出短路电流流量过大。

这个线路的计算非常繁杂,可参考图上的常数。

多组输出电源的实用设计实例

在此按输入输出规格,用实际的数值去计算,来试看线路的饿设计。

要求如下:

输入电压:85~110V

输出电压:+5V 5A +12V 1A -12V 0.3A

基本线路的参数(parameter)的计算

线路图如下:

输入整流的最小电压为:

这样来看,在输入为100V时,工作频率应该在20kHZ

占空为0.5来设计

计算输出功率:

假设效率为70%来计算,一次侧输入功率为:

所以,输入的平均电流I1为:

又因为占空为0.5,相关的开关电流的最大值I1P为I1的4倍得:

计算变压器:

按以上条件,来计算变压器的一次绕组NP1和电感LP1,

因为功率在58W,所以选择EI40变压器,查参数表Bm为4800(GAUSS),余量可充分见到磁通密度△B=2700(GAUSS),Ae=1.48cm2

L P1为

计算气隙:

磁芯磨0.33mm每边。

变压器2次侧的计算:

2次侧的圈数

+5V的圈数N5,当toff期间的电流为,I5P为:

电感值为:

圈数为:

求+12V圈数(与5V的比例来求)

输出电压实测在13V,这是因为+5V线路来比较,12V因此=11T左右就可以得到12V。

其次,-12V输出上有3端稳压,整流电压需要18V。

看余数应该在18T。

最后计算基本线圈NP2,以最低输入约6V的正向电流来计算。

下图为变压器的常数。

图28

回路常数的计算:

以上变压器参数的计算已经完毕,基本电阻R B的求得为:(即使在最低输入电压时,也有基本电流余量可以供应)设I B(min)=0.5A时

因此R B取6.8Ω,V RS为电流检测电阻0.47Ω的压降。

输出侧整流滤波电容纹波电流,以简易的1.3倍输出电流则求得:

Ir5=1.3*IO=6.5A

Ir5=1.3*IO=1.3A

Ir5=1.3*IO=0.39A

在大电流输出的时候,采用多个电容并联输出。

在制造时的特性:

以上设计以图27的线路为参考,并测定而成基础

照片4为图29的特性。

输出若为复数的回路时,并非能得到理想的波形,像图形d,+5V输出的电流波形被损坏,又开关三极管的特性为t=0.3us程度时,集电极损失约2.5W,全体的功率变换效率η,输入为57.5W时

以此方法得到的数值,想必是很好的结果。

以上为照片4

图29 图30

输出电压的定电压精度,并没有表示+5V电路完全变动,因为+12V没有完全反馈控制,使输出电流的小部分有少许不好,这种问题产生时,如图30,可以用2线检测的方法来补偿交叉调整性。但是+5V的电压精度的变化是必须去了解的。

输出纹波在15mV时,在实际应用上应该为障碍,由照片g可以观测出speak noise,若将消除common mode noise 的电容接在金属外壳后,该有一半的Noise可被消除。

电路原理图详解

电子电路图原理分析 电器修理、电路设计都是要通过分析电路原理图,了解电器的功能和工作原理,才能得心应手开展工作的。作为从事此项工作的同志,首先要有过硬的基本功,要能对有技术参数的电路原理图进行总体了解,能进行划分功能模块,找出信号流向,确定元件作用。若不知电路的作用,可先分析电路的输入和输出信号之间的关系。如信号变化规律及它们之间的关系、相位问题是同相位,或反相位。电路和组成形式,是放大电路,振荡电路,脉冲电路,还是解调电路。 要学会维修电器设备和设计电路,就必须熟练掌握各单元电路的原理。会划分功能块,能按照不同的功能把整机电路的元件进行分组,让每个功能块形成一个具体功能的元件组合,如基本放大电路,开关电路,波形变换电路等。 要掌握分析常用电路的几种方法,熟悉每种方法适合的电路类型和分析步骤。 1.交流等效电路分析法 首先画出交流等效电路,再分析电路的交流状态,即:电路有信号输入时,电路中各环节的电压和电流是否按输入信号的规律变化、是放大、振荡,还是限幅削波、整形、鉴相等。 2.直流等效电路分析法 画出直流等效电路图,分析电路的直流系统参数,搞清晶体管静态工作点和偏置性质,级间耦合方式等。分析有关元器件在电路中所处状态及起的作用。例如:三极管的工作状态,如饱和、放大、截止区,二极管处于导通或截止等。 3.频率特性分析法 主要看电路本身所具有的频率是否与它所处理信号的频谱相适应。粗略估算一下它的中心频率,上、下限频率和频带宽度等,例如:各种滤波、陷波、谐振、选频等电路。 4.时间常数分析法 主要分析由R、L、C及二极管组成的电路、性质。时间常数是反映储能元件上能量积累和消耗快慢的一个参数。若时间常数不同,尽管它的形式和接法相似,但所起的作用还是不同,常见的有耦合电路、微分电路、积分电路、退耦电路、峰值检波电路等。 最后,将实际电路与基本原理对照,根据元件在电路中的作用,按以上的方法一步步分析,就不难看懂。当然要真正融会贯通还需要坚持不懈地学习。 电子设备中有各种各样的图。能够说明它们工作原理的是电原理图,简称电路图。 电路图有两种 一种是说明模拟电子电路工作原理的。它用各种图形符号表示电阻器、电容器、开关、晶体管等实物,用线条把元器件和单元电路按工作原理的关系连接起来。这种图长期以来就一直被叫做电路图。 另一种是说明数字电子电路工作原理的。它用各种图形符号表示门、触发器和各种逻辑部件,用线条把它们按逻辑关系连接起来,它是用来说明各个逻辑单元之间的逻辑关系和整机的逻辑功能的。为了和模拟电路的电路图区别开来,就把这种图叫做逻辑电路图,简称逻辑图。 除了这两种图外,常用的还有方框图。它用一个框表示电路的一部分,它能简洁明了地说明电路各部分的关系和整机的工作原理。 一张电路图就好象是一篇文章,各种单元电路就好比是句子,而各种元器件就是组成句子的单词。所以要想看懂电路图,还得从认识单词——元器件开始。有关电阻器、电容器、电感线圈、晶体管等元器件的用途、类别、使用方法等内容可以点击本文相关文章下的各个链接,本文只把电路图中常出现的各种符号重述一遍,希望初学者熟悉它们,并记住不忘。 电阻器与电位器(什么是电位器) 符号详见图 1 所示,其中( a )表示一般的阻值固定的电阻器,( b )表示半可调或微调电阻器;( c )表示电位器;( d )表示带开关的电位器。电阻器的文字符号是“ R ”,电位器是“ RP ”,即在 R 的后面再加一个说明它有调节功能的字符“ P ”。

继电器控制电路模块及原理讲解

继电器控制电路模块及原理讲解 发布: 2011-9-8 | 作者: —— | 来源:huangguohai| 查看: 564次| 用户关注: 能直接带动继电器工作的CMOS集成块电路在电子爱好者认识电路知识的的习惯中,总认为CMOS 集成块本身不能直接带动继电器工作,但实际上,部分CMOS集成块不仅能直接带动继电器工作,而且工作还非常稳定可靠。本实验中所用继电器的型号为JRC5M-DC12V微型密封的继电器(其线圈电阻为750Ω)。现将CD4066CMOS集成块带动继电器的工作原理分析如下:CD4066是一个四双向模拟开关,集成块SCR1~SCR4为控制端,用于控制四双向模拟开关的 能直接带动继电器工作的CMOS集成块电路 在电子爱好者认识电路知识的的习惯中,总认为CMOS集成块本身不能直接带动继电器工作,但实际上,部分CMOS集成块不仅能直接带动继电器工作,而且工作还非常稳定可靠。本实验中所用继电器的型号为JRC5M-D C12V微型密封的继电器(其线圈电阻为750Ω)。现将CD4066CMOS集成块带动继电器的工作原理分析如下: CD4066是一个四双向模拟开关,集成块SCR1~SCR4为控制端,用于控制四双向模拟开关的通断。当SCR1接高电平时,集成块①、②脚导通,+12V→K1→集成块①、②脚→电源负极使K1吸合;反之当SCR1输入低电平时,集成块①、②脚开路,K1失电释放,SC R2~SCR4输入高电平或低电平时状态与SCR1相同。 本电路中,继电器线圈的两端均反相并联了一只二极管,它是用来保护集成电路本身的,千万不可省去,否则在继电器由吸合状态转为释放时,由于电感的作用线圈上将产生较高的反电动势,极容易导致集成块击穿。并联了二极管后,在继电器由吸合变为释放的瞬间,线圈将通过二极管形成短时间的续流回路,使线圈中的电流不致突变,从而避免了线圈中反电动势的产生,确保了集成块的安全。 低电压下继电器的吸合措施

开关电源入门必读:开关电源工作原理超详细解析

开关电源入门必读:开关电源工作原理超详细解析 第1页:前言:PC电源知多少 个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Sw itching Mode P ow er Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(sw itching)。线性电源的工作原理是首先将127 V或者220V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/W ii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的“开关电源”其实是“高频开关电源”的缩写形式,和电源本身的关闭和开启式没有任何关系的。 事实上,终端用户的PC的电源采用的是一种更为优化的方案:闭回路系统(closed loop system)——负责控制开关管的电路,从电源的输出获得反馈信号,然后根据PC的功耗来增加或者降低某一周期内的电压的频率以便能够适应电源的变压器(这个方法称作PW M,Pulse W idth Modulation,脉冲宽度调制)。所以说,开关电源可以根据与之相连的耗电设备的功耗的大小来自我调整,从而可以让变压器以及其他的元器件带走更少量的能量,而且降低发热量。 反观线性电源,它的设计理念就是功率至上,即便负载电路并不需要很大电流。这样做的后果就是所有元件即便非必要的时候也工作在满负荷下,结果产生高很多的热量。 第2页:看图说话:图解开关电源 下图3和4描述的是开关电源的PW M反馈机制。图3描述的是没有PFC(P ow er Factor Correction,功率因素校正)电路的廉价电源,图4描述的是采用主动式PFC设计的中高端电源。 图3:没有PFC电路的电源 图4:有PFC电路的电源 通过图3和图4的对比我们可以看出两者的不同之处:一个具备主动式PFC电路而另一个不具备,前者没有110/220V转换器,而且也没有电压倍压电路。下文我们的重点将会是主动式PFC电源的讲解。

详细讲解MOS管工作原理

详细讲解MOSFET管驱动电路 在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。 下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。包括MOS管的介绍,特性,驱动以及应用电路。 1,MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。 至于为什么不使用耗尽型的MOS管,不建议刨根问底。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。 在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。 2,MOS管导通特性 导通的意思是作为开关,相当于开关闭合。

NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC 时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 3,MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。 导通瞬间电压和电流的乘积很大,造成的损失也就很大。缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。 4,MOS管驱动 跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。这个很容易做到,但是,我们还需要速度。 在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小。

《电路原理》练习题及详细解析答案

第一章“电路模型和电路定律”练习题 1-1说明题1-1图(a)、(b)中:(1)u、i的参考方向是否关联?(2)ui乘积表示什么功率? (3)如果在图(a)中u>0、i<0;图(b)中u>0、i>0,元件实际发出还是吸收功率? (a)(b) 题1-1图 解:(1)题1-1图(a),u、i在元件上为关联参考方向。题1-1图(b)中,u、i在元件上为非关联参考方向。 (2)题1-1图(a)中,P=ui表示元件吸收的功率。题1-1图(b)中,P=ui表示元件发出的功率。 (3)题1-1图(a)中,P=ui<0表示元件吸收负功率,实际发出功率。题1-1图(b)中,P=ui>0,元件实际发出功率。 1-4 在指定的电压u和电流i的参考方向下,写出题1-4图所示各元件的u和i的约束方程(即VCR)。 (a)(b)(c) (d)(e)(f) 题1-4图 解:(1)题1-4图(a)中,u、i为非关联参考方向,u=10×103i。(2)题1-4图(b)中u、i为非关联参考方向,u=-10i。 (3)题1-4图(c)中u与电压源的激励电压方向相同u= 10V。(4)题1-4图(d)中u 与电压源的激励电压方向相反u= -5V。(5)题1-4图(e)中i与电流源的激励电流方向相同i=10×10-3A。(6)题1-4图(f)中i与电流源的激励电流方向相反i=-10×10-3A。 1-5 试求题1-5图中各电路中电压源、电流源及电阻的功率(须说明是吸收还是发出)。 (a)(b)(c) 题1-5图

解:题1-5图(a)中流过15V电压源的2A电流与激励电压15V为非关联参考方向,因此,电压源发出功率PU发=15×2W=30W; 2A电流源的端电压为UA=(-5×2+15)=5V, 此电压与激励电流为关联参考方向,因此,电流源吸收功率PI吸=5×2W=10W; 电阻消耗功率PR=I2R=22×5W=20W,电路中PU发=PI吸+PR功率平衡。 题1-5图(b)中电压源中的电流IUS=(2-5/15)A=-1A,其方向与激励电压关联,15V的电压源吸收功率PUS吸=15×(-1A)=-15W 电压源实际发出功率15W。 2A电流源两端的电压为15V,与激励电流2A为非关联参考方向, 2A电流源发出功率PIS 发=2×15=30W 电阻消耗功率PR=152/5=45W,电路中PUS+PR=PIS发功率平衡。 题1-5图(c)中电压源折中的电流IUS=(2+15/5)A=5A方向与15V激励电压非关联,电压源发出功率PUS发=5×15=75W。 电流源两端的电压为15V,与激励电流2A为关联参考方向,电流源吸收功率PIS吸=2×15=30W, 电阻消耗功率PR=152/5=45W,电路中PUS发=PIS吸+PR功率平衡。 1-16 电路如题1-16图所示,试求每个元件发出或吸收的功率。 I 1 (a)(b) 题1-16图 解:题1-16图(a)中,应用KVL可得方程: -U+2×0.5+2U=0 解得: U=-1V 电流源电压U与激励电流方向为非关联,因此电流源发出功率为: PIS发=-1×0.5=-0.5W(实际吸收功率)。 电阻功率为: PR=0.52×2=0.5W VCVS两端的电压2U与流入电流方向关联,故吸收功率为 PUS吸=2U×0.5=-1W(实际发出功率)。 显然,PIS发=PUS吸+PR 题1-16图(b)中,在结点A应用KCL可得: I2=I1+2I1-3I1 再在左侧回路应用KVL可得: 2I1+3I1=2 解得: I1=0.4A 根据各电流、电压方向的关联关系,可知,电压源发出功率为: PUS发=2I1=0.8W CCCS发出功率为:

开关电源各模块原理实图讲解

开关电源原理 一、开关电源的电路组成: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低, 使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂 波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当 电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌 电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负 温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容 量变小,输出的交流纹波将增大。

通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、 功率变换电路: 1、MOS 管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET (MOS 管),是利用半导体表面 的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS 管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS 管并接,使开关管电压应力减少,EMI 减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V 时,UC3842停止工作,开关管Q1立即关断 。 R1和Q1中的结电容C GS 、C GD 一起组成RC 网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS 管的GS 电压限制在18V 以下,从而保护了MOS 管。 Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量

开关电源各模块原理实图讲解

开关电源原理 一、 开关电源的电路组成: PWM

①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、 F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂 波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

① 输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、 功率变换电路: 1、 MOS 管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET (MOS 管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以52、 常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS 管并接,使开关管电压应力减少,EMI 减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V 时,UC3842停止工作,开关管Q1立即关断 。

无稳态电路原理详细讲解

无稳态电路详细讲解 电阻:1、限流、分压。2、在RC串联电路中改变阻值就能改变时间常数。本无稳态电路中用到的电阻有限流、分压和与电容构成充放电电路两个作用。 电容:1、电容两极的电压不能突变(这个要好好理解一下,不是不变,)。2、RC构成的充(放)电电路,电容两端的电压会随时间增加而上升(下降)(变化的速度与RC串联电路的电阻电容值都有关)。三极管:对于NPN型三极管,当三极管的be极的电压高于某一数值(一般为0.7V)时,三极管就会导通,这时ce间貌似有一个开关闭合,使电流从c极流入从e极流出。 下面是一个典型的无稳态电路: 无稳态振荡器(astablemultivibrator)亦称自激多谐振荡器。电路中,施加电源VCC后,晶体管Q1和Q2在电容的作用下,反复导通、截至,产生持续震荡。震荡周期T[s]为: T=0.69(R3C2+R2C1)。 工作原理:当给电路加上电压VCC的瞬间,B1、B2点在电阻的上拉作用下都有一个高电位,而这个高电位都能使两个三极管满足导通的条件,但是由于各个元件的参数不可能完全一样,所以一定有一个三极管先导通,这里假设Q1先导通,然后再分析Q1导通的瞬间、C1点由原来的高电位被拉低(几乎与E1点电位相同),再根据电容两端的电压不能够突变,这时 B1点的电位也由原来的高电位被拉低,B1点又是三极管Q2的基极,Q2的基极电位由原来

的高电位也变成低电位,这时是Q2的be间电压降低(几乎为零),所以这时三极管Q2被迫截止(不导通)。再此之后D1就会发光,同时电容C1两端电压虽不会突变,但是不是不变,在这段时间内会通过电阻R2给C1充电,充电过程中C1的一端B1电位就会逐渐升高,会有一个时刻B1的电位高到能使Q2导通,(这个时间实际上就是周期T=0.69(R3C2+R2C1)的一半)。这时点C2的电位由原来的高电位被拉低(几乎与E2点电位相同),同理根据电容两端电压不能突变,这时B2点的电位也由原来的高电位被拉低,B2点又是三极管Q1的基极,Q1的基极电位由原来的高电位也变成低电位,这时是Q1的be间电压降低(几乎为零),所以这时三极管Q1被迫截止(不导通)。再此之后D1就会发光。 再循环下去,Q1导通、Q2截止................这里不再复述。这样就会出现两个LED交替闪烁的现象。 如果先假设刚通电时,Q2先导通,方法类似,读者可以自己分析。图中的R1和R4是LED 的限流电阻,可以根据所选的LED灵活选取。 以上可以简单的总结一句话:Q1导通时能够使Q2被迫截止;Q2导通时也能使Q1被迫截止。 按照上面电路参数设计的电路,闪烁周期计算如下:T=0.69*(47000*0.00001+47000*0.00001)=0.65S拓展:以上电路的电阻电容参数都是完全对称的,如果要获得两个LED点亮时间不一样的现象,只需改变相应的电阻电容参数,使两边的R*C的值不相等就行了。

倍压电路原理详解

倍压电路原理详解 说明:要理解倍压电路,首先要将充电后的电容看作一个电源.可以和供电电源串联,就像普通的电池串联的原理一样. 一、直流半波整流电压电路 1)负半周时,即A为负、B为正时,D1导通、D2截止,电源经D1向电容器C1充电,在理想情况下,此半周内,D1可看成短路,同时电容器C1充电到Vm,其电流路径及电容器C1的极性如上图(a)所示。 (2)正半周时,即A为正、B为负时,D1截止、D2导通,此时供电电源和C1串联后电压为2Vm,于是向C2充电,使C2充电至最高值2Vm,其电流路径及电容器C2的极性如上图(b)所示. 图1 直流半波整流电压电路 (a)负半周(b)正半周 需要注意的是: (1)其实C2的电压并无法在一个半周内即充至2Vm,它必须在几周后才可渐渐趋近于2Vm,为了方便说明,底下电路说明亦做如此假设。 (2))如果半波倍压器被用于没有变压器的电源供应器时,我们必须将C1串联一电流限制电阻,以保护二极管不受电源刚开始充电涌流的损害。 (3)如果有一个负载并联在倍压器的输出的话,如一般所预期地,在(输入处)

负的半周内电容器C2上的电压会降低,然后在正的半周内再被充电到2Vm如下图所示。 所以电容器c2上的电压波形是由电容滤波器过滤后的半波讯号,故此倍压电路称为半波电压电路。 (4)正半周时,二极管D1所承受之最大的逆向电压为2Vm,负半波时,二极管D2 所承受最大逆向电压值亦为2Vm,所以电路中应选择PIV >2Vm的二极管。 图3 输出电压波形

图4 全波整流电压电路 (a)正半周(b)负半周 图5 全波电压的工作原理 1.正半周时,D1导通,D2截止,电容器C1充电到Vm,其电流路径及电容C1的极性如上图(a)所示。 2.负半周时,D1截止,D2导通,电容器C2充电到Vm,其电流路径及电容C2的极性如上图(b)所示。 3.由于C1与C2串联,故输出直流电压,V0=Vm。如果没有自电路抽取负载电流的话,电容器C1及C2上的电压是2Vm。如果自电路抽取负载电流的话,电容器C1及C2上的电压是与由全波整流电路馈送的一个电容器上的电压同样的。不同之处是,实效电容为C1及C2的串联电容,这比C1及C2单独的都要小。这种较低的电容值将会使它的滤波作用不及单电容滤波电路的好。 正半周时,二极管D2所受的最大逆向电压为2Vm,负半周时,二极管D1所承受的最大逆向电压为2Vm,所以电路中应选择PVI >2Vm的二极管。

LC滤波电路原理及设计详解

LC滤波电路 LC滤波器也称为无源滤波器,就是传统的谐波补偿装置。LC滤波器之所以称为无源滤波器,顾名思义,就就是该装置不需要额外提供电源。LC滤波器一般就是由滤波电容器、电抗器与电阻器适当组合而成,与谐波源并联,除起滤波作用外,还兼顾无功补偿的需要; 无源滤波器,又称LC滤波器,就是利用电感、电容与电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波,最普通易于采用的无源滤波器结构就是将电感与电容串联,可对主要次谐波(3、5、7)构成低阻抗旁路;单调谐滤波器、双调谐滤波器、高通滤波器都属于无源滤波器。 LC滤波器的适用场合 无源LC电路不易集成,通常电源中整流后的滤波电路均采用无源电路,且在大电流负载时应采用LC电路。 有源滤波器适用场合 有源滤波器电路不适于高压大电流的负载,只适用于信号处理, 滤波就是信号处理中的一个重要概念。滤波分经典滤波与现代滤波。 经典滤波的概念,就是根据富立叶分析与变换提出的一个工程概念。根据高等数学理论,任何一个满足一定条件的信号,都可以被瞧成就是由无限个正弦波叠加 而成。换句话说,就就是工程信号就是不同频率的正弦波线性叠加而成的,组成信号的不同频率的正弦波叫做信号的频率成分或叫做谐波成分。只允许一定频率范围内的信号成分正常通过,而阻止另一部分频率成分通过的电路,叫做经典滤波 器或滤波电路 电容滤波电路电感滤波电路作用原理 整流电路的输出电压不就是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。 常用的滤波电路有无源滤波与有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波与复式滤波(包括倒L型、LC滤波、LCπ型滤波与RCπ型滤波等)。有源滤波的主要形式就是有源RC滤波,也被称作电子滤波器。直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。 脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量 半波整流输出电压的脉动系数为S=1.57,全波整流与桥式整流的输出电压 的脉动系数S≈O.67。对于全波与桥式整流电路采用C型滤波电路后,其脉动系

相关主题
文本预览
相关文档 最新文档