当前位置:文档之家› 数学建模-地铁规划的合理性分析

数学建模-地铁规划的合理性分析

数学建模-地铁规划的合理性分析
数学建模-地铁规划的合理性分析

我心中的成都市地铁

作者university of electronic science and technology of china 陳**,丁**,俞**

摘要

地铁就其直接经济效益来看,是一个投资巨大,长期亏损的项目。地铁所带来的促进就业,促进区域经济发展,解决居民住房,节约土地资源等间接经济效益,决定发展地铁交通才是城市交通科学发展的正确选择。本文针对成都市地铁建设的规划方案通过模型的模拟和分析,从中得出对地铁规划方案的改进意见和建议。

1问题重述

成都市的若干条地铁已开工建设,人们关注地铁是否途径自己工作或生活的地方。众所周知,地铁的通车对人们的出行、方便人民生活作用很大。事实上,地铁规划的合理性及与城市现代化建设规划密切关联,优化地铁规划及建设对一个现代化城市交通、文化、体育以及促进经济均衡发展等各方面都会起到重要的作用。然而对地铁的规划影响因素较多,如建设成本,长期效益,人口密度,工业发展,环境保护、产业布局等。这些因素是如何影响地铁规划的?还有请在充分了解成都各区县的城市建设现状及长远发展规划的基础上,对成都地铁规划进行研究,提出可行的意见和建议。

2基本假设

基本假设:

(1)假设在预期时间内成都市的人口数量保持不变。

(2)假设成都市每天出行的公交车客流量保持不变。

(3)假设3,4,5,6,7号线路的运营方式与1,2号线路完全一致。

(4)假设地铁只对公交车客流量产生影响。

(5)假设人们出行优先选择地铁。

(6)假设建设成本只与路线长度的有关,其他因素如高架桥的个数,路况的施工难度等影响较小的因素忽略不计。

(7)假设每个站台下车人数与上车人数相等。

3符号说明

(i=1,(1) Qi: 第i条线路的站点密度,即为第i条线路每公里的站点数。

2,3,4,5,6,7)

(2) T:地铁每天的运营时间。

(3) T1:地铁客流量高峰时期时间。

(4) T2:地铁客流量平峰时期时间。

(5) Ti:第i条铁路上列车从起点到达终点的时间(i=1,2,3,4,5,6,7)。

(6) Ni:第i条铁路上的站点数。

(7) t1: 在一般站点的停留时间。

(8) t2:在火车北站和天府广场站的停留时间。

(9) V:地铁的平均运行速度。

(10)Si:第i条地铁的长度。

(11)ni: 第i条地铁上列车完整从起点到终点的次数(i=1,2,3,4 ,5,6,7)、

(12)Γ:随即数组。

(13)N: 列车最大载人量。

(14)Mi:第i条线路每日的客流量。(i=1,2,3,4,5,6,7)简称客流量。

(15)H: 总地铁线路日平均日客流量。

4模型建立

4.1影响地铁规划的影响因素的分析

4.1.1建设成本

考虑到地铁的修建成本较大,因此只需要考虑到路线长度与建设成本的关系,其他因素如高架桥的个数,路况的施工难度等影响较小的因素忽略不计。以地铁1号线路的每公里的修建成本为标准来衡量其他各线路。当线路总长较短时,不能有效的缓解交通压力。当线路总长较长时,考虑到地铁的运营是长期亏损的项目,需要政府进行财政补贴,不能充分的发挥其社会效益,因此地铁合适的长度能节约成本。

4.1.2长期效益

考虑到地铁的修建成本较大,因此只需要考虑到路线长度与建设成本的关系,其他因素如高架桥的个数,路况的施工难度等影响较小的因素忽略不计。以地铁1号线路的每公里的修建成本为标准来衡量其他各线路。当线路总长较短时,不能有效的缓解交通压力。当线路总长较长时,考虑到地铁的运营是长期亏损的项目,需要政府进行财政补贴,不能充分的发挥其社会效益,因此地铁合适的长度能节约成本。

4.1.3人口密度

由于成都市总人口数保持不变,人口密度在一定的程度上正相关的反映客流量的多少,地铁的客流量越大,其社会效益越大,经济效益越大(合理亏损值越小)。反之,社会效益小,亏损值越大。

4.1.4环境保护

规划是城市快速轨道交通建设环境保护的源头。这种规划要求达到城市总体规划深度,即结合城市总的发展目标,结合城市用地空间总体布局,确定城市轨道交通的总体布局,重要的点、线处要达到详细规划深度,保证城市的可持续性发展与管理。

模型一

4.2对目前所公布的地铁规划分析可有:

根据现有的地铁一号线的运行状况可知,第i条地铁(除了1.2.5线)上从

起点到终点的时间为:Ti=Si/v+(n-2)*t1.

地铁1号线有经过火车北站和天府广场,则T1=S1/v+(n-3)*t1+t2*2;

地铁2号和5号分别经过天府广场、火车北站,则T2=S2/v+(n-2)*t1+t2, T5=S5/v+(n-2)*t1+t2.

第i条地铁上列车完整从起点到终点的次数:n=T/Ti

由于乘客优先选择乘坐地铁,则可以认为列车在每一个站都是满载出发,即在任何一个站点乘客上下人数相同;同时由于在每个站点的下车的乘客数量是随机的,故可以根据建立随即数组,得每个站点肯下车的乘客N*Γ。同时可以根据前面假设下车人数与上车人数相等,则第i条地铁线每日的总的最大客流量为:

N+N*Γ*w(N(i)-2)

从已给出的图可知:

地铁(i)1 2 3 4 5 6 7

23 26 22 19 13 20 22

站点数

(Ni)

每条地铁的长度:

地铁(i) 1 2 3 4 5 6 7

长度(Si )(km )

32 51 49 39 25 37 42

根据成都市地铁运营地铁公司对地铁一号运行发布情况有:

运行时间(T ) 高峰期 列车间隔

(t1/t2) 列车平均运行速度(v ) 列车最大容量(N ) 6:30-21:30 7:30-22:30 7:30-9:30 17:00-19:00 40秒(一般站点)/

60秒(火车北站

和天府广场站)

45km/h 1800

模型二

4.3 根据成都市已经规划的地铁路线,在模型一的基础上进一步对其规划进行优化。

考虑到当客流量较大时,为了满足客服需要,需要增加站点密度(单位长度的站点数),有现有数据分析模拟得到客流量与站点密度的关系表图:

图一:客流量与站点密度模拟图

5、模型求解

模型一

通过数据计算(后附计算程序),可以得出每条地铁的日客流量:

地铁(i) 1 2 3 4 5 6 7

29.468 23.059 20.951 21.678 21.578 23.661 23.325 日客流量P

(万人)

163.45

总客流量

(万人)

模型二

通过spss对客流量和站点密度的模拟分析可以得到如下的线性关系更好的

关系图

由此可的Q=0.029M-0.151。有图可看出线路五站点密度与客流量关系偏离程度较大,当客流量为M5=21.578时,Q5=0.4748.此时的路线五的站台数应为0.4748*25=11.87。即为12个,而实际站点为13个,故需要减少1个。

6模型分析与检验

模型一

(1)本建模的假设是出行以地铁为优先,该假设比较合理,有一定的可靠性。

(2)假设每个站点上下乘客的数量相同,对于现在已有的交通压力和选择出行偏向上看,假设合理。

(3)根据模型求解所得,可知现在规划的地铁日总客流量为163.45万,现有公交日总客流量为400余万,而成都市公交有关部门预计2020年公交客流量将接近450余万,若按此时按照地铁客流量不变估计,到时地铁客流量将略低于公交客流量,缓解了公交大部分压力,很大程度的缓解了交通压力。

故从总体上看,可以有效的缓解交通压力,现有的规划可以满足。

模型二

(1)本模型是基于假设每条地铁路线的客流量在预期时间内保持不变,由于在一定时间内人口总数不会发生较大波动,因此该假设合理,有一

定的说服力。

(2)从spss模拟出来的关系图可以看出,Q=0.029M-0.151。有图可看出线路五站点密度与客流量关系偏离程度较大,当客流量为M=21.578

时,Q=0.4748.此时的路线五的站台数应为0.4748*25=11.87。即为

12个,而实际站点为13个,故需要减少1个。

(3)优化线路五站点后其关系图为:

误差分析

7模型评价

(1)假设在一段时间内人口数目不发生变化,其实不然,由于受到自然地理环境,经济社会发展水平,经济社会政策和政府行为等因素的影响,使得成都市的人口总数不可能保持不变。

(2)用随机数乘以列车最大容量来表示每一个站点的的换乘人数,从总体上可以有效的模拟出总的站点的上下客流量。但易知距离城市中心越近的站点上下乘客量应该大于地点较偏远的,故此时若用随机数算局部站点客流量就不是很合理。

(3)模型中的地铁运行数据均来自现已运行的地铁一号线,故有较高的可靠性,也符合实际。

(4)就模型二而言,其客流量与站台密度的线性关系较为明显,故可以相对准确的反映二者关系,然而优化5号线路时,减少了一个站点,此时已经对客流量产生了影响,但其影响相对于优化而言忽略不计,因此模型二还是

能够相对精确的模拟出客流量和站点密度的关系。

改进:1.查找公交数据,找出每个站点的客流量情况,以及利用OD算法计算出大致地铁对乘客的吸引率。

2.计算乘客的最大限度的等待地铁时间,估计每个站点可能的乘客量

8附件

s=[0 0 0 0 0 0 0 ];S=[0 0 0 0 0 0 0]; %空矩阵

N=[23 26 22 19 13 20 22]; %每条铁路的站点数组

u=[32 51 49 39 25 37 42]; %每条铁路长度

WW=sum(N)

W=sum(w); %总的站点数

t(1)=(23-3)*2/3+2; %每条铁路全程的停靠时间

t(2)=(26-2)*2/3+1;

t(3)=(22-1)*2/3;

t(4)=(19-1)*2/3;

t(5)=(13-2)*2/3+1;

t(6)=(20-1)*2/3;

t(7)=(22-1)*2/3;

s=[32 51 49 39 25 37 42]; %每条铁路的长度数组

t1=(s./45)*60.+t; %列车在每条铁路上的总行驶时间

n=15*60./t1; %平均每天能完全跑完全程的列车车数

for c=1:10000

for i=1:7

m(i)=1800+sum(1800*rand(1,w(i)-2))*n(i);%每条地铁的日总载客量

end

s=s+sum(m);

S=S+m;

end

H=s/10000 %总地铁线的平均日客流量

M=S/10000 %每条线路的平均日客流量

Q=N./u %每条线路的站点密度

建议

随着城市规模的不断扩大,经济结构的不断变化以及人们生活节奏的加快,现有的城市交通体系以无法满足人民的需要和应对城市的发展,急需新的交通方式。地铁拥有运输量大安全舒适,污染小等优点,是解决现有交通体系问题的有效方法。然而地铁建设成本

之大,且长期亏损是不可轻视的因素。若地铁规划的不合理,他不仅不能发挥起优势,且会成为当地经济发展的障碍,经济效益上会会出现巨额亏损,政府需要进行财政补贴,俨然会拖累政府。

通过我们建立的数学模型一分析得出,现有的规划的轨道交通路线在预期内能够很好的缓解交通压力,方便人们出行,路线的设置也是能最小程度地减少

对环境的负面影响,另外也兼顾到产业布局,譬如周边的主要工业区都有轨道路线的通过,能够很好的带动当地经济的全面发展。即说明整体的规划是合理可行,亦符合科学发展观的要求。(体现了领导层的英明决定。)。但就细节方面,通过我们的模型二分析发现,五号地铁线站点数的设置存在变差我们的建议方案是在不改变其长度的情况下,把站点数从13调整为12个,则更合理(我们的模拟证实的此点),这样在保证其运输功能不变的情况下,可以节约建设成本和运营成本,充分的利用有限的资源,亦能节约居民花在此线路上的时间(长度一定下,站点越多,单次运营时间越长)。

由于我们缺乏更多的实际的很具体的数据,而地铁的规划是需要更进一步的研究,故我们没有妄自给出具体的有先有的十三条改为怎样的十二条。因此建议相关人员对5号线途经的地点进行详细的彻底调研,以便规划出十二个站点如何分布的方案。。

数学建模大作业

兰州交通大学 数学建模大作业 学院:机电工程学院 班级:车辆093 学号:200903812 姓名:刘键学号:200903813 姓名:杨海斌学号:200903814 姓名:彭福泰学号:200903815 姓名:程二永学号:200903816 姓名:屈辉

高速公路问题 1 实验案例 (2) 1.1 高速公路问题(简化) (2) 1.1.1 问题分析 (3) 1.1.2 变量说明 (3) 1.1.3 模型假设 (3) 1.1.4 模型建立 (3) 1.1.5 模型求解 (4) 1.1.6 求解模型的程序 (4) 1实验案例 1.1 高速公路问题(简化) A城和B城之间准备建一条高速公路,B城位于A城正南20公里和正东30公里交汇处,它们之间有东西走向连绵起伏的山脉。公路造价与地形特点有关,图4.2.4给出了整个地区的大致地貌情况,显示可分为三条沿东西方向的地形带。 你的任务是建立一个数学模型,在给定三种地形上每公里的建造费用的情况下,确定最便宜的路线。图中直线AB显然是路径最短的,但不一定最便宜。而路径ARSB过山地的路段最短,但是否是最好的路径呢? A B 图8.2 高速公路修建地段

1.1.1 问题分析 在建设高速公路时,总是希望建造费用最小。如果要建造的起点、终点在同一地貌 中,那么最佳路线则是两点间连接的线段,这样费用则最省。因此本问题是一个典型的最优化问题,以建造费用最小为目标,需要做出的决策则是确定在各个地貌交界处的汇合点。 1.1.2 变量说明 i x :在第i 个汇合点上的横坐标(以左下角为直角坐标原点),i =1,2,…,4;x 5=30(指目的地B 点的横坐标) x=[x 1,x 2,x 3,x 4]T l i :第i 段南北方向的长度(i =1,2, (5) S i :在第i 段上地所建公路的长度(i =1,2, (5) 由问题分析可知, () ()() () 2 542552 432442 322332212 222 1211x x l S x x l S x x l S x x l S x l S -+=-+=-+=-+=+= C 1:平原每公里的造价(单位:万元/公里) C 2:高地每公里的造价(单位:万元/公里) C 3:高山每公里的造价(单位:万元/公里) 1.1.3 模型假设 1、 假设在相同地貌中修建高速公路,建造费用与公路长度成正比; 2、 假设在相同地貌中修建高速公路在一条直线上。在理论上,可以使得建造费用最少, 当然实际中一般达不到。 1.1.4 模型建立 在A 城与B 城之间建造一条高速公路的问题可以转化为下面的非线性规划模型。优化目标是在A 城与B 城之间建造高速公路的费用。 () 4,3,2,1300. .)(min 5142332211=≤≤++++=i x t s S C S C S C S C S C x f i

数学建模期末大作业

数学建模期末大作业论文 题目:A题美好的一天 组长:何曦(2014112739) 组员:李颖(2014112747)张楚良(2014112740) 班级:交通工程三班 指导老师:陈崇双

美好的一天 摘要 关键字:Dijkstra算法多目标规划有向赋权图 MATLAB SPSS

1 问题的重述 Hello!大家好,我是没头脑,住在西南宇宙大学巨偏远的新校区(节点22)。明天我一个外地同学来找我玩,TA叫不高兴,是个镁铝\帅锅,期待ing。我想陪TA在城里转转,当然是去些不怎么花钱的地方啦~~。目前想到的有林湾步行街(节点76)、郫郫公园(节点91),大川博物院(节点72)。交通嘛,只坐公交车好了,反正公交比较发达,你能想出来的路线都有车啊。另外,进城顺便办两件事,去老校区财务处一趟(节点50),还要去新东方(节点34)找我们宿舍老三,他抽奖中了两张电影票,我要霸占过来明晚吃了饭跟TA一起看。电影院嘛,TASHIWODE电影院(节点54)不错,比较便宜哈。我攒了很久的钱,订了明晚开心面馆(节点63)的烛光晚餐,额哈哈,为了TA,破费一下也是可以的哈。哦,对了,老三说了,他明天一整天都上课,只有中午休息的时候能接见我给我票。 我主要是想请教一下各位大神: 1)明天我应该怎么安排路线才能够让花在坐车上的时间最少? 2)考虑到可能堵车啊,TA比较没耐心啊,因为TA叫不高兴嘛。尤其是堵车啊,等车啊,这种事,万一影响了气氛就悲剧了。我感觉路口越密的地方越容易堵,如果考虑这个,又应该怎么安排路线呢? 3)我们城比较挫啊,连地图也没有,Z老师搞地图测绘的,他有地图,跟他要他不给,只给了我一个破表格(见附件,一个文件有两页啊),说“你自己画吧”。帮我画一张地图吧,最好能标明我们要去的那几个地方和比较省时的路线啊,拜托了~ 2 问题的分析 2.1 对问题一的分析 问题一要求安排路线使得坐车花费的时间最少。 对于问题一,假设公交车的速度维持不变,要使花费的时间最少,则将问题转化为对最短路径的求解。求解最短路径使用Dijkstra算法很容易进行求解,在运用MATLAB编程,得到最优的一条路径,则这条路径所对应的时间即为最少用时。 2.2 对问题二的分析 问题二要求在考虑堵车的情况下,路口越密越容易发生拥堵,安排路线是乘车时间最短。 对于问题二,在问题的基础上增加了附加因素,即公交车的速度会因道路的密集程度而发生改变,从而问题一建立的基本Dijkstra算法对于问题二就不再适用了,因此对问题一的基本Dijkstra算法进行改进,并结合蚁群算法的机理与特点,运用MATLAB求解出最短路径,保证了花费时间的最少性。 2.3 对问题三的分析 问题三要求根据提供的附件,画出一张地图,标明要去的那几个地方和比较省时的路线。 对于问题三,在问题一和问题二的基础上,根据求解的结果,运用SPSS软件画出地图。

数学建模论文大作业-打车软件竞争问题

打车软件的竞争问题 班级:电子科学与技术1102班组员: 二零一四年五月

打车软件的竞争问题 摘要:随着打车软件的日趋火热,越来越多的出行者使用打车软件预约出租车。基于移动互联网的打车软件相对于已往的传统的统一出租车电招平台庞杂的预定流程,显示出了很大的便捷优势,这种约车新形式服务正在悄然改变人们传统打车模式,它的新颖性、神奇性、创新性、高效性以及便利性在一定程度上迎合了人们现代化的生活方式。消费者每次使用打车软件预约出租车,被使用的软件公司都会给予司机和消费者相应的补贴,而且随着竞争的升级,补贴的力度越来越大。打车软件给一部分人带来了便捷,同时也带来了很多的社会问题,如拒载、爽约、空车不停等。正是这些争议性问题使得人们对这种新事物的出现产生一些疑虑。因此,国内一些城市开始对这类打车软件紧急进行“叫停”,使得目前这些打车软件的发展陷入迷茫状态。 本文通过建立科学的数学模型,论述了打车软件目前发展模式和存在的问题,并阐述了如何对打车软件进行安全管理与标准化的建议;同时,通过模型分析讨论了打车软件之间的竞争问题;最后指出打车软件企业需要不断地完善自己的软件产品,提高用户体验,使打车软件更符合出租车营运行业市场的需求。 关键词:打车软件;软件补贴;竞争;发展前景

一、打车软件市场发展状况 随着移动互联网的飞速发展,打车软件开始变得异常的火热,开始成为了越来越多的年轻时尚人士出行必备的工具。随着竞争的深入,各家打车软件公司依托于背后强大的母公司支撑和金元的后盾,开始了现金补贴的营销战略,消费者每次使用打车软件预约出租车,被使用的软件公司都会给予司机和消费者相应的补贴,而且随着竞争的升级,补贴的力度越来越大。如表1所示。 表1 补贴政策 时间事件 1月10日 嘀嘀打车软件在32个城市开通微信支付,使用微信支付,乘客车费立减10元、 司机立奖10元。 1月20日“快的打车”和支付宝宣布,乘客车费返现10元,司机奖励10元。 1月21日快的和支付宝再次提升力度,司机奖励增至15元。 2月10日嘀嘀打车宣布对乘客补贴降至5元。 2月10日快的打车表示奖励不变,乘客每单仍可得到10元奖励。 2月17日嘀嘀打车宣布,乘客奖10元,每天3次;北京、上海、深圳、杭州的司机每单奖10元,每天10单,其他城市的司机每天前5单每单奖5元,后5单每单奖10元。新乘客首单立减15元,新司机首单立奖50元。 2月17日支付宝和快的也宣布,乘客每单立减11元。司机北京每天奖10单,高峰期每单奖11元(每天5笔),非高峰期每单奖5元(每天5笔);上海、杭州、广州、深圳每天奖10单。 2月18日 嘀嘀打车开启“游戏补贴”模式:使用嘀嘀打车并且微信支付每次能随机获得 12至20元不等的补贴,每天3次。 2月18日快的打车表示每单最少给乘客减免13元,每天2次。 随之而来的是出租车行业的怪相:出租车司机的主要收入变成了软件公司的补贴,一个司机一个月保守的收入增加都在800~1800元;而消费者打车的费用也同样基本变由打车软件承担,有些短途的打车变成了免费甚至还赚钱。与此同时,问题和矛盾也出现了:不使用打车软件的消费者无法打到车,拒载、空车不停等投诉也比比皆是;司机开车时频频使用手机看打车软件,也产生了潜在交通

数学建模创新思维大作业

数学建模创新思维课大作业 一、使用MATLAB 求解一下问题,请贴出代码. 1. cos 1000x mx y e =,求''y >>clear >>clc >> syms x m; >> y=exp(x)*cos(m*x/1000); >> dfdx2=diff(y,x,2) dfdx2 = exp(x)*cos((m*x)/1000) - (m*exp(x)*sin((m*x)/1000))/500 - (m^2*exp(x)*cos((m*x)/1000))/1000000 >> L=simplify(dfdx2) L = -(exp(x)*(2000*m*sin((m*x)/1000) - 1000000*cos((m*x)/1000) + m^2*cos((m*x)/1000)))/1000000 2.计算22 1100x y e dxdy +?? >> clear >> clc; >> syms x y >> L=int(int(exp(x^2+y^2),x,0,1),y,0,1) L = (pi*erfi(1)^2)/4 3. 计算4 224x dx m x +? >> clear; >> syms x m; >> f=x^4/(m^2+4*x^2); >> intf=int(f,x) intf =

(m^3*atan((2*x)/m))/32 - (m^2*x)/16 + x^3/12 >> L=simplify(intf) L = (m^3*atan((2*x)/m))/32 - (m^2*x)/16 + x^3/12 4. (10)cos ,x y e mx y =求 >> clear; >> syms x m; >> y=exp(x)*cos(m*x); >> L=diff(y,x,10); >> L=simplify(L) L = -exp(x)*(10*m*sin(m*x) - cos(m*x) + 45*m^2*cos(m*x) - 210*m^4*cos(m*x) + 210*m^6*cos(m*x) - 45*m^8*cos(m*x) + m^10*cos(m*x) - 120*m^3*sin(m*x) + 252*m^5*sin(m*x) - 120*m^7*sin(m*x) + 10*m^9*sin(m*x)) 5. 0x =的泰勒展式(最高次幂为4). >> clear; >> syms m x; >> y=sqrt(m/1000.0+x); >> y1=taylor(y,x,'order',5); >> L=simplify(y1) L = (10^(1/2)*(m^4 + 500*m^3*x - 125000*m^2*x^2 + 62500000*m*x^3 - 39062500000*x^4))/(100*m^(7/2)) 6. Fibonacci 数列{}n x 的定义是121,1x x ==12,(3,4, )n n n x x x n --=+=用循环语句编程 给出该数列的前20项(要求将结果用向量的形式给出)。 >> x=[1,1]; >> for n=3:20

数学建模线性规划

线性规划 1.简介: 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源. 线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.规划问题。一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。 (x)都是线性函数,则该模型称为在优化模型中,如果目标函数f(x)和约束条件中的g i 线性规划。 2.线性规划的3个基本要素 (1)决策变量 (2)目标函数f(x) (x)≤0称为约束条件) (3)约束条件(g i 3.建立线性规划的模型 (1)找出待定的未知变量(决策变量),并用袋鼠符号表示他们。 (2)找出问题中所有的限制或者约束,写出未知变量的线性方程或线性不等式。

(3)找到模型的目标或判据,写成决策变量的线性函数,以便求出其最大值或最小值。以下题为例,来了解一下如何将线性规划用与实际的解题与生活中。 生产计划问题 某工厂生产甲乙两种产品,每单位产品消耗和获得的利润如表 试拟订生产计划,使该厂获得利润最大 解答:根据解题的三个基本步骤 (1)找出未知变量,用符号表示: 设甲乙两种产品的生产量分别为x 1与x 2 吨,利润为z万元。 (2)确定约束条件: 在这道题目当中约束条件都分别为:钢材,电力,工作日以及生产量不能为负的限制 钢材:9x 1+5 x 2 ≤360, 电力:4x 1+5 x 2 ≤200, 工作日:3x 1+10 x 2 ≤300, x 1≥0 ,x 2 ≥0, (3)确定目标函数: Z=7x 1+12 x 2

2015年数学建模作业题

数学模型课程期末大作业题 要求: 1)选题方式:共53题,每个同学做一题,你要做的题目编号是你的学号mod52所得的值+1。(例如:你的学号为119084157,则你要做的题为mod(119084157,52)+1=50)。 2)该类题目基本为优划问题,要求提交一篇完整格式的建模论文,文字使用小四号宋体,公式用word的公式编辑器编写,正文中不得出现程序以及程序冗长的输出结果,程序以附录形式附在论文的后面,若为规划求解必须用lingo 集合形式编程,其它可用Matlab或Mathmatica编写。 3)论文以纸质文档提交,同时要交一份文章和程序电子文档,由班长统一收上来,我要验证程序。 1、生产安排问题 某厂拥有4台磨床,2台立式钻床,3台卧式钻床,一台镗床和一台刨床,用以生产7种产品,记作p1至p7。工厂收益规定作产品售价减去原材料费用之余。每种产品单件的收益及所需各机床的加工工时(以小时计)列于下表(表1): 表 到6月底每种产品有存货50件。 工厂每周工作6天,每天2班,每班8小时。 不需要考虑排队等待加工的问题。 在工厂计划问题中,各台机床的停工维修不是规定了月份,而是选择最合

适的月份维修。除了磨床外,每月机床在这6个月中的一个月中必须停工维修;6个月中4台磨床只有2台需要维修。扩展工厂计划模型,以使可作上述灵活安排维修时间的决策。停工时间的这种灵活性价值若何? 注意,可假设每月仅有24个工作日。 5、生产计划 某厂有4台磨床,2台立钻,3台水平钻,1台镗床和1台刨床,用来生产7种产品,已知生产单位各种产品所需的有关设备台时以及它们的利润如表所示: 台镗床,4月—1台立钻,5月—1台磨床和1台立钻,6月—1台刨床和1台水平钻,被维修的设备在当月内不能安排生产。又知从1月到6月份市场对上述7种产品最大需求量如表所示: 量均不得超过100件。现在无库存,要求6月末各种产品各贮存50件。若该厂每月工作24天,每天两班,每班8小时,假定不考虑产品在各种设备上的加工顺序,要求: (a)该厂如何安排计划,使总利润最大; (b)在什么价格的条件下,该厂可考虑租用或购买有关的设备。 34、瓶颈机器上的任务排序 在工厂车间中,经常会出现整个车间的生产能力取决于一台机器的情况(例如,仅有一台的某型号机床,生产线上速度最慢的机器等)。这台机器就称为关键机器或瓶颈机器。此时很重要的一点就是尽可能地优化此机器将要处理的任务计划。

数学建模8-动态规划和目标规划

数学建模8-动态规划和目标规划 一、动态规划 1.动态规划是求解决策过程最优化的数学方法,主要用于求解以时间划分阶段的动态过程的 优化问题。但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 2.基本概念、基本方程: (1)阶段 (2)状态 (3)决策 (4)策略 (5)状态转移方程: (6)指标函数和最优值函数: (7)最优策略和最优轨线 (8)递归方程: 3.计算方法和逆序解法(此处较为抽象,理解较为困难,建议结合例子去看)

4.动态规划与静态规划的关系:一些静态规划只需要引入阶段变量、状态、决策等就可以用动态规划方法求解(详见书中例4) 5.若干典型问题的动态规划模型: (1)最短路线问题: (2)生产计划问题:状态定义为每阶段开始时的储存量x k,决策为每个阶段的产量,记每个阶段的需求量(已知量)为d k,则状态转移方程为 (3)资源分配问题:详见例5

状态转移方程: 最优值函数: 自有终端条件: (4)具体应用实例:详见例6、例7。 二、目标规划 1.实际问题中,衡量方案优劣要考虑多个目标,有主要的,有主要的,也有次要的;有最大值的,也有最小值的;有定量的,也有定性的;有相互补充的,也有相互对立的,这时可用目标规划解决。其求解思路有加权系数法、优先等级法、有效解法等。 2.基本概念: (1)正负偏差变量: (2)绝对(刚性)约束和目标约束 ,次位赋(3)优先因子(优先等级)与权系数:凡要求第一位达到的目标赋予优先因子P 1……以此类推。 予P 2 (4)目标规划的目标函数: (5)一般数学模型:

数学建模-线性规划

-1- 第一章线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济 效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947 年G. B. Dantzig 提出 求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性 规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000 元与3000 元。 生产甲机床需用A、B机器加工,加工时间分别为每台2 小时和1 小时;生产乙机床 需用A、B、C三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时 数分别为A 机器10 小时、B 机器8 小时和C 机器7 小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1 x 台甲机床和2 x 乙机床时总利润最大,则1 2 x , x 应满足 (目标函数)1 2 max z = 4x + 3x (1) s.t.(约束条件) ?? ? ?? ? ? ≥ ≤ + ≤ + ≤ , 0 7 8 2 10 1 2 2 1 2 1 2 x x x x x x x (2) 这里变量1 2 x , x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。由于上面的目标函数及约束条件均为线性

数学建模期末大作业-2013年

期末大作业题目 一、小行星的轨道问题 一天文学家要确定一颗小行星绕太阳运行的轨道,他在轨道平面内建立了以太阳为原点的直角坐标系,在两坐标轴上取天文观测单位。在5个不同的时间对 (1 ) 建立小行星运行的轨道方程并画出其图形; (2) 求出近日点和远日点及轨道的中心(是太阳吗?); (3) 计算轨道的周长。 二、发电机使用计划 为了满足每日电力需求(单位:兆瓦),可以选用四种不同类型的发电机。每日电力需求如下所示: 一最小输出功率。所有发电机都存在一个启动成本,以及工作于最小功率状态时的固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。这些数据均列于下表中。 电机不需要付出任何代价。我们的问题是: (1)在每个时段应分别使用哪些发电机才能够使每天的总成本最小? (2)如果增加表3中的关闭成本,那么在每个时段应分别使用哪些发电机才能够使每天的总成本最小?

(3)如果增加表4中的关闭成本,那么在每个时段应分别使用哪些发电机才能够使每天的总成本最小? 三、合理计税问题

所以此人一年上税为: 245×12+11445=14385元 在实际的执行过程中,每月的岗位津贴和年末一次性奖金实际上是放在一起结算给个人的,而具体每月发放多少岗位津贴和年末一次性发放多少奖金可以由职工本人在年初根据自己的需要进行选择。显然,不同的选择发放方式所缴纳的税是不同的,这就产生一个合理计税的问题。假定该事业单位一年中的津贴与奖金之和的上限是160000元,试解决下面这个问题: 四、光伏电池的选购问题 早在1839年,法国科学家贝克雷尔(Becqurel)就发现,光照能使半导体材料的不同部位之间产生电位差。这种现象后来被称为“光生伏特效应”,简称“光伏效应”。1954年,美国科学家恰宾和皮尔松在美国贝尔实验室首次制成了实用的单晶硅太阳电池,诞生了将太阳光能转换为电能的实用光伏发电技术。据预测,太阳能光伏发电在未来会占据世界能源消费的重要席位,不但要替代部分常规能源,而且将成为世界能源供应的主体。 现有一家公司欲在面积为30平方米的一片向阳的屋顶安装光伏电池以解决部分电力紧张的问题。请你利用附件提供的数据通过建立数学模型解决下面三个问题: (1)如果该公司准备投资6万5千元购买A或者B两种类型的光伏电池,请你为该公司确定购买方案使得发电总功率最大。 (2)如果购买的光伏电池的开路电压之间的差不能超过2V,请你为该公司重新确定购买方案。 (3)实际中还要考虑电池串并联后并网发电的要求,即如果要购买两种或者两种类型以上的电池时,不同型号的电池的购买数量应该相等。请你在满足(1)

数学建模(工厂资源规划问题)

工厂资源规划问题 冉光明 29 信息与计算科学 指导老师:赵姣珍

目录 摘要 (1) 关键词 (1) 问题的提出 (2) 问题重述与分析 (3) 符号说明 (4) 模型假设 (4) 模型建立与求解 (5) 模型检验 (9) 模型推广 (10) 参考文献 (11) 附录 (12)

摘要:本问题是个优化问题。问题首先选择合适的决策变量即各种产品数,然后通过决策变量来表达约束条件和目标函数,再利用或编写程序,求得最优产品品种计划;最后通过优化模型对问题作以解释,得出当技术服务消耗33小时、劳动力消耗67小时、不消耗行政管理时,得到的是最优品种规划。 问题一回答:当技术服务消耗33小时、劳动力消耗67小时、不消耗行政管理时, 产品不值得生产。用运算分析,当产品的利润增加至25 3 时,若使产品品种计划最优, 此时需要消耗技术服务29h,劳动力消耗46h,行政管理消耗25h。 问题二回答:利用得到当技术服务增加1h时,利润增加2.5元;劳动力增加1h,利润增加1元;行政管理的增减不会影响利润。 问题三回答:增加的决策变量,调整目标函数。当技术服务消耗33h,劳动力消耗17h,不消耗行政管理,新增量50h时,管理部门采取这样的决策得到最优的产品品种规划。 问题四回答:增加新的约束条件,此时当技术服务消耗32h,劳动力消耗58h,行政管理消耗10h时,得到最优产品品种规划。 本文对模型的求解给出在线性约束条件下的获利最多的产品品种规划。 关键词:线性规划;优化模型;最优品种规划

问题的提出 某工厂制造三种产品,生产这三种产品需要三种资源:技术服务、劳动力和行政管理。下表列出了三种单位产品对每种资源的需要量: 现有100h的技术服务、600h劳动力和300h的行政管理时间可使用,求最优产品品种规划。且回答下列问题: ⑴若产品值得生产的话,它的利润是多少?假使将产品的利润增加至25/3元,求获利最多的产品品种规划。 ⑵确定全部资源的影子价格。 ⑶制造部门提出建议,要生产一种新产品,该种产品需要技术服务1h、劳动力4h 和行政管理4h。销售部门预测这种产品售出时有8元的单位利润。管理部门应有怎样的决策? ⑷假定该工厂至少生产10件产品,试确定最优产品品种规划。

数学建模大作业

《建模基础》习题 1.超市进货问题 一家大型超市每天需要储存大量物品以满足顾客的需要。现在只考虑其中一种物品的销售和进货情况。 (1)假设需求是随机的,不考虑缺货损失的情况下,确定最佳进货策略。 (2)考虑缺货损失情况下的最佳进货策略。 (3)可进一步考虑有替代品的情况下的最佳进货策略。 注:测试数据可以自己设置。 2.城市快速交通线项目问题 随着经济和社会的快速发展,我们不得不面对城市快速交通线项目问题。城市快速交通线项目的建设与运营涉及公众利益,政府通常要对票价实行管制。票价的高低影响到公众的利益、项目投资者的利益和政府的财政支出。因此,应兼顾公众利益、投资者利益和政府的财政支付能力。 要求: (1)试建立最优票价模型,从而为乘客选择交通工具提供指导。 (2)城市快速交通线项目票价和运量之间存在着相关关系,对于城市快速交通线项目,需要兼顾公众的利益、项目投资者的利益和政府的承受能力。请建立数学模型,结合运量预测研究票价的合理水平。 (3)当项目的票款收入不足于维持正常运营或不足于使民间投资者获得合理的投资回报时,政府需要采取适当的方式给予投资者以合理的经济补偿。试分析并确定合理的年经济补偿或一次性的经济补偿。 3.电梯控制问题 学校某楼北楼有两台电梯。等电梯的人给出要上下的信号,电梯只有在空闲或同方向行进时才接受这个指令。然而,电梯经常出现十分拥挤的状况,特别在上下课的时候,要等很长的时间,所以埋怨声很多。你能否为电梯设计一个调度方案,减少大家的等待时间,减少师生的不满。 4传染病的疫情分析 假设某直接接触性高危型传染病是经由近距离接触已被传染病人,或在病源存活时间内直接接触受病源感染的物件才有可能感染。以往研究已有结果显示一个人的人际关系及活动范围大部分是固定不变的,也就是一个人大部分时间会近接触的人都是以前的熟识,到访的地点大多以前曾去过。而且一个人熟识常往来的亲友数目不多,常去的地点也不太多。只有一些很小的机会会近距离接触到不熟识的人和去以前较少去过的地点。请以上述讨论为出发点,建立一个模型,分析一个正在蔓延中的传染病。在模型建立时可以再参考以下事项: (1)可以H1N1为实例,搜集相关资料;

2015数学建模选修大作业

中华女子学院 成绩2014 — 2015学年第二学期期末考试 (论文类) 论文题目数学建模算法之蒙特卡罗算法 课程代码1077080001 课程名称数学建模 学号130801019

姓名陈可心 院系计算机系 专业计算机科学与技术 考试时间2015年5月27日 一、数学建模十大算法 1、蒙特卡罗算法 该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。接下来本文将着重介绍这一算法。 2、数据拟合、参数估计、插值等数据处理算法 比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具。 3、线性规划、整数规划、多元规划、二次规划等规划类问题 建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现。这个也是我们数学建模选修课时主要介绍的问题,所以对这方面比较熟悉,也了解了Lindo、Lingo软件的基本用法。 4、图论算法 这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,上学期数据结构课程以及离散数学课程中都有介绍。它提供了对很多问题都很有效的一种简单而系统的建模方式。

5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7、网格算法和穷举法 网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8、一些连续离散化方法 很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9、数值分析算法 如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。10、图象处理算法 赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理。 二、蒙特卡罗方法 2.1算法简介 蒙特·卡罗方法(Monte Carlo method),也称统计模拟方法,1946年,美国拉斯阿莫斯国家实验室的三位科学家John von Neumann,Stan Ulam 和 Nick

2012数学建模大作业题目

D题会议筹备 某市的一家会议服务公司负责承办某专业领域的一届全国性会议,会议筹备组要为与会代表预订宾馆客房,并租用客车接送代表。由于预计会议规模庞大,而适于接待这次会议的几家宾馆的客房数量有限,所以只能让与会代表分散到若干家宾馆住宿。为了便于管理,除了尽量满足代表在价位等方面的需求之外,所选择的宾馆数量应该尽可能少,并且距离上比较靠近。 筹备组经过实地考察,筛选出10家宾馆作为备选,它们的名称用代号①至⑩表示,相对位置见附图,有关客房的规格、间数、价格等数据见附表1。 根据这届会议代表回执整理出来的有关住房的信息见附表2。从以往几届会议情况看,凡是发来回执的代表都会来开会,同时也有一些与会的代表事先不提交回执,相关数据见附表3。附表2,3都可以作为预订宾馆客房的参考。 需要说明的是,虽然客房房费由与会代表自付,但是如果预订客房的数量大于实际用房数量,筹备组需要支付一天的空房费,而若出现预订客房数量不足,则将造成非常被动的局面,引起代表的不满。 会议期间有一天的上午会安排参加会议的代表外出参观,筹备组还要向汽车租赁公司租用客车接送代表。现有45座、36座和33座三种类型的客车,租金分别是半天800元、700元和600元。 要求请你们通过数学建模方法,从经济、方便、代表满意等方面,为会议筹备组制定一个预订宾馆客房、租用客车和安排停车的合理方案。具体解决如下问题: (1)根据历年的统计数据,预测今年参加实际参加会议的人数 (2)确定客房预订的方案,即每个宾馆各预订各种类型的房间多少间? (3)假设客车的停车点可以是附图中马路边的任意位置,根据房间安排,计算一下如果安排一个乘车点,应该安排在什么位置才能使代表达到乘车点的总距离最小,安排各种车辆各多少量?如果可以安排两个乘车点情况又如何?

数学建模之规划问答

一、线性规划 1.简介 1.1适用情况 用现有资源来安排生产,以取得最大经济效益的问题。如: (1)资源的合理利用 (2)投资的风险与利用问题 (3)合理下料问题 (4)合理配料问题 (5)运 输 问 题 (6)作物布局问题 (7)多周期生产平滑模型 (8)公交车调度安排 1.2建立线性规划的条件 (1)要求解问题的目标函数能用数值指标来反映,且为线性函数; (2)要求达到的目标是在一定条件下实现的,这些约束可用线性等式或不等式描述。 1.3线性规划模型的构成 决策变量、目标函数、约束条件。 2、一般线性规划问题 数学标准形式: 目标函数: 1 max == ∑ n j j j z c x 约束条件:1 ,1,2,...,,..0,1,2,...,.=?==???≥=?∑n ij j i j j a x b i m s t x j n matlab 标准形式:

min , ,.,.?≤?? ?=??≤≤? T s t Aeq beq lb ub f x A x b x x 3、可以转化为线性规划的问题 例:求解下列数学规划问题 1234123412341234min ||2||3||4||,2,..31,123. 2=+++? ?--+≤-?-+-≤-???--+≤-? z x x x x x x x x s t x x x x x x x x 解:作変量変换1||||,,1,2,3,4,22 +-= ==i i i i i x x x x u v i 并把新变量重新排序成一维变量[]1414,,,,,??==???? L L T u y u u v v v ,则可把模型转化为线性规划模型 []min , ,,..0.???-≤???????≥? T c y u A A b s t v y 其中:[]1,2,3,4,1,2,3,4;=T c 12,1,;2??=---??? ?T b 111111131 - - ?? ??= - -???? -1 -1 3??A 。 利用matlab 计算得最优解:12342,0,=-===x x x x 最优值z=2。 程序如下: 略

数学建模课程作业

问题一养老金问题 一、问题重述 一个人为了积累养老金,他每月按时到银行存100元。银行的年利率为4%,且可以任意分段按复利计算,试求解以下问题: <1> 试问此人在5年后共积累了多少养老金? <2> 如果存款和复利按日计算,则他又有多少养老金? <3> 如果复利和存款连续计算? 二、问题的分析 复利的计算是对本金及其产生的利息一并计算,也就是利上有利。 复利计算的特点:把上期末的本利和作为下一期的一并作为本金,在计算时每一期本金的数额是不同的。 复利的计算公式是: n 1(+ = ? S) i p 其中:P=本金;i=利率;n=持有期限 问题<1>求解以年为周期,五年以后共积累的养老金,且可以任意分段按复利计算,对于此问题我们可以假设从2010年开始,通过使用EXCEL求解,建立模型如下:2010年1月份的能存满5年100*(1.04)^5,剩下2010年的11个月只能做存满4年算:11*100*(1.04)^4; 2011年1月份的能存满4年100*(1.04)^4,剩下2011年的11个月只能做存满3年算:11*100*(1.04)^3; 2012年1月份的能存满3年100*(1.04)^3,剩下2012年的11个月只能做存满2年算:11*100*(1.04)^2; 2013年1月份的能存满2年100*(1.04)^2,剩下2013年的11个月只能做存满1年算:11*100*1.04; 2014年1月份的能存满1年100*1.04,剩下2014年的11个月均没有达到存满一年

的条件。 问题<2>求解以日为周期,五年以后共积累的养老金,且可以任意分段按复利计算。对于此问题我们同样假设从2010年开始,通过使用EXCEL求解。银行的年利率为4%,转化为日利率为:(4/365)%=0.0109589%。使用EXCEL中的FV函数求解。 FV函数是基于固定利率及等额分期付款方式,返回某项投资的未来值。 语法 FV(rate,nper,pmt,pv,type) 其中各个参数如下: rate 为各期利率; nper 为总投资(或贷款)期,即该项投资(或贷款)的付款期总数; pmt 为各期所应支付的金额,其数值在整个年金期间保持不变,通常 pmt 包括本金和利息,但不包括其他费用及税款。如果忽略 pmt,则必须包含 pv 参数。 pv 为现值,即从该项投资开始计算时已经入帐的款项,或一系列未来付款的当前值的累积和,也称为本金。如果省略 pv,则假设其值为零,并且必须包括 pmt 参数。 type 数字0或 1,用以指定各期的付款时间是在期初还是期末,具体表示意思如下: 问题<3>复利和存款连续计算,五年以后共积累的养老金,且可以任意分段按复利计算。 复利和存款连续计算的话,计算公式如下: ni ? = ( p e S) 其中:P=本金;i=利率;n=持有期限 三、问题的求解 通过EXCEL软件求解以上模型得到以下结果:

数学建模(工厂资源规划问题)

工厂资源规划问题 冉光明 2010070102019 信息与计算科学 指导老师:赵姣珍

目录 摘要 (1) 关键词 (1) 问题的提出 (2) 问题重述与分析 (3) 符号说明 (4) 模型假设 (4) 模型建立与求解 (5) 模型检验 (9) 模型推广 (10) 参考文献 (11) 附录 (12)

摘要:本问题是个优化问题。问题首先选择合适的决策变量即各种产品数,然后通过决策变量来表达约束条件和目标函数,再利用matlab或lingo编写程序,求得最优产品品种计划;最后通过优化模型对问题作以解释,得出当技术服务消耗33小时、劳动力消耗67小时、不消耗行政管理时,得到的是最优品种规划。 问题一回答:当技术服务消耗33小时、劳动力消耗67小时、不消耗行政管理时, 时,若使产品品产品III不值得生产。用matlab运算分析,当产品III的利润增加至25 3 种计划最优,此时需要消耗技术服务29h,劳动力消耗46h,行政管理消耗25h。 问题二回答:利用lingo得到当技术服务增加1h时,利润增加2.5元;劳动力增加1h,利润增加1元;行政管理的增减不会影响利润。 问题三回答:增加的决策变量,调整目标函数。当技术服务消耗33h,劳动力消耗17h,不消耗行政管理,新增量50h时,管理部门采取这样的决策得到最优的产品品种规划。 问题四回答:增加新的约束条件,此时当技术服务消耗32h,劳动力消耗58h,行政管理消耗10h时,得到最优产品品种规划。 本文对模型的求解给出在线性约束条件下的获利最多的产品品种规划。 关键词:线性规划;优化模型;最优品种规划

问题的提出 某工厂制造三种产品,生产这三种产品需要三种资源:技术服务、劳动力和行政管理。下表列出了三种单位产品对每种资源的需要量: 资源利润 技术服务劳动力行政管理 产品I 1 10 2 10 II 1 4 2 6 III 1 5 6 4 现有100h的技术服务、600h劳动力和300h的行政管理时间可使用,求最优产品品种规划。且回答下列问题: ⑴若产品III值得生产的话,它的利润是多少?假使将产品III的利润增加至25/3元,求获利最多的产品品种规划。 ⑵确定全部资源的影子价格。 ⑶制造部门提出建议,要生产一种新产品,该种产品需要技术服务1h、劳动力4h 和行政管理4h。销售部门预测这种产品售出时有8元的单位利润。管理部门应有怎样的决策? ⑷假定该工厂至少生产10件产品III,试确定最优产品品种规划。

数学建模常见问题

1 预测模块:灰色预测、时间序列预测、神经网络预测、曲线拟合(线性回归); 2 归类判别:欧氏距离判别、fisher判别等; 3 图论:最短路径求法; 4 最优化:列方程组用lindo 或lingo软件解; 5 其他方法:层次分析法马尔可夫链主成分析法等; 6 用到软件:matlab lindo (lingo)excel ; 7 比赛前写几篇数模论文。 这是每年参赛的赛提以及获奖作品的解法,你自己估量着吧…… 赛题解法 93A非线性交调的频率设计拟合、规划 93B足球队排名图论、层次分析、整数规划 94A逢山开路图论、插值、动态规划 94B锁具装箱问题图论、组合数学 95A飞行管理问题非线性规划、线性规划 95B天车与冶炼炉的作业调度动态规划、排队论、图论 96A最优捕鱼策略微分方程、优化 96B节水洗衣机非线性规划 97A零件的参数设计非线性规划 97B截断切割的最优排列随机模拟、图论 98A一类投资组合问题多目标优化、非线性规划 98B灾情巡视的最佳路线图论、组合优化 99A自动化车床管理随机优化、计算机模拟 99B钻井布局0-1规划、图论 00A DNA序列分类模式识别、Fisher判别、人工神经网络 00B钢管订购和运输组合优化、运输问题 01A血管三维重建曲线拟合、曲面重建 01B 工交车调度问题多目标规划 02A车灯线光源的优化非线性规划 02B彩票问题单目标决策 03A SARS的传播微分方程、差分方程 03B 露天矿生产的车辆安排整数规划、运输问题 04A奥运会临时超市网点设计统计分析、数据处理、优化 04B电力市场的输电阻塞管理数据拟合、优化 05A长江水质的评价和预测预测评价、数据处理 05B DVD在线租赁随机规划、整数规划

最新数学建模作业

《数学建模》作业 学号姓名工作量100 % 专业所属学院 指导教师 二〇一七年六月

数学建模作业 第一部分:请在以下两题中任选一题完成(20分)。 1、(马王堆一号墓入葬年代的测定建模问题)湖南省长沙市马王堆一号墓于1972年8月发掘出土,其时测得出土的木炭标本中碳-14平均原子蜕变数为29.78次/分钟,而新烧成的同种木材的木炭标本中碳-14(C-14)原子蜕变数为38.37次/分钟.又知碳-14的半衰期为5730年,试推断该一号墓入葬的大致年代。 问题分析:放射性元素衰变的速度是不受环境影响的,它总是和该元素当前的量成正比,运用碳—14测定文物或化石年代的方法是基于下面的理由: (1)宇宙射线不断轰击大气层,使大气层中产生碳—14而同时碳—14又在不断衰变,从而大气层中碳—14含量处于动态平衡中,且其含量自古至今基本上是不变的; (2)碳—14被动植物体所吸收,所以活着的生物体由于不断的新陈代谢,体内的碳—14也处于动态平衡中,其含量在物体中所占的百分比自古至今都是一样的; (3)动植物的尸体由于停止了从环境中摄取碳—14,从而其体内碳—14含量将由于衰变的不断减少,碳定年代法就是根据碳—14的减少量来判断物体的大致死亡时间。

模型建立 设t 时刻生物体中碳—14的含量为x (t ),放射性物质的半衰期(即放射性物质的原子数衰减一半所需的时间)为T ,生物体死亡时间为t0,则由放射性物质衰变规律得数学模型 ?????=-=,)(,00 x t x x dt dx λ ① 其中0>λ称为衰变系数,由放射性物质所决定,x 0为生物体在 死亡时刻t 0时的碳—14含量。 模型求解 对所得的一阶线性微分方程模型①采用同变量分离法求解,得 e x t t x t )(00)(--=λ 由于T t t =-0时,有 021)()(x T t x t x =+= 代入上式,有 T e T 2ln ,212= =-λ 所以得 T t t e x t x ) (2ln 00)(--= ② 这就是生物体中碳—14的含量随时间衰变的规律,由之易解得 ) ()(ln 2ln 00t x t x T t t =- ③ 将所得的数学模型的一般解应用于本例,此时以 T=5730, 37.380=x (新木炭标准中碳—14原子蜕变数),

相关主题
文本预览
相关文档 最新文档