当前位置:文档之家› 电气工程师对电动机配线口诀

电气工程师对电动机配线口诀

电气工程师对电动机配线口诀

电气工程师对电动机配线口诀

对电动机配线口诀

1.用途根据电动机容量(千瓦)直接决定所配支路导线截面的大小,不必将电动机容量

先算出电流,再来选导线截面.

2.口诀铝芯绝缘线各种截面,所配电动机容量(千瓦)的加数关

系:

3.说明此口诀是对三相380伏电动机配线的.导线为铝芯绝缘线(或塑料线)穿管敷设.

4.由于电动机容量等级较多,因此,口诀反过来表示,即指出不同的导线截面所配电动机容量的范围.

这个范围是以比"截面数加大多少"来表示.

2.5加三,4加四6后加六,25

五120导线,配百数为此,先要了解一般电动机容量(千瓦)的排列:0.81.11.52.234 5.57.51O13172230405575100"2.5加三",表示2.5平方毫米的铝芯绝缘线穿管敷设,能配"2.5加三"千瓦的电动机,即最大可配备5.5千瓦的电动机."4加四",是4平方毫米的铝芯绝缘线,穿管敷设,能配"4加四"千瓦的电动机.即最大可配8千瓦(产品只有相近的7.5千瓦)的电动机."6后加六"是说从6平方毫米开始,及以后都能配"加大六"千瓦的电动机.即6平方毫米可配12千瓦,10平方毫米可配16千瓦,16平方毫米可配22千瓦."25五"是说从25平方毫米开始,加数由六改变为五了.即25平方毫米可配30千瓦,35平方毫米可配40千瓦,50平方毫米可配55千瓦,70平方毫米可配75千瓦."120导线配百数"(读"百二导线配百数")是说电动机大到100千瓦.导线截面便不是以"加大"的关系来配电动机,而是120平方毫米的导线反而只能配100千瓦的电动机了.

【例1】7千瓦电动机配截面为4平方毫米的导线(按"4加四")

【例2】17千瓦电动机配截面为16平方毫米的导线(按"6后加六").

【例3】28千瓦的电动机配截面为25平方毫米的导线按("25五")以上配线稍有余裕,(目前有提高导线载流的趋势.因此,有些手册中导线所配电动机容量,比这里提出的要大些,特别是小截面导线所配的电动机.)因此,即使容量稍超过一点(如16平方毫米配23千瓦),或者容量虽不超过,但环境温度较高,也都可适用.

电机控制线路图大全

电机控制线路图大全 Y-△(星三角)降压启动控制线路-接触器应用接线图 Y-△降压启动适用于正常工作时定子绕组作三角形连接的电动机。由于方法简便且经济,所以使用较普遍,但启动转矩只有全压启动的三分之…,故只适用于空载或轻载启动。 Y-△启动器有OX3-13、Qx3—30、、Qx3—55、QX3—125型等。OX3后丽的数字系指额定电压为380V时,启动器可控制电动机的最大功率值(以kW计)。 OX3—13型Y-△自动启动器的控制线路如图11—11所示。(https://www.doczj.com/doc/a217475452.html,) 合上电源开关Qs后,按下启动按钮SB2,接触器KM和KMl线圈同时获电吸合,KM和KMl 主触头闭合,电动机接成Y降压启动,与此同时,时间继电器KT的线圈同时获电,I 星形—三角形降压起动控制线路

星形——三角形降压起动控制线路 星形——三角形( Y —△)降压起动是指电动机起动时,把定子绕组接成星形,以降低起动电压,减小起动电流;待电动机起动后,再把定子绕组改接成三角形,使电动机全压运行。 Y —△起动只能用于正常运行时为△形接法的电动机。 1.按钮、接触器控制 Y —△降压起动控制线路 图 2.19 ( a )为按钮、接触器控制 Y —△降压起动控制线路。线路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合, KM1 自锁,电动机星形起动,待电动机转速接近额定转速时,按下 SB2 , KM2 断电、 KM3 得电并自锁,电动机转换成三角形全压运行。 2.时间继电器控制 Y —△降压起动控制线路 图 2.19 ( b )为时间继电器自动控制 Y —△降压起动控制线路,电路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合,电动机星形起动,同时 KT 也得电,经延时后时间继电器 KT 常闭触头打开,使得 KM2 断电,常开触头闭合,使得 KM3 得电闭合并自锁,电动机由星形切换成三角形正常运行。 图2定子串电阻降压起动控制线路

电动机配配线口诀

我们在做具体的控制系统时,常要需要计算负载的大小来选择电缆线的规格,我们可以根据电机铭牌来确定,也可以通过一些公式来算出来,其实有一种简单的经验算法很容易估算出来,虽然不是绝对正确,也足以用来做为选择电缆规格的依据了。方法是,我们常用的三相异步电机一般有两种接法,一种是星形一种是角形。除较小的电机外,多数是角形,我们就说角形的,如果是一台380V供电的7.5KW的三相异步电机,那么它的额定每相工作电流约是15A。实际通过算出来可能是比这个略小一点,我们完全可以按这个电流来选择电缆线了。如果是一台380V供电的4KW的三相异步电机,那么它的额定每相工作电流约是8A。可能我们以经看出来规律,也就是1千瓦功率约需2A电流,一个75KW的电机它的额定工作电流约是150A。你可以通过公式的方法算算,结果是比较接近的。 下面我们说说怎么根据电流来选择多大截面积的电缆,我们选择的电缆为铜芯电缆。我们举例说明,我们要给一台18.5KW的电机配线,可以算出它的额定电流为37A,也是根据经验1平方毫米铜线可以通过4~6A的电流,我们取其中间值5A,那么电缆线的截面积应为37/5=6.4平方毫米。我们的标准电缆有6平方毫米和平共10平方毫米的,为了保证可靠性,我们选择10平方的电缆。其实具体选择中我们也可能会选择6平方的,这要综合考虑,负载工作时消耗的功率是多大,如果只有额定的60%不到的话,可以这样选择,如果基本上要工作在额定功率附近,那只能选择10平方的电缆了 电机如何配线?选用断路器,热继电器? 如何根据电机的功率,考虑电机的额定电压,电流配线,选用断路器,热继电器三相二百二电机,千瓦三点五安培。常用三百八电机,一个千瓦两安培。低压六百六电机,千瓦一点二安培。高压三千伏电机,四个千瓦一安培。高压六千伏电机,八个千瓦一安培。 一台三相电机,除知道其额定电压以外,还必须知道其额定功率及额定电流,比如:一台三相异步电机,7.5KW,4极(常用一般有2、4、6级,级数不一样,其额定电流也有区别),其额定电路约为15A 。 1、断路器:一般选用其额定电流1.5-2.5倍,常用DZ47-60 32A, 2、电线:根据电机的额定电流15A,选择合适载流量的电线,如果电机频繁启动,选相对粗一点的线,反之可以相对细一点,载流量有相关计算口决,这里我们选择4平方, 3、交流接触器,根据电机功率选择合适大小就行,1.5-2.5倍,一般其选型手册上有型号,这里我们选择正泰CJX2--2510,还得注意辅助触点的匹配,不要到时候买回来辅助触点不够用。 4、热继电器,其整定电流都是可以调整,一般调至电机额定电流1-1.2倍。 断路器继电器电机配线电机如何配线? (1)多台电机配导线:把电机的总功率相加乘以2是它们的总电流。(2)在线路50米以内导线截面是:总电流除4.(再适当放一点余量)(3)线路长越过50米外导线截面:总电流除3.(再适当放一点途量)(4)120平方以上的大电缆的电流密度要更低一些,断路器: (1)断路器选择:电机的额定电流乘以2.5倍,整定电流是电机的1.5倍就可以了,这样保证频繁启动,也保证短路动作灵敏。 热继电器?热继电器的整定值是电机额定电流是1.1倍。 交流接触器:交流接触器选择是电机流的2.5倍。这样可以保证长期频繁工作。 (22KW电机,三相,电压380V,功率因数0.8.计算的额定电流是41.8A,直接启动冲击电流4~7计算。 按照最大冲击电流可算得是292A,空气开关、接触器选用63A的就够了。 那开起来的时候会不会跳闸呢? 他这个起动电流大是瞬间的吧回答

解析国标图集_常用电机控制电路图_

BUILDING ELECTRICITY 2011年 第期 Jun.2011Vol.30No.6 6 *:国家科技支撑计划子课题,课题名称:村镇小康住宅规划设计成套技术研究(课题任务书编号:2006BAJ04A01),子课 题名称:村镇住宅设备与设施设计技术集成及软件开发(子课题任务书编号:2006BAJ04A01-3)。Xu Lingxian Sun Lan (China Institute of Building Standard Design &Research ,Beijing 100048,China ) 徐玲献 孙 兰(中国建筑标准设计研究院,北京市 100048) Explanation and Analysis of National Standardization Collective Drawings Control Circuit Diagrams of Common Electric Machines * 解析国标图集《常用电机控制电路图》摘 要 对多年来国家建筑标准设计图集 10D303-2~3《常用电机控制电路图》(2010年合订本,已修编出版发行)使用中遇到的疑问进行汇总、解析,以加深读者对10D303-2~3的理解。 关键词信号灯端子标志消防控制室的监控消防风机消防水泵 过负荷 水源水池水位 双 速风机 0引言 国家建筑标准设计图集10D303-2~3《常用电 机控制电路图》 (2010年合订本) (以下简称 10D303)适用于民用及一般工业建筑内3/N /PE ~220/380V 50Hz 系统中常用风机和水泵的控制,是对99D303-2《常用风机控制电路图》和01D303-3《常用水泵控制电路图》的修编。根据现行的国家标 准,对图集中涉及到的项目分类代码和图形符号进行了修改,并在原图集方案的基础上,增加了两用单速风机、平时用双速风机、射流风机联动排风机及冷冻(冷却)水泵控制电路图。根据节能环保的要求,增加了YDT 型双速风机的控制方案。并根据电气产品的发展,增加了控制与保护开关电器(CPS )和电机控制器的控制方案,供设计人员直接选用。 10D303从立项调研、修编到送印,历经两年多的时间,期间收到了不少反馈意见和建议,为图集的编制提供了宝贵的建议,在此答谢。 《常用电机控制电路图》 (2002年合订本)发行 十余年中一直受到读者青睐,使用者涉及设计、生产和建造等多领域,通过国标热线和其他途径咨询问题的读者很多。问题中除风机和水泵的控制电路外,经常牵涉到现行的国家标准、制图要求和电气设计技术等多方面的内容,有些问题无法通过修编图集 10D303直接解决,因此借助《建筑电气》平台,把《常用电机控制电路图》经常咨询的问题归纳汇总、解析,以利于读者更好使用和理解10D303图集。 1有关国家标准、规范和制图要求的问题 1.1指示器(信号灯)和操作器(按钮)的颜色 标识 10D303中有关信号灯和按钮的颜色标识是依据国家标准GB /T 4025-2003/IEC 60073:1996《人-机界面标志标识的基本和安全规则 指示器和 作者信息 徐玲献,女,中国建筑标准设计研究院,高级工程师,主任工程师。 孙兰,女,中国建筑标准设计研究院,教授级高级工程师,院副总工程师。 Abstract The collective drawings of national building standard design 10D303-2~3Control Circuit Diagrams of Common Electric Machines (2010bound volume )has been revised and published.This paper summarizes and analyzes the questions encountered during use over the years so as to deepen the readers 'understanding of the collective drawings. Key words Signal light Terminal symbol Fire control room monitoring Fire fan Fire pump Overload Water level of the water tank of water source Two -speed fans * 34 330

典型电动机控制原理图及解说

1、定时自动循环控制电路 说明: 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器K A吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并 联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合 触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时 开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电 延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电 。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止 。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动 合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触 点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此

时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮 SB2串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次 起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断 开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理: 图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2, KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机 的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2 电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件 ,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制 KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路 只有满足M1电动机先起动的条件,才能起动M2电动机。 3、电动机顺序控制电路

三相异步电动机的控制电路图

三相异步电动机的控制电路 一、复习思路及要求 1. 题型:选择题、技能题、简答题。 2. 必须熟练分析各种控制电路的工作原理,只有熟悉了工作原理才能正确绘制控制电路;补画控制电路;识别电路图中的错误;对故障进行正确分析处理;设计一些简单的控制电路;并且对PLC中简单的程序设计也有帮助。 3. 该部分容是非常重要的,要熟悉电路形式及控制形式:自锁、联锁的作用及连接方式;点动、连续运转;具有过载保护的连续运转控制电路是基础。 4. 需要掌握的控制电路有:⑴点动单向运转控制电路;⑵连续单向运转控制电路;⑶点动与连续混合控制电路;⑷接触器联锁双向运转控制电路;⑸按钮联锁双向运转控制电路;⑹接触器按钮双重联锁双向运转控制电路;(7)降压起动控制电路。 二、控制电路的分析 1.单向点动转控制电路 2.单向连续运转控制电路 3.连续与点动混合控制电路(一) 4.连续与点动混合控制电路(二) 5.连续与点动混合控制电路(三)

该电路中使用了中间继电器。其电器符号是KA。作用是:当其他继电器的触点数量不够时,可借助中间继电器来扩展触头数和触点容量,起到信号中继作用。 注:通过以上控制电路明确自锁的作用及其连接方式.......................。 6.多地控制电路 该控制电路能实现电动机的两地控制。起动按钮并联,停止按钮串联。(图中如果SB1、SB2控制A地,则SB3、SB4控制B地。) 7.接触器联锁双向控制电路 该电路采用了接触器联锁优点是工作安全可靠。但电动机由正转变为反转时,必须先按下停止按钮,才能按反转按钮,否则由于接触器联锁作用,不能实现反转。 8.按钮联锁双向控制电路该线路的优点是操作方便,由正转变为反转时不必按下停止按钮,但容易产生电源两相短路故障。 9.接触器按钮双重联锁双向控制电路 该线路工作安全可靠、操作方便。 注:通过以上三个线路要明确联锁的作用及连接方式.......................。 10.定子绕组串电阻降压起动控制线路(一)

电机配线开关标准

电机配线开关标准 我们在做具体的控制系统时,常要需要计算负载的大小来选择电缆线的规格,我们可以根据电机铭牌来确定,也可以通过一些公式来算出来,其实有一种简单的经验算法很容易估算出来,虽然不是绝对正确,也足以用来做为选择电缆规格的依据了。方法是,我们常用的三相异步电机一般有两种接法,一种是星形一种是角形。除较小的电机外,多数是角形,我们就说角形的,如果是一台380V供电的7.5KW的三相异步电机,那么它的额定每相工作电流约是15A。实际通过算出来可能是比这个略小一点,我们完全可以按这个电流来选择电缆线了。如果是一台380V供电的4KW的三相异步电机,那么它的额定每相工作电流约是8A。可能我们以经看出来规律,也就是1千瓦功率约需2A电流,一个75KW的电机它的额定工作电流约是150A。你可以通过公式的方法算算,结果是比较接近的。 下面我们说说怎么根据电流来选择多大截面积的电缆,我们选择的电缆为铜芯电缆。 我们举例说明,我们要给一台18.5KW的电机配线,可以算出它的额定电流为37A,也是根据经验1平方毫米铜线可以通过4~6A的电流,我们取其中间值5A,那么电缆线的截面积应为37/5=6.4平方毫米。我们的标准电缆有6平方毫米和平共10平方毫米的,为了保证可靠性,我们选择10平方的电缆。其实具体选择中我们也可能会选择6平方的,这要综合考虑,负载工作时消耗的功率是多大,如果只有额定的60%不到的话,可以这样选择,如果基本上要工作在额定功率附近,那只能选择10平方的电缆了。 电机如何配线?选用断路器,热继电器? 如何根据电机的功率,考虑电机的额定电压,电流配线,选用断路器,热继电器 三相220V电机,1KW=3.5A。 三相380V电机,1KW=2A。 低压660V电机,1KW=1.2A。 高压3000V电机,4KW=1A。 高压600V电机,8KW=1A。 一台三相电机,除知道其额定电压以外,还必须知道其额定功率及额定电流,比如:一台三相异步电机,7.5KW,4极(常用一般有2、4、6级,级数不一样,其额定电流也有区别),其额定电路约为15A 。 1、断路器:一般选用其额定电流1.5-2.5倍,常用DZ47-60 32A, 2、电线:根据电机的额定电流15A,选择合适载流量的电线,如果电机频繁启 动,选相对粗一点的线,反之可以相对细一点,载流量有相关计算口决,这里我们选择 4平方, 3、交流接触器,根据电机功率选择合适大小就行,1.5-2.5倍,一般其选型手册上有型号,这里我们选择正泰CJX2--2510,还得注意辅助触点的匹配,不要到时候买回来辅助触点不够用。 4、热继电器,其整定电流都是可以调整,一般调至电机额定电流1-1.2倍。 断路器、继电器、电机配线 电机如何配线?(1)多台电机配导线:把电机的总功率相加乘以2是它们的总电流。(2)在线路50米以内导线截面是:总电流除4.(再适当放一点余量) (3)线路长越过50米外导线截面:总电流除3.(再适当放一点途量) (4)120平方以上的大电缆的电流密度要更低一些, 断路器: (1)断路器选择:电机的额定电流乘以2.5倍,整定电流是电机的1.5倍就可以了, 这样保证频繁启动,也保证短路动作灵敏。

用电设备配线计算公式

常用电工计算口诀(二) 第三章配电计算口诀 一对电动机配线的口诀 1.用途根据电动机容量(千瓦)直接决定所配支路导线截面的大小,不必将电动机容量先算出电流,再来选导线截面。 2.口诀铝芯绝缘线各种截面,所配电动机容量(千瓦)的加数关系。 3.说明此口诀是对三相380 伏电动机配线的。导线为铝芯绝缘线(或塑料线)穿管敷设。 4.由于电动机容量等级较多,因此,口诀反过来表示,即指出不同的导线截面所配电动机容量的范围。这个范围是以比“截面数加大多少”来表示。 2.5 加三,4 加四 6 后加六,25 五 120 导线,配百数 为此,先要了解一般电动机容量(千瓦)的排列: 0.8 1.1 1.5 2.2 3 4 5.5 7.5 1O 13 17 22 30 40 55 75 100 “2.5 加三”,表示2.5 平方毫米的铝芯绝缘线穿管敷设,能配“2.5 加三”千瓦的电动机,即最大可配备5.5 千瓦的电动机。 “4 加四”,是4 平方毫米的铝芯绝缘线,穿管敷设,能配“4 加四”千瓦的电动机。即最大可配8 千瓦( 产品只有相近的7.5 千瓦)的电动机。 “6 后加六”是说从6 平方毫米开始,及以后都能配“加大六”千瓦的电动机。即6 平方毫米可配12 千瓦,10 平方毫米可配16 千瓦,16 平方毫米可配22 千瓦。 “25 五”,是说从25 平方毫米开始,加数由六改变为五了。即25 平方毫米可配30 千瓦,35 平方毫米可配40 千瓦,50 平方毫米可配55 千瓦,70 平方毫米可配75 千瓦。 “1 2 0 导线配百数”( 读“百二导线配百数”) 是说电动机大到100 千瓦。导线截面便不是以“加大”的关系来配电动机,而是120 平方毫米的导线反而只能配100 千瓦的电动机了。 【例1】7 千瓦电动机配截面为4 平方毫米的导线(按“4 加四”)。 【例2】17 千瓦电动机配截面为16 平方毫米的导线(按“6后加六”) 。

电流计算口诀

按功率计算电流的口诀 1.用途: 这是根据用电设备的功率(千瓦或千伏安)算出电流(安)的口诀。 电流的大小直接与功率有关,也与电压,相别,力率(又称功率因数)等有关。一般有公式可供计算,由于工厂常用的都是380/220 伏三相四线系统,因此,可以根据功率的大小直接算出电流。 2.口诀:低压380/220 伏系统每KW 的电流,安。 千瓦,电流,如何计算? 电力加倍,电热加半。 单相千瓦,4 . 5 安。 单相380 ,电流两安半。 3.说明:口诀是以380/220V 三相四线系统中的三相设备为准,计算每千瓦的安数。对于某些单相或电压不同的单相设备,其每千瓦的安数.口诀中另外作了说明。①这两句口诀中,电力专指电动机.在380V 三相时(力率 0.8 左右),电动机每千瓦的电流约为2 安.即将“千瓦数加一倍”( 乘2)就是电流, 安。这电流也称电动机的额定电流. 【例1 】5.5 千瓦电动机按“电力加倍”算得电流为11 安。 【例2 】4 0 千瓦水泵电动机按“电力加倍”算得电流为8 0安。 电热是指用电阻加热的电阻炉等。三相380 伏的电热设备,每千瓦的电流为1.5安。即将“千瓦数加一半”(乘1.5),就是电流,安。

【例1】3 千瓦电加热器按“电热加半”算得电流为4.5 安。 【例2】1 5 千瓦电阻炉按“电热加半”算得电流为2 3 安。 这口诀并不专指电热,对于照明也适用.虽然照明的灯泡是单相而不是三相,但对照明供电的三相四线干线仍属三相。 只要三相大体平衡也可以这样计算。此外,以千伏安为单位的电器(如变压器或整流器)和以千乏为单位的移相电容器(提高力率用)也都适用。即是说,这后半句虽然说的是电热,但包括所有以千伏安、千乏为单位的用电设备,以及以千瓦为单位的电热和照明设备。 【例1 】1 2 千瓦的三相( 平衡时) 照明干线按“电热加半”算得电流为1 8 安。 【例2】30 千伏安的整流器按“电热加半”算得电流为45 安。(指380 伏三相交流侧) 【例3 】3 2 0 千伏安的配电变压器按“电热加半”算得电流为480 安(指380/220 伏低压侧)。 【例4】100 千乏的移相电容器(380 伏三相)按“电热加半”算得电流为150 安。 ②.在380/220伏三相四线系统中,单相设备的两条线,一条接相线而另一条接零线的(如照明设备)为单相220 伏用电设备。这种设备的力率大多为1,因此,口诀便直接说明“单相(每) 千瓦4.5 安”。计算时, 只要“将千瓦数乘4.5”就是电流, 安。同上面一样,它适用于所有以千伏安为单位的单相220伏用电设备,以及以千瓦为单位的电热及照明设备,而且也适用于220 伏的直流。 【例1】500 伏安(0.5 千伏安)的行灯变压器(220 伏电源侧)按“单相( 每) 千瓦4.5 安”算得电流为2.3 安。

电动机控制原理图

三相异步电动机启动控制原理图 1、三相异步电动机的点动控制 点动正转控制线路是用按钮、接触器来控制电动机运转的最简单的正转控制线路。所谓点动控制是指:按下按钮,电动机就得电运转;松开按钮,电动机就失电停转。 典型的三相异步电动机的点动控制电气原理图如图3-1(a)所示。点动正转控制线路是由转换开关QS、熔断器FU、启动按钮SB、接触器KM及电动机M组成。其中以转换开关QS作电源隔离开关,熔断器FU作短路保护,按钮SB控制接触器KM的线圈得电、失电,接触器KM的主触头控制电动机M的启动与停止。 点动控制原理:当电动机需要点动时,先合上转换开关QS,此时电动机M尚未接通电源。按下启动按钮SB,接触器KM的线圈得电,带动接触器KM的三对主触头闭合,电动机M便接通电源启动运转。当电动机需要停转时,只要松开启动按钮SB,使接触器KM的线圈失电,带动接触器KM的三对主触头恢复断开,电动机M失电停转。在生产实际应用

中,电动机的点动控制电路使用非常广泛,把启动按钮SB换成压力接点、限位节点、水位接点等,就可以实现各种各样的自动控制电路,控制小型电动机的自动运行。 2.三相异步电动机的自锁控制 三相异步电动机的自锁控制线路如图3-2所示,和点动控制的主电路大致相同,但在控制电路中又串接了一个停止按钮SB1,在启动按钮SB2的两端并接了接触器KM的一对常开辅助触头。接触器自锁正转控制线路不但能使电动机连续运转,而且还有一个重要的特点,就是具有欠压和失压保护作用。它主要由按钮开关SB(起停电动机使用)、交流接触器KM (用做接通和切断电动机的电源以及失压和欠压保护等)、热继电器(用做电动机的过载保护)等组成。 欠压保护:“欠压”是指线路电压低于电动机应加的额定电压。“欠压保护”是指当线路电压下降到某一数值时,电动机能自动脱离电源电压停转,避免电动机在欠压下运行的一种保护。因为当线路电压下降时,电动机的转矩随之减小,电动机的转速也随之降低,从而使电动机的工作电流增大,影响电动机的正常运行,电压下降严重时还会引起“堵转”(即 电动机接通电源但不转动)的现象,以致损坏电动机。采用接触器自锁正转控制线路就可避免电动机欠压运行,这是因为当线路电压下降到一定值(一般指低于额定电压85%以下)时, 接触器线圈两端的电压也同样下降到一定值,从而使接触器线圈磁通减弱,产生的电磁吸力减小。当电磁吸力减小到小于反作用弹簧的拉力时,动铁心被迫释放,带动主触头、自锁触头同时断开,自动切断主电路和控制电路,电动机失电停转,达到欠压保护的目的。

电工口诀100条

电工口诀100条 (一)简便估算导线载流量 十下五,百上二,二五三五四三界,七零九五两倍半,温度八九折,铜材升级算. (二)已知变压器容量,求其电压等级侧额定电流 说明:适用于任何电压等级。 口诀:容量除以电压值,其商乘六除以十。 例子:视在电流I=视在功率S/1.732﹡10KV=1000KVA/1.732﹡10KV=57.736A估算I=1000KVA/10KV﹡6/10=60A (三)已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。口诀:配变高压熔断体,容量电压相比求。配变低压熔断体,容量乘9除以5 (四)已知三相电动机容量,求其额定电流 口诀:容量除以千伏数,商乘系数点七六。 已知三相二百二电机,千瓦三点五安培。 1KW÷0.22KV*0.76≈1A 已知高压三千伏电机,四个千瓦一安培。 4KW÷3KV*0.76≈1A 注:口诀适用于任何电压等级的三相电动机额定电流计算。口诀使用时,容量单位为kW,电压单位为kV,电流单位为A。

(五)测知电力变压器二次侧电流,求算其所载负荷容量 已知配变二次压,测得电流求千瓦。 电压等级四百伏,一安零点六千瓦。 电压等级三千伏,一安四点五千瓦。 电压等级六千伏,一安整数九千瓦。 电压等级十千伏,一安一十五千瓦。 电压等级三万五,一安五十五千瓦。 (六)已知小型380V三相笼型电动机容量,求其供电设备最小容量、负荷开关、保护熔体电流值 直接起动电动机,容量不超十千瓦; 六倍千瓦选开关,五倍千瓦配熔体。 供电设备千伏安,需大三倍千瓦数。 (七)测知无铭牌380V单相焊接变压器的空载电流,求算其额定容量 口诀:三百八焊机容量,空载电流乘以五。 (八)判断交流电与直流电流 电笔判断交直流,交流明亮直流暗, 交流氖管通身亮,直流氖管亮一端。 说明:判别交、直流电时,最好在“两电”之间作比较,这样就很明显。测交流电时氖管两端同时发亮,测直流电时氖管里只有一端极发亮。 (九)巧用电笔进行低压核相 判断两线相同异,两手各持一支笔, 两脚与地相绝缘,两笔各触一要线, 用眼观看一支笔,不亮同相亮为异。 (十)巧用电笔判断直流电正负极 电笔判断正负极,观察氖管要心细, 前端明亮是负极,后端明亮为正极。 (十一)巧用电笔判断直流电源有无接地,正负极接地的区别 变电所直流系数,电笔触及不发亮; 若亮靠近笔尖端,正极有接地故障; 若亮靠近手指端,接地故障在负极。 (十二)巧用电笔判断 380/220V三相三线制供电线路相线接地故障 星形接法三相线,电笔触及两根亮, 剩余一根亮度弱,该相导线已接地; 若是几乎不见亮, 金属接地的故障。 (十三)----对电动机配线的口诀 口诀: 2.5 加三,4 加四; 6 后加六,25 五;120 导线,配百数

电机正反转控制电路及实际接线图(个人学习用)

三相异步电动机正反转控制电路图原理及plc接线与编程在图1是三相异步电动机正反转控制的电路和继电器控制电路图,图2与3是功能与它相同的PLC控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的交流接触器. 在梯形图中,用两个起保停电路来分别控制电动机的正转和反转。按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保。使KM1的线圈通电,电机开始正转运行。按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行。 在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联。设Y0为ON,电动机正转,这是如果想改为反转运行,可

以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转。 在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通。由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障。 可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的电源短路事故。如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如果另一个接触器的线圈通电,仍将造成三相电源短路事故。为了防止出现这种情况,应在PLC外部设置KM1和KM2的辅助常闭触点组成的硬件互锁电路(见图2),假设KM1的主触点被电弧熔焊,这时它与KM2线圈串联的辅助常闭触点处于断开状态,因此KM2的线圈不可能得电。 图1中的FR是作过载保护用的热继电器,异步电动机长期严重过载时,经过一定延时,热继电器的常开触点断开,常开触点闭合。其常闭触点与接触器的线圈串联,过载时接触其线圈断电,电机停止运行,起到保护作用。 有的热继电器需要手动复位,即热继电器动作后要按一下它自带的复位按钮,其触点才会恢复原状,及常开触点断开,常闭触点闭合。这种热继电器的常闭触点可以像图2那样接在PLC的输出回路,仍然与接触器的线圈串联,这反而可以节约PLC的一个输入点。 有的热继电器有自动复位功能,即热继电器动作后电机停止转,串接在主回路中的热继电器的原件冷却,热继电器的触点自动恢复原状。如果这种热断电器的常闭触点仍然接在PLC的输出回路,电机停止转动后果一段时间会因热继电器的触点恢复原状而自动重新运转,可能会造成设备和人身事故。因此有自动复位功能的热继电器的常闭触点不能接在PLC的输出回路,必须将它的触点接在PLC的输入端(可接常开触点或常闭触点),用梯形图来实现点击的过载保护。如果用电子式电机过载保护来代替热继电器,也应注意它的复位. 电动机正反转实物接线图

常用电动机控制电路原理图.

三相异步电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控 制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2

串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。

电动机实物接线图教学提纲

电动机实物接线图

电动机可逆带限位控制电路实物接线图

三相异步电动机正反转电气控制线路 在图3.5中,(a)图为主电路,通过当接触器KM1三对主触点把三相电源和电动机的定子绕组按顺相序L1、L2、L3连接,,而KM2的三对主触点把三相电源和电动机的定子绕组按反相序L3、L2、L1连 接,使电动机可以实现正反两个方向上的运行。 而图3.5(b)中,按下正转起动按钮SB2,接触器KM1线圈通电且自锁,主触点闭合使电动机正转,按下停止按钮SB1,接触器KM1线圈断电,主触点断开,电动机断电停转。再按下反转起动按钮SB 3,接触器KM2线圈通电且自锁,主触点闭合使电动机反转。但是在(b)图中,若按下正转起动按钮S B2再按下反转起动按钮SB3,或者同时按下SB2和SB3,接触器KM1和KM2线圈都能通电,两个接触器的主触点都会闭合,造成主电路中两相电源短路,因此,对正反转控制线路最基本的要求是:必须保证两个接触器不能同时工作,以防止电源短路,即进行互锁,使同一时间里只允许两个接触器中一个接触 器工作。 所以在图3.5(c)中,接触器KM1 、KM2线圈的支路中分别串接了对方的一个常闭辅助触点。工作时,按下正转起动按钮SB2,接触器KM1线圈通电,电动机正转,此时串接在KM2线圈支路中的KM1常闭触点断开,切断了反转接触器KM2线圈的通路,此时按下反转起动按钮SB3将无效。除非按下停 止按钮SB1,接触器KM1线圈断电,KM1常闭触点 复位闭合,再按下反转起动按钮SB3实现电动机的反转,同时,串接在KM1线圈支路中的KM2常闭触 点断开,封锁了接触器KM1使它无法通电。 这样的控制线路可以保证接触器KM1 、KM2不会同时通电,这种作用称为互锁,这两个接触器的常闭触点称为互锁触点,这种通过接触器常闭触点实现互锁的控制方式称为接触器互锁,又称为电气互锁。 判断一台电动机的好坏,一般16KW以下使用万用表就可以,30KW以下可用电桥。是可以用的。50KW以上使用就很不准了,最好的方法是低电压接入测电流,有大功率2KVA以上三相变压器,380V/36V或更低电压变压器接入电机直接用钳形表测电

常见电动机控制电路图

常见电动机控制电路图

电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转 控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。 2

与按钮SB2串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 3

电工配线口诀

电工配线口诀 摘要 第一章按功率计算电流的口诀之一 1.用途: 目录 1电工口诀 目录 1电工口诀 收起 电工口诀 这是根据用电设备的功率(千瓦或千伏安)算出电流(安)的口诀。 电流的大小直接与功率有关,也与电压,相别,力率(又称功率因数)等有关。一般有公式可供计算,由于工厂常用的都是380/220 伏三相四线系统,因此,可以根据功率的大小直接算出电流。 2.口诀:低压380/220 伏系统每KW 的电流,安。 千瓦,电流,如何计算? 电力加倍,电热加半。 单相千瓦,4 . 5 安。 单相380 ,电流两安半。 3. 说明:口诀是以380/220V 三相四线系统中的三相设备为 准,计算每千瓦的安数。对于某些单相或电压不同的单相设 备,其每千瓦的安数.口诀中另外作了说明。 ①这两句口诀中,电力专指电动机.在380V 三相时(力率 0.8 左右),电动机每千瓦的电流约为2 安.即将“千瓦数加一 倍”( 乘2)就是电流, 安。这电流也称电动机的额定电流. 【例1 】5.5 千瓦电动机按“电力加倍”算得电流为11 安。 【例2 】4 0 千瓦水泵电动机按“电力加倍”算得电流为8 0安。 电热是指用电阻加热的电阻炉等。三相380 伏的电热 设备,每千瓦的电流为1.5安.即将“千瓦数加一半”(乘1.5),就是电流,安。 【例1】3 千瓦电加热器按“电热加半”算得电流为4.5 安。 【例2】1 5 千瓦电阻炉按“电热加半”算得电流为2 3 安。 这口诀并不专指电热,对于照明也适用.虽然照明的灯泡 是单相而不是三相,但对照明供电的三相四线干线仍属三相。 只要三相大体平衡也可以这样计算。此外,以千伏安为单位的电器(如变压器或整 流器)和以千乏为单位的移相电容器(提高力率用)也都适用。即是说,这后半句虽 然说的是电热,但包括所有以千伏安、千乏为单位的用电设备,以及以千瓦为单位 的电热和照明设备。 【例1 】1 2 千瓦的三相( 平衡时) 照明干线按“电热加半”算得电流为1 8 安。

配线口诀

配线口诀 工口诀 这是根据用电设备的功率(千瓦或千伏安)算出电流(安)的口诀。 电流的大小直接与功率有关,也与电压,相别,力率(又称功率因数)等有关。一般有公式可供计算,由于工厂常用的都是380/220 伏三相四线系统,因此,可以根据功率的大小直接算出电流。 2.口诀:低压380/220 伏系统每KW 的电流,安。 千瓦,电流,如何计算? 电力加倍,电热加半。 单相千瓦,4 . 5 安。 单相380 ,电流两安半。 3. 说明:口诀是以380/220V 三相四线系统中的三相设备为 准,计算每千瓦的安数。对于某些单相或电压不同的单相设 备,其每千瓦的安数.口诀中另外作了说明。 ①这两句口诀中,电力专指电动机.在380V 三相时(力率 0.8 左右),电动机每千瓦的电流约为2 安.即将“千瓦数加一 倍”( 乘2)就是电流, 安。这电流也称电动机的额定电流. 【例1 】5.5 千瓦电动机按“电力加倍”算得电流为11 安。 【例2 】4 0 千瓦水泵电动机按“电力加倍”算得电流为8 0安。 电热是指用电阻加热的电阻炉等。三相380 伏的电热 设备,每千瓦的电流为1.5安.即将“千瓦数加一半”(乘1.5),就是电流,安。 【例1】3 千瓦电加热器按“电热加半”算得电流为4.5 安。 【例2】1 5 千瓦电阻炉按“电热加半”算得电流为2 3 安。 这口诀并不专指电热,对于照明也适用.虽然照明的灯泡 是单相而不是三相,但对照明供电的三相四线干线仍属三相。 只要三相大体平衡也可以这样计算。此外,以千伏安为单位的电器(如变压器或整 流器)和以千乏为单位的移相电容器(提高力率用)也都适用。即是说,这后半句虽 然说的是电热,但包括所有以千伏安、千乏为单位的用电设备,以及以千瓦为单位 的电热和照明设备。 【例1 】1 2 千瓦的三相( 平衡时) 照明干线按“电热加半”算得电流 为1 8 安。 【例2】30 千伏安的整流器按“电热加半”算得电流为45 安。(指380 伏三相交流侧) 【例3 】3 2 0 千伏安的配电变压器按“电热加半”算得电流为480 安 (指 380/220 伏低压侧)。 【例4】100 千乏的移相电容器(380 伏三相)按“电热加半”算得电流为150 安。 ②.在380/220伏三相四线系统中,单相设备的两条线,一条接相线而另一 条接零线的(如照明设备)为单相220 伏用电设备。这种设备的力率大多

相关主题
文本预览
相关文档 最新文档