当前位置:文档之家› 智能频率计设计

智能频率计设计

智能频率计设计
智能频率计设计

1.设计主要内容及要求;

设计一个智能频率计。

要求:1)硬件电路设计,包括原理图和PCB板图。

2)智能频率计软件设计。

3)要求能够测量及显示频率,频率范围100HZ---500KHZ。

2.对设计论文撰写内容、格式、字数的要求;

(1).课程设计论文是体现和总结课程设计成果的载体,一般不应少于3000字。

(2).学生应撰写的内容为:中文摘要和关键词、目录、正文、参考文献等。课程设计论文的结构及各部分内容要求可参照《沈阳工程学院毕业设计(论文)撰写规范》执行。应做到文理通顺,内容正确完整,书写工整,装订整齐。

(3).论文要求打印,打印时按《沈阳工程学院毕业设计(论文)撰写规范》的要求进行打印。

(4). 课程设计论文装订顺序为:封面、任务书、成绩评审意见表、中文摘要和关键词、目录、正文、参考文献。

3.时间进度安排;

一设计任务描述

1.1 设计题目

智能频率计设计

1.2 设计要求

1.2.1 基本要求

设计一个智能频率计。

要求:1)硬件电路设计,包括原理图和PCB板图。

2)智能频率计软件设计。

3)要求能够测量及显示频率,频率范围100HZ---500KHZ。

二设计思路

2.1 频率测量方法

频率测量是电子测量领域的最基本测量,通常频率测量有两种方法:

(1)计数法:这是指在一定的时间间隔T内,对输入信号的周期脉冲计数为:N,则信号

的频率为F= N /T。这种方法适合于高频测量,信号的频率越高,则相对误差越小。

(2)测周法:这种方法是计量在被测信号一个周期内频率为F0的标准信号的脉冲数N来间

接测量频率,F=F0/N。被测信号的周期越长(频率越低),则测得的标准信号的脉冲数N越大,则相对误差越小。

2.2 频率测量硬件设计

频率测量有:频率表和频率比较器

频率表:用于频率的测量。测量一个输入信号的频率的大小。

频率比较器:用于频率的比较。比较两输入信号的频率的大小。

2.3 频率测量软件设计

由于此程序是基于C8051F020单片机的程序设计,主要的设计思路是利用信号发生器产生100HZ-500KHZ的方波,通过单片机的P0.0端口输入进单片机,经过单片机的处理,再由单片机的实验箱的液晶屏进行显示具体思路如下:

(1)首先是对单片机的初始化设定。

(2)PCA0采集部分。

(3)数据的转化部分。

(4)数据的显示部分。

三硬件设计方框图

智能频率计设计方框图

四硬件设计

4.1 单片机模块

4.1.1 电源电路

在电源电路中,SPX1117-3.3是稳压芯片将输入电压5V转换成3.3V作为C8051F020单片机的主要供电电源。S1为输入电源开关按钮,在下载完数据后可用此按键来更新下载数据。D2为电源指示灯,单片机通电时LED灯亮。其电路图如图4—1单片机电源电路所示。

图4—1单片机电源电路

4.1.2 晶振电路

Y1为晶体振荡器,其振荡频率为22.11842MHZ,为单片机提供其工作所需要的时钟,C7、C8起到帮助晶振的作用。其电路图如图4—2单片机晶振电路所示。

图4—2单片机晶振电路

4.1.3 复位电路

当开发板上电时,C5经充电后复位端电压相当于低电平实现上电复位:当断电后通过D3(1N4148)形成放电回路。其电路图如图4—3单片机复位电路所示。

1

2

3

4

JP?

4 HEADER

图4—3单片机复位电路

4.1.4 液晶显示(LCD )接口电路

单片机留有一个LCD 液晶接口,相对应的液晶为MzL05-12864,它是一款仅写入的串行SPI 接口方式的液晶,给液晶仅需5个控制口即可完成对其控制。单片机使用模拟SPI 的方式对液晶进行操作。其电路图如图4—4单片机液晶接口电路所示。

图4—4单片机液晶接口电路

4.1.5 LED显示电路

单片机控制LED的显示及其显示内容。其电路图如图4—5单片机LED显示电路所示。

图4—5单片机LED显示电路

4.2 频率计系统模块

4.2.1 频率计

该电路为一“频率转换插件”,能用万用表(或电压表)测量信号的频率,测量范围为100HZ-500KHZ。电路中D6、D7用于输入限幅保护,输入信号的幅值应低于400Vp-p。由于隔直电容C10的作用,电压比较器AR1只有交流输入,由于分压电阻R7、R8的作用AR1的输入端的直流偏置为电源电压的一半,流入R6的偏流使AR1输出低电平,一旦输入信号的振幅足够大克服了偏移AR1反转输出高电平通过C11的正反馈加快转换过程,当输入信号为负振幅时AR1重新反转,输出低电平。所以在IC3的输入端为一矩形波。IC3为一频率/电压转换芯片,其转换的线性度为1%。AR2输出的电压与输入信号的频率成正比的电压。输出有AR2缓冲,它是一个准确的电压跟随器,具有较低的输入阻抗。R17用于输出短路保护为防止由于电阻R17上的压降导致输出错误R17的输出端反馈到电压比较器的反相输入端。其电路图如图4—6频率计电路所示。

图4—6频率计电路

4.2.2 频率比较器

频率比较器电路有两个输入端,分别输入两个信号一个信号从Q1的基极输入,控制Q1的导通,Q1导通频率就是输入信号的频率,Q1后面就是一个二极管,用于产生与输入信号频率相对应的脉冲串,这个脉冲串是的Q2截止电容器C17放电。另一个信号从Q4 基极输入,它的作用原理同上只不过大的作用是给电容器C17充电,这样同时加入两个信号时C17上的电量就由两个输入信号的频率决定。刚开始时电容器C17上的电压为电源电压的一半5V,这样加入信号后如果f1高于f2的话,放电时间很长,所以其电压要低于5V,反之类似。这样就得到了由输入频率差得到的电压输出。其电路图如图4—7频率比较器电路图所示。

图4—7频率比较器电路

五软件设计方框图

智能频率计软件设计方框图

六软件设计

6.1 主程序设计

主程序涉及到系统资源分配,一些复杂运算等等。主程序如下。

main(){

WDTCN=0xde;

WDTCN=0xad;//关看门狗

PCA_Init();//PCA0初始化

PORT_Init();//端口初始化

LCD_Init();//液晶初始化

T0_Init();//T0初始化

SYSCLK_Init();//系统时钟初始化,11MHz

TR0=1;//启动定时器T0

while(1)//死循环

if(state1!=state)//判断是否有换档,有则进入if(){}里面

{{switch(state)

{case 0: Tcount=3; break;//A档,只计算3个被测脉冲

case 1: Tcount=200; break; //B档,只计算200个被测脉冲

case 2: Tcount=800; break; //C档,只计算800个被测脉冲

case 3: Tcount1=400; break; //D档,只计算400*65536个基准脉冲

case 4: Tcount1=10; break; //E档,只计算10*65536个基准脉冲

default:break;}

state1=state;//换档结束

count1=0;count=0;//基准频率计时归零

T=0; T1=0;//被测脉冲计数归零

PCA0L=0; PCA0H=0;//PCA0定时器归零

PCA0CPM0|=0x01;}//开启捕捉中断

if(st1==1)//低频档

{Timer0=(double)((PCH*256+PCL+65536*(count+count1*60000))/SYSCLK);

//计算时间

fre=(double)((Tcount-1)/Timer0); //间接计数法算频率

T=0; T1=0; count=0; count1=0; PCA0L=0; PCA0H=0;PCL=0; PCH=0; st1=0;

//各变量归零

PCA0CPM0|=0x01;} //开启捕捉中断

if(st3==1) //高频档

{fre=(double)((T-1+T1*60000)*SYSCLK/(Tcount1*65535));//直接计数法

PCA0L=0; PCA0H=0; T=0; T1=0; count=0;count1=0;st3=0;//各变量归零

PCA0CPM0|=0x01; } //开启捕捉中断

if(countt0>=450)//T0计时到了

{fre=0;countt0=0;count1=0;count=0;state=0;state1=100;T=0;

T1=0;PCA0L=0;PCA0H=0;//各变量归零

PCA0CPM0|=0x01;} //开启捕捉中断

if(fre<=50) state=0;//频率小于50Hz换A档

if((fre>50)&&(fre<=100)) state=1; //频率50~100Hz换B档

if((fre>100)&&(fre<=1000))state=2; //频率100~1000Hz换C档

if((fre>1000)&&(fre<=25000))state=3; //频率1000~25000Hz换D档

if(fre>25000) state=4; //频率大于25000Hz换E档

LCD_show(fre); }}//液晶显示函数

6.2 液晶显示程序设计

液晶显示程序如下。

void LCD_Init(void)

{ unsigned int x;

P6=0x09; //写命令

for(x=0;x<5000;x++); //延时程序

P7=0x38;//两行显示,5×7点阵

P6=0x08;//结束写命令

P6=0x09; //写命令

for(x=0;x<1000;x++);//延时程序

P7=0x0e;//开显示,开光标,字符不闪烁

P6=0x08; //结束写命令

P6=0x09; //写命令

for(x=0;x<1000;x++);//延时程序

P7=0x06;//I/D=1,AC自动增加1;S=0,整体显示不移动

P6=0x08; //结束写命令

P6=0x09; //写命令

for(x=0;x<5000;x++);//延时程序

P7=0x01;//清除DDRAM,置AC=0;

P6=0x08; //结束写命令

P6=0x09; //写命令

for(x=0;x<5000;x++);}//延时程序

void LCD_show(double shu)

{ unsigned int i1,shu1=0,i2,i3,x;

unsigned char LCD[8]={0},temp=0,www=0,*LCDpoint;

double shu2=0;

if(state>=3)shu/=1000;//如果是高频档,用KHz的单位

shu2=shu;//将频率数值另存

shu1=shu;//取频率的整数部分

LCDpoint=LCD;

for(i2=0;;i2++)//将整数每位取出,并保存在LCD[]中

{ LCD[i2]=shu1%10;

shu1/=10;

if(shu1==0)break;}

for(i3=0;i3

{ temp=LCD[i3];

LCD[i3]=LCD[i2-i3];

LCD[i2-i3]=temp;}

LCD[i2+1]=10;//保存小数点

shu1=shu;//取频率整数部分

shu2=shu-shu1;//将频率减去整数部分,得到小数部分for(i1=i2+2;i1<=4+i2;i1++)//取出小数部分的每一位

{ LCD[i1]=(unsigned char)(shu2*10);

shu2=shu2*10-LCD[i1];}

P7=0x80;//第一行显示

P6=0x01;//写命令

P6=0x00;//结束写命令

for(x=0;x<1000;x++);//延时

for(i2=0;i2<=9;i2++)//显示量程

{ www=liangcheng[state][i2];//查相应的量程的ASCII码P7=www;//写数据

P6=0x05;//开始写数据

P6=0x04;//结束写数据

for(x=0;x<1000;x++);}//延时

P7=0xc1;//第二行显示

P6=0x01;//开始写命令

P6=0x00;//结束写命令

for(x=0;x<1000;x++);//延时

for(i2=0;i2<=i1;i2++)//显示数据

{ www=LCDdata[LCD[i2]];//查询数据相应得ASCII码P7=www;//写入数据

P6=0x05;//开始写数据

P6=0x04;//结束写数据

for(x=0;x<1000;x++);}延时

if(state>=3)www=75;//根据档数是否显示“K”

else www=0x20;//否则显示空格

P7=www; //写入数据

P6=0x05; //开始写数据

P6=0x04; //结束写数据

for(x=0;x<1000;x++);//延时

P7=72;//“H”

P6=0x05; //开始写数据

P6=0x04; //结束写数据

for(x=0;x<1000;x++);//延时

P7=122;//“z”

P6=0x05; //开始写数据

P6=0x04; //结束写数据

for(x=0;x<1000;x++);//延时

for(i2=0;i2<=16-i1-4;i2++)//余下的位用空隔显示

{ P7=0x20;

P6=0x05;

P6=0x04;

for(x=0;x<1000;x++);}}

6.3 PCA0采集程序设计

PCA0模块有边沿触发的捕捉方式,每来一个下降沿,进一次中断并计一个数,直接计数法和间接计数法都需要这个功能。PCA0功能的初始化由PCA_Init()函数(函数定义见附录1)完成,该函数的作用是:

(1)选择系统时钟为PCA0计数器时钟源,时钟溢出使能;

(2)下降沿触发捕捉,捕捉中断使能;

(3)为cex0分配P0.0端口,将PCA0中断优先级为高;

(4)对PCA0时钟初始化。

PCA0中断服务程序如下:

void PCA_ISR(void) interrupt 9

{ if(CF==1) {count++;CF=0;}//count变量保存时钟溢出次数

if(count==60000) {count1++;count=0;}//count1记录count变量溢出次数

if(CCF0==1) {T++;CCF0=0;countt0=0;}//T保存脉冲个数,并清零T0定时器

if(T==60000) {T1++;T=0;}//T1保存T溢出次数

if(T==1){PCA0L=0;PCA0H=0;CR=1;}//当第一个脉冲来时开启PCA0定时器

if(state<3)//低频档

{if(T==Tcount&&T1==0)//记录到Tcount个被测脉冲次数

{PCL=PCA0CPL0;

PCH=PCA0CPH0; //记录此时的比较寄存器中的数值

st1=1; //表示低频档

CR=0; //停止PCA0计数器

PCA0CPM0&=0xfe; }}//关闭捕捉中断

else //高频档

{if(count==Tcount1&&count1==0)//记录到Tcount1*65536个基准脉冲次数

{st3=1;//表示高频档

PCA0CPM0&=0xfe;//关闭捕捉中断

CR=0;}} }//关闭PCA0时钟

6.4 T0等待初始化程序

由于程序算法上的问题,因为间接计数法和直接计数法都用上了一些共用变量,程序可能会出错,而且在由高频档换向低频当时很容易卡死。因此特为此设置了定时器0作为判断程序是否卡死的依据,若卡死允许时间计满T0将初始化一些共用变量初始化。

七工作过程分析

本文设计的智能频率计具有适用范围广,精度高,频率范围较大,并且可以自动换档等特性。它的工作过程如下:

(1)信号输入放大电路,由使用者调整放大倍数,然后信号被适当的放大;

(2)已经被放大的信号再输入低通滤波电路,滤除大部分高频干扰,得到较纯净的信号。(3)纯净的信号需要进行整形,得到标准的方波信号。

(4)信号输入单片机,单片机对脉冲数进行计数。

(5)如果频率小于1000Hz,则视作低频信号,使用间接计数法计算信号频率。

首先,当检测到第一个下降沿之后,启动PCA0定时器(对基准频率计时,结果保存在PCH、PCL、count和count1中),当系统对被测频率的计数达到Tcount之后,关闭PCA0捕捉中断和PCA0定时器,通过公式计算频率:

Timer0=(double)((PCH*256+PCL+65536*(count+count1*60000))/SYSCLK)

frequency=(double)((Tcount-1)/Timer0)

算出频率frequency之后,使用函数LCD_show(double)显示。运行结果如图7-1和7-2所示,其中图7-1是实际的频率,图7-2是频率计所检测的频率。

图7—1实际频率图图7—2频率计图如果被测频率大于1000Hz,那么则视作高频信号,使用直接计数法对信号进行处理。

同样,当第一个下降沿到来时,开启PCA0定时器,并计算在Tcount1*65536/SYSCLK (即Tcount1*5.93ms)时间内的脉冲个数(脉冲个数存在T和T1中)。通过公式计算频率:fre=(double)((T-1+T1*60000)*SYSCLK/(Tcount1*65535));

经过LCD_show(double)函数显示所测频率值。如图7-3和7-4所示。其中图7-3是实际的频率,图7-4是频率计所检测的频率。

图7—3实际频率图图7—4频率计图

八元器件清单

九主要元器件介绍

9.1 C8051F020

C8051系列单片机是集成的混合信号片上系统,具有与MCS-51内核及指令集完全兼容的微控制器,除了具有标准8051的数字外设部件之外,片内还集成了数据采集和控制系统中常用的模拟部件和其他数字外设及功能部件。C8051系列单片机是真正能独立工作的片上系统(SOC)。CPU有效地管理模拟和数字外设,可以关闭单个或全部外设以节省功耗。

C8051F系列单片机是完全集成的混合信号系统级芯片,具有与8051兼容的CIP-51微控制器内核,采用流水线结构,单周期指令运行速度是8051的12倍,全指令集运行速度是原来的9.5倍。其内部电路包括CIP-51微控制器内核及RAM、ROM、I/O口、定时/计数器、ADC、DAC、PCA、SPI和SMBus等部件,即把计算机的基本组成单元以及模拟和数字外设集成在一个芯片上,构成一个完整的片上系统(SOC)。

C8051F020内部带有数据采集所需的ADC和DAC,其中ADC有两个,一个是8路12位逐次逼近型ADC,可编程转换速率,最大为100kS/s.可通过多通道选择器配置为单端输入或差分输入。内有可编程增益放大器PGA用于将输入的信号放大,提高A/D的转换精度。可编程增益为:0.5、1、2、4、8或16,复位时默认值为1。另一个是8路8位ADC,可编程转换速率最大为500kS/s,其可编程放大增益为0.5、1、2、4,复位时默认值为0.5。有2个12位的DAC,用于将12位的数字量转换为电压量,可产生连续变化的波形,两路信号可同步输出。

C8051F020外设还增添了三个串行口。可同时与外界进行串行数据通信,SMBus兼容于I2C串行扩展总线;SPI串行扩展接口;两个增强型UART串口。C8051F020具有基于JTAG 接口的在系统调试功能,片内的调试电路通过JTAG接口可提供高速、方便的在系统调试。

9.2 MzL05-12864

MzL05-12864 模组是一个小型的LCD显示器模组,显示细腻,带白色背光;MzL05-12864 模块的MCU接口为串行SPI 接口,非常合适应用于小型仪器、手持设备之中。

MzL05-12864为一块小型的128X64点阵的LCD显示模组,模组上的 LCM采用COG技术将控制(包括显存)、驱动器集成在LCM的玻璃上,接口简单、操作方便;为方便用户的使用,铭正同创在LCM的基础上设计了MzL05-12864模组,将模组所必需的外围电容电阻集成到模组上。MzL05-12864模组与各种MCU均可进行方便简单的接口操作。具有128X64点阵FSTN、1/64占空比、1/9偏压比、单电源供电对比度编程可调、仅写入的串行SPI接口方式、3.3V的白色LLED背光,美观大方的特点。

9.3 LM7805

三端稳压集成电路LM7805。电子产品中,常见的三端稳压集成电路有正电压输出的lm78 ×× 系列和负电压输出的lm79××系列。顾名思义,三端IC是指这种稳压用的集成电路,只有三条引脚输出,分别是输入端、接地端和输出端。它的样子象是普通的三极管。

LM7805是美国半导体公司的固定输出三端正稳压器集成电路,输出电流在1A以上,输出电压是+5V。内其内部包括过热、过流和调整管保护等电路,误差放大电路,基准电压电路和调整电路,使用比较方便且稳定精度高。

单片机课程设计报告——智能数字频率计汇总

单片机原理课程设计报告题目:智能数字频率计设计 专业:信息工程 班级:信息111 学号:*** 姓名:*** 指导教师:*** 北京工商大学计算机与信息工程学院

1、设计目的 (1)了解和掌握一个完整的电子线路设计方法和概念; (2)通过电子线路设计、仿真、安装和调试,了解和掌握电子系统研发产品的一个基本流程。 (3)了解和掌握一些常见的单元电路设计方法和在电子系统中的应用: 包括放大器、滤波器、比较器、计数和显示电路等。 (4)通过编写设计文档与报告,进一步提高学生撰写科技文档的能力。 2、设计要求 (1)基本要求 设计指标: 1.频率测量:0~250KHz; 2.周期测量:4mS~10S; 3.闸门时间:0.1S,1S; 4.测量分辨率:5位/0.1S,6位/1S; 5.用图形液晶显示状态、单位等。 充分利用单片机软、硬件资源,在其控制和管理下,完成数据的采集、处理和显示等工作,实现频率、周期的等精度测量方案。在方案设计中,要充分估计各种误差的影响,以获得较高的测量精度。 (2)扩展要求 用语音装置来实现频率、周期报数。 (3)误差测试 调试无误后,可用数字示波器与其进行比对,记录测量结果,进行误差分析。 (4)实际完成的要求及效果 1.测量范围:0.1Hz~4MHz,周期、频率测量可调; 2.闸门时间:0.05s~10s可调; 3.测量分辨率:5位/0.01S,6位/0.1S; 4.用图形液晶显示状态、单位(Hz/KHz/MHz)等。 3、硬件电路设计 (1)总体设计思路

本次设计的智能数字频率计可测量矩形波、锯齿波、三角波、方波等信号的频率。系统共设计包括五大模块: 主芯片控制模块、整形模块、分频模块、档位选择模块、和显示模块。设计的总的思想是以AT89S52单片机为核心,将被测信号送到以LM324N为核心的过零比较器,被测信号转化为方波信号,然后方波经过由74LS161构成的分频模块进行分频,再由74LS153构成的四选一选择电路控制档位,各部分的控制信号以及频率的测量主要由单片机计数及控制,最终将测得的信号频率经LCD1602显示。 各模块作用如下: 1.主芯片控制模块: 单片机AT89S52 内部具有2个16位定时/计数器T0、T1,定时/计数器的工作可以由编程来实现定时、计数和产生计数溢出时中断要求的功能。利用单片机的计数器和定时器的功能对被测信号进行计数。以AT89S52 单片机为控制核心,来完成对各种被测信号的精确计数、显示以及对分频比的控制。利用其内部的定时/计数器完成待测信号周期/频率的测量。 2.整形模块:整形电路是将一些不是方波的待测信号转化成方波信号,便于测量。本设计使用运放器LM324连接成过零比较器作为整形电路。 3.分频模块: 考虑单片机利用晶振计数,使用11.0592MHz 时钟时,最大计数速率将近500 kHz,因此需要外部分频。分频电路用于扩展单片机频率测量范围,并实现单片机频率测量使用统一信号,可使单片机测频更易于实现,而且也降低了系统的测频误差。本设计使用的分频芯片是74LS161实现4分频及16分频。 4.档位选择模块:控制74LS161不分频、4分频或者 16分频,控制芯片是74LS153。 5.显示模块:编写相应的程序可以使单片机自动调节测量的量程,并把测出的频率数据送到显示电路显示,本设计选用LCD1602。 (2)测频基本设计原理 所谓“频率”,就是周期性信号在单位时间(1s)内变化 的次数。若在一定时间间隔T内测得这个周期性信号的重复变 化次数N,则其频率可表示为f=N/T(右图3-1所示)。其中脉 冲形成电路的作用是将被测信号变成脉冲信号,其重复频率等 。利用单片机的定时/计数T0、T1的定时、计数 于被测频率f x 功能产生周期为1s的时间脉冲信号,则门控电路的输出信号持图3-1

数字频率计设计

数字频率计设计 摘要:本文给出一款以单片机AT89C51为核心的数字频率计设计方案。它主要由输入整形电路、单片机AT89C51系统电路和数码显示电路等组成。本设计缩小了硬件电路规模,使得电路简单易于调试,且控制能力强,是一种低成本,高可靠的数字频率计。 关键词:AT89C51;频率计;设计;七段数码 The design of digital frequency meter Abstract:This paper presents a AT89C51 microcontroller as the core of the digital frequency meter design. It is mainly composed of input shaping circuit, single chip microcomputer AT89C51system circuit and digital display circuit. This design reduces the hardware circuit scale, the circuit is simple and easy to debug, and control ability, is a low-cost, highly reliable digital frequency meter. Key Words:AT89C51; Frequency Meter; Design; Seven-Segment LED 引言 数字频率计是计算机网路、通讯系统、电子技术等科研生产领域不可缺少的测量仪器。它的基本功能是测量正弦信号方波信号及其他各种单位时间内变化的物理量。在进行模拟和数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精确度高,显示直观,而得到广泛应用。特别是现代电子计数器产品与组件和具有多种功能的数字式频率计,已广泛应用于计算机系统,通讯广播设备,生产过程自动化测控设备带LED、LCD数字显示的多种仪器仪表以及诸多的科学领域。 1概述 在电子技术中,频率是最基本的参数之一,频率测量对生产过程监控有很重要的作用。测量频率的方法有多种,其中电子计数器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化等优点,是频率测量的重要手段之一。电子计数器测频有两种方式:一是直接测频法,即在一定闸门时间内测量被测信号的脉冲个数;二是间接测频法,如周期测频法。直接测频法适用于高频信号的频率测量,间接

数字频率计的设计

长安大学 电子技术课程设计 数字频率计的设计 专业: 班级: 姓名 指导教师: 日期:

目录 引言 第一章系统概述 一、设计方案的选择 1、计数法 2、计时法 二、整体框图及原理 第二章单元电路设计 一、放大电路设计 二、闸门电路设计 三、时基电路设计 四、控制电路设计 五、报警电路设计 六、整体电路图 七、整机元件清单 第三章设计小结 一、设计任务完成情况 二、问题及改进 三、心得体会 鸣谢 附录

引言 题目:数字频率计的设计 初始条件: 本设计可以使用在数模电理论课上学过或没学过的集成器件和必要的门电路构建简易频率计,用数码管显示频率计数值。 要求完成的主要任务: ①设计一个频率计。要求用4位7段数码管显示待测频率,并用发光二极管表示单位。 ②测量频率的范围:100hz—100khz。 ③测量信号类型:正弦波和方波。 ④具有超量程报警功能。 摘要: 本次课程设是基于TTL系列芯片的简易数字频率计,数字频率计应用所学的数字电路和模拟电路的知识进行设计。在设计过程中,所有电路仿真均基于Multisim仿真软件。本课程设计介绍了简易频率计的设计方案及其基本原理,并着重介绍了频率计各单元电路的设计思路,原理及仿真,整体电路的的工作原理,控制器件的工作情况。设计共有三大组成部分:一是原理电路的设计,本部分详细讲解了电路的理论实现,是关键部分;二是性能测试,这部分用于测试设计是否符合任务要求。三是是对本次课程设计的总结。 关键字:频率计、TTL芯片、时基电路、逻辑控制、分频、计数、报警

第一章系统概述 一、设计方案的选择 信号的频率就是信号在单位时间内所产生的脉冲个数,其表达式为f=N/T,其中f为被测信号的频率,N为计数器所累计的脉冲个数,T为产生N个脉冲所需的时间。计数器所记录的结果,就是被测信号的频率。如在1s内记录1000个脉冲,则被测信号的频率为1000HZ。测量频率的基本方法有两种:计数法和计时法,或称测频法和测周期法。 1、计数法 计数法是将被测信号通过一个定时闸门加到计数器进行计数的方法,如果闸门打开的时间为T,计数器得到的计数值为N1,则被测频率为f=N1/T。改变时间T,则可改变测量频率范围。如图(1-1-1) 计数值N1 被测信号 标准闸门 T 图 1-1-1 测频法测量原理 设在T期间,计数器的精确计数值应为N,根据计数器的计数特性可知,N1的绝对误差是N1=N+1,N1的相对误差为δN1=(N1-N)/N=1/N。由N1的相对误差可知,N的数值愈大,相对误差愈小,成反比关系。因此,在f以确定的条件下,为减少N的相对误差,可通过增大T的方法来降低测量误差。当T为某确定值时(通常取1s),则有f1=N1,而f=N,故有f1的相对误差:δf1=(f1-f)/f=1/f 从上式可知f1的相对误差与f成反比关系,即信号频率越高,误差越小;而信号频率越低,则测量误差越大。因此测频法适合用于对高频信号的测量,频率越高,测量精度也越高。

简易数字频率计设计

简易数字频率计设计报告 设计内容: 1、测量信号:方波、正弦波、三角波; 2、测量频率范围: 1Hz~9999Hz; 3、显示方式:4位十进制数显示; 4、时基电路由由555构成的多谐振荡器产生(当标准时间的精度要求较高时,应通过晶体振荡器分频获得); 5、当被测信号的频率超出测量范围时,报警。 设计报告书写格式: 1、选题介绍和设计系统实现的功能; 2、系统设计结构框图及原理; 3、采用芯片简介; 4、设计的完整电路以及仿真结果; 5、Protel绘制的电路原理图; 6、制作的PCB; 7、课程设计过程心得体会(负责了哪些内容、学到了什么、遇到的难题及解决方法等)。 电子课程设计过程: 系统设计→在Multisim2001下仿真→应用Protel 99SE绘制电路原理图→制作PCB →撰写设计报告

简易数字频率计课程设计报告 第一章技术指标 1.1整体功能要求 1.2系统结构要求 1.3电气指标 1.4扩展指标 1.5设计条件 第二章整体方案设计 2.1 算法设计 2.2 整体方框图及原理 第三章单元电路设计 3.1 时基电路设计 3.2闸门电路设计 3.3控制电路设计 3.4 小数点显示电路设计 3.5整体电路图 3.6整机原件清单 第四章测试与调整 4.1 时基电路的调测 4.2 显示电路的调测 4-3 计数电路的调测 4.4 控制电路的调测 4.5 整体指标测试 第五章设计小结 5.1 设计任务完成情况 5.2 问题及改进

5.3心得体会附录 参考文献

第一章技术指标 1.整体功能要求 频率计主要用于测量正弦波、矩形波、三角波和尖脉冲等周期信号的频率值。其扩展功能可以测量信号的周期和脉冲宽度。 2.系统结构要求 数字频率计的整体结构要求如图所示。图中被测信号为外部信号,送入测量电路进行处理、测量,档位转换用于选择测试的项目------频率、周期或脉宽,若测量频率则进一步选择档位。 数字频率计整体方案结构方框图 3.电气指标 3.1被测信号波形:正弦波、三角波和矩形波。 3.2 测量频率范围:分三档: 1Hz~999Hz 0.01kHz~9.99kHz 0.1kHz~99.9kHz 3.3 测量周期范围:1ms~1s。 3.4 测量脉宽范围:1ms~1s。 3.5测量精度:显示3位有效数字(要求分析1Hz、1kHz和999kHz的测量误 差)。 3.6当被测信号的频率超出测量范围时,报警. 4.扩展指标 要求测量频率值时,1Hz~99.9kHz的精度均为+1。

基于单片机的简单频率计课程设计报告

《单片机原理与接口技术》课程设计报 告 频率计

1功能分析与设计目标 0 2频率计的硬件电路设计 (3) 2.1 控制、计数电路 (3) 2.2 译码显示电路 (5) 3频率计的软件设计与调试 (6) 3.1软件设计介绍 (6) 3.2程序框图 (8) 3.3功能实现具体过程 (8) 3.4测试数据处理,图表及现象描述 (10) 4讨论 (11) 5心得与建议 (12) 6附录(程序及注释) (13)

1 功能分析与设计目标 背景:在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。为了实现智能化的计数测频,实现一个宽领域、高精度的频率计,一种有效的方法是将单片机用于频率计的设计当中。用单片机来做控制电路的数字频率计测量频率精度高,测量频率的范围得到很大的提高。 题目要求: 用两种方法检测(△m ,△ T )要求显示单位时间的脉冲数或一个脉冲的周期。 设计分析: 电子计数式的测频方法主要有以下几种:脉冲数定时测频法(M 法),脉冲周期测频法(T 法),脉冲数倍频测频法(AM 法),脉冲数分频测频法(AT 法),脉冲平均周期测频法(M/T 法),多周期同步测频法。下面是几种方案的具体方法介绍。 脉冲数定时测频法(M 法):此法是记录在确定时间Tc 内待测信号的脉冲个数Mx ,则待测频率为: Fx=Mx/ Tc 脉冲周期测频法(T 法):此法是在待测信号的一个周期Tx 内,记录标准频率信号变化次数Mo。这种方法测出的频率是: Fx=Mo/Tx 脉冲数倍频测频法(AM 法):此法是为克服M 法在低频测量时精度不高的缺陷发展起来的。通过A 倍频,把待测信号频率放大A 倍,以提高测量精度。其待测频率为: Fx=Mx/ATo 脉冲数分频测频法(AT 法):此法是为了提高T 法高频测量时的精度形成的。由于T 法测量时要求待测信号的周期不能太短,所以可通过A 分频使待测信号 的周期扩大A倍,所测频率为: Fx=AMo/Tx 脉冲平均周期测频法(M/T法):此法是在闸门时间Tc内,同时用两个计数器分别记录

数字逻辑数字频率计的设计课程设计报告

滁州学院 课程设计报告 课程名称:数字逻辑课程设计 设计题目:数字频率计的设计 系别:网络与通信工程系 专业:网络工程(无线传感器网络方向)组别:第七组 起止日期:2012年5月28日~2012年6 月18日指导教师:姚光顺 计算机与信息工程学院二○一二年制

课程设计任务书

目录 1绪论 (1) 1.1设计背景 (1) 1.2主要工作和方法 (1) 1.3本文结构 (1) 2相关知识 (1) 2.1数字频率计概念...................................................................................................................... .. (1) 2.2数字频率计组成 (1) 3系统设计 (2) 4系统实现 (2) 4.1计数译码显示电路 (2) 4.2控制电路 (3) 5系统测试与数据分析 (5) 6课程设计总结与体会 (8) 6.1设计总结 (8) 6.2设计体会 (8) 结束语 (9) 参考文献 (9) 附录 (10) 致谢 (12)

1绪论 1.1设计背景 数字频率计是一种基础测量仪器,到目前为止已有 30 多年的发展史。早期,设计师们追求的目标主要是扩展测量范围,再加上提高测量精度、稳定度等,这些也是人们衡量数字频率计的技术水平,决定数字频率计价格高低的主要依据。目前这些基本技术日臻完善,成熟。应用现代技术可以轻松地将数字频率计的测频上限扩展到微频段。 随着科学技术的发展,用户对数字频率计也提出了新的要求。对于低档产品要求使用操作方便,量程(足够)宽,可靠性高,价格低。而对于中高档产品,则要求有高分辨率,高精度,高稳定度,高测量速率;除通常通用频率计所具有的功能外,还要有数据处理功能,统计分析功能,时域分析功能等等,或者包含电压测量等其他功能。这些要求有的已经实现或者部分实现,但要真正完美的实现这些目标,对于生产厂家来说,还有许多工作要做,而不是表面看来似乎发展到头了。 随着数字集成电路技术的飞速发展,应用计数法原理制成的数字式频率测量仪器具有精度高、测量范围宽、便于实现测量过程自动化等一系列的突出特点。 1.2主要工作和方法 设计一个数字频率计。要求频率测量范围为1Hz-10kHz。数字显示位数为四位静态十进制计数显示被测信号。先确定好数字频率计的组成部分,然后分部分设计,最后组成电路。 1.3本文结构 本文第1部分前言主要说明频率计的用处和广泛性。第2部分简要说明了本次课程设计的要求。第3部分概要设计大致的勾画出本次设计的原理框架图和电路的工作流程图。第4部分简要说明4位二进制计数器74160的原理和搭建计数译码显示电路的原理,同时分析控制电路的功能,形成控制电路图,及搭建显示电路和控制电路的组合原理图。第5部分调试与操作说明,介绍相关的操作和输入不同频率是电路的显示情况。 2相关知识 2.1数字频率计介绍 2.1.1数字频率计概念 数字频率计是一种直接用十进制数字现设被测信号频率的一种测量装置,它不仅可以测量正弦波、方波、三角波等信号的频率,而且还可以用它来测量被测信号的周期。经过改装,在电路中增加传感器,还可以做成数字脉搏计、电子称、计价器等。因此,数字频率计在测量物理量方面有广泛的应用。 2.1.2数字频率计组成 数字频率计由振荡器、分频器、放大整形电路、控制电路、计数译码显示电路等部分组成。其中的控制脉冲采用时钟信号源替代,待测信号用函数信号发生器产生。数字频结构原理框图如图3.1

数字频率计的设计

数字频率计的设计 摘要:采用STC89C52RC单片机作为系统的核心控制器件,该系统采用直流供电,由信号输入模块、信号相加模块、滤波模块、信号比较器模块,电平转换模块组成,具有信号输入、测信号频率、测量矩形方波占空比的功能,并且具有测量精度高功耗低、抗干扰能力强等特点。

1 方案设计与比较

信号混合电路模块 方案一:同相加法器。加法器是一种数位电路,其可进行信号的加法计算。加法器是产生数的和的装置。加数和被加数为输入,和数与进位为输出的装置为半加器。若加数、被加数与低位的进位数为输入,而和数与进位为输出则为全加器。同相加法器输入阻抗高,输出阻抗低反相加法器输入阻抗低,输出阻抗高当选用同相加法器时,如A输入信号时,因为是同相加法器,输入阻抗高,这样信号不太容易流入加法器,反而更容易流入B端,而影响到B端的正常使用;同样,如B输入信号时,容易流入A端,而影响到A端的正常使用。 方案二:反相加法器。当选用反相加法器时,因为加法器输入阻抗低,不管是A端,还是B端信号,更容易流入加法器,而不会影响其它路的正常使用。 综上所述选择方案一。 滤波电路模块 方案一:选用有源二阶切比雪夫高通滤波器。切比雪夫滤波电路在通带或阻带上频率响应幅度等波纹波动的滤波器。切比雪夫滤波器在过渡带比巴特沃斯滤波器的衰减快,但频率响应的幅频特性不如后者平坦。切比雪夫滤波器和理想滤波器的频率响应曲线之间的误差最小,但是在通频带内存在幅度波动,有可能有纹波波动导致电压达到施密特触发器的上限或下限出发电平,导致误触发,输出方波可能严重失真。 方案二:选用有源二阶巴特沃斯高通滤波器。巴特沃斯滤波电路的幅频响应在通带中具有最平幅度特性没有起伏,而在阻频带则逐渐下降为零,由于巴特沃斯滤波电路的幅频响应曲线很平滑,没有起伏,可以有效规避施密特比较器中的误触发,所以选用幅频响应曲线最平滑的巴特沃斯型滤波器,可以有效规避误触发。 综上所述选择方案二。

数电课程设计报告-数字频率计

数电课程设计报告:频率计 目录 一、设计指标 二、系统概述 1.设计思想 2.可行性论证 3.工作过程 三、单元电路设计及分析 1.器件选择 2.设计及工作原理分析 四、电路的组构及调试 1.遇到的问题 2.现象记录及原因分析 3.解决及结果 4.功能的测试方法、步骤、设备、记录的数据 五、总结 1.体会 2.电路总图 六、参考文献 一、设计指标 设计指标:要求设计一个测量TTL方波信号频率的数字系统。测试值采用4个LED七段数码管显示,并以发光二极管只是测量对象(频率)的单位:Hz、kHz。

频率的测量范围有四档量程。 1)测量结果显示四位有效数字,测量精度为万分之一。 2)频率测量范围:100.1Hz——999.9kHz,分为: 第一档: 100.0Hz——999.9Hz 第二档: 1.000kHz——9.999kHz 第三档: 10.00kHz——99.99kHz 第四档: 100.0kHz——999.9kHz 3)量程切换可以采用两个按键SWB、SWA手动切换。 扩展要求: 一、当被测频率大于999.9kHz,超出最大值时,设置亮一个警灯,并同时发出报警声音。 二、自动切换量程 提示: 1.计数器计到9999时,产生溢出信号CO,启动量程加档。 2.显示不足4位有效数字时量程减档。 三、各量程输出信号的频率最高位有效数字为1、2、3、4、5、6、7、8、9。 二、系统概述 1.设计思想 周期性信号频率可通过记录信号在1s内的周期数来确定其频率。

累计标准时间Ts中被测信号的脉冲个数Nx,被测信号频率:fx≈Nx/Ts 测量时间Ts选择:由于测量时间Ts需要根据被测信号的频率切换,所以通常对振荡时钟进行分频以获得不同的定时时间。 采样定时、显示锁存、计数器清零的控制时序波形图 2.可行性论证 用计数器实现记录周期数的功能;用时基信号产生计数时间作为采样时间;用四位动态扫描通过数码管显示结果;因为如果计数器直接把数据输入到数码管显示,那么数码管的数据就会不断变化,累计增加的情况,所以采用锁存器,在每个时间信号内,通过一个高电平使能有效,将计数器的数值锁存到寄存器或者锁存器;为了不要让每次锁存的数据会比上次

基于单片机的数字频率计设计

基于单片机的数字频率计设计 摘要:在电子技术中,频率是最基本的参数之一。并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。频率计主要是由信号输入和放大电路、单片机模块、分频模块及显示电路模块组成。AT89S52单片机是频率计的控制核心,来完成它待测信号的计数,译码,显示以及对分频比的控制。利用它内部的定时/计数器完成待测信号频率的测量。在整个设计过程中,所制作的频率计采用外部分频,实现1Hz~9999Hz 的频率测量。以AT89S52单片机为核心,通过单片机内部定时/计数器的门控时间,方便对频率计的测量。其待测频率值使用四位共阳极数码管显示。本次采用单片机技术设计一种数字显示的频率计,具有测量准确度高,响应速度快,体积小等优点。 关键词:数字频率计;单片机AT89S52;计数器;外部分频 1 引言 频率测量是电子学测量中最为基本的测量之一。由于频率信号抗干扰性强,易于传输,因此可以获得较高的测量精度。随着数字电子技术的发展,频率测量成为一项越来越普遍的工作,测频原理和测频方法的研究正受到越来越多的关注。 数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。它是一种用十进制数字显示被测信号频率的数字测量仪器。它的基本功能是测量正弦信号、方波信号及其他各种单位时间内变化的物理量。在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精确度高,显示直观,经常要用到频率计。传统的频率计采用测频法测量频率,通常由组合电路和时序电路等大量的硬件电路组成,产品不但体积大,运行速度慢而且测量低频信号不准确。本次采用单片机技术设计一种数字显示的频率计,测量准确度高,响应速度快,体积小等优点。 2 设计内容及性能指标 利用电源、单片机、分频电路及数码管显示等模块,设计一个简易的频率计能够粗略的测量出被测信号的频率。参数要求如下: (1).测量范围1Hz~9999Hz; (2).用四位数码管显示测量值; (3). 测量误差:≤1; (4). 可以测量方波、三角波及正弦波等多种波形; 3 系统方案论证与比较 3.1 方案一 本方案主要以单片机为核心,利用单片机的计数定时功能来实现频率的计数并且利用单片机的动态扫描法把测出的数据送到数字显示电路显示。其原理框图如图1所示:

数字频率计的设计

电子测量实训报告 姓名:X X X 院系:X X X X 学院 专业:07电子信息工程 学号: 指导教师: 完成时间: 2010 年 9月 7 日

目录 第1章引言 (3) 1.1数字频率计的概述 (3) 1.2设计任务 (3) 1.3设计目的 (4) 1.4设计方案 (4) 1.5频率计设计原理 (5) 第2章系统硬件设计 (5) 2.1电路原理图设计 (5) 2.2单元电路介绍 (6) 2.3 74LS90引脚及其说明 (8) 2.4 74LS47的介绍 (9) 2.5 74LS123的介绍 (10) 第3章硬件调试 (11) 第4章实训小结 (10) 第5章附录 (13) 附录1 硬件电路原理图和连接图 (13) 附录2 元器件清单 (14) 附录3 参考文献 (14)

数字频率计的设计 摘要:本实训报告是关于数字频率计设计的简要介绍。采用直接测频法的方案来完成本次实训设计。其组成部分有时基电路、闸门电路、逻辑控制电路以及可控制的计数、译码、显示电路。该设计主要用于数码管的显示功能,在四位LED数码管上对输入信号频率进行显示,并能够准确运行。 关键词:数字频率计、计数脉冲、单稳态电路、闸门电路、锁存、频率显示 第1章引言 1.1数字频率计的概述 数字频率计是直接用十进制数字来显示被测信号频率的一种测量装置。它不仅可以测量正弦波,方波,三角波和尖脉冲信号的频率,而且还可以测量他们的周期。数字频率计在测量其他物理量如转速、振荡频率等方面获得广泛应用。所谓频率,就是周期性信号在单位时间(1s)里变化的次数。若在一定时间间隔T内测得的这个周期性信号的重复变化次数N,则其频率可表示为:f =N/T。 1.2设计任务 设计一个数字频率计系统,频率在四位数码管上进行显示,如下图。从左到右依次为频率的千位、百位、十位、个位。 设计要求: (1)位数: 能计4位十进制数,计数位数主要取决于被测信号频率的高低,如果被测信号频率较高,精度又较高,可相应增加显示位数。 (2)量程: 最大读数为9999Hz,闸门信号的采样时间为1s。 (3)显示方式: 用七段LED数码管显示读数,做到显示稳定、不跳变。

数字频率计_课程设计报告

电气与信息工程学院 数字频率计 设计报告书 前言 摘要:在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的 测量就显得更为重要。测量频率的方法有多种,其中数字计 数器测量频率具有精度高、使用方便、测量迅速,以及便于 实现测量过程自动化等优点,是频率测量的重要手段之一。 其原理为通过测量一定闸门时间内信号的脉冲个数。本文阐 述了设计了一个简单的数字频率计的过程。 关键词:频率计,闸门,逻辑控制,计数-锁存

目录 第一章设计目的 第二章设计任务和设计要求 2.1 设计任务及基本要求 2.2.系统结构要求 第三章系统概述 3.1概述 3.2设计原理及方案 第四章单元电路设计及分析 4.1 时基电路 4.2逻辑控制电路 4.3计数电路 4.4锁存电路 4.5显示译码电路 4.6 闸门电路 第五章安装与调试过程 5.1 电路的安装过程 5.2 电路的调试过程 5.3 出现的问题及解决办法 第六章结果分析 第七章收获与体会

第八章元件清单 第九章实现结果实物图 附录A 参考文献 第一章 设计目的: 1.了解数字频率计测量频率与测量周期的基本原理; 2.熟练掌握数字频率计的设计与调试方法及减小测量误 差的方法。 3.本设计与制作项目可以进一步加深我们对数字电路应 用技术方面的了解与认识,进一步熟悉数字电路系统设计、制作与调试的方法和步骤。 4.针对电子线路课程要求,对我们进行实用型电子线路设 计、安装、调试等各环节的综合性训练,培养我们运用课程中所学的理论与实践紧密结合,独立地解决实际问题的能力。

第二章 设计任务及要求: 2.1设计任务及基本要求: 设计一简易数字频率计,其基本要求是: 1)测量频率范围0~9999Hz; 2)最大读数9999HZ,闸门信号的采样时间为1s;. 3)被测信号可以是正弦波、三角波和方波; 4)显示方式为4位十进制数显示; 5)完成全部设计后,可使用EWB进行仿真,检测试验设计电路的正确性。 2.2.系统结构要求 数字频率计的整体结构要求如图所示。图中被测信号为外部信号,送入测量电路进行处理、测量。 波形 整 形 计 数 器 数 码 显 示 振荡 电 路分 频 器 控 制 门 数 据 锁 存 器 显 示 译 码 器 被测 信 号

简易频率计课程设计

目录 1 技术要求及系统结构 (1) 1.1技术要求 (1) 1.2系统结构 (1) 2设计方案及工作原理 (2) 2.1 算法设计 (2) 2.2 工作原理 (3) 3组成电路设计及其原理 (6) 3.1时基电路设计及其工作原理 (6) 3.2闸门电路设计 (7) 3.3控制电路设计 (8) 3.4小数点控制电路 (9) 3.5整体电路 (10) 3.6 元件清单 (10) 4设计总结 (11) 参考文献 (11) 附录1 (12) 附录2 (17)

摘要 简易数字频率计是一种用四位十进制数字显示被测信号频率(1Hz—100KHz)的数字测量仪器.它的基本功能是测量正弦波,方波,三角波信号,有四个档位(×1,×10,×100,×1000),并能使用数码管显示被测信号数据,本课程设计讲述了数字频率计的工作原理以及其各个组成部分,记述了在整个设计过程中对各个部分的设计思路、对各部分电路设计方案的选择、元器件的筛选、以及在设计过程中的分析,以确保设计出的频率计成功测量被测信号。 关键词:简易数字频率计十进制信号频率数码管工作原理 1技术要求及结构 本设计可以采用中、小规模集成芯片设计制作一个具有下列功能的数字频率测量仪。 1.1技术要求 ⑴要求测量频率范围1Hz-100KHz,量程分为4档,即×1、×10、×100、×1000。 ⑵要求被测量信号可以是正弦波、三角波和方波。 ⑶要求测试结果用数码管表示出来,显示方式为4位十进制。 1.2 系统结构 数字频率计的整体结构要求如图1-1所示。图中被测信号为外部信号,送入测量电路进行处理、测量,档位转换用于选择测试的项目------频率、周期或脉宽,若测量频率则进一步选择档位。 图1-1 数字频率计系统结构框图 2 设计方案及工作原理 2.1 算法设计

数字频率计课程设计

课程设计任务书 学生姓名:覃朝光专业班级:通信1103 指导教师:工作单位:信息工程学院 题目: 数字频率计的设计与实现 初始条件: 本设计既可以使用集成脉冲发生器、计数器、译码器、单稳态触发器、锁存器、放大器、整形电路和必要的门电路等,也可以使用单片机系统构建简易频率计。用数码管显示频率计数值。 要求完成的主要任务: (包括课程设计工作量及技术要求,以及说明书撰写等具体要求) 1、课程设计工作量:1周。 2、技术要求: 1)设计一个频率计。要求用4位7段数码管显示待测频率,格式为0000Hz。 2)测量频率范围:10~9999Hz。 3)测量信号类型:正弦波、方波和三角波。 4)测量信号幅值:0.5~5V。 5)设计的脉冲信号发生器,以此产生闸门信号,闸门信号宽度为1s。 6)确定设计方案,按功能模块的划分选择元、器件和中小规模集成电路,设计分电路,画出总体电路原理图,阐述基本原理。 3、查阅至少5篇参考文献。按《武汉理工大学课程设计工作规范》要求撰写设计报告书。全文用A4纸打印,图纸应符合绘图规范。 时间安排: 1、2013年5 月17日,布置课设具体实施计划与课程设计报告格式的要求说明。 2、2013 年 6 月18 日至2013 年6 月22 日,方案选择和电路设计。 3、2013 年6 月22 日至2013 年7 月1 日,电路调试和设计说明书撰写。 4、2013年7月5日,上交课程设计成果及报告,同时进行答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (3) 1电路的设计思路与原理 (4) 1.1电路设计方案的选择 (4) 1.1.1方案一:利用单片机制作频率计 (4) 1.1.2方案二:利用锁存器与计数器制作频率计 (5) 1.1.3方案三:利用定时电路与计数器制作频率计 (5) 1.1.4方案确定 (6) 1.2 原理及技术指标 (6) 1.3 单元电路设计及参数计算 (8) 1.3.1时基电路 (8) 1.3.2放大整形电路 (9) 1.3.3逻辑控制电路 (9) 1.3.4计数器 (11) 1.3.5锁存器 (12) 1.3.6译码电路 (13) 2仿真结果及分析 (13) 2.1仿真总图 (13) 2.2单个元电路仿真图 (14) 2.3测试结果 (17) 3测试的数据和理论计算的比较分析 (17) 4制作与调试中出现的故障、原因及排除方法 (17) 4.1故障a (17) 4.2故障b (18) 4.3故障c (18) 4.4故障d (18) 4.5故障e (18) 5 心得体会 (19)

数字频率计课程设计报告

《数字频率计》技术报告 一、问题的提出 在传统的电子测量仪器中,示波器在进行频率测量时测量精度较低,误差较大。频谱仪可以准确的测量频率并显示被测信号的频谱,但测量速度较慢,无法实时快速地跟踪捕捉到被测信号频率的变化。而频率计则能够快速准确的捕捉到被测信号频率的变化。 在传统的生产制造企业中,频率计被广泛的应用在生产测试中。频率计能够快速的捕捉到晶体振荡器输出频率的变化,用户通过使用频率计能够迅速的发现有故障的晶振产品,确保产品质量。在计量实验室中,频率计被用来对各种电子测量设备的本地振荡器进行校准。在无线通讯测试中,频率计既可以被用来对无线通讯基站的主时钟进行校准,还可以被用来对无线电台的跳频信号和频率调制信号进行分析。 数字频率计是一种用数字显示的频率测量仪表,它不仅可以测量正弦信号、方波信号和尖脉冲信号的频率,而且还能对其他多种物理量的变化频率进行测量,诸如机械振动次数,物体转动速度,明暗变化的闪光次数,单位时间里经过传送带的产品数量等等,这些物理量的变化情况可以由有关传感器先转变成周期变化的信号,然后用数字频率计测量单位时间内变化次数,再用数码显示出来。 二、解决技术问题及指标要求 1、技术指标

被测信号:正弦波、方波或其他连续信号; 采样时间:1秒(0.1秒、10秒); 显示时间:1秒(2秒、3秒......); LED显示; 灵敏度:100mV; 测量误差:±1H z。 数字频率计是一种专门对被测信号频率进行测量的电子测量仪器。其最基本的工作原理为:当被测信号在特定时间段T内的周期个数为N时,则被测信号的频率f=N/T。一般T=1s,所以应要求定时器尽量输出为1s的稳定脉冲。 2、设计要求 可靠性:系统准确可靠。 稳定性:灵敏度不受环境影响。 经济性:成本低。 重复性:尽量减少电路的调试点。 低功耗:功率小,持续时间长。 三、方案可行性分析(方案结构框图) 1、原理框图

简易数字频率计课程设计报告

目录第一章技术指标 1.1整体功能要求 1.2系统结构要求 1.3电气指标 1.4扩展指标 1.5设计条件 第二章整体方案设计 2.1 算法设计 2.2 整体方框图及原理 第三章单元电路设计 3.1 时基电路设计 3.2闸门电路设计 3.3控制电路设计 3.4 小数点显示电路设计 3.5整体电路图 3.6整机原件清单 第四章测试与调整 4.1 时基电路的调测 4.2 显示电路的调测 4-3 计数电路的调测 4.4 控制电路的调测 4.5 整体指标测试

第五章设计小结5.1 设计任务完成情况5.2 问题及改进 5.3心得体会 附录 参考文献

第一章技术指标 1.整体功能要求 频率计主要用于测量正弦波、矩形波、三角波和尖脉冲等周期信号的频率值。其扩展功能可以测量信号的周期和脉冲宽度。 2.系统结构要求 数字频率计的整体结构要求如图所示。图中被测信号为外部信号,送入测量电路进行处理、测量,档位转换用于选择测试的项目------频率、周期或脉宽,若测量频率则进一步选择档位。 数字频率计整体方案结构方框图 3.电气指标 3.1被测信号波形:正弦波、三角波和矩形波。 3.2 测量频率范围:分三档: 1Hz~999Hz 0.01kHz~9.99kHz 0.1kHz~99.9kHz 3.3 测量周期范围:1ms~1s。 3.4 测量脉宽范围:1ms~1s。 3.5测量精度:显示3位有效数字(要求分析1Hz、1kHz和999kHz的测量误 差)。 3.6当被测信号的频率超出测量范围时,报警.

4.扩展指标 要求测量频率值时,1Hz~99.9kHz的精度均为+1。 5.设计条件 5.1 电源条件:+5V。 5.2 可供选择的元器件范围如下表 门电路、阻容件、发光二极管和转换开关等原件自定。

简易频率计设计(数电课设)

简易频率计设计 1、设计目的 综合运用数字电子技术相关知识设计具有指定用途的数字电路,学会由分立器件与集成电路组成电子电路的方法。 2、设计任务 设计一简易频率计,要求如下: (1)频率测量范围:0—99Hz (2)输入电压幅度:300mv~5v (3)输入信号波形:方波、正弦波、三角波等周期信号 (4)显示位数:2位 3、设计要求 (1)合理的设计硬件电路,说明工作原理及设计过程,画出相关的电路原理图; (2)选择常用的电器元件(说明电器元件选择的过程和依据);(3)对设计的电路进行仿真,验证各性能指标; (4)按照规范要求,按时提交课程设计报告,并完成答辩。 4、参考资料 (l)李立主编. 电工学实验指导. 北京:高等教育出版社,2005(2)高吉祥主编. 电子技术基础实验与课程设计. 北京:电子工业出版社,2004 (3)谢云等编著. 现代电子技术实践课程指导. 北京:机械工业出版社,2003

目录 一、设计方案的选择(原理) (3) 二、电路设计计算与分析 (4) 1.单元模块的设计 (4) (1)整形电路 (4) (2)时基电路 (6) (3)计数电路 (8) (4)锁存电路 (9) (5)译码显示电路 (9) 2.电路中集成器件 (10) (1)555定时器 (11) (2)74HC160 (12) (3)74HC373 (13) (4)74LS48 (13) 3.电路参数分析 (15) 三、总结及心得 (16) 四、附录: (17) 五、参考文献 (19)

一、设计方案的选择(原理) 运用555定时器构成的多谐振荡器电路,使其产生时钟脉冲,即为有一定频率或周期的方波信号,再使用一个555定时器构成的施密特电路对待测波形进行调整,无论待测信号为方波、三角波还是正弦波都可以调成同一周期的方波信号,然后用一个与门将两个555产生的不同方波连接起来再与两个计数器连接,目的是为了当计数器在多谐震荡器输出一秒的高电平的情况下使计数器正确计数一秒内待测信号的高电平出现数目。计数器的输出连接一个锁存器,能将所需数字即待测信号的频率正确锁定,最后是译码器和七段显示器,显示出正确的频率。如果一次循环结束,将电源断开即计数结束。方案的原理如图1.1所示: 图 1.1 设计方案的方框图

数字频率计设计 毕业设计

毕业设计(论文)任务书 课题名称数字频率设计课题性质毕业论文 专业楼宇智能化工程技术班级 11级学生姓名学号 113121 指导教师教研室主任系部主任 发放日期 一、课题条件: 1.分析频率计的设计方法; 2.利用现有的仿真软件进行波形仿真; 二、毕业论文(设计)主要内容: 1、测量信号:方波; 2、测量频率范围:1KHZ~9999HZ;10KHZ~100KHZ; 3、显示方式:4位十进制数显示; 4、时基电路由555定时器及分频器组成,555振荡器产生脉冲信号,经分频器分频产生的时基信号,其脉冲宽度分别为:1秒,0.1秒; 5、当被测信号的频率超出测量范围时,报警。 三、计划进度: 1. 资料的收集撰写开题报告 7月18日至9月8日 2. 方案设计 9月9日至9月15日 3. 电路的设计指标分析与确定;后期的电路优化元器件的选择与参数确定 9月16日至11月2日 4. 毕业设计论文的修改、完善 11月3日至11月10日 5. 毕业设计答辩11月15 日至11月20日 6. 毕业设计工作总结11月20日至11月25日 四、主要参考文献: (1)电子技术基础(第三版) (2)电子产品的设计与制作工艺 (3)电子设计技术杂志 (4)现代电子学及应用1 (5)AD (6)数字电子技术基础阎石主编高等教育出版社 指导教师(系)教研室主任 年月日年月日

摘要 频率计又称为频率计数器,是一种专门对被测信号频率进行测量的电子测量仪器。其最基本的工作原理为:当被测信号在特定时间段T内的周期个数为N 时,则被测信号的频率f=N/T。 频率计主要由四个部分构成:时基(T)电路、输入电路、计数显示电路以及控制电路。在一个测量周期过程中,被测周期信号在输入电路中经过放大、整形、微分操作之后形成特定周期的窄脉冲,送到主门的一个输入端。主门的另外一个输入端为时基电路产生电路产生的闸门脉冲。在闸门脉冲开启主门的期间,特定周期的窄脉冲才能通过主门,从而进入计数器进行计数,计数器的显示电路则用来显示被测信号的频率值,内部控制电路则用来完成各种测量功能之间的切换并实现测量设置。 在传统的电子测量仪器中,示波器在进行频率测量时测量精度较低,误差较大。频谱仪可以准确的测量频率并显示被测信号的频谱,但测量速度较慢,无法实时快速的跟踪捕捉到被测信号频率的变化。正是由于频率计能够快速准确的捕捉到被测信号频率的变化,因此,频率计拥有非常广泛的应用范围。 在传统的生产制造企业中,频率计被广泛的应用在产线的生产测试中。频率计能够快速的捕捉到晶体振荡器输出频率的变化,用户通过使用频率计能够迅速的发现有故障的晶振产品,确保产品质量。 在计量实验室中,频率计被用来对各种电子测量设备的本地振荡器进行校准。在无线通讯测试中,频率计既可以被用来对无线通讯基站的主时钟进行校准,还可以被用来对无线电台的跳频信号和频率调制信号进行分析。 常用的频率测量方法有测频法、测周法、测周期/频率法、F/V与A/D法。本文阐述了用测频法构成的数字频率计。 关键词:逻辑控制,计数器,时基(T)电路、输入电路、计数显示电路以及控制电路。

数字频率计设计报告

数字频率计设计报告 学院: 姓名: 学号: 专业: 指导老师: 2008-11-11

一.内容介绍 数字频率计是用来测量信号频率的装置。它可以测量正弦波、方波、三角波和尖脉冲信号的频率。在进行模拟、数字电路的设计、安装、调试过程中,经常要用到频率计。 由于其用十进制数显示,测量速度、精度高、显示直观,因此频率计得到广泛的应用。 二.设计内容、技术指标及框图 设计内容: 设计只用一只数码管显示结果的数字频率计。 技术指标: 1.被测量信号频率范围:1KHZ-999KHZ 2.测量精度:测量显示3位有效数字 3.时基时间宽度:1ms 4.测试和显示方法: (1)只用一只数码管显示结果。 (2)每2秒钟自动测试一次,按百、十、个、全灭的顺序逐位显示测试结果,每位的显示时间为0.5秒。 数字频率计的框图:如图1。 图1 频率计系统框图

三.单元电路设计 1. 时基产生电路 时基信号的产生电路可用石英晶体振荡器经分频后得到高稳定度的时基信号。图2采用CC4060十四级计数器构成0.5s脉冲(3)和毫秒脉冲1ms时基信号。12脚接地。 图2 秒脉冲和毫秒脉冲时基产生电路 2.节拍信号发生器 设计要求每2秒自动测试一次,按百、十、个、灭的顺序逐位显示测试结果。由此可知,节拍信号发生器需产生四种状态的变化,变化周期为2秒。四种状态信号可以提供给数据选择器的地址端,用来逐位显示百、十、个、灭,2秒的周期信号用来控制计数器计数,保持和清零。如图3。 节拍信号发生器

图3 节拍信号发生器及波形 3.整形电路 将输入的被测信号送入施密特触发器74LS132的输入端,其输入将得到矩形波至闸门输入如图4。 图4 整形电路 4.控制电路(门控电路) 要求控制器每2秒向主闸门输入一个时间为2秒,采样脉宽为1ms的周期信号,如图5。 采用2个D触发器,以时基信号T=1ms作为同步时钟脉冲。

相关主题
文本预览
相关文档 最新文档