当前位置:文档之家› 基于确定有限状态自动机的改进多模式匹配算法研究

基于确定有限状态自动机的改进多模式匹配算法研究

基于确定有限状态自动机的改进多模式匹配算法研究
基于确定有限状态自动机的改进多模式匹配算法研究

模式匹配的KMP算法详解

模式匹配的KMP算法详解 模式匹配的KMP算法详解 这种由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现的改进的模式匹配算法简称为KMP算法。大概学过信息学的都知道,是个比较难理解的算法,今天特把它搞个彻彻底底明明白白。 注意到这是一个改进的算法,所以有必要把原来的模式匹配算法拿出来,其实理解的关键就在这里,一般的匹配算法: int Index(String S,String T,int pos)//参考《数据结构》中的程序 { i=pos;j=1;//这里的串的第1个元素下标是1 while(i<=S.Length && j<=T.Length) { if(S[i]==T[j]){++i;++j;} else{i=i-j+2;j=1;}//**************(1) } if(j>T.Length) return i-T.Length;//匹配成功 else return 0; } 匹配的过程非常清晰,关键是当‘失配’的时候程序是如何处理的?回溯,没错,注意到(1)句,为什么要回溯,看下面的例子: S:aaaaabababcaaa T:ababc aaaaabababcaaa ababc.(.表示前一个已经失配) 回溯的结果就是 aaaaabababcaaa a.(babc) 如果不回溯就是 aaaaabababcaaa aba.bc 这样就漏了一个可能匹配成功的情况 aaaaabababcaaa ababc 为什么会发生这样的情况?这是由T串本身的性质决定的,是因为T串本身有前后'部分匹配'的性质。如果T为abcdef这样的,大没有回溯的必要。

模式匹配算法的设计与实现

五、详细设计 #include #include #include #include using namespace std; #define MAX 100000 #define M 69 class String { private: int n; char *str; int *count; //记录子串在主串中出现的位置 int Find(int i,String &P); // 简单匹配算法找到最近的匹配串后立即停止,而不向下继续且缺乏一个数组记录位置 int *f ; //记录失败函数 void Fail(); int KMPFind(int i,String &P); //改进的失败函数 void ImproveFail(); int KMPFindImprove(int i,String &P); public: String(); //建立一个空串 String(const char *p); String(const String &p); //拷贝函数 ~String(); int Length() {return n;}; //返回当前串对象长度 void Output() {cout<

int KMPFindImprove(String &P); //改进的KMP匹配算法 void Output2(); //输出子串在主串中出现的位置 }; int String::KMPFindImprove(String &P) { int sum=0; int j=KMPFindImprove(0,P); while(j!=-1) { count[sum++]=j; if(j<=n-P.n) j=KMPFindImprove(j+P.n,P); } return sum; } void String::Output2() //输出子串在主串中的位置 { int i=0; while(count[i]!=count[i+1] && i

不确定有限状态自动机的确定化

编译原理实验报告 实验名称不确定有限状态自动机的确定化 实验时间 院系计算机科学与技术学院 班级 学号 姓名

1.试验目的 输入:非确定有限(穷)状态自动机。 输出:确定化的有限(穷)状态自动机 2.实验原理 一个确定的有限自动机(DFA)M可以定义为一个五元组,M=(K,∑,F,S,Z),其中: (1)K是一个有穷非空集,集合中的每个元素称为一个状态; (2)∑是一个有穷字母表,∑中的每个元素称为一个输入符号; (3)F是一个从K×∑→K的单值转换函数,即F(R,a)=Q,(R,Q∈K)表示当前状态为R,如果输入字符a,则转到状态Q,状态Q称为状态R的后继状态; (4)S∈K,是惟一的初态; (5)Z?K,是一个终态集。 由定义可见,确定有限自动机只有惟一的一个初态,但可以有多个终态,每个状态对字母表中的任一输入符号,最多只有一个后继状态。 对于DFA M,若存在一条从某个初态结点到某一个终态结点的通路,则称这条通路上的所有弧的标记符连接形成的字符串可为DFA M所接受。若M的初态结点同时又是终态结点,则称ε可为M所接受(或识别),DFA M所能接受的全部字符串(字)组成的集合记作L(M)。 一个不确定有限自动机(NFA)M可以定义为一个五元组,M=(K,∑,F,S,Z),其中: (1)k是一个有穷非空集,集合中的每个元素称为一个状态; (2)∑是一个有穷字母表,∑中的每个元素称为一个输入符号; (3)F是一个从K×∑→K的子集的转换函数; (4)S?K,是一个非空的初态集; (5)Z?K,是一个终态集。 由定义可见,不确定有限自动机NFA与确定有限自动机DFA的主要区别是: (1)NFA的初始状态S为一个状态集,即允许有多个初始状态; (2)NFA中允许状态在某输出边上有相同的符号,即对同一个输入符号可以有多个后继状态。即DFA中的F是单值函数,而NFA中的F是多值函数。 因此,可以将确定有限自动机DFA看作是不确定有限自动机NFA的特例。和DFA一样,NFA也可以用矩阵和状态转换图来表示。 对于NFA M,若存在一条从某个初态结点到某一个终态结点的通路,则称这条通路上的所有弧的标记(ε除外)连接形成的字符串可为M所接受。NFA M所能接受的全部字符串(字)组成的集合记作L(M)。 由于DFA是NFA的特例,所以能被DFA所接受的符号串必能被NFA所接受。 设M 1和M 2 是同一个字母集∑上的有限自动机,若L(M 1 )=L(M 2 ),则称有 限自动机M 1和M 2 等价。

字符串的模式匹配算法

在前面的图文中,我们讲了“串”这种数据结构,其中有求“子串在主串中的位置”(字符串的模式匹配)这样的算法。解决这类问题,通常我们的方法是枚举从A串(主串)的什么位置起开始与B串(子串)匹配,然后验证是否匹配。假设A串长度为n,B串长度为m,那么这种方法的复杂度是O(m*n)的。虽然很多时候复杂度达不到m*n(验证时只看头一两个字母就发现不匹配了),但是我们有许多“最坏情况”,比如: A=“aaaaaaaaaaaaaaaaaaaaaaaaab”,B=“aaaaaaaab”。 大家可以忍受朴素模式匹配算法(前缀暴力匹配算法)的低效吗?也许可以,也许无所谓。 有三位前辈D.E.Knuth、J.H.Morris、V.R.Pratt发表一个模式匹配算法,最坏情况下是O(m+n),可以大大避免重复遍历的情况,我们把它称之为克努特-莫里斯-普拉特算法,简称KMP算法。 假如,A=“abababaababacb”,B=“ababacb”,我们来看看KMP是怎样工作的。我们用两个指针i和j分别表示,。也就是说,i是不断增加的,随着i 的增加j相应地变化,且j满足以A[i]结尾的长度为j的字符串正好匹配B串的前j个字符(j当然越大越好),现在需要检验A[i+1]和B[j+1]的关系。 例子: S=“abcdefgab” T=“abcdex” 对于要匹配的子串T来说,“abcdex”首字符“a”与后面的串“bcdex”中任意一个字符都不相等。也就是说,既然“a”不与自己后面的子串中任何一字符相等,那么对于主串S来说,前5位字符分别相等,意味着子串T的首字符“a”不可能与S串的第2到第5位的字符相等。朴素算法步骤2,3,4,5的判断都是多余,下次的起始位置就是第6个字符。 例子: S=“abcabcabc” T=“abcabx”

关于快速高效的模式匹配算法的剖析与改进

关于快速高效的模式匹配算法的剖析与改进 摘要:模式匹配算法是现代化网络入侵检测中的关键环节,本文主要介绍了几种常用的模式匹配算法,并在此基础上,提出一种更快捷、更高效的改进方法,以提高模式匹配的效率与质量,确保网络安全。 关键词:模式匹配入侵检测改进 随着我国计算机与网络技术的飞速发展,网络应用已涉及到人们生产、生活的各个领域,其重要性日益凸显。随之而来的网络攻击问题也备受关注,给网络安全性带来挑战。传统的网络防御模式,主要采取身份认证、防火墙、数据加密等技术,但是与当前网络发展不适应。在此背景下,入侵检测技术营运而生,并建立在模式匹配基础上,确保检测的快捷性、准确性,应用越来越广泛。 1、模式匹配原理概述 模式匹配是入侵检测领域的重要概念,源自入侵信号的层次性。结合网络入侵检测的底层审计事件,从中提取更高层次的内容。通过高层事件形成的入侵信号,遵循一定的结构关系,将入侵信号的抽象层次进行具体划分。入侵领域大师kumar将这种入侵信号划分为四大层次,并将每一个层次与匹配模式相对应。以下将分别对四大层次进行分析: (1)存在。只要存在审计事项,就可以证明入侵行为的发生,并深层次挖掘入侵企图。存在主要对应的匹配模式就是“存在模式”。可以说,存在模式就是在固定的时间内,检查系统中的特定状态,

同时判断系统状态。 (2)序列。一些入侵的发生,是遵循一定的顺序,而组成的各种行为。具体表现在一组事件的秩序上。序列对应的是“序列模式”,在应用序列模式检测入侵时,主要关注间隔的时间与持续的时间。 (3)规则。规则表示的是一种可以扩展的表达方式,主要通过and 逻辑表达来连接一系列的描述事件规则。一般适用于这种模式的攻击信号由相关活动组成,这些活动之间往往不存在事件的顺序关系。 (4)其他。其他模式是不包含前面几种方法的攻击,在具体应用过程中,难以与其他入侵信号进行模式匹配,大多为部分实现方式。 2、几种常用的模式匹配算法 2.1 ac算法 ac算法(aho-corasick)是一种可以同时搜索若干个模式的匹配算法,最早时期在图书馆书目查询系统中应用,效果良好。通过使用ac算法,实现了利用有限状态自动机结构对所有字符串的接收过程。自动机具有结构性特征,且每一个前缀都利用唯一状态显示,甚至可同时应用于多个模式的前缀中。如果文本中的某一个字符不属于模式中预期的下一个字符范围内,或者可能出现错误链接的指向状态等,那么最长模式的前缀同时也可作为当前状态相对应的后缀。ac算法的复杂性在于o(n),预处理阶段的复杂性则在于o(m)。在采取ac算法的有限状态自动机中,应该在每一个字符的模式串中分别建立节点,提高该算法的使用效率与质量。目前,应用有限

数据结构-模式匹配算法

模式匹配算法 源程序如下: #include #include int index_KMP(char *s,char *t,int pos); void get_next(char *t,int *); char s[100],t[20]; int next[20],pos=0; //主函数 main() { printf("------------------------模式匹配算法 ----------------------\n"); printf("0---匹配失败,k---匹配成功,k--指主串中第一个字符出现的位置\n"); int n; printf("请输入主串s:\n"); gets(s); printf("请输入模式串t:\n"); gets(t); get_next(t,next); n=index_KMP(s,t,pos);

printf("匹配的结果:%d\n",n); } //KMP模式匹配算法 int index_KMP(char *s,char *t,int pos) { int i=pos,j=1; while (i<=(int)strlen(s)&&j<=(int)strlen(t)) { if (j==0||s[i]==t[j-1]) { i++; j++; } else j=next[j]; } if(j>(int)strlen(t)) return i-strlen(t)+1; else return 0; }

void get_next(char *t,int *next) { int i=1,j=0; next[0]=next[1]=0; while (i<(int)strlen(t)) { if (j==0||t[i]==t[j]) { i++; j++; next[i]=j; } else j=next[j]; } } 运行效果如下:

有限状态自动机模型

龙源期刊网 https://www.doczj.com/doc/a214402694.html, 有限状态自动机模型 作者:刘威 来源:《新课程·教师》2015年第09期 当我们用计算机进行问题的求解时,首先需要用适当的数据进行问题表示,然后再设计 相应的算法对这些数据进行变换处理来获得问题的求解结果。因此,对问题进行建模和形式化表示,然后进行处理是进行计算机求解的基本途径。数理逻辑、自动机理论给出了如何描述一些基本问题以及如何建立问题的抽象表示,并通过对这些抽象化的表示的性质和它的变化方法进行研究。这些模型都是问题数学模型的典范,给计算机问题求解提供了坚实的理论基础,是计算机求解问题的重要方法和思想。 计算机科学与技术学科是以数学和电子学科为基础发展起来的,一方面研究计算机领域 中的一些普遍规律,描述计算的基本概念与模型,其重点是描述现象、解释规律。另一方面是包括计算机硬件、软件的计算机系统设计和实现的工程技术,简单地说,计算机科学与技术学科通过在计算机上建立模型并模拟物理过程来进行科学调查和研究,它系统地研究信息描述和变换算法,主要包括信息描述和变换算法的理论、分析、效率、实现和应用。 所有问题的描述都要以计算机能识别的语言来实现,计算机语言的文法描述提供了生成 语言的手段,但是,对于语言句子的识别来说,我们需要一些识别语言的模型,我们可以称这种模型为语言的识别模型。这种识别模型应该满足必要的约束条件,首先模型具有有穷个状态,不同的状态代表不同的意义。按照实际的需要,模型可以在不同的状态下完成特定语言的识别。我们可以将输入数据中出现的符号组成一个字符的列表。模型将输入数据作为线性表来进行处理和变换。模型有一个初始的状态,它是系统的开始状态,系统在这个状态下开始进行问题的求解。模型中还有一些状态表示它到目前为止所读入的字符构成的字符串是模型从开始状态引导到这种状态的所有字符串构成的语言就是模型所能识别的输入。我们可以将此模型对应成有穷状态自动机的物理模型,在处理问题的时候,它可以接受一个关于问题的输入数据,数据以字符串的形式提供,我们把这些输入数据划分成一系列的小部分,每个部分由若干字符组成,为了不让输入数据量影响该模型对问题的处理,我们约定,输入数据从开始输入时的时间点开始处理,输入状态可以是无穷的,这就是说,从输入第一部分数据开始,输入端可以有任意长度的输入序列。而且,模型有一个有穷状态控制器,该控制器的状态只有有穷多个,并且规定,模型的每一个动作分为三步,读入待输入的字符,根据当前的状态和读入的字符改变有穷控制器的状态,读下一部分输入数据。计算机的各个组成部分,既包括硬件系统也包括软件系统,都可以对其进行形式化的定义,计算机的硬件系统包括中央处理器、存储器、外部设备,可以形式化地用一个三元组来描述,对计算机个各个硬件部分进行管理的软件的功能也可以用形式化的方法来描述,例如,操作系统的各个功能模块、处理器管理、线程调度、文件系统、设备驱动程序、网络通信管理、虚拟内存管理等都可以进行形式化的定义。有穷状态机就是进行这种形式化定义的模型,有穷状态机是一个五元组,分别是描述状态的有穷非空集合,它称为有穷状态机的一个状态,输入符号表,所有输入有穷状态机的关于问题的描述都是这个符号表中的符号组成的字符串。状态转换函数,表示有穷状态自动机在某一状态读入字符,将

模式匹配KMP算法实验步骤

一、问题描述 模式匹配两个串。 二、设计思想 这种由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现的改进的模式匹配算法简称为KM P算法。 注意到这是一个改进的算法,所以有必要把原来的模式匹配算法拿出来,其实理解的关键就在这里,一般的匹配算法: int Index(String S,String T,int pos)//参考《数据结构》中的程序 { i=pos;j=1;//这里的串的第1个元素下标是1 while(i<=S.Length && j<=T.Length) { if(S[i]==T[j]){++i;++j;} else{i=i-j+2;j=1;}//**************(1) } if(j>T.Length) return i-T.Length;//匹配成功 else return 0; } 匹配的过程非常清晰,关键是当‘失配’的时候程序是如何处理的?为什么要回溯,看下面的例子: S:aaaaabababcaaa T:ababc aaaaabababcaaa ababc.(.表示前一个已经失配) 回溯的结果就是 aaaaabababcaaa a.(babc) 如果不回溯就是 aaaaabababcaaa aba.bc 这样就漏了一个可能匹配成功的情况 aaaaabababcaaa ababc 这是由T串本身的性质决定的,是因为T串本身有前后'部分匹配'的性质。如果T为a bcdef这样的,大没有回溯的必要。

改进的地方也就是这里,我们从T串本身出发,事先就找准了T自身前后部分匹配的位置,那就可以改进算法。 如果不用回溯,那T串下一个位置从哪里开始呢? 还是上面那个例子,T为ababc,如果c失配,那就可以往前移到aba最后一个a的位置,像这样: ...ababd... ababc ->ababc 这样i不用回溯,j跳到前2个位置,继续匹配的过程,这就是KMP算法所在。这个当T[j]失配后,j应该往前跳的值就是j的next值,它是由T串本身固有决定的,与S串无关。 《数据结构》上给了next值的定义: 0 如果j=1 next[j]={Max{k|1aaab ->aaab ->aaab 像这样的T,前面自身部分匹配的部分不止两个,那应该往前跳到第几个呢?最近的一个,也就是说尽可能的向右滑移最短的长度。 到这里,就实现了KMP的大部分内容,然后关键的问题是如何求next值?先看如何用它来进行匹配操作。 将最前面的程序改写成: int Index_KMP(String S,String T,int pos) { i=pos;j=1;//这里的串的第1个元素下标是1 while(i<=S.Length && j<=T.Length) {

有限状态自动机的确定化

有限状态自动机的确定化 姓名:翟彦清学号:E10914127 一、实验目的 设计并实现将 NFA确定化为DFA的子集构造算法,从而更好地理解有限自动机之间的等价性,掌握词法分析器自动产生器的构造技术。该算法也是构造LR分析器的基础。 输入:非确定有限(穷)状态自动机。 输出:确定化的有限(穷)状态自动机二、实验原理 一个确定的有限自动机(DFA M可以定义为一个五元组,M k( K,E, F, S, Z),其中: (1)K是一个有穷非空集,集合中的每个元素称为一个状态; (2)刀是一个有穷字母表,刀中的每个元素称为一个输入符号; (3)F是一个从K XE^ K的单值转换函数,即 F (R, a)= Q ( R, Q€ K)表示当前状态为R,如 果输入字符 a,则转到状态 Q,状态Q称为状态R的后继状态; (4)S€ K,是惟一的初态; (5)Z K,是一个终态集。 由定义可见,确定有限自动机只有惟一的一个初态,但可以有多个终态,每个状态对字母表中的任一输入符号,最多只有一个后继状态。 对于DFAM,若存在一条从某个初态结点到某一个终态结点的通路,则称这条通路上的所有弧的标记符连接形成的字符串可为DFAM所接受。若M的初态结点同时又是终态结点,则称&可为 M所接受(或识别),DFA M所能接受的全部字符串(字)组成的集合记作 L(M)。 一个不确定有限自动机(NFA M可以定义为一个五元组,M=(K, E, F, S, Z), 其中:( 1) k 是一个有穷非空集,集合中的每个元素称为一个状态; (2)E是一个有穷字母表,E中的每个元素称为一个输入符号; (3)F是一个从K xE^ K的子集的转换函数; (4)S K,是一个非空的初态集; (5)Z K,是一个终态集。 由定义可见,不确定有限自动机 NFA与确定有限自动机DFA的主要区别是: (1)NFA的初始状态S为一个状态集,即允许有多个初始状态; (2)NFA中允许状态在某输出边上有相同的符号,即对同一个输入符号可以有多个后继状态。即DFA中的F是单值函数,而NFA中的F是多值函数。 因此,可以将确定有限自动机DFA看作是不确定有限自动机NFA的特例。和DFA—样,NFA也可以用矩阵和状态转换图来表示。 对于NFAM,若存在一条从某个初态结点到某一个终态结点的通路,则称这条通路上的所有弧的标记(&除外)连接形成的字符串可为M所接受。NFAM所 能接受的全部字符串(字)组成的集合记作 L(M)。 由于DFA是 NFA的特例,所以能被DFA所接受的符号串必能被NFA所接受。 设M和M是同一个字母集E上的有限自动机,若 L (M)= L (M),贝U称有限自动机M和M等价。 由以上定义可知,若两个自动机能够接受相同的语言,则称这两个自动机等价。DFA是 NFA的特例,因此对于每一个 NFAM总存在一个DFAM,使得L (M) 二L (M)。即一个不确定有限自动机能接受的语言总可以找到一个等价的确定有限自动机来接受该

模式匹配算法

/** *时间:2010年8月26日7:09:57 *功能:模式匹配算法代码 */ #include"stdio.h" #include"malloc.h" void kmp(int *ikmp,char *t,int t_length) { int k=0; int q=0; ikmp[0]=k; for(q=1;q0&&t[k]!=t[q]) { k=ikmp[k]; } if(t[k]==t[q]) { k=k+1; } ikmp[q]=k; } /*测试*/ for(q=0;q

while(t[t_length]!='\0') { t_length++; } /*测试*/ printf("t_length is %d\n",t_length); /*求t的kmp值*/ ikmp=malloc(t_length*sizeof(int)); kmp(ikmp,t,t_length); /*匹配过程*/ for(q=0;q0&&t[k]!=s[q]) { k=ikmp[k-1]; } if(t[k]==s[q]) { k=k+1; } if(k==t_length) { free(ikmp); return (q-t_length+1); } } free(ikmp); return -1; } main() { int i=0; char *s;/*主串*/ char *t;/*匹配串*/ printf("input s: "); scanf("%s",s); printf("input t: "); scanf("%s",t);

不确定有穷状态自动机的确定化实验报告

编译原理实验报告(二) E01214055 鲁庆河 1.实验名称: 不确定有穷状态自动机的确定化 2.实验目的: a)输入:非确定有穷状态自动机NFA b)输出:确定化的有穷状态自动机DFA 3.实验原理: a)NFA确定化为DFA 同一个字符串α可以由多条通路产生,而在实际应用中,作为描述控制过程的自动机,通常都是确定有限自动机DFA,因此这就需要将不确定有限自动机转换成等价的确定有限自动机,这个过程称为不确定有限自动机的确定化,即NFA确定化为DFA。 b)NFA的确定化算法 ----- 子集法: ●若NFA的全部初态为S1,S2,…,S n,则令DFA的初态为: S=[S1,S2,…,S n],其中方括号用来表示若干个状态构成的某一状态。 ●设DFA的状态集K中有一状态为[S i,S i+1,…,S j],若对某符号a∈∑,在NFA中有F({ S i,S i+1,…,S j},a) ={ S i’,S i+1’,…,S k’ },则令F({ S i,S i+1,…,S j },a)={ S i’,S i+1’,…,S k’ }为DFA的一个转换函数。 若[ S i’,S i+1’,…,S k‘ ]不在K中,则将其作为新的状态加入到K中。 ●重复第2步,直到K中不再有新的状态加入为止。 ●上面得到的所有状态构成DFA的状态集K,转换函数构成DFA的F,DFA的字母表仍然是NFA的字母表∑。 ●DFA中凡是含有NFA终态的状态都是DFA的终态。 c)closure(I)函数,move(I,a)函数的 假设I是NFA M状态集K的一个子集(即I∈K),则定义ε-closure(I)为: 1.若Q∈I,则Q∈ε-closure(I); 2.若Q∈I,则从Q出发经过任意条ε弧而能到达的任何状态Q’,则Q’∈closure(I)。 3.状态集ε-closure(I)称为状态I的ε闭包。 假设NFA M=( K,∑,F,S,Z ),若I∈K,a∈∑,则定义I a=closure(J),其中J是所有从closure(I)出发,经过一条a弧而到达的状态集。 NFA确定化的实质是以原有状态集上的子集作为DFA上的一个状态,将原状态间的转换为该子集间的转换,从而把不确定有限自动机确定化。经过确定化后,状态数可能增加,而且可能出现一些等价状态,这时就需要简化。 4.实验思路:(数据结构及变量设计等)

不确定有限状态自动机的确定化(NFA TO DFA)

不确定有限状态自动机的确定化(NFA TO DFA)

不确定有限状态自动机的确定化(NFA TO DFA)2008-12-05 22:11 #include #include #define MAXS 100 using namespace std; string NODE; //结点集合 string CHANGE; //终结符集合 int N; //NFA边数 struct edge{ string first; string change; string last; }; struct chan{ string ltab; string jihe[MAXS]; }; void kong(int a) { int i; for(i=0;iNODE.find(a[i+1])) { b=a[i]; a[i]=a[i+1]; a[i+1]=b; } }

void eclouse(char c,string &he,edge b[]) { int k; for(k=0;khe.length()) he+=b[k].last; eclouse(b[k].last[0],he,b); } } } void move(chan &he,int m,edge b[]) { int i,j,k,l; k=he.ltab.length(); l=he.jihe[m].length(); for(i=0;ihe.jihe[m].length()) he.jihe[m]+=b[j].last[0]; for(i=0;ihe.jihe[m].length()) he.jihe[m]+=b[j].last[0]; } //输出 void outputfa(int len,int h,chan *t) { int i,j,m; cout<<" I "; for(i=0;i

串的朴素模式匹配算法(BF算法)

//算法功能:串的朴素模式匹配是最简单的一种模式匹配算法,又称为 Brute Force 算法,简称为BF算法 #include #include #define MAXL 255 #define FALSE 0 #define TRUE 1 typedef int Status; typedef unsigned char SString[MAXL+1]; //生成一个其值等于串常量strs的串T void StrAssign(SString &T, char *strs) { int i; T[0] = 0; //0号单元存储字串长度 for(i = 0; strs[i]; i++) //用数组strs给串T赋值 T[i+1] = strs[i]; T[0] = i; } //返回子串T在主串S中第pos个字符开始匹配的位置,若不存在,则返回0 int Index(SString S, SString T, int pos) { int i = pos, j = 1; while(i <= S[0] && j <= T[0]) { if(S[i] == T[j]) //继续比较后面的字符 { i++; j++; } else//指针回退,重新开始匹配 { i = i -j + 2; j = 1; } } if(j > T[0]) return i - T[0]; else return 0;

int main() { SString S, T; int m; char strs1[MAXL]; //建立主串S char strs2[MAXL]; //建立模式串T printf("请输入主串和子串:\n"); printf("主串S: "); scanf("%s", strs1); printf("子串T: "); scanf("%s", strs2); StrAssign(S, strs1); StrAssign(T, strs2); m = Index(S, T, 1); if(m) printf("主串 S = {%s}\n子串 T = {%s}\n在第 %d 个位置开始匹配!\n", strs1, strs2, m); else printf("主串 S = {%s}\n子串 T = {%s}\n匹配不成功!\n", strs1, strs2); return 0; }

高效的多模式匹配算法

东方企业文化·百家论坛 2011年9月 163 高效的多模式匹配算法 马 力 (重庆青年职业技术学院,重庆,400712) 摘 要:本文提出一种新的多模式匹配算法,以提高匹配检测的执行速度和效率。该算法采用了基于集合的多模式匹配思想,重新构造了HASH 函数以便在处理大规模模式集时执行时间能比传统的匹配算法的执行时间要少。经过实验证明,运用该算法不仅具有时间复杂度较低的优点,且与传统算法相比具有更为优越的性能,同时在实际工作状态下的检测能力也更强大。 关键词:多模式匹配 HASH 函数 中图分类号:TP393 文献标识码:A 文章编号:1672—7355(2011)09—0163—01 一、算法描述 通常在自然文本中,经常会发生所谓的坏字符移动。此时会极大提高Boyer-Moore 算法的检测效率。但是当文本与多个模式进行匹配时,文本中的多数字符都可能与某些模式的最后一个字符相匹配(即匹配冲突),这时发生坏字符移动的可能性就非常小了。本文提出的算法解决了如何在上述情况下继续保持Boyer-Moore 算法的实质与效率的问题,采用散列(Hash )技术和高效过滤等方法,减小了匹配冲突对算法执行效率的影响。算法描述如下: 首先,算法需要计算出模式的最小长度,设其值为m ,为简化算法描述,假定所有模式均具有相同的长度,同时保证最小长度合理以免影响匹配效率。 假设P 为模式的集合,P={P 1P 2……P K },K=|P|,P 中所有模式的长度均为m 。T 为网络数据包,T=t 1t 2……t n (n ≧m )。 选取Q 为足够大空间的常数,定义长度为m 的支字符串R=r 1r 2……r m ,则构造出R 的Hash 函数:∑=?=m i i m i S r Q R Hash 1mod )(,其中S 为上文所提的模式的P 集合。 二、算法流程设计 1. 预处理阶段 首先需要对模式进行排序,形成有序模式链表;然后主要完成三张表(SHIFT 表、HASH 表和PREFIX 表)的创建。SHIFT 表主要用于确定扫描文本时可移动的字符数。根据SHIFT 表中的取值分为两种处理情况:SHIFT[i ]≠0:直接根据SHIFT[i ]中的取值,确定移动的字符数。SHIFT[i ]=0:即前面提到的匹配冲突。此时需要根据HASH 表和PREFIX 表确定匹配的候选模式并最终核实该模式。 (1)SHIFT 表的创建在此处起到与Boyer-Moore 算法中相同的移动指示作用,只不过移动字符的数目基于长度为B 的字符块。假设SHIFT 表中包含了每个大小为B 的字符串的入口,那么它的大小为|∑|B 。为了减少表存储空间,采用了散列函数,将每个长度为B 的字符串映像为一个索引SHIFT 表的整数。设X=x 1x 2……x b 为文本中的b 个字符串,并假设X 已经被映像为SHIFT 表中的一个入口,则过程SHIFT Table Set Value ()有以下两种情况: X 不属于substring (P ) :SHIFT[i]=m-B+I ; X 属于substring (P ) :SHIFT[i]=m-q ; (q 为P i 中X 发生匹配的最右端位置)。 SHIFT 表中的所有初始值均为m-B+1,考虑每个模式 P=P 1P 2……P K ,将每个大小为i j B j B j P p p p B )(21"+?+?的子 串映像到SHIFT 表中。 通常情况下,SHIFT 表项的取值总是大于0,因此能够成功地跳过文本块并继续扫描文本。但是当模式数量增多时,情况就完全不同了。当模式数量增多时,SHIFT 表项取值为0的概率也呈线性递增趋势,即发生匹配冲突的可能性越来越大。本文设计的该算法的核心思想就是采用散列技术来最小化需要处理模式的数目,避免与模式链表中的每个模式逐一进行匹配,同时结合PREFIX 表的过滤作用,加速搜索过程。 (2)HASH 表的创建创建HASH 表,并使用前面计算出的用于索引SHIFT 表的B 个字符串映像整数作为该表的索引。设HASH 表的第i 个入口为HASH[i],它包含了一个指向最后B 个字符散列值为i 的模式链表的指针。链表PAT_POINT 用于存储指向模式的指针,每个模式按其最后B 个字符的散列值大小排序。设h 为文本当前后缀的散列值,并假设SHIFT[i ]=0,此时HASH[h]的取值指针p 指向散列值为h 的模式链表首部。为查找链表尾,指针不断递增直至它等于HASH[h+1]。如果SHIFT[i ]≠0,则有HASH[h]= HASH[h+1],因为不存在后缀散列值为h 的模式。 (3)PREFIX 表的创建多模式中肯定会出现相同后缀的情况,导致HASH 表冲突,即所有具有相同后缀的模式将映像到HASH 表中的同一入口。为了加快在相同后缀中查找确切匹配模式的速度,算法还引入了用于区分这些模式的一个称为PREFIX 的表。除了将所有模式的后B 个字符做一映像之外,还须将所有模式的前B 个字符映像到PREFIX 表中。 如果发现SHIFT 值为0,并且要在HASH 表中确定是否存在匹配,那么就在PREFIX 表中检查该值。对每个后缀而言,HASH 表不仅包含具有所有此后缀的模式,而且还包含了他们相应的前缀。可以通过左移m-B 个位置计算出文本中的相应前缀,并用它来过滤那些后缀相同但是前缀不同的模式。 2. 扫描阶段 扫描阶段的流程如下:(1)计算tm-B+1到tm 的基于文本当前B 个字符的散列值h ;(2)检查SHIFT[h]的取值,如大于0,移动文本返回(1),否则转至(3);(3)从当前位置向左m 个字符处开始计算文本中的前缀散列值,称为文本前缀;(4)检查每个p ,SHIFT[h]≦p <HASH[h+1],是否有PREFIX[P]=text-prefix 。如果相等,那么就直接检查与文本相对应的实际模式(由PAT_POINT[p]给出)。 参考文献: [1] Crosbie , Gene Spafford. Defending a Computer System using Autonomous Agent[R].COAST Technical Report No.95-022, March 1994. [2] Aho A , Corasick M. Efficient String Matching an Aid to Bibliographic Search [J]. Communication of the ACM , 1975, 18(6) : 333-340.

简单的模式匹配算法

简单的模式匹配算法_Brute-Force算法 在串的操作中,子串的定位操作Index_string(s,t),通常称之为模式匹配(其中:子串t称之为模式串)。其功能是:主串s=“c0c1...c n-1”中,去查找子串t=“t0t1...t m-1”,若找到则返回子串t在主串s中的位置,否则查找不成功,返回-1。 为了便于理解,我们举例进行说明。 1.例子 例如:主串s=”ababcabcacbab”,t=”abcac”。其匹配过程如图6-12所示。 第一趟匹配: i=2 a b a b c a b c a c b a b a b c j=2 第二趟匹配: i=1 a b a b c a b c a c b a b a j=0 第三趟匹配: i=6 a b a b c a b c a c b a b a b c a c j=4 第四趟匹配: i=3 a b a b c a b c a c b a b a j=0 第五趟匹配: i=4 a b a b c a b c a c b a b a j=0 第六趟匹配: i=10 a b a b c a b c a c b a b a b c a c j=5 图6-12 Brute-Force算法中串的匹配过程 2.算法思想 算法的基本思想是:分别设置计数指针i和j指示主串s和模式串t中当前正待比较的字符位置。从主串的第一个字符和模式的第一个字符比较,若相等,则继续逐个比较后续字符;否则从主串的下一个字符起再重新和模式串的字符比较。依次类推,直到模式串中的每个字符依次和主串中的一个连续的字符序列相等,则称匹配成功,函数值为和模式串中第一个字符相等的字符在主串中的序号,否则称匹配不成功。 这个算法简单,易于理解,但效率不高,主要原因是:主串指针i在若干个字符序列比较相等后只要有一个字符比较不等便需回溯。

BM模式匹配算法图解

Boyer-Moore 经典单模式匹配算法 BM模式匹配算法-原理(图解) 由于毕业设计(入侵检测)的需要,这两天仔细研究了BM模式匹配算法,稍有心得,特此记下。 首先,先简单说明一下有关BM算法的一些基本概念。 BM算法是一种精确字符串匹配算法(区别于模糊匹配)。 BM算法采用从右向左比较的方法,同时应用到了两种启发式规则,即坏字符规则和好后缀规则,来决定向右跳跃的距离。 BM算法的基本流程: 设文本串T,模式串为P。首先将T与P进行左对齐,然后进行从右向左比较,如下图所示: 若是某趟比较不匹配时,BM算法就采用两条启发式规则,即坏字符规则和好后缀规则,来计算模式串向右移动的距离,直到整个匹配过程的结束。 下面,来详细介绍一下坏字符规则和好后缀规则。 首先,诠释一下坏字符和好后缀的概念。 请看下图:

图中,第一个不匹配的字符(红色部分)为坏字符,已匹配部分(绿色)为好后缀。 1)坏字符规则(Bad Character): 在BM算法从右向左扫描的过程中,若发现某个字符x不匹配,则按如下两种情况讨论: i. 如果字符x在模式P中没有出现,那么从字符x开始的m个文本显然不可能与P匹配成功,直接全部跳过该区域即可。 ii. 如果x在模式P中出现且出现次数>=1,则以该字符所在最右边位置进行对齐。 用数学公式表示,设Skip(x)为P右移的距离,m为模式串P的长度,max(x)为字符x在P中最右位置。 可以总结为字符x出现与否,将max(x)=0作为初值即可。

例1: 下图红色部分,发生了一次不匹配。 计算移动距离Skip(c) = m-max(c)=5 - 3 = 2,则P向右移动2位。 移动后如下图: 2)好后缀规则(Good Suffix): 若发现某个字符不匹配的同时,已有部分字符匹配成功,则按如下两种情况讨论: i. 如果在P中位置t处已匹配部分P'在P中的某位置t'也出现,且位置t'的前一个字符与位置t的前一个字符不相同,则将P右移使t'对应t方才的所在的位置。 ii. 如果在P中任何位置已匹配部分P'都没有再出现,则找到与P'的后缀P''相同的P的最长前缀x,向右移动P,使x对应方才P''后缀所在的位置。

相关主题
文本预览
相关文档 最新文档