当前位置:文档之家› 圆锥曲线的切线方程总结(附证明)

圆锥曲线的切线方程总结(附证明)

圆锥曲线的切线方程总结(附证明)
圆锥曲线的切线方程总结(附证明)

运用联想探究圆锥曲线的切线方程

现行人教版统编教材高中数学第二册上、第75页例题2,给出了经过圆2

22r y x =+上

一点),(00y x M 的切线方程为2

00r y y x x =+;当),(00y x M 在圆外时,过M 点引切线有且只有两条,过两切点的弦所在直线方程为2

00r y y x x =+。那么,在圆锥曲线中,又

将如何我们不妨进行几个联想。

联想一:(1)过椭圆)0(122

22>>=+b a b

y a x 上一点),(00y x M 切线方程为

1202

0=+b

y y a x x ;(2)当),(00y x M 在椭圆122

22=+b y a x 的外部时,过M 引切线有两条,过两切点的弦所在直线方程为:12020=+b

y

y a x x

证明:(1)2222

1x y a b +=的两边对x 求导,得22220x yy a b

'

+=,得020

2

x x b x y a y ='=-,由点斜式得切线方程为20

0020

()b x y y x x a y -=--,即22000022221x x y y x y a b a b +=+= 。

(2)设过椭圆)0(122

22>>=+b a b

y a x 外一点),(00y x M 引两条切线,切点分别

为),(11y x A 、),(22y x B 。由(1)可知过A 、B 两点的切线方程分别为:12121=+b y

y a x x 、

12222=+b y

y a x x 。又因),(0

0y x M 是两条切线的交点,所以有1201201=+b y y a x x 、120

2202=+b y y a x x 。观察以上两个等式,发现),(11y x A 、),(22y x B 满足直线12020=+b y y a x x ,所以过两切点A 、B 两点的直线方程为12020=+b

y

y a x x 。 评注:因),(00y x M 在椭圆)0(12222>>=+b a b

y

a x 上的位置(在椭圆上或椭圆

外)的不同,同一方程12020=+b

y

y a x x 表示直线的几何意义亦不同。

联想二:(1)过双曲线)0,0(122

22>>=-b a b

y a x 上一点),(00y x M 切线方程为

1202

0=-b

y y a x x ;(2)当),(00y x M 在双曲线122

22=-b y a x 的外部时,过M 引切线有两条,过两切点的弦所在直线方程为:12020=-b

y

y a x x 。(证明同上)

联想三:(1)过圆锥曲线2

2

0Ax Cy Dx Ey F ++++=(A ,C 不全为零)上的点

),(00y x M 的切线方程为00

00022

x x y y Ax x Cy y D

E F ++++++=;(2)当

),(00y x M 在圆锥曲线220Ax Cy Dx Ey F ++++=(A ,C 不全为零)的外部时,过M

引切线有两条,过两切点的弦所在直线方程为:00

00022

x x y y Ax x Cy y D

E F ++++++= 证明:(1)两边对x 求导,得220Ax Cyy D Ey ''+++=

得0

0022x x Ax D y Cy E =+'

=-

+,由点斜式得切线方程为00002()2Ax D

y y x x Cy E

+-=-

-+ 化简得22

00000022220Cy y Cy Ey Ey Ax x Dx Ax Dx -+-++--=………………….① 因为22

00000Ax Cy Dx Ey F ++++=………………………………………………… ②

由①-②×2可求得切线方程为:00

00022

x x y y Ax x Cy y D E F ++++++= (2)同联想一(2)可证。结论亦成立。

根据前面的特点和圆上点的切线方程,得到规律:过曲线上的点),(00y x M 的切线方程为:把原方程中的2

x 用0x x 代换,2

y 用0y y 代换。若原方程中含有x 或y 的一次项,把x 用

02x x +代换,y 用0

2

y y +代换,得到的方程即为过该点的切线方程。当点),(00y x M 在曲线外部时,过M 引切线有两条,过两切点的弦所在直线方程为:

00

00022

x x y y Ax x Cy y D

E F ++++++= 通过以上联想可得出以下几个推论:

推论1:(1)过抛物线)0(22

>=p px y 上一点),(00y x M 切线方程为)(00x x p y y +=;(2)过抛物线)0(22>=p px y 的外部一点),(00y x M 引两条切

线,过两切点的弦所在直线方程为:)(00x x p y y +=

推论2:(1)过抛物线)0(22

>-=p px y 上一点),(00y x M 切线方程为)(00x x p y y +-=;(2)过抛物线)0(22>-=p px y 的外部一点),(00y x M 引两条

切线,过两切点的弦所在直线方程为:)(00x x p y y +-=。

推论3:(1)过抛物线)0(22

>=p py x 上一点),(00y x M 切线方程为)(00y y p x x +-=;(2)过抛物线)0(22>-=p py x 的外部一点),(00y x M 引两条

切线,过两切点的弦所在直线方程为:)(00y y p x x +-=。

推论4:(1)过抛物线)0(22

>-=p py x 上一点),(00y x M 切线方程为)(00y y p x x +-=;(2)过抛物线)0(22>-=p py x 的外部一点),(00y x M 引两条

切线,过两切点的弦所在直线方程为:)(00y y p x x +-=。

在以上的研究中,我们成功的运用了联想,由过已知圆上和圆外的点的切线方程联想到过圆锥曲线上和圆锥曲线外的切线方程,触类旁通,实现了知识的内迁,使知识更趋于系统化,取得了事半功倍的效果。

圆锥曲线的切线问题

圆锥曲线的切线问题 圆锥曲线的切线问题有两种处理思路:思路 1,导数法,将圆锥曲线方程化为函数 y =f (x) ,利用导数法求出函数y =f (x) 在点(x 0 , y ) 处的切线方程,特别是焦点在y 轴 上常用此法求切线;思路 2,根据题中条件设出切线方程,将切线方程代入圆锥切线方程,化为关于x(或y)的一元二次方程,利用切线与圆锥曲线相切的充要条件为判别式?= 0 ,即可解出切线方程,注意关于x (或y)的一元二次方程的二次项系数不为 0 这一条件,圆锥曲线的切线问题要根据曲线不同,选择不同的方法. 类型一 导数法求抛物线切线 例1 【2017 课表1,文 20】设A,B为曲线C:y= x 4 (1)求直线A B的斜率; 上两点,A与B的横坐标之和为 4. (2)设M为曲线C上一点,C在M处的切线与直线A B平行,且A M⊥B M,求直线A B的方程. 类型二椭圆的切线问题 2

5 + = > > 例 2(2014 广东 20)(14 分)已知椭圆C : x a 2 y 2 + = 1(a > b > 0) 的一个焦点为( 5, 0) , b 2 离心率为 . 3 (1) 求椭圆 C 的标准方程; (2) 若动点 P (x 0 , y 0 ) 为椭圆外一点,且点 P 到椭圆 C 的两条切线相互垂直,求点 P 的轨 迹方程. 类型三 直线与椭圆的一个交点 例 3.【2013 年高考安徽卷】已知椭圆 C : x a 2 y 2 b 2 1(a b 0) 的焦距为 4 , 且过点 (Ⅰ)求椭圆 C 的方程; (Ⅱ)设Q (x 0 , y 0 )(x 0 y 0 ≠ 0) 为椭圆C 上一点,过点Q 作 x 轴的垂线,垂足为 E .取点 A (0, 2 2) ,连接 AE ,过点 A 作 AE 的垂线交 x 轴于点 D .点G 是点 D 关于 y 轴的对称点, 作直 线QG ,问这样作出的直线QG 是否与椭圆 C 一定有唯一的公共点?并说明理由. 【解析】(1)因为椭圆过点 P ( 2,3) ∴ 2 + 3 = 1 a 2 b 2 且a 2 = b 2 + c 2 P ( 2,3) . 2 2

证明圆的切线方法

证明圆的切线方法 我们学习了直线和圆的位置关系,就出现了新的一类习题,就是证明一直线是圆的切线.在我们所学的知识范围内,证明圆的切线常用的方法有: 一、若直线l 过⊙O 上某一点A ,证明l 是⊙O 的切线,只需连OA ,证明OA ⊥l 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1 如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于D ,交AC 于E ,B 为切点的切线交OD 延长线于F. 求证:EF 与⊙O 相切. 证明:连结OE ,AD. ∵AB 是⊙O 的直径, ∴AD ⊥BC. 又∵AB=BC , ∴∠3=∠4. ∴BD=DE ,∠1=∠2. 又∵OB=OE ,OF=OF , ∴△BOF ≌△EOF (SAS ). ∴∠OBF=∠OEF. ∵BF 与⊙O 相切, ∴OB ⊥BF. ∴∠OEF=900. ∴EF 与⊙O 相切. 说明:此题是通过证明三角形全等证明垂直的 ⌒ ⌒

例2 如图,AD 是∠BAC 的平分线,P 为BC 延长线上一点,且PA=PD. 求证:PA 与⊙O 相切. 证明一:作直径AE ,连结EC. ∵AD 是∠BAC 的平分线, ∴∠DAB=∠DAC. ∵PA=PD , ∴∠2=∠1+∠DAC. ∵∠2=∠B+∠DAB , ∴∠1=∠B. 又∵∠B=∠E , ∴∠1=∠E ∵AE 是⊙O 的直径, ∴AC ⊥EC ,∠E+∠EAC=900. ∴∠1+∠EAC=900. 即OA ⊥PA. ∴PA 与⊙O 相切. 证明二:延长AD 交⊙O 于E ,连结OA ,OE. ∵AD 是∠BAC 的平分线, ∴BE=CE , ∴OE ⊥BC. ∴∠E+∠BDE=900. ∵OA=OE , ∴∠E=∠1. ∵PA=PD , ∴∠PAD=∠PDA. 又∵∠PDA=∠ BDE, ⌒ ⌒

§5.3 二次曲线的切线

§5.3 二次曲线的切线 一、概念 1. 定义1:如果直线与二次曲线交于相互重合的两个点,那么这条直线就叫做二次曲线的切线,这个重合的交点叫做切点;如果直线全部在二次曲线上,我们也称它为二次曲线的切线,直线上的每一个点都可以看作切点. 2.定义2:二次曲线F(x, y)=0上满足条件F1(x0, y0)=F2(x0, y0)=0的点(x0, y0)叫做二次曲线的奇异点,简称奇点;二次曲线的非奇异点叫做二次曲线的正常点. 奇点是中心,但中心不一定是奇点. 注:(1) 二次曲线有奇点的充要条件是I3= 0, (2) 二次曲线的奇点一定是二次曲线的中心,但反之不然. 二、切线求法 1.已知切点求切线: 设点(x0, y0)是二次曲线F(x, y)=0上的点, 则通过点(x0, y0)的直线方程总可以写成 那么此直线成为二次曲线切线的条件,当Φ(X, Y)≠0时 ?=[F1(x0, y0)X +F2(x0, y0)Y]2-Φ(X, Y)?F(x0, y0)=0. 因为点 (x0, y0) 在二次曲线上,所以F(x0, y0)=0;因而上式可化为 F1(x0, y0)X +F2(x0, y0)Y=0. 当Φ(X, Y)= 0时除了F(x0, y0)=0外,唯一的条件仍然是 F1(x0, y0)X +F2(x0, y0)Y=0. (1)如果点(x0, y0)是二次曲线F (x, y)=0的正常点:那么由以上条件得 X:Y = F2(x0, y0):(-F1(x0, y0)), 因此切线方程为 或写成, 或 (x-x0)F1(x0, y0)+(y-y0)F2(x0, y0)=0, 其中 (x0, y0) 是它的切点; (2)如果点 (x0, y0) 是二次曲线F (x, y)=0的奇异点,即F1(x0, y0)=F2(x0, y0)=0,则切线方向X:Y不能唯一地被确定,从而通过点 (x0, y0)的切线不确定,这时通过点 (x0, y0) 的任何直线都和二次曲线F (x, y)=0相交于相互重合的两点,我们把这样的直线也看成是二次曲线的切线. 这样我们就得到 定理1:如果点(x0, y0) 是二次曲线F (x, y)= 0的正常点,则通过点(x0, y0)的切线方程是 (x-x0)F1(x0, y0)+(y-y0)F2(x0, y0)=0,(x0, y0)是它的切点.

过一点求曲线的切线方程的三种类型

过一点求曲线的切线方程的三种类型 舒云水 过一点求曲线的切线方程有三种不同的类型,下面举例说明﹒ 1.已知曲线)(x f y =上一点))(,(00x f x P ,求曲线在该点处的切线方程﹒ 这是求曲线的切线方程的基本类型,课本上的例、习题都是这种类型﹒其求法为:先求出函数)(x f 的导数)(x f ',再将0x 代入)(x f '求出)(0x f ',即得切线的斜率,后写出切线方程)(0x f y -=)(0x f ')(0x x -,并化简﹒ 例1 求曲线33)(23+-=x x x f 在点)1,1(P 处的切线方程﹒ 解:由题设知点P 在曲线上, ∵x x y 632-=',∴曲线在点)1,1(P 处的切线斜率为3)1(-='f ,所求的切线方程为)1(31--=-x y ,即43+-=x y ﹒ 2. 已知曲线)(x f y =上一点))(,(11x f x A ,求过点A 的曲线的切线方程﹒ 这种类型容易出错,一般学生误认为点A 一定为切点,事实上可能存在过点A 而点A 不是切点的切线,如下面例2,这不同于以前学过的圆、椭圆等二次曲线的情况,要引起注意,这类题型的求法为:设切点为))(,(00x f x P ,先求出函数)(x f 的导数)(x f ',再将0x 代入)(x f '求出)(0x f ',即得切线的斜率(用0x 表示),写出切线方程 )(0x f y -=)(0x f ')(0x x -,再将点A 坐标),(11y x 代入切线方程得)(01x f y -=)(0x f ')(01x x -,求出0x ,最后将0x 代入方程

)(0x f y -=)(0x f ')(0x x -求出切线方程﹒ 例2 求过曲线x x y 23-=上的点)1,1(-的切线方程﹒ 解:设切点为点)2,(0300x x x -,232-='x y ,切线斜率为2320-x , 切线方程为))(23()2(020030x x x x x y --=--﹒ 又知切线过点)1,1(-,把它代入上述方程,得 )1)(23()2(100030x x x x --=---﹒ 解得10=x ,或2 10-=x ﹒ 所求切线方程为)1)(23()21(--=--x y ,或)21)(243()181(+-=+--x y ,即02=--y x ,或0145=-+y x ﹒ 上面所求出的两条直线中,直线02=--y x 是以)1,1(-为切点的切线,而切线0145=-+y x 并不以)1,1(-为切点,实际上它是经过了点)1,1(-且以)87,21(-为切点的直线,如下图所示﹒这说明过曲线上一点的切线,该点未必是切点﹒ 3. 已知曲线)(x f y =外一点))(,(11x f x A ,求过点A 作的曲线的切线方程﹒ 这种类型的题目的解法同上面第二种类型﹒ 例3 过原点O 作曲线6324+-=x x y 的切线,求切线方程﹒(2009年全国卷Ⅰ文21题改编 )

专题椭圆的切线方程

“椭圆的切线方程”教学设计 马鞍山二中刘向兵 一、教学目标 知识与技能:1、能根据已知条件求出已知椭圆的切线方程; 2、让学生可以运用研究圆的切线方程的方法类比到椭圆切线方程的研究。 过程与方法:尝试用椭圆的切线方程解决椭圆的切线性质问题。 情感态度与价值观:通过对椭圆的切线方程问题的探究,培养学生勤于思考,勇于探索的学习精神。 二、教学重点与难点 教学重点:应用特殊化(由特殊到一般)方法解决问题。 教学难点:椭圆的切线方程的探究。 三、教学流程设计 (一)创设情境 复习:怎样定义直线与圆相切

设计意图:温故而知新。由前面学习过的直线与圆相切引出直线与椭圆相切。定义做类比,都是“直线与其有且只有一个交点”来定义相切,从而通过解析法中联立方程组,消元,一元二次方程中的判别式等于零来解决。 (二)探究新知 基础铺垫: 问题1、已知椭圆22 :182 x y C +=与直线l (1)请你写出一条直线l 的方程; (2)若已知直线l 的斜率为1k =-,求直线l (3)若已知切点(2,1)P ,求直线l 的方程; (4 )若已知切点P ,求直线l 的方程。 设计意图:(1)根据椭圆的特征,可以得到特殊的切线方程 如 x y =±= (2)已知斜率求切线,有两条,并且关于原点对称。利用斜截式设直线,联立方程组,消元,得到一元二次方程,判别式0?=。切线斜率确定,切线不确定。 (3)已知切点求切线,只有唯一一条。利用点斜式设直线,联立方程组,消元,得到一元二次方程,判别式0?=。由于切点是整数点,运算简洁。切点确定,切线确定。可总结由(2)(3)两道小题得到求切线方程的一般步骤:设直线,联立方程组,消元,得到一元二次方程,判别式0?=。 (4)同(3)的方法,但是切点不是整数点,运算麻烦,学生运算有障碍,所以要引出由切点得到椭圆切线的一般方法。

高考★圆锥曲线★的基本公式推导(学长整合版)

圆锥曲线的几大大题特征公式:焦半径、准线、弦长、切线方程、弦中点公式、极线方程 令狐采学 /*另外,针对“计算不好”的同学,本人提供“硬解定理”供大家无脑使用。具体的请参考本目录下的【硬解定理的推导和使用】文章。*/ 圆锥 曲线 的切 线 方程 在 历年高考题中出现,但是在高中教材及资料都涉及较少。本文主要探索圆锥曲线的切线方程及其应用。从而为解这一类题提供统一、清晰、简捷的解法。 【基础知识1:切线方程、极线方程】 【1-0】公式小结:x2换成xx0,y2换成yy0,x 换成(x+x0)/2,y 换成(y+y0)/2. 【1-1】 椭圆的切线方程 : ①椭圆 12222=+b y a x 上一点),(00y x P 处的切线方程是 12020=+b yy a xx 。 ②过椭圆 122 22=+b y a x 外一点),(00y x P 所引两条切线的切点弦方程是 120 20=+b yy a xx 。 ③椭圆 12 2 22=+b y a x 与直线0=++C Bx Ax 相切的条件是 022222=-+C b B a A (也就是下篇文档所讲的硬解定理公式△=0的充要条件) 【1-2】双曲线的切线方程: ①双曲线12222=-b y a x 上一点),(00y x P 处的切线方程是 12020=-b yy a xx 。 ②过椭圆 122 22=-b y a x 外一点),(00y x P 所引两条切线的切点弦方程是

120 20=-b yy a xx 。 ③椭圆 12 2 22=-b y a x 与直线0=++C Bx Ax 相切的条件是 022222=--C b B a A 【1-3】抛物线的切线方程: 物线 px y 22= 上一点),(00y x P 处的切线方程是 )(200x x p yy += ②过抛物线px y 22=外一点 处所引两条切线是)(200x x p yy += ③抛物线 px y 22=与直线0=++C Bx Ax 相切的条件是AC pB 22= 【1-4】 基础知识的证明: 【公式一:曲线C 上切点公式证明】 1、第1种证明思路:过曲线上一点的切线方程 设曲线C 上某一点处 ),(00y x P 的 切 线 方 程 为 )(00x x k y y -=-, 联立方程,令0=?,得到k 的表达式,再代入原 始式,最后得切线方程式1)()(22 02202020=+=+b y a x b yy a xx (注:k 的表达式可以在草稿中巧用点差法求,具体见下) 2、第2种证明思路:点差法(求斜率,其余跟第一种方法一样) 证明:设某直线与曲线C 交于M 、N 两点坐标分别为),(11y x 、 ),(22y x ,中点 P ),(00y x 则有???????=+=+) 2(.1)1(,122 22 2222 1221 b y a x b y a x ?)2()1(-,得.022 22122221=-+-b y y a x x 22 12121212a b x x y y x x y y -=++?--∴ 又.22,0 0021211212x y x y x x y y x x y y k MN ==++--= 2 200a b x y k MN -=?∴ (弦中点公式的椭圆基本表达式。双曲线则是

一般n次曲线切线方程的推导

一般n 次曲线切线方程的推导 光信1001 黄飞洪 关键词:一般n 次曲线,某点的切线方程, 提要:在求曲线上某点的切线时,通常会使用先求导得到斜率后再求切线,此法在二次曲线中尚可使用,但如果是n 次曲线就不大现实了,因此如果能找到该类曲线切线的某些规律,在求高次曲线的切线方程时会节省很多时间 首先,我们先来分析几个比较特殊的例子: ○1圆A :x 2+y 2=r 2在(x 0,y 0)处的切线方程为x 0x+ y 0y= r 2 ○2椭圆B :A 2a)x +(+B b y 2 )(+=1在(x 0,y 0)处的切线方程为1))(())((00=+++++B b y b y A a x a x ○3双曲线C :A 2a)x +(-B b y 2 )(+在(x 0,y 0 )处的切线方程为1))(())((00=++-++B b y b y A a x a x ○4抛物线C :y 2 =2px 在(x 0,y 0)处的切线方程为y 0y=p(x+x 0) 以上都是几个比较典型的二次曲线在某点切线的方程,总结起来就是在原曲线方程框架的基础上将x 2(或y 2)型变为x 0x (或y 0y )型,x(或y)型转变为2 0x x +(或20y y +)型,但在一般的二次曲线中包含了xy 的项,那么,这种一般型曲线的切线是否仍存在某种规律呢? 设f(x,y)=Ax 2+Bxy+Cy 2+Dx+Ey+F=0,求在(x 0,y 0)处的切线方程 方程两边求导得2Ax+By+Bxy ’+2Cyy ’+D+Ey ’=0 y’= -E Cy Bx D By Ax ++++220 ∴在(x 0,y 0)处的切线方程为y-y 0= - E Cy Bx D By Ax ++++220(x-x 0)

证明圆的切线的两种常用方法教案

证明圆的切线的两种常用方法 一、教学目的要求: 1.知识目的: (1)掌握切线的判定定理. (2)应用切线的判定定理证明直线是圆的切线,掌握圆的切线证明问题中辅助线的添加方法. 2.能力目的: (1)培养学生动手操作能力. (2)培养学生观察、探索、分析、总结、推理论证等能力. 3.情感目的: 通过直观教具的演示和指导学生动手操作的过程,激发学生学习几何的积极性。 二、教学重点、难点 1.重点:切线的判定定理. 2.难点:圆的切线证明问题中,辅助线的添加方法. 三、教学过程: (一)复习引入 回答下列问题:(口述) 1.直线和圆有哪三种位置关系?这三种位置关系是如何定义?如何判定的? 2.什么叫做圆的切线?根据这个定义我们可以怎样来判定一条直

线是不是一个圆的切线? ①与圆有唯一公共点的直线是圆的切线. ②与圆心的距离等于半径的直线是圆的切线. ③经过半径外端并且垂直于这条半径的直线是圆的切线. (要求学生举手回答,教师用教具演示) (二)新课讲解 证明直线与圆相切是一类常见题目,解决这类问题常用的方法有两种。 方法一、连接半径,证明垂直 若图形中已给出直线与圆的公共点,但未给出过点的半径,则可先连结过此点的半径,再证其与直线垂直。 例1 如图(1)所示,在△ABC中,AB=AC,以AB为直径作圆交于BC于D,作DE⊥AC于E。求证:DE为⊙O的切线。 证明:连结OD ∵OB=OD ∴∠B=∠ODB ∵AB=AC ∴∠B=∠C ∴∠ODB=∠C ∵DE⊥AC ∴∠C+∠CDE=90° ∴∠ODB+∠CDE=90°

∴∠ODE=90°,即DE⊥OD ∴DE是⊙O的切线。 例2 如图(2)所示,AB是⊙O的直径,过A点作⊙O的切线,在切线上任取一点C,连结OC交⊙O于D,连结BD并延长交AC 于E,求证:CD是△ADE外接圆的切线。 证明:取AE的中点F,连结FD。 ∵AB为直径, ∴AD⊥BD ∵FD=FE(=FA) ∴∠FED=∠FDE ∵∠CDE=∠BDO=∠B ∠FEB+∠B=90° ∴∠FDE+∠CDE=90° 即FD⊥CD ∴CD是△ADE的外接圆的切线。 方法二、作垂线,证明半径 若图形中未给出直线与圆的公共点,则需先过圆心作该直线的垂线,再证垂足到圆心的距离等于半径。 例3 如图(3)所示,已知AB是⊙O的直径,AC⊥L于C,BD ⊥L于D,且AC+BD=AB。求证:直线L与⊙O相切。 证明:过O作OE⊥L于E。 ∵AC⊥L,BD⊥L,

圆证明切线的练习题

圆证明切线的练习题 1. 如图,AB是⊙O的直径,⊙O交BC的中点 于D,DE⊥AC,E是垂足. 求证:DE是⊙O的切线;如果AB=5,tan∠B=的长. 2.如图,△ABC中,AB=AE,以AB为直径作⊙O交BE 于C,过C作CD⊥AE于D, 1C ,求CE B DC的延长线与AB的延长线交于点P . 求证:PD是⊙O的切线;若AE=5,BE=6,求DC的长. 3.在Rt△ABC 中,∠C=90 ? , BC=9, CA=12,∠ABC的平分线 BD交AC于点D, DE⊥DB交AB于点E,⊙O是△BDE的外接圆, 交BC于点F 求证:AC是⊙O的切线; 联结EF,求 4.已知:如图,△ABC中,AB=AC=5,BC=6,以AB为直径作⊙O交AC于点D,交BC于点E,EF⊥AC于F交AB的延长线于G. 求证:FG是⊙O的切线;求AD的长.

证明: 1 A EF 的值. AC 5.如图,点A、B、F在?O上,?AFB?30?,OB的延长线交直线AD于点D,过点 B作BC?AD于C,?CBD?60?,连接AB. 求证:AD是?O 的切线; 若AB?6,求阴影部分的面积. 6.已知:如图,AB是⊙O的直径,E是AB延长线上的一点,D是⊙O上的一点,且AD平分∠FAE,ED⊥AF交AF 的延长线于点C.判断直线CE与⊙O的位置关系,并证明你的结论; A 若AF∶FC=5∶3,AE=16,求⊙O的直径AB的长. 7.如图,以等腰?ABC中的腰AB为直径作⊙O,交底边BC于点D.过点D作DE?AC,垂足为E.求证:DE为⊙O的切线; 8.如图,已知R t△ABC,∠ABC=90°,以直角边 AB为直径作O,交斜边AC于点D,连结BD.

圆锥曲线的切线方程总结

运用联想探究圆锥曲线的切线方程 现行人教版统编教材高中数学第二册上、第75页例题2,给出了经过圆2 22r y x =+上 一点),(00y x M 的切线方程为2 00r y y x x =+;当),(00y x M 在圆外时,过M 点引切线有且只有两条,过两切点的弦所在直线方程为2 00r y y x x =+。那么,在圆锥曲线中,又 将如何?我们不妨进行几个联想。 联想一:(1)过椭圆)0(122 22>>=+b a b y a x 上一点),(00y x M 切线方程为 1202 0=+b y y a x x ;(2)当),(00y x M 在椭圆122 22=+b y a x 的外部时,过M 引切线有两条,过两切点的弦所在直线方程为:12020=+b y y a x x 证明:(1)2222 1x y a b +=的两边对x 求导,得22220x yy a b ' +=,得020 2 x x b x y a y ='=-,由点斜式得切线方程为20 0020 ()b x y y x x a y -=--,即22000022221x x y y x y a b a b +=+= 。 (2)设过椭圆)0(122 22>>=+b a b y a x 外一点),(00y x M 引两条切线,切点分别 为),(11y x A 、),(22y x B 。由(1)可知过A 、B 两点的切线方程分别为:12121=+b y y a x x 、 12222=+b y y a x x 。又因),(0 0y x M 是两条切线的交点,所以有1201201=+b y y a x x 、120 2202=+b y y a x x 。观察以上两个等式,发现),(11y x A 、),(22y x B 满足直线12020=+b y y a x x ,所以过两切点A 、B 两点的直线方程为12020=+b y y a x x 。 评注:因),(00y x M 在椭圆)0(12222>>=+b a b y a x 上的位置(在椭圆上或椭圆 外)的不同,同一方程12020=+b y y a x x 表示直线的几何意义亦不同。 联想二:(1)过双曲线)0,0(122 22>>=-b a b y a x 上一点),(00y x M 切线方程为 1202 0=-b y y a x x ;(2)当),(00y x M 在双曲线122 22=-b y a x 的外部时,过M 引切线有两条,过两切点的弦所在直线方程为:12020=-b y y a x x 。(证明同上) 联想三:(1)过圆锥曲线2 2 0Ax Cy Dx Ey F ++++=(A ,C 不全为零)上的点 ),(00y x M 的切线方程为00 00022 x x y y Ax x Cy y D E F ++++++=;(2)当

专题:椭圆的切线方程

“椭圆的切线方程”教学设计 马二中 向兵 一、教学目标 知识与技能:1、能根据已知条件求出已知椭圆的切线方程; 2、让学生可以运用研究圆的切线方程的方法类比到椭圆切线方程的研究。 过程与方法:尝试用椭圆的切线方程解决椭圆的切线性质问题。 情感态度与价值观: 通过对椭圆的切线方程问题的探究,培养学生勤于思考,勇于探索的学习精神。 二、教学重点与难点 教学重点:应用特殊化(由特殊到一般)方法解决问题。 教学难点:椭圆的切线方程的探究。 三、教学流程设计 (一)创设情境 复习:怎样定义直线与圆相切? 设计意图:温故而知新。由前面学习过的直线与圆相切引出直线与椭圆相切。定义做类比,都是“直线与其有且只有一个交点”来定义相切,从而通过解析法中联立方程组,消元,一元二次方程中的判别式等于零来解决。 (二)探究新知 基础铺垫: 问题1、已知椭圆22 :182 x y C +=与直线l 只有一个公共点 (1)请你写出一条直线l 的方程; (2)若已知直线l 的斜率为1k =-,求直线l 的方程; (3)若已知切点(2,1)P ,求直线l 的方程; (4 )若已知切点P ,求直线l 的方程。 设计意图:(1 )根据椭圆的特征,可以得到特殊的切线方程如x y =±=特殊情况过渡到一般情况。切线确定,切点确定。 (2)已知斜率求切线,有两条,并且关于原点对称。利用斜截式设直线,联立方程组,消

元,得到一元二次方程,判别式0?=。切线斜率确定,切线不确定。 (3)已知切点求切线,只有唯一一条。利用点斜式设直线,联立方程组,消元,得到一元二次方程,判别式0?=。由于切点是整数点,运算简洁。切点确定,切线确定。可总结由(2)(3)两道小题得到求切线方程的一般步骤:设直线,联立方程组,消元,得到一元二次方程,判别式0?=。 (4)同(3)的方法,但是切点不是整数点,运算麻烦,学生运算有障碍,所以要引出由切点得到椭圆切线的一般方法。 问题一般化: 猜想:椭圆22 22:1x y C a b +=与直线l 相切于点00(,)P x y ,则切线l 的方程? (椭圆的切线方程的具体求法,详情请见微课) 设计意图:类比经过圆上一点P(x 0,y 0)的切线的方程为2 00x x y y r +=进行猜想,培 养学生合情推理的能力。由于具体的求解过于繁琐,思想方法同问题1,所以上课时没必要花费时间进行求解,做成微课方便学生课后时间自己解决。 探究:在椭圆中,有关切线问题,还可以求哪些量?

圆锥曲线的切线方程及切点弦方程的应用

圆锥曲线的切线方程及切点弦方程的应用 张生 引例 给定圆2 22)()(r b y a x =-+-和点),(00y x P ,证明: (1)若点P 在圆上,则过点P 的圆的切线方程为2 00))(())((r b y b y a x a x =--+--; (2)若点P 在圆外,设过点P 所作圆的两条切线的切点分别为B A ,,则直线AB 的方程为2 00))(())((r b y b y a x a x =--+--。 高考链接 3. (2011江西)若椭圆22221x y a b +=的焦点在x 轴上,过点(1,12 )作圆22 +=1x y 的切线, 切点分别为A,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是 【答案】22 154 x y += (2013山东)过点(3,1)作圆 22 (1)1x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为 ( ) A .230x y +-= B .230x y --= C .430x y --= D .430x y +-= 【答案】A 过点)4,3(P 作圆1:2 2 =+y x O 的两条切线,切点分别为B A ,,点)0,0)(,(>>b a b a M 在直线AB 上,则b a 2 1+的最小值为 。6411+ 过椭圆14 92 2=+y x 上点P 作圆2:22=+y x O 的两条切线,切点分别为B A ,,过B A ,的直线l 与x 轴y 轴分别交于点Q P ,两点,则POQ ?的面积的最小值为 。 3 2 已知椭圆)1(12222>>=+b a b y a x ,圆2 22:b y x O =+,过椭圆上任一与顶点不重合的点P

圆的切线的证明复习(教案)

专题复习----圆的切线证明教案 积石山县吹麻滩中学秦明礼 一、温习梳理 1、切线的定义:直线和圆有公共点时,这条直线叫圆的切线。 2、切线的性质:圆的切线于过切点的半径。 3、切线的判定:⑴和圆只有公共点的直线是圆的切线。 ⑵到圆心距离半径的直线是圆的切线。 ⑶经过半径的外端并且于这条半径的直线是圆的切线。 4、证明直线与圆相切,一般有两种情况: ⑴已知直线与圆有公共点,则连,证明。 ⑵不知直线与圆有公共点,则作,证明垂线段的长等于。

二、课前检测: 1.如图,AC为⊙O直径,B为AC延长线上的一点,BD交⊙O于点D, ∠BAD=∠B=30° (1)求证:BD是⊙O的切线; (2)请问:BC与BA有什么数量关系?写出这个关系式,并说明理 由。 三、活动于探究: 1.如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA、CB于点E、F,点G是AD的中点.求证:GE是⊙O的切线.

2.已知:如图,在△ABC 中,AB =AC ,以AB 为直径作⊙O 交BC 于D , DE ⊥AC 于E .求证:DE 是⊙O 的切线. 3.如图,点O 在∠APB 的平分线上,⊙O 与PA 相切于点C . (1) 求证:直线PB 与⊙O 相切; (2) PO 的延长线与⊙O 交于点E .若⊙O 的半径为3,PC=4.求弦CE 的长.

4.如图,RT ?ABC 中,∠ABC=90O ,以 AB 为直径作⊙O 交边于点D ,E 是BC 边的中点,连接DE . (1)求证:直线DE 是⊙O 的切线; (2)连接OC 交DE 于点F ,若OF=CF , 求tan ∠ACO 的值. 四、反馈检测: 如图,AB 是⊙O 的直径,⊙O 交BC 的中点于D ,DE ⊥AC . 求证:DE 是⊙O 的切线. 五、小结回顾: 1、本节课我们学习了:圆的切线的判定。 2、证明圆的切线的基本思路是:如果切点已知,需连接圆心做半径,证明半径和要证的切线垂直即可。而要证明垂直则需三种方法——平行、互余、全等。 B C E B A O F D

证明圆的切线方法

证明圆的切线方法 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

证明圆的切线方法 我们学习了直线和圆的位置关系,就出现了新的一类习题,就是证明一直线是圆的切线.在我们所学的知识范围内,证明圆的切线常用的方法有: 一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F. 求证:EF与⊙O相切. 证明:连结OE,AD. ∵AB是⊙O的直径, ∴AD⊥BC. 又∵AB=BC, ∴∠3=∠4. ⌒⌒ ∴BD=DE,∠1=∠2. 又∵OB=OE,OF=OF, ∴△BOF≌△EOF(SAS). ∴∠OBF=∠OEF. ∵BF与⊙O相切, ∴OB⊥BF. ∴∠OEF=900. ∴EF与⊙O相切. 说明:此题是通过证明三角形全等证明垂直的 例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切. 证明一:作直径AE,连结EC. ∵AD是∠BAC的平分线, ∴∠DAB=∠DAC. ∵PA=PD, ∴∠2=∠1+∠DAC.

∵∠2=∠B+∠DAB, ∴∠1=∠B. 又∵∠B=∠E, ∴∠1=∠E ∵AE是⊙O的直径, ∴AC⊥EC,∠E+∠EAC=900. ∴∠1+∠EAC=900. 即OA⊥PA. ∴PA与⊙O相切. 证明二:延长AD交⊙O于E,连结OA,OE. ∵AD是∠BAC的平分线, ⌒⌒ ∴BE=CE, ∴OE⊥BC. ∴∠E+∠BDE=900. ∵OA=OE, ∴∠E=∠1. ∵PA=PD, ∴∠PAD=∠PDA. 又∵∠PDA=∠BDE, ∴∠1+∠PAD=900 即OA⊥PA. ∴PA与⊙O相切 说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用.例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M 求证:DM与⊙O相切. 证明一:连结OD. ∵AB=AC, ∴∠B=∠C. ∵OB=OD, ∴∠1=∠B.

高考之【圆锥曲线篇】-秒杀技巧切线方程

大招九圆锥曲线的切线方程及其应用 现行人教版统编教材高中数学第二册上、第75页例题2,给出了经过圆上一点的切线方程为;当在圆外时,过点引切 线有且只有两条,过两切点的弦所在直线方程为。那么,在圆锥曲线中,又将如何?我们不妨进行几个联想。 联想一:(1)过椭圆上一点切线方程为;(2)当在椭圆的外部时,过引切线有两条,过两切点的弦所在直线方程为: 证明:(1)的两边对求导,得,得,由点斜式得切线方程为,即。 (2)设过椭圆外一点引两条切线,切点分别为、。由(1)可知过、两点的切线方程分别为:、。又因是两条切线的交点,所以有、 。观察以上两个等式,发现、满足直线,所以过两切点、两点的直线方程为。 评注:因在椭圆上的位置(在椭圆上或椭圆外)的不同,同一方程表示直线的几何意义亦不同。 联想二:(1)过双曲线上一点切线方程为;(2)当在双曲线的外部时,过引切线有两条,

过两切点的弦所在直线方程为:。(证明同上) 联想三:(1)过圆锥曲线(A,C不全为零)上的点的切线方程为k;(2)当 在圆锥曲线(A,C不全为零)的外部时,过 引切线有两条,过两切点的弦所在直线方程为: 证明:(1)两边对求导,得 得,由点斜式得切线方程为 化简得………………….① 因为…………………………………………………② 由①-②×2可求得切线方程为: (2)同联想一(2)可证。结论亦成立。 根据前面的特点和圆上点的切线方程,得到规律:过曲线上的点的切线方程为:把原方程中的用代换,用代换。若原方程中含有或的一次项,把用代换,用代换,得到的方程即为过该点的切线方程。当点在曲线外部时,过引切线有两条,过两切点的弦所在直线方程为: 通过以上联想可得出以下几个推论: 推论1:(1)过抛物线上一点切线方程为;(2)过抛物线的外部一点引两条切线,过两切点的弦所在直线方程为: 推论2:(1)过抛物线上一点切线方程为

高考★圆锥曲线★的基本公式推导

圆锥 曲线 的切 线 方程 在 历年高考题中出现,但是在高中教材及资料都涉及较少。本文主要探索圆锥曲线的切线方程及其应用。从而为解这一类题提供统一、清晰、简捷的解法。 【基础知识1:切线方程、极线方程】 【1-0】公式小结:x 2换成xx 0,y 2 换成yy 0,x 换成(x+x 0)/2,y 换成(y+y 0)/2. 【1-1】 椭圆的切线方程 : ①椭圆 12222=+b y a x 上一点),(00y x P 处的切线方程是 12020=+b yy a xx 。 ②过椭圆 12222=+b y a x 外一点),(00y x P 所引两条切线的切点弦方程是 12020=+b yy a xx 。 ③椭圆122 22=+b y a x 与直线0=++C Bx Ax 相切的条件是022222=-+C b B a A (也就是下篇文档所讲的硬解定理公式△=0的充要条件) 【1-2】双曲线的切线方程: ①双曲线12222=-b y a x 上一点),(00y x P 处的切线方程是 12020=-b yy a xx 。 ②过椭圆 12222=-b y a x 外一点),(00y x P 所引两条切线的切点弦方程是 12020=-b yy a xx 。 ③椭圆122 22=-b y a x 与直线0=++C Bx Ax 相切的条件是02 2222=--C b B a A 【1-3】抛物线的切线方程: 物线 px y 22 = 上一点),(00y x P 处的切线方程是 )(200x x p yy += ②过抛物线 px y 22 =外一点 处所引两条切线是)(200x x p yy += ③抛物线 px y 22 =与直线0=++C Bx Ax 相切的条件是AC pB 22 = 【1-4】 基础知识的证明: 【公式一:曲线C 上切点公式证明】 1、第1种证明思路:过曲线上一点的切线方程 设曲线C 上某一点处 ),(00y x P 的 切 线 方 程 为)(00x x k y y -=-, 联立方程,令 0=?,得到k 的表达式, 再代入原始式,最后得切线方程式1)()(22 02202020=+=+b y a x b yy a xx (注: k 的表达式可以在草稿中巧用点差法求,具体见下) 2、第2种证明思路:点差法(求斜率,其余跟第一种方法一样) 证明:设某直线与曲线C 交于M 、N 两点坐标分别为),(11y x 、),(22y x ,中点P ),(00y x

圆锥曲线的切线方程

圆锥曲线的切线 方程 点击此处添加副标题 作者:鲜海东微信:xhd1438488322

11),(1),()0(13))(())((),())(())((),(),()()(2),(),(1202022220020200022 222000020000002222000020000222=+=+=+=+=--+--=--+--=-+-=+=+=+b y y a x x M b y a x y x M b y y a x x y x M b a b y a x r b y b y a x a x M y x M r b y b y a x a x y x M y x M r b y a x r y y x x M y x M r y y x x y x M r y x 弦所在直线方程为:点的引切线有两条,过两切的外部时,过在椭圆当切线方程为:上一点>>:过椭圆结论所在直线方程: 点切线有两条:切点弦在圆外,过若切线方程:则过一点 为圆上,若的方程::若圆心不在原点,圆结论。 弦所在直线方程为,过两切点的 点引切线有且只有两条在圆外时,过当。 的切线方程为上一点:经过圆结论

。两点的直线方程为、所以过两切点,满足直线现观察以上两个等式,发、以有是两条切线的交点,所。又因、: 两点的切线方程分别为、可知过由为引两条切线,切点分别外一点>>()设过椭圆(即由点斜式得切线方程为,得求导,得的两边对)大学隐函数求导)(证明: 11),(),,(.11),(11)1().,(),,(),()0121),(,02211(20202020221120220220120100222221212211002222202000202 0020202222 22=+=+=+=+=+=+=+=+--==--==='='+=+b y y a x x B A b y y a x x y x B y x A b y y a x x b y y a x x y x M b y y a x x b y y a x x B A y x B y x A y x M b a b y a x b y y a x x x x y a x b y y y a x b x x y b y y a x x b y a x

圆切线证明的方法

切线证明法 切线的性质定理: 圆的切线垂直于经过切点的半径 切线的性质定理的推论1: 经过圆心且垂直于切线的直线必经过切点. 切线的性质定理的推论2: 经过切点且垂直于切线的直线必经过圆心 切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线. 切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。 一、要证明某直线是圆的切线,如果已知直线过圆上的某一个点,那么作出过这一点的半径,证明直线垂直于半径. 【例1】如图1,已知AB 为⊙O 的直径,点D 在AB 的延长线上,BD =OB ,点C 在圆上,∠CAB =30o.求证:DC 是⊙O 的切线. 思路:要想证明DC 是⊙O 的切线,只要我们连接OC ,证明∠OCD =90o即可. 证明:连接OC ,BC . ∵AB 为⊙O 的直径,∴∠ACB =90o. ∵∠CAB =30o,∴BC =2 1 AB =OB . ∵BD =OB ,∴BC = 2 1 OD .∴∠OCD =90o. ∴DC 是⊙O 的切线. 【评析】一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线. 【例2】如图2,已知AB 为⊙O 的直径,过点B 作⊙O 的切线BC ,连接OC ,弦AD ∥OC .求证:CD 是⊙O 的切线. 思路:本题中既有圆的切线是已知条件,又证明另一条直线是圆的切线.也就是既要注意运用圆的切线的性质定理,又要运用圆的切线的判定定理.欲证明CD 是⊙O 的切线,只要证明∠ODC =90o即可. 图1 A 图2

圆锥曲线的切线方程和切点弦方程

课题:圆锥曲线的切线方程和切点弦方程 教学目标: (1).掌握圆锥曲线在某点处的切线方程及切点弦方程。 (2).会用切线方程及切点弦方程解决一些问题。 (3)通过复习渗透数形结合、类比的思想,逐步培养学生分析问题和解决问题的能力。 (4) 掌握曲线与方程的关系。 教学重点: 切线方程及切点弦方程的应用 教学难点: 如何恰当使用切线方程及切点弦方程 教学过程: 1. 引入: 通过09年安徽省高考题及近几年各省考察圆锥曲线的实例引出本节课。 2. 知识点回顾: 1. 2. 3. 4. 圆锥曲线切线的几个性质: 性质1 过椭圆的准线与其长轴所在直线的交点作椭圆的两条切线,则切点弦长等于 该椭圆的通径.同理:双曲线,抛物线也有类似的性质 性质2 过椭圆的焦点F 1的直线交椭圆于A ,B 两点,过A ,B 两点作椭圆的切线交 于点P ,则P 点的轨迹是焦点 的对应的准线,并且 同理:双曲线,抛物线也有类似的性质 3. 例题精讲: 练习1: 抛物线 与直线 围成的封闭的图形的面积为 ,若直线l 与抛物线相切,且平行于直线 ,则直线l 的方程为 例1: 设抛物线 的焦点为F ,动点P 在直线 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.求△APB 22200 (,)x y r M x y +=过圆 上一点 的切线方程:200xx yy r +=00221xx yy a b +=220022(,)1x y P x y a b +=设为椭圆上的点,则过该点的切线方程为:22 0022(,)1x y P x y a b -=设为双曲线上的点,则过该点的切线方程为: 00221xx yy a b -=00(,)2P x y px =2设为抛物线y 上的点,则过该点的切线方程为: 00() yy p x x =+1PF AB ⊥1F :20 l x y --=2:C y x =2(0)y ax a =>1x =43 260x y -+=

圆锥曲线知识点全归纳完整精华版图文稿

圆锥曲线知识点全归纳 完整精华版 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

圆锥曲线知识点全归纳(精华版) 圆锥曲线包括椭圆,双曲线,抛物线。其统一定义:到定点的距离与到 定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当01时为双曲线。 一、圆锥曲线的方程和性质: 1)椭圆 文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是 一个小于1的正常数e。定点是椭圆的焦点,定直线是椭圆的准线,常数e是椭圆的离心率。 标准方程: 1.中心在原点,焦点在x轴上的椭圆标准方程:(x^2/a^2)+(y^2/b^2)=1?其中a>b>0,c>0,c^2=a^2-b^ 2. 2.中心在原点,焦点在y轴上的椭圆标准方程:(x^2/b^2)+(y^2/a^2)=1其中a>b>0,c>0,c^2=a^2-b^2. 参数方程: X=acosθY=bsinθ(θ为参数,设横坐标为acosθ,是由于圆锥曲线的 考虑,椭圆伸缩变换后可为圆此时c=0,圆的acosθ=r) 2)双曲线 文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是 一个大于1的常数e。定点是双曲线的焦点,定直线是双曲线的准线,常 数e是双曲线的离心率。 标准方程:

1.中心在原点,焦点在x轴上的双曲线标准方程:(x^2/a^2)- (y^2/b^2)=1? 其中a>0,b>0,c^2=a^2+b^2. 2.中心在原点,焦点在y轴上的双曲线标准方程:(y^2/a^2)- (x^2/b^2)=1. 其中a>0,b>0,c^2=a^2+b^2. 参数方程: x=asecθy=btanθ(θ为参数) 3)抛物线 标准方程: 1.顶点在原点,焦点在x轴上开口向右的抛物线标准方程:y^2=2px其中p>0 2.顶点在原点,焦点在x轴上开口向左的抛物线标准方程:y^2=-2px其中p>0 3.顶点在原点,焦点在y轴上开口向上的抛物线标准方程:x^2=2py其中p>0 4.顶点在原点,焦点在y轴上开口向下的抛物线标准方程:x^2=-2py其中p>0 参数方程? x=2pt^2?y=2pt(t为参数)t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0 直角坐标?

相关主题
文本预览
相关文档 最新文档