当前位置:文档之家› 氧化镁吸收SO2烟气的工业应用

氧化镁吸收SO2烟气的工业应用

氧化镁吸收SO2烟气的工业应用
氧化镁吸收SO2烟气的工业应用

氧化镁浆液吸收冶炼环境烟气的工业应用

浙江省温州市双屿防腐设备制造公司胡湘诚

〔摘要〕介绍了氧化镁浆液处理冶炼环境烟气(SO2:0.04—0.12%)的工业应用,在一级湍冲洗涤器内循环吸收烟气,控制浆液PH值为 5.5-7.0范围,二氧化硫吸收率可达90-95%。比传统的吸收塔吸收效率高近20个百分点;洗液通过空气氧化,亚硫酸镁氧化成硫酸镁再排放。

〔关键词〕氧化镁浆液;二氧化硫吸收;湍冲洗涤技术;亚硫酸镁氧化

1、前言

有色金属冶炼的烟气脱硫是其生存、发展的前提条件,企业根据自身的特点与优势;选择一种工艺方案,可以较好的解决其生产过程中的污染问题。

金隆铜业有限公司是“八五”期间我国自行设计和建造的第一座闪烁炉铜冶炼企业,目前已形成年产电铜150kt、硫酸470kt的生产规模。地处国家酸雨控制区的安徽省铜陵市内,在烟气制酸设计时,硫酸尾气排放已达到国家标准。为达到国际同类企业先进水平,在2002年6月,在制酸系统安装一套湍冲洗涤—石灰法尾气脱硫设施。由于生产规模的扩大,冶炼炉造成的低空环境污染,因排烟点多、气量大、烟气波动也大等因素,困扰着中外合资企业,为解决这一环境污染问题;利用先前的成功经验,经调查研究、分析论证,决定用湍冲洗涤装置、氧化镁法来处理这一污染源。因为已有的石灰石法脱硫和污酸中和所带来的石膏量较多,占地面积大、销路不畅等缺陷。

2、氧化镁法脱硫机理

2.1 镁法脱硫工艺原理

镁法脱硫工艺原理是以MgO作为吸收剂,吸收烟气中SO

2

,通常是将MgO制

成浆液,用此浆液对SO

2

进行吸收,可生成含结晶水的亚硫酸镁和硫酸镁。其中,

Mg(OH)

2溶解性差,MgSO

3

溶解性好些,而MgSO

4

易溶于水,无害,可直排。为了

控制COD排放指标,需将MgSO

3氧化成MgSO

4

再排放。主要过程分吸收和氧化两

个步骤:

A.吸收: MgO + H

2O Mg(OH)

2

(浆液)

Mg(OH)2 + SO 2 + 5H 2O MgSO 3·6H 2O MgSO 3·6H 2O + SO 2 Mg(HSO 3)2 + 5H 2O Mg(HSO 3)2 + Mg(OH)2 + 10H 2O 2MgSO 3·6H 2O

吸收过程中的主要副反应为氧化反应,吸收液中的主要成分为MgSO 3 、Mg(HSO 3)2 和MgSO 4。其中,MgSO 3对SO 2有较强的吸收能力,系吸收主反应。 B. 氧化: Mg(HSO 3)2 + 1/2O 2 MgSO 4 + H 2O + SO 2 ↑ MgSO 3+ 1/2O 2 MgSO 4 2.2、工艺参数、流程及配置 a.工艺参数见表1

b.工艺流程方框图

排空

c 湍冲洗涤技术工作原理

工作原理:湍冲洗涤技术是上世纪90年代末新开发的一种新型洗涤技术,其原理是充分利用气相和液相能量,建立动态平衡的湍冲区;使洗涤液和气体不断交错湍动,实现动量、热量和质量的充分传递。由于独特的喷嘴设计,允许循环液含固量高(可高达10-20%);喷嘴不堵塞,系统阻力小;用于烟气二氧化硫净化,其气液接触面积大,液相更新能力强,更有利气液的传质吸收;具有系统操作弹性大、故障率低等优点。

3.烟气吸收主要设备配置

1、湍冲脱硫塔:型号Φ2500×8000/Φ62000×13000

循环泵:型号65FUH-54-C,一台,流量Q=1300 m3/h,扬程H=25m,N=180 kw。

3、引风机:型号Q=340000 m3/h,全压H=0.3m,一台。

4、氧化风机: Q=900 m3/h,H=50m,N=18.5 kw;一台。

5、氧化塔:型号Φ2000×6400(内装一组空气分布管)

配套输送泵:Q=28 m3/h,全压H=20m,N=11 kw;一台。

6、氧化镁配置槽:型号Φ3000×3000

配套搅拌桨功率为5.5 kw。

配套输送泵:Q=50 m3/h H=23m,N= 7.5 kw;一台。

7、板框式压滤机:型号 S= 6 m2

处理工艺优点:

a. 技术先进,工艺可靠,对含尘量高,气量波动大,烟气有较强的适应性。

b. 流程简洁,配置紧凑,维修费用少,水资源利用高。

c. 固液分离系统处理量小。

d. 系统阻力小,减少装置运行费用。

4.总结

氧化镁浆液吸收制酸尾气中的二氧化硫具有较强的吸收能力,控制一级循环浆液PH值为5.5-7.0范围。一级吸收率可达90-93%;比传统的吸收塔吸收效率

高近20个百分点;再对其浆液用空气进行氧化,亚硫酸镁氧化成硫酸镁再排放。

在近一年的运行实践中,这套系统运行正常,各项技术指标均达到设计值,即使在一只阀门坏的情况下,用另二只喷咀运行,脱硫效率也没有下降,整个系统顺利通过了省环保局的项目验收。

浙江省温州市双屿防腐设备制造公司

二00六年三月三日

锅炉烟气中二氧化硫的测定实验指导

锅炉烟气中二氧化硫的测定 一、实验目的 掌握甲醛吸收-副玫瑰苯胺分光光度法测定烟气中的二氧化硫的方法 学会使用尘毒采样器 熟练使用分光光度计 熟练滴定操作 复习标准曲线的测定 掌握正确的采样布点的方法 二、实验原理 二氧化硫被甲醛缓冲溶液吸收后,生成稳定的羟甲基磺酸加成化合物。在样品溶液中加入氢氧化钠使加成化合物分解,释放出二氧化硫与副玫瑰苯胺、甲醛作用,生成紫红色化合物,用分光光度计在577nm处进行测定。 三、仪器 多孔板吸收管(短时间采样) 空气采样器() 具塞比色管 分光光度计 四、试剂 1. 氢氧化钠溶液,c(NaOH)=1.5mo1/L。 2. 甲醛缓冲吸收液贮备液。吸取36%~38%的甲醛溶液5.5mL,CDTA-2Na溶液 (3.2)20.00mL;称取2.04g邻苯二甲酸氢钾,溶于小量水中;将三种溶液合并,再用水稀释至100mL,贮于冰箱可保存1年。 3. 甲醛缓冲吸收液。 用水将甲醛缓冲吸收液贮备液(3.3)稀释100倍而成。临用现配。 4. 乙二胺四乙酸二钠盐(EDTA)溶液,0.05g/100mL。 称取0.25gEDTA[-CH2N(CH2COONa)CH2COOH]2·H20溶于500mL新煮沸但已冷却的水中。临用现配。 5. 二氧化硫标准溶液。 称取0.200g亚硫酸钠(Na2SO3),溶于200mLEDTA·2Na溶液(3.13)中,缓缓摇匀以防充氧,使其溶解。放置2~3h后标定。此溶液每毫升相当于320~400μg二氧化硫。

标定出准确浓度后,立即用吸收液(3.4)稀释为每毫升含10.00μg二氧化硫的标准溶液贮备液,临用时再用吸收液(3.4)稀释为每毫升含1.00μg二氧化硫的标准溶液。在冰箱中5℃保存。10.0Qμg/mL的二氧化硫标准溶液贮备液可稳定6个月;1.00μg/mL的二氧化硫标准溶液可稳定1个月。 6. 副玫瑰苯胺(Pararosaniline,简称PRA,即副品红,对品红)贮备液,0.20g/100mL。 其纯度应达到质量检验的指标(见国标附录A)。 7. PRA溶液,0.05g/100mL。 吸取25.00mLPRA贮备液(3.15)于100mL容量瓶中,加30mL85%的浓磷酸,12mL浓盐酸,用水稀释至标线,摇匀,放置过夜后使用。避光密封保存。 五、测定步骤 采样: 短时间采样:根据空气中二氧化硫浓度的高低,采用内装10mL吸收液的U形多孔玻板吸收管,以O.5L/min的流量采样。采样时吸收液温度的最佳范围在23~29℃。 分析步骤 1. 校准曲线的绘制 取14支10mL具塞比色管,分A、B两组,每组7支,分别对应编号。A组按表1配制校准溶液系列: 表1 B组各管加入1.00mL PRA溶液(3.15),A组各管分别加入0.5mL氢氧化钠溶液(3.1),混匀。再逐管迅速将溶液全部倒入对应编号并盛有PRA溶液的B管中,(立即具塞混匀后放入恒温水浴中显色。显色温度与室温之差应不超过3℃,)根据不同季节和环境条件按表2选择显色温度与显色时间: 表2

工业机器人原理及应用实例

工业机器人原理及应用实例 一、工业机器人概念 工业机器人是一种可以搬运物料、零件、工具或完成多种操作功能的专用 机械装置;由计算机控制,是无人参与 的自主自动化控制系统;他是可编程、 具有柔性的自动化系统,可以允许进行 人机联系。可以通俗的理解为“机器人 是技术系统的一种类别,它能以其动作 复现人的动作和职能;它与传统的自动 机的区别在于有更大的万能性和多目 的用途,可以反复调整以执行不同的功 能。” 二、组成结构 工业机器人由主体、驱动系统和控制系统三个基本部分组成。主体即机座 和执行机构,包括臂部、腕部和手部, 有的机器人还有行走机构。大多数工业 机器人有3~6个运动自由度,其中腕 部通常有1~3个运动自由度;驱动系 统包括动力装置和传动机构,用以使执 行机构产生相应的动作;控制系统是按 照输入的程序对驱动系统和执行机构 发出指令信号,并进行控制。 三、分类 工业机器人按臂部的运动形式分为四种。直角坐标型的臂部可沿三个直 角坐标移动;圆柱坐标型的臂部可作升 降、回转和伸缩动作;球坐标型的臂部 能回转、俯仰和伸缩;关节型的臂部有 多个转动关节。 工业机器人按执行机构运动的控制机能,又可分点位型和连续轨迹型。 点位型只控制执行 机构由一点到另一点的准确定位,适用于机床上下料、点焊和一般搬运、 装卸等作业;连续轨迹型可控制执行机 构按给定轨迹运动,适用于连续焊接和 涂装等作业。 工业机器人按程序输入方式区分有编程输入型和示教输入型两类。编程 输入型是将计算机上已编好的作业程 序文件,通过RS232串口或者以太网等 通信方式传送到机器人控制柜。 示教输入型的示教方法有两种:一种是由操作者用手动控制器(示教操纵 盒),将指令信号传给驱动系统,使执 行机构按要求的动作顺序和运动轨迹 操演一遍;另一种是由操作者直接领动 执行机构,按要求的动作顺序和运动轨 迹操演一遍。在示教过程的同时,工作 程序的信息即自动存入程序存储器中 在机器人自动工作时,控制系统从程序 存储器中检出相应信息,将指令信号传 给驱动机构,使执行机构再现示教的各 种动作。示教输入程序的工业机器人称 为示教再现型工业机器人。 具有触觉、力觉或简单的视觉的工业机器人,能在较为复杂的环境下工作; 如具有识别功能或更进一步增加自适 应、自学习功能,即成为智能型工业机 器人。它能按照人给的“宏指令”自选 或自编程序去适应环境,并自动完成更 为复杂的工作。 四、主要特点 工业机器人最显著的特点有以下几个: (1)可编程。生产自动化的进一步发 展是柔性启动化。工业机器人可随其工 作环境变化的需要而再编程,因此它在 小批量多品种具有均衡高效率的柔性 制造过程中能发挥很好的功用,是柔性 制造系统中的一个重要组成部分。 (2)拟人化。工业机器人在机械结构 上有类似人的行走、腰转、大臂、小臂、 手腕、手爪等部分,在控制上有电脑。 此外,智能化工业机器人还有许多类似 人类的“生物传感器”,如皮肤型接触 传感器、力传感器、负载传感器、视觉 传感器、声觉传感器、语言功能等。传 感器提高了工业机器人对周围环境的 自适应能力。 (3)通用性。除了专门设计的专用的 工业机器人外,一般工业机器人在执行 不同的作业任务时具有较好的通用性。

紫外吸收法测试烟气中SO2

第一章烟气监测中干扰SO2测试的几种气体随着国家环保部开展的以锅炉或炉窑监测SO2/NOx为主的气态污染源调查,以及全国各省市环保局主张的CEMS在线监测系统的大力普及,SO2/NOx的CEMS在线监测与瞬时监测之间的数据不统一性的矛盾日趋突出。 目前国内普及的SO2/NOx 常用的瞬时监测仪器多为恒电位电解法—亦即电化学传感器法,国内自95年推出第一台电化学传感器的烟气测试仪以来,以电化学传感器为探测原件的便携式烟气监测仪籍其体积小、重量轻、测试方便等特点在十五年间迅速占领中国市场,成为锅炉烟气或炉窑尾气排放监测的主打仪器,目前国内生产该类型的便携式监测仪器有十几个生产厂家,加上来自英国、德国等国外品牌,供货厂家大致有20个。 几乎所有的便携式的以电化学传感器为探测元件的生产厂家都使用同一厂家即英国CITY公司生产的3SF/F—SO2传感器/3NF—NO传感器,个别厂家使用或部分使用瑞士公司生产的电化学传感器。 本人自1991年参加工作以来,一直从事烟尘烟气便携式测试仪器的市场调研、研发定向及市场推广、售后服务等,在实际的工作当中不断有用户反映烟气或管道气SO2的监测数据误差较大。我所接触的顾客最早提出该问题的是上海市环境监测中心,他们提出在对管道煤制气的监测中,SO2显示数值特别高,到了无法令人信服的地步,由于当时对SO2电化学的相关知识知之甚少,当时无法解答顾客的

疑问。2000年后,随着各地装备的CEMS在线监测仪器越来越多,CEMS的标定及校准仍使用电化学传感器的便携式烟气监测仪,但某些行业--例如水泥行业、铝业制造及钢铁冶炼高炉等炉窑的SO2排放使用原来电化学仪器标定其CEMS的SO2数值大部分是明显偏高的。 2007年8月,中国环境监测总站在青岛召开各省、直辖市、省会城市环境监测工作会议,许多与会代表提出目前电化学传感器测试烟气中的SO2存在许多问题,中环总站副站长在会上指出:电化学传感器是否继续适用我国的固定污染源测试值得商榷?建议环境监测仪器的生产厂家抓紧时间研制稳定、可靠的SO2测试仪。 2008年3月份,山东省环境监测中心、淄博市环境监测站、淄博市淄川区环境监测站三级监测部门分别使用英国、雷博3020烟尘烟气测试仪及3012自动烟尘气测试仪对淄川辖区的山水水泥集团淄博分公司的一台水泥轮窑尾气排放进行监测,测出的SO2结果分别为0、2200、3700mg/m3.出现明显错误,针对这一现象,淄博市环境监测中心曾两次召开办公会研究对策,顾客曾多次质疑我公司,为什么会出现这么大的差异。带着疑问笔者与英国CITY公司上海办事处的技术支持张先生多次深入探讨,3SF/F SO2电化学传感器的影响因素除温度、压力外,主要的影响因子就是烟气成分的复杂多样。 附表一列出了烟气其它气体组分对SO2监测的正负干扰及大致干扰幅度。 笔者于2008年12月参加中铝中州分公司高炉的现场监测,用英国一公司生产的电化学传感器的便携式仪器测试其SO2为

烟气SO2分析方法

1.1烟气中二氧化硫含量的测定及吸收率计算 1目的 测定进出口气中二氧化硫含量,可计算吸收率,调节吸收塔操作,使出口气中的二氧化硫含量控制在要求的范围内。 1.1.2原理 气体中所含的二氧化硫在通过一定量的碘溶液时被氧化成硫酸。其余气体收集在量气管中,待淀粉指示剂的兰色刚刚消失,表示反应完毕,根据碘和余气的数量可计算出二氧化硫的含量。 反应按下式进行: SO2 + I2 + H2O H2SO4 + 2HI 1.1.3仪器和试剂 A仪器 (1)反应管; (2)气体定量管(400毫升); (3)水准瓶(500毫升); (4)温度计(0--100℃); (5)采样管; (6)气体冷凝管; (7)移液管(10毫升)。 B试剂 (1)0.01N碘溶液; (2)0.001N碘溶液; (3)0.5%淀粉溶液; (4)蒸馏水。 1.1.4测定 A测定的准备工作 (1)检查量气管,水准瓶以及仪器装置是否漏气; (2)用移液管移取0.01N或0.001N (看气相中二氧化硫含量而定) 碘溶液10毫升注入反应管,加水至反应管的3/4处,加0.5%淀粉溶液2毫升,塞紧橡皮塞备用。 (3)检查采样管是否畅通。在负压下采样时,取样管与水准瓶连接,抬高水准瓶利用排水吸气法将样气抽处,充分置换进入反应管前管道中的余气,然后才进行测定。

B 测定方法 (1) 将仪器按图(1)连接好,旋转塞2,提高水准瓶,使气流由反应管的毛 细管中呈“豌豆;大小的气泡,由明显间隔的连续冒出,直到溶液兰色刚刚消失时,停止进气,将水准瓶中水位与量气管中的水位对平,读取量气管内气体体积和温度,根据读数进行查表和计算。 (2) 分析完毕后,打开水准瓶,使量气管内水位恢复零点。 1.1.5计算 二氧化硫含量的计算: 图1 气体中二氧化硫含量测定装置 1—气体管路;2—三通旋塞;3—冷却器;4—反应管;5—水准瓶;6—气体量管; 7—温度计 SO 2%(v )=N W N V t P P V V ++?-??273273760100 =N W N V t P P V V ++?-??])00367.01(760[100 式中: V N —与碘反应的二氧化硫体积(标准状态),毫升;V N =1.0944R ,R 为反应管中 加入的碘溶液的毫升数; V — 气体量管上表示的吸收二氧化硫后的余气体积,毫升; P — 大气压力,毫米汞柱;

废气SO2NOX现场测试复习题2003

废气中SO2、NO x、NO2复习题 一. 填空题 1.气态污染物在采样断面内,一般是混合均匀的,可取靠近(烟道中心)的一点作为采样点。(GB/T16157-1996固定污染源排气中颗粒物测定与气态污染物采样方法9.1.2) 2.气态污染物采样时,采样管入口与气流方向(垂直),或(背向)气流。 (空气和废气监测分析方法第349页) 3.根据气态污染物测试分析方法不同,分为(化学)法和(仪器直接测试)法。(GB/T16157-1996固定污染源排气中颗粒物测定与气态污染物采样方法9.2) 4.为防止烟尘进入试样干扰测定,在采样管入口或出口出装入阻挡尘粒的滤料,滤料应选择(不吸收)亦不与待测污染物起(化学反应)的材料,并能耐受(高温)排气。 (GB/T16157-1996固定污染源排气中颗粒物测定与气态污染物采样方法9.3.1.2) 5.烟气中的二氧化硫被(氨基磺酸铵)和(硫酸铵)混合溶液吸收,用碘标准溶液滴定。(空气和废气监测分析方法第349页) 6. 目前SO2测试常用的方法有(碘量法)、(定电位电解法)、(电导法)等,为避免采样气体在采样管中冷凝,通常对采样管进行(加热保温),温度(120—150)度。连接管要进行保温,内径应大于(6)mm,管长应(尽可能短)。 7. 烟气采样中应记录现场大气压力以及(采样流量)、(采样时间)、(流量前的气体温度),(流量前的气体压力)。 8.烟气化学法采气系统一般由(采样管)、连接导管、(吸收瓶)、旁路吸收瓶、干燥剂、(流量计)、(温度计)、(压力计)、抽气泵组成。 (环境空气监测质量保证手册110页) 9.烟气脱硫的工艺很多,根据脱硫介质的不同可分为(湿)法、(干)法和(半干)法。(环境测试技术基本理论试题集225页) 10.用吸收瓶采集烟气样品前,用旁路吸收瓶抽气的目的是为了置换吸收瓶前采样管路中的(空气),并使(滤料)被待测气体饱和。 (环境测试技术基本理论试题集225页) 11.用吸收瓶正式采集烟气样品前,应先用(旁路吸收瓶)抽气5-10min。 (环境测试技术基本理论试题集213页) 12.定电位电解二氧化硫测定仪在开机后,通常要倒计时,为仪器(标定零点)。 (HJ/T57-2000固定污染源排气中二氧化硫的测定定电位电解法6.1) 13. 定电位电解法测定烟道废气时,当仪器采样管插入烟道中,既可启动仪器抽气泵,抽取烟气进行测定。待仪器读数稳定后即可(读数)。同一工况下应连续测定(三)次,取(平均值)作为测量结果。 (HJ/T57-2000固定污染源排气中二氧化硫的测定定电位电解法6.2) 14. 定电位电解法电化学传感器灵敏度随时间变化,为保证测试精度,根据仪器使用频率每(三)月至(半)年需校准一次。 (HJ/T57-2000固定污染源排气中二氧化硫的测定定电位电解法6.4.1)

烟气中二氧化硫及粉尘的计算方法

一、燃料燃烧过程二氧化硫排放量的计算 1.煤炭中硫的成分可分为可燃硫和非可燃硫,可燃硫约占全部的80%,计算公式如下: Gso2=2××B×S×(1-η)=×(1-η) 2. 燃油二氧化硫排放的计算公式如下: Gso2=2BS×(1-η) 式中:Gso2—SO2产生量量,kg ; W—燃煤(油)量,kg; S—煤(油)的全硫分含量,(重量) %; η—脱硫设备的脱硫效率%(实测值),无脱硫装置的脱硫效率η值为0 。 3. 燃烧天然气二氧化硫排放的计算公式如下: Gso2=×C H S×10-3 式中:Gso2—SO2产生量量,kg ; V—气体燃料消耗量,m3(标); C H S—气体燃料中H2S的体积%。 二、工艺过程产生气体污染物排放量计算 1.水泥生产中SO2排放量计算: G SO2=2×(B×式中: Gso2—水泥熟料烧成中排放SO2量,t; B—烧成水泥熟料的煤耗量,t; S—煤或油的全硫分含量,(重量)%; M—水泥熟料产量,t; f1—水泥熟料中S032-的含量(%); G d—水泥熟料生产中产生的窑灰量,回转窑一般占孰料量的25%(20%~30%),t; f2—粉尘中SO32-含量(%); —系数,即S/S032-=32÷80= 。 2.硫酸生产中排放S02的计算: Gso2=W×S×H×J×(1-Z)×(1-A)×2 式中:Gso2—硫酸废气SO2排放量,t; W—硫铁矿石用量,t; S—硫铁矿石含硫量(%): H—硫磺烧出率(%); J—净化工序硫的净化效率(%); Z—转化工序转化为SO3的转化率(%); A—尾气氨吸收净化率(%)。 3.烧结废气中排放SO2计算: G SO2=2×(SH-SJ-SF) 式中: G SO2—废气中SO2含量(千克/吨),烧结矿; SH—混合料中含硫量(千克/吨); SJ—烧结矿中含硫量(千克/吨); SF—粉尘带出的硫量(千克/吨)。 4. 工业粉尘排放量的计算: G d=10—6·Q f·C f·t 式中: G d—工业粉尘排放量,kg; Q f—排尘系统风量,m3(标)/h; C f—设备出口排尘浓度, mg/ m3(标)(实测); t—排尘除尘系统运行时间。

固定污染源排气中二氧化硫的测定 定电位电解法

固定污染源排气中二氧化硫的测定 定电位电解法 Determination of sulpur dioxide from exhausted gas of stationary source Fixed-potential electrolysis method HJ/T57-2000 1、范围 本标准规定了定电位电解法测定固定污染源排气中二氧化硫浓度以及测定二氧化硫排放总量的方法。 2、引用标准 下列标准所包含的条文,在本标准中引用构成本标准的条文,与本标准同效。 GB/TI6157—1996固定污染源排气中颗粒物测定和气态污染物采样方法 3、原理 烟气中二氧化硫(SO2)扩散通过传感器渗透膜,进入电解槽,在恒电位工作电极上发生氧化反应: SO2+2H2O=SO4-2+4H++2e 由此产生极限扩散电流i,在一定范围内,其电流大小与二氧化硫浓度成正比,即: 在规定工作条件下,电子转移数Z、法拉第常数F、扩散面积S、扩散系数D和扩散层厚度δ均为常数,所以二氧化硫浓度c可由极限电流i来测定。

测定范围:15mg/m3~14300mg/m3。测量误差±5%。 影响因素:氟化氢、硫化氢对二氧化硫测定有干扰。烟尘堵塞会影响采气流速,采气流速的变化直接影响仪器的测试读数。 4、仪器 41定电位电解法二氧化硫测定仪。 4.2带加热和除湿装置的二氧化硫采样管。 4.3不同浓度二氧化硫标准气体系列或二氧化硫配气系统。 4.4能测定管道气体参数的测试仪。 5、试剂 5.1二氧化硫标准气体。 6、步骤 不同测定仪,操作步骤有差异,应严格按照仪器说明节操作。 6.1开机与标定零点 将仪器接通采样管及相应附件。定电位电解二氧化硫测定仪在开机后,通常要倒计时,为仪器标定零点。标定结束后,仪器自动进入测定状态。 6.2测定 采样应在额定负荷或参照有关标准或规定下进行。 将仪器的采样管插入烟道中,即可启动仪器抽气泵,抽取烟气进行测定。待仪器读数稳定后即可读数。同一工况下应连续测定三次,取平均值作为测量结果。

烟气中二氧化硫及粉尘的计算方法

烟气中二氧化硫及粉尘 的计算方法 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

一、燃料燃烧过程二氧化硫排 放量的计算 1.煤炭中硫的成分可分为可燃硫和非可燃硫,可燃硫约占全部的80%,计算公式如下: Gso 2=2×0.8×B ×S ×(1-η)=1.6BS ×(1-η) 2. 燃油二氧化硫排放的计算公式如下: Gso 2=2BS ×(1-η) 式中:Gso 2—SO 2产生量量,kg ; W —燃煤(油)量,kg ; S —煤(油)的全硫分含量,(重量) %; η—脱硫设备的脱硫效率%(实测值),无脱硫装置的脱硫效率η值为0 。 3. 燃烧天然气二氧化硫排放的计算公式如下: Gso 2=2.857V ×C H S ×10-3 式中:Gso 2—SO 2产生量量,kg ; V —气体燃料消耗量,m 3(标); C H S —气体燃料中H 2S 的体积%。 二、工艺过程产生气体污染物排放量计算 1.水泥生产中SO 2排放量计算: G SO2=2×(B ×S-0.4Mf 1-0.4G d f 2) 式中: Gso 2—水泥熟料烧成中排放SO 2量,t ; B —烧成水泥熟料的煤耗量,t ; S —煤或油的全硫分含量,(重量)%; M —水泥熟料产量,t ; f 1—水泥熟料中S032-的含量(%); G d —水泥熟料生产中产生的窑灰量,回转窑一般占孰料 量的25%(20%~30%),t ; f 2—粉尘中SO 32-含量(%); 0.4—系数,即S /S032-=32÷80=0.4 。 2.硫酸生产中排放S02的计算: Gso 2=W ×S ×H ×J ×(1-Z)×(1-A)×2 式中:Gso 2—硫酸废气SO 2排放量,t ; W —硫铁矿石用量,t ; S —硫铁矿石含硫量(%): H —硫磺烧出率(%); J —净化工序硫的净化效率(%); Z —转化工序转化为SO 3的转化率(%); A —尾气氨吸收净化率(%)。 3.烧结废气中排放SO 2计算: G SO2=2×(SH -SJ -SF) 式中: G SO2—废气中SO 2含量(千克/吨),烧结矿; SH —混合料中含硫量(千克/吨); SJ —烧结矿中含硫量(千克/吨); SF —粉尘带出的硫量(千克/吨)。 4. 工业粉尘排放量的计算: G d =10—6·Q f ·C f ·t 式中: G d —工业粉尘排放量,kg ; Q f —排尘系统风量,m 3(标)/h ; C f —设备出口排尘浓度, mg/ m 3(标)(实测);

工业机器人基础操作

目录 项目一工业机器人基本结构认识与安全操作知识 (1) 项目二机器人的基本操作 (11)

项目一工业机器人基本结构认识与安全操作知识 一、布置任务 1.项目要求 (1)项目名称:工业机器人基本结构认识与基础操作 (2)计划课时:6 (3)器材及工具准备(现场准备) 表1 实验所需设备清单 2.教学主要内容及目的 通过该实训课程,将《工业机器人技术基础》中所学的机器人编程及调试技术应用于实际设计中。学习机器人的基本安全操作常识、机器人控制柜的基本结构、机器人示教器的基本操作等技术在实验平台上进行综合认知与练习,在理论和实验的基础上进一步对工业机器人的认识,更好的了解机器人的操作方式。 3.相关知识准备 机器人的基本组成、机器人的基本安全操作常识。 二、制定计划 教师辅助学生以小组方式,10人一组,由指导老师讲解基本操作要领及安全注意事项,讲解完成后,学生自己进行操作,讨论各步骤的注意事项及原因,以讨论加操作的方式进行学习。 三、实施项目任务 1. 实训内容 ①通过现场讲解,学习机器人的基本安全知识,为后续安全操作做基础; ②认识机器人控制柜,了解其主要结构及控制按钮的功能; ③认识示教器的基本操作方法。 2. 实训步骤

(1)工业机器人安全知识 a、记得关闭总电源 在进行机器人的安装、维修、保养时切记要将总电源关闭。带电作业可能会产生致命性后果。如果不慎遭高压电击,可能会导致心跳停止、烧伤或其他严重伤害。 在得到停电通知时,要预先关断机器人的主电源及气源。 突然停电后,要在来电之前预先关闭机器人的主电源开关,并及时取下夹具上的工件。 b、与机器人保持足够安全距离 在调试与运行机器人时,它可能会执行一些意外的或不规范的运动。并且,所有的运动都会产生很大的力量,从而严重伤害个人或损坏机器人工作范围内的任何设备,所以时刻警惕与机器人保持足够的安全距离。 c、静电放电危险 搬运部件或部件容器时,未接地的人员可能会传递大量的静电荷。这一放电过程可能会损坏敏感的电子设备。所以在有此标识的情况下,要做好静电放电防护。 d、紧急停止 紧急停止优先于任何其它机器人控制操作,它会断开机器人电动机的驱动电源,停止所有运转部件,并切断由机器人系统控制且存在潜在危险的功能部件的电源。 出现下列情况时请立即按下任意紧急停止按钮: 机器人运行时,工作区域内有工作人员。 机器人伤害了工作人员或损伤了机器设备。 e、灭火 发生火灾时,在确保全体人员安全撤离后再进行灭火,应先处理受伤人员。当电气设备(例如机器人或控制器)起火时,使用二氧化碳灭火器,切勿使用水或泡沫。 f、工作中的安全 注意夹具并确保夹好工件。如果夹具打开,工件会脱落并导致人员伤害或设备损坏。夹具非常有力,如果不按照正确方法操作,也会导致人员伤害。机器人停机时,夹具上不应置物,必须空机。 g、示教器的安全 示教器的使用和存放应避免被人踩踏电缆。 小心操作。不要摔打、拋掷或重击,这样会导致破损或故障。在不使用该设备时,

hj57-2017固定污染源废气二氧化硫的测定定电位电解法培训试题

HJ 57-2017固定污染源废气二氧化硫的测定定 电位电解法培训试题 姓名:分数: 一、填空题(每空2分,共40分) 1、标准HJ 57-2017 的方法检出限为mg/m3,测定下限为 ( mg/m3。 2、二氧化硫浓度结果应保留位,当高于 mg/m3时保留3位有效数字。 3、监测前后应测定零气和二氧化硫标准气体,计算示值误差应不超过;系统偏差不超过,否则应查找原因,进行仪器维护或修复,直至满足要求。 4、样品测定结果应处于仪器的20%--100%之间,否则应重新(校准量程。 5、干扰显著,测定样品时必须同步测定一氧化碳浓度,一氧化碳浓度不超过 umol/mol时可用本标准测定样品。 6、用于气袋法校准测定仪的集气袋,容积为,内衬材料应选用对被测组分影响小的铝塑复合膜、等惰性材料。 7、标准给出的测定仪量程校准方法主要有a) 、b) 。 8、启动抽气泵,以测定仪规定的采样取样测定,待测定仪稳定后,按分钟保存测定数据,取连续测定数据的平均值。作为一次测量值。 9、测定仪更换二氧化硫后,应重新一氧化碳干扰实验。 10、定电位电解法传感器使用寿命一般不超过,到期后应及时更换;校准传感器时,若发现其动态范围变小,测量上限达不到,表明传感器已失效,应及时更换。

二、判断题(每题2分,共20分) 1、可采取包括采样管、导气管、除湿装置等全系统示值误差的检查代替分析仪示值误差和系统偏差的检查。() 2、本标准适用于固定污染源和环境空气以及无组织监测中的二氧化硫的测定。 3、取得测量结果后,待其示值回到零点附近后,可以不用零气清洗测定仪,直接关机断电,结束测定。() 4、除湿装置里的冷凝水,因其对测定结果不产生影响,可以不用排空。() 5、对于燃烧充分的燃气锅炉可以不用做一氧化碳的干扰性实验,因为排出的烟气里一氧化碳浓度低,不影响。() 6、在测定前需要事先检查二氧化硫测定仪、一氧化碳测定仪的气密性,确保系统气密性合格。() 7、测定仪长期不用时,每月应至少通电开机运行一次,以保持传感器的极化条件。() 8、采样器的滤尘装置应及时清洁,防止阻塞气路。() 9、零点漂移、量程漂移检查应每六个月进行一次,且符合标准条c)和d)的要求,否则应及时维护或修复仪器。() 10、二氧化硫采样时,应将采样管前端置于排气筒中的取样点上,堵严采样孔,使之不漏气。。() 二、选择题(每题 3分,共15分) 1、进入定电位电解法传感器的废气温度应不高于℃()。 A、80℃ B、 60℃ C、40℃ 2、测定仪应具有抗压能力,保证采样流量不低于其规定的。 A、压力范围 B、流量范围 C、量程范围 3、二氧化硫测定时对一次测量值,应获得不少于个有效二氧化硫浓度分

工业机器人操作与编程》课程标准

《工业机器人操作与编程》课程标准 1.课程性质和任务 《工业机器人操作与编程》是工业机器人技术专业必修的职业核心课程,工业机器人自动化生产线成套设备已经成为自动化装备的主流和未来发展方向,工业机器人的操作是一门实用的技术性专业课程,也是一门实践性较强的综合性课程,在工业机器人专业课程体系中占有重要地位,令学生能全面把握工业机器人应用的安装、配置与调试方法。本课程主要通过分析工业机器人的工作原理,通过涂胶、搬运、喷漆等常用工艺的实践,使学生了解各种工业机器人的应用,熟练掌握工业机器人的操作方法,锻炼学生的团队协作能力和创新意识,提高学生分析问题和解决实际问题的能力,提高学生的综合素质,增强适应职业变化的能力。 2.学习领域描述 国际先进国家在汽车、电子电器、工程机械等行业大量采用了工业机器人自动化生产线,以保证产品质量,提高生产效率,这就需要大量的具备工业机器人基本操作、在线示教、离线编程技能的,对机器人搬运、涂胶、喷漆、码垛等工艺具有足够的了解,能够控制机器人完成上述任务的操作技能型人才 3.先修课程和后续课程 先修课程:《工业机器人技术基础》、《机械制图与CAD》、《机械设计》 后续课程:《工业机器人拆装与维护》、《工业机器人离线编程》、《工业机器人操作与编程》 4.课程目标 掌握工业机器人的编程和操作方法,了解工业机器人常用工艺,通过这门课的学习,使学生对机器人有一个全面、深入的认识,培养学生综合运用所学基础理论和专业知识进行创新设计的能力,并相应的掌握一些实用工业机器人控制及规划和编程方法。 学习完本课程后,学生应当能具备从事工业机器人企业生产第一线的生产与管理等相关工作的基础知识和能力储备,包括: (1)掌握用示教器操作工业机器人运动的方法 (2)能新建、编辑和加载工业机器人程序 (3)能够编写工业机器人搬运动作的运动程序 (4)能够编写工业机器人涂胶运动的运动程序 (5)能够编写工业机器人喷涂运动的运动程序 (6)能够编写工业机器人上下料运动程序 (7)能够编写工业机器人码垛运动程序

锅炉烟气量、烟尘、二氧化硫的计算

一、烟气量的计算: 0V -理论空气需求量(Nm 3 /Kg 或Nm 3 /Nm 3 (气体燃料)); ar net Q ?-收到基低位发热量(kJ/kg 或kJ/Nm 3 (气体燃料)); daf V -干燥无灰基挥发分(%) ; V Y -烟气量(Nm 3/Kg 或Nm 3/Nm 3(气体燃料)); α-过剩空气系数, α=αα?+0。 1、理论空气需求量 daf V >15%的烟煤: daf V <15%的贫煤及无烟煤: 61.04145Q ar net 0+= ?V 劣质煤ar net Q ?<12560kJ/kg : 455.04145 Q ar net 0+= ?V 液体燃料: 21000Q 85.0ar net 0+? =?V 气体燃料,ar net Q ?<10468kJ/Nm 3: 1000 Q 209.0ar net 0?? =V 气体燃料,ar net Q ?>14655kJ/Nm 3 : 25.01000 Q 260.0ar net 0-? =?V 2、实际烟气量的计算 (1)固体燃料 无烟煤、烟煤及贫煤: 0ar net Y )1(0161.177.04187 1.04Q V V -++?α= ar net Q ?<12560kJ/kg 的劣质煤: 0ar net Y )1(0161.154.04187 1.04Q V V -++?α= (2)液体燃料: 0ar net Y )1(0161.14187 1.1Q V V -+?α= (3)气体燃料: ar net Q ?<10468kJ/Nm 3时: 0ar net Y )1(0161.10.14187 0.725Q V V -++?α= ar net Q ?>14655kJ/Nm 3 时: 0ar net Y )1(0161.125.04187 1.14Q V V -+-?α=

工业机器人操作指南

工业机器人应用 一机器人示教单元使用 1.示教单元的认识 使用示教单元调整机器人姿势 在机器人控制器上电后使用钥匙将MODE开关打到“MANUAL”位置,双手拿起,先将示教单元背部的“TB ENABLE”按键按下。再用手将“enable”开关扳向一侧,直到听到一声“卡嗒”为止。然后按下面板上的“SERVO”键使机器人伺服电机开启,此时“F3”按键上方对应的指示灯点亮。

按下面板上的“JOG”键,进入关节调整界面,此时按动J1--J6关节对应的按键可使机器人以关节为运行。按动“OVRD↑”和“OVRD↓”能分别升高和降低运行机器人速度。各轴对应动作方向好下图所示。当运行超出各轴活动范围时发出持续的“嘀嘀”报警声。 按“F1”、“F2”、“F3”、“F4”键可分别进行“直交调整”、“TOOL调整”、“三轴直交调整”和“圆桶调整”模式,对应活动关系如下各图所示: 直交调整模式

TOOL调整模式

三轴直交调整模式 圆桶调整模式 在手动运行模式下按“HAND”进入手爪控制界面。在机器人本体内部设计有四组双作用电磁阀控制电路,由八路输出信号OUT-900――OUT-907进行控制,与之相应的还有八路输入信号IN-900――IN-907,以上各I/O信号可在程序中进行调用。 按键“+C”和“-C”对应“OUT-900”和“OUT-901” 按键“+B”和“-B”对应“OUT-902”和“OUT-903” 按键“+A”和“-A”对应“OUT-904”和“OUT-905” 按键“+Z”和“-Z”对应“OUT-906”和“OUT-907” 在气源接通后按下“-C”键,对应“OUT-901”输出信号,控制电磁阀动作使手爪夹紧,对应的手爪夹紧磁性传感器点亮,输入信号到“IN-900”;按下“+C”键,对应“OUT-900”输出信号,控制电磁阀动作使手爪张开。对应的手爪张开磁性传感器点亮,输入信号到“IN-901”。使用示教单元设置坐标点 先按照实训2的内容将机器人以关节调整模式将各关节调整到如下所列: J1: J5: J2: J6: J3: J4: 先按“FUNCTION”功能键,再按“F4”键退出调整界面。然后按下“F1”键进入

界面中。此时共有个5项目可选,可使用右侧的“↑”、“↓”、“←”和“→”键移动光标到相应的选

固定污染源烟气(SO2、NOx、颗粒物等)监测质量保证和质量控制要求汇总

CEMS比对监测的质量保证和质量控制 固定污染源排气中颗粒物测定与气态污染物的检测过程中质量保证和质量控制要求,散见于于9个标准及规范,分别是: 1.《固定污染源排气中颗粒物测定与气态污染物采样方法》GB/T 16157-1996及其修改单(环境保护部公告【2017】第87号) 2.《固定污染源烟气(SO2、NOx、颗粒物)排放连续监测技术规范》HJ 75-2017 3.《固定污染源烟气(SO2、NOx、颗粒物)排放连续监测系统技术要求及检测方法》HJ 76-2017 4.《污染源自动监测设备比对监测技术规定(试行)》中国环境监测总站 2010年8月 5.《固定污染源监测质量保证与质量控制技术规范(试行)》HJ/T 373-2007 6.《固定源废气监测技术规范》HJ/T 397-2007 7.《固定污染源废气氮氧化物的测定定电位电解法》HJ 693-2014 8.《固定污染源废气二氧化硫的测定定电位电解法》HJ57-2017 9.《固定污染源废气低浓度颗粒物的测定重量法》HJ 836-2017 综合以上标准中的质量保证和质量控制要求,比对监测主要从监测人员、监测仪器与设备、采样过程质量控制、实验室分析质量控制、监测报告出具等方面进行质量保证和质量控制。 1、监测人员 (1)要求监测人员经培训后持证上岗。 (2)生态环境监测要求至少2人进行现场监测工作。 (3)监测过程应有照片视频等资料。 注:(2、3条依据为《检验检测机构资质认定生态环境监测机构评审补充要求》) 2、监测仪器与设备

(1)监测仪器设备应经检定/校准合格并在有效期内使用。 GB/T 16157-1996中12.2规定的仪器与设备(排气温度测量仪表、S行皮托管、斜管微压计、空盒大气压力表、真空压力表或压力计、转子流量计、采样管加热温度、分析天平、采用嘴),应依据标准至少半年自行校准一次。 定电位电解法烟气(S02、NO。CO)测定仪应在每次使用前校准。采用仪器量程20%一30%、 50%一60%、80%一90%处浓度或与待测物相近浓度的标准气体校准,若仪器示值偏差不高于±5%,测定仪可以使用。 至少每季度对测氧仪校准一次,采用高纯氮校正其零点。用纯净空气调整测氧仪示值,在标准大气压下其示值为20.9%。 定电位电解法烟气测定仪和测氧仪的电化学传感器寿命一般为1—2年,到期后应及时更换。在有效使用期内若发现传感器性能明显下降或失效,须及时更换传感器,更换后测定仪需重新检定方可使用。 (2)监测仪器与设备应定期维护保养,应制定仪器与设备管理程序和操作规程,使用时做好仪器与设备使用记录,保证仪器与设备处于完好状态。 (3)每季度现场抽查仪器与设备使用情况和使用记录。 3、采样质量控制 按照规范要求进行采样,进行气密性检查、校准、采样流量控制等操作。 4、实验室分析质量控制 每批样品应至少做一个全程空白样,实验室内应进行质控样品的测定。 5、监测报告 监测报告应执行三级审核制度。 实例:比对监测质量保证与质量控制措施: 1.监测人员全部持证上岗。 2.检测仪器均在检定有效期内。 3.测量气态污染物时,采样测量前、后均采用有证标准物质进行校准。 4.颗粒物测定每批做1个全程空白样。 5.整个检测过程均严格执行《固定污染源烟气(SO2、NOx、颗粒物)排放连续监测技 术规范》HJ 75-2017和《固定污染源烟气(SO2、NOx、颗粒物)排放连续监测系统技术要求及检测方法》HJ 76-2017的相关要求。 6.监测报告应执行三级审核制度。

火电厂烟气中二氧化硫测定方法探讨

火电厂烟气中二氧化硫测定方法探讨 本文选取火电厂脱硫循环泵两种不同工况,采用目前应用比较广泛的《火电厂大气污染物排放标准》(GB13223-2011)中推荐的定电位电解法(HJ/T 57)、非分散红外吸收法(HJ629)两种二氧化硫测定方法进行现场测试比对,寻求不同二氧化硫浓度条件下火电厂烟气中二氧化硫测定最合适的方法。 關键词:火电厂;二氧化硫;测定方法 随着火电厂超净排放的推广,各火电厂开始纷纷实施脱硫装置增容改造,或增加串联塔或采用单塔双循环、双塔双循环等更高效率脱硫设施,二氧化硫排放浓度大幅度降低,普遍低于35mg/m3标准限值,甚或低于10mg/m3。火电厂烟气中二氧化硫的测定也因此要求更高,火电厂烟气中二氧化硫的测定方法探讨也就尤显必要。 1 测定设备 本次测定定电位电解法测试仪采用的是青岛崂山应用技术研究所生产的3012H-D型便携式大流量低浓度烟尘烟气测试仪,选配的二氧化硫传感器量程范围为0-286mg/m3,一氧化碳干扰试验确定的一氧化碳浓度最高值为1000mg/m3。非分散红外吸收法分析仪采用的是德国Analyzer品牌MGA5型红外烟气分析仪,其量程范围为0-15000mg/m3。 2 测定环境 本次测定选取常德市某火电厂除尘(布袋+静电)脱硝(SCR)脱硫(湿法)处理设施后烟气排口进行。 2.1 测定外环境 本次测定时现场外环境温度30-32℃,大气压100.5kPa,空气湿度55%。 2.2 测定内环境 本次测定烟气温度47-52℃,烟气全压0.14-0.18kPa,烟气含湿量10.2-11.3%,烟气流速17-19m/s,氧气含量7.8-8.3%,烟尘浓度4-8mg/m3,一氧化氮浓度12-19mg/m3,二氧化氮未检出,一氧化碳浓度33-57mg/m3。 3 现场测定 3.1 现场测定质量控制 ①测试前后对3012H-D型便携式大流量低浓度烟尘烟气测试仪、MGA5型

低浓度SO2烟气回收利用

低浓度SO2烟气回收利用 我国是世界上一次能源消费以煤为主的国家之一,2000 年我国一次能源消耗中煤的比例为63%,同时期世界平均水平是25%。以煤为主的能源消耗结构导致大量SO2排放,特别是火力发电和金属冶炼行业,SO2的排放量大而集中。2000 年我国SO2排放为1995万吨,居世界第一位。目前,大多数冶炼厂家采用先进的冶炼技术,提高了烟气SO2浓度(浓度大于2.5%),可直接用常规的接触法工艺制酸。然而,我国仍有一些中小型的铅、锌、铜、镍、钼等冶炼装置或采用较为落后的冶炼工艺,或原料本身含硫量低,使得烟气SO2浓度较低且波动量大,难以用常规制酸工艺处理。 近年来,许多火电厂和有色金属企业在低浓度SO2烟气的净化处理上做了大量工作,并正在从“末端治理”向“治本”过渡,效果却并不明显。现已投入生产的有传统氨法、碱法、钙法、碱氏硫酸铝、石膏法、氧化锌法、锰吸收法、活性炭吸附法等。但由于这些方法在吸收剂的供应、副产品的销路及工艺技术方面存在不足,只能单方面解决SO2造成的污染,综合效益差,实施中又带来生产成本增大等问题,因此,目前我国不少工厂仍然采取直接排放的方法。工业SO2对大气的污染仍然是一道令人头痛的难题。目前,我国低浓度SO2烟气排放不仅导致约大量硫资源白白损失,还严重污染了生态环境,其中仅火电、冶炼等行业集中规模排放的就在400万吨以上。然而我国同时又是硫资源相对缺乏的国家,近年大量进口硫磺来制酸,2002 年进口达到400万吨,加上进口磷肥(按其耗硫酸折算)已相当于进口硫磺500 万吨。一方面我国在大量进口硫磺,另一方面大量的低浓度SO2在流失,并对环境造成极大影响,损害人民的健康。因此,如何处理低浓度SO2烟气,达到既综合利用硫资源,又消除环境污染的目的,具有重要的实际意义。 目前对烟气脱硫研究较多,进展也较快;但对低浓度SO2烟气脱硫面临两大难题:一是烟气量很大而SO2浓度又极低(一般≤0.5%) 时工业回收SO2极不经济,二是运用以往的脱硫方法进行脱硫的成本较高且效果也不稳定。因此,对脱硫关反应的参数进行分析比较,甄选出脱硫效率高、运行成本低、综合利用好的方案十分必要。

工业机器人原理及应用实例

工业机器人原理及应用实例工业机器人概念 工业机器人是一种可以搬运物料、零件、工具或完成多种操作功能的专用机械装置;由计算机控制,是无人参与的自主自动化控制系统;他是可编程、具有柔性的自动化系统,可以允许进行人机联系。可以通俗的理解为“机器人是技术系统的一种类别,它能以其动作复现人的动作和职能;它与传统的自动机的区别在于有更大的万能性和多目的用途,可以反复调整以执行不同的功能。” 组成结构 工业机器人由主体、驱动系统和控制系统三个基本部分组成。主体即机座和执行机构,包括臂部、腕部和手部,有的机器人还有行走机构。大多数工业机器人有3?6个运动自由度,其中腕部通常有1?3个运动自由度;驱动系统包括动力装置和传动机构,用以使执行机构产生相应的动作;控制系统是按照输入的程序对驱动系统和执行机构发出指令信号,并进行控制。 分类工业机器人按臂部的运动形式分为四种。直角坐标型的臂部可沿三个直角坐标移动;圆柱坐标型的臂部可作升降、回转和伸缩动作;球坐标型的臂部能回转、俯仰和伸缩;关节型的臂部有多个转动关节。 工业机器人按执行机构运动的控制机能,又可分点位型和连续轨迹型。点位型只控制执行 机构由一点到另一点的准确定位,适用于机床上下料、点焊和一般搬运、装卸等作业;连续轨迹型可控制执行机构按给定轨迹运动,适用于连续焊接和涂装等作业。 工业机器人按程序输入方式区分有编程输入型和示教输入型两类。编程输入型是将计算机上已编好的作业程序文件,通过RS232 串口或者以太网

等通信方式传送到机器人控制柜。示教输入型 的示教方法有两种:一种是由操作者用手动 控制器(示教操纵盒),将指令信号传给驱动 系统,使执行机构按要求的动作顺序和运动轨 迹操演一遍;另一种是由操作者直接领动执 行机构,按要求的动作顺序和运动轨迹操演 一遍。在示教过程的同时,工作程序的信息 即自动存入程序存储器中在机器人自动工作时, 控制系统从程序存储器中检出相应信息,将 指令信号传给驱动机构,使执行机构再现示 教的各种动作。示教输入程序的工业机器人称 为示教再现型工业机器人。 具有触觉、力觉或简单的视觉的工业机器人,能在较为复杂的环境下工作;如具有 识别功能或更进一步增加自适应、自学习功能, 即成为智能型工业机器人。它能按照人给的 “宏指令”自选或自编程序去适应环境,并 自动完成更为复杂的工作。 四、主要特点 工业机器人最显著的特点有以下几个: (1) 可编程。生产自动化的进一步发展是柔性启动化。工业机器人可随其工作环境变化的需要而再编程,因此它在小批量多品种具有均衡高效率的柔性制造过程中能发挥很好的功用,是柔性制造系统中的一个重要组成部分。 (2) 拟人化。工业机器人在机械结构上有类似人的行走、腰转、大臂、小臂、手腕、手爪等部分,在控制上有电脑。此外,智能化工业机器人还有许多类似人类的“生物传感器”,如皮肤型接触传感器、力传感器、负载传感器、视觉传感器、声觉传感器、语言功能等。传感器提高了工业机器人对周围环境的自适应能力。 (3) 通用性。除了专门设计的专用的工业机器人外,一般工业机器人在执行不同的作业任务时具有较好的通用性。比如,更换工业机器人手部末端操作器 (手爪、工具等)便可执行不同的作业

相关主题
文本预览
相关文档 最新文档