当前位置:文档之家› 系统建模方法

系统建模方法

系统建模方法
系统建模方法

系统建模方法

2.1系统抽象与数学描述

2.1.1 实际系统的抽象

本质上讲,系统数学模型是从系统概念出发的关于现实世界的一小部分或几个方面的抽象的“映像”。

为此,系统数学模型的建立需要建立如下抽象:输入、输出、状态变量及其间的函数关系。这种抽象过程称为模型构造。抽象中,必须联系真实系统与建模目标,其中描述变量起着很重要的作用,它可观测,或不可观测。

从外部对系统施加影响或干扰的可观测变量称为输入变量。

系统对输入变量的响应结果称为输出变量。

输入、输出变量对的集合,表征着真实系统的“输入-输出”性状(关系)。

综上述,真实系统可视为产生一定性状数据的信息源,而模型则是产生与真实系统相同性状数据的一些规则、指令的集合,抽象在其中则起着媒介作用。系统数学建模就是将真实系统抽象成相应的数学表达式(一些规则、指令的集合)。

(可观测) 输出变量

(可观测) 输入变量

黑箱 灰箱 白箱

ωt )

ω(t )、ρ(t )---输入输出变量对 真实系统建模的抽象过程

2.1.2 系统模型的一般描述及描述级(水平)

2.1.2.1 系统模型的一般描述:

一个系统的数学模型可以用如下七元组集合来描述:

2.1.2.2 系统模型描述级(水平):

按照系统论的观点,实际系统可在某种级(水平)上被分解,因此系统的数学模型可以有不同的描述级(水平):

⑴ 性状描述级

性状描述级或称为行为描述级(行为水平)。在此级上描述系统是将系统堪称黑箱,并施加输入信号,同时测得输出响应,结果是得出一个输入-输出对:(ω,ρ) 及其关系R s ={(ω,ρ):Ω,ω,ρ}。

()λδ,,,,,,Y Q X T S Ω=

其中:

:T 时间基,描述系统变化的时间坐标,T 为整数则称为离散时间系

统,为实数则称为连续时间系统;

:X 输入集,代表外部环境对系统的作用。

:Ω输入段集,描述某个时间间隔内的输入模式,是()T X ,的一个

子集。

:Q 内部状态集,描述系统内部状态量,是系统内部结构建模的核心。

:δ状态转移函数,定义系统内部状态是如何变化的,是一个映射。

:Y 输出集,系统通过它作用于环境。

:λ输出函数,是一个映射,给出了一个输出段集。

因此,系统的性状级描述只给出输入-输出观测结果。其模型为五元组集合结构:

S=(T,X,Ω,Y,R)

当ω,ρ满足ρ=f(ω)函数关系时,其集合结构变为:

S=(T,X,Ω,Y,F)

黑箱

⑵状态描述级

在状态结构级(状态结构水平)上,系统模型不仅能反映输入-输出关系,而且应能反映出系统内部状态,以及状态与输入、输出间的关系。即不仅定义了系统的输入与输出,而且定义了系统内部的状态集及状态转移函数

系统的数学模型对于动态结构可用七元组集合来描述:

S=(T,X,Ω,Q,Y,δ,λ)

对于静态结构有:

S=(X,Q,Y,λ)

白箱

⑶复合结构级

系统一般由若干个分系统组成,对每个分系统都给出行为级描述,被视为系统的一个“部件”。这些部件有其本身的输入、输出变量,以及部件间的连接关系和接口。于是,可以建立起系统在复合结构级(分解结构级)上的数学模型。

这种复合结构级描述是复杂系统和大系统建模的基础。

应该强调:

?系统分解为复合结构是无止境的,即每个分系统还会有自己的复合结构;

?一个有意义的复合结构描述只能给出唯一的状态结构描述,

而一个有意义的状态结构描述本身只有唯一的性状(行为)描述;

?系统上述概念必须允许分解停止,又允许进一步分解,既包含递归可分解性。

灰箱

2.2 相似概念简介

2.2.1 相似概念及含义

仿真的理论依据:相似论。

自然界中广泛存在着“相似”概念,最普遍的是:

几何相似:最简单、最直观,如多变形、三角形相似;

现象相似:几何相似的拓展,如物理量之间存在的比例关系。

采用相似技术来建立实际系统的相似模型,这是相似理论在系统仿真中基础作用的根本体现。

2.2.2 相似分类

绝对相似:两个系统(如系统原型与模型)全部几何尺寸和其他相应参数在时空域上产生的全部变化(或全部过程)都是相似的;

完全相似:两个系统在某一相应方面的过程上相似,如发电机的电流电压问题,模型与原型在电磁现象方面是完全相似即可,而无需考虑热工和机械方面的相似;

不完全相似(局部相似):仅保证研究部分的系统相似,而非研究和不要求部分的过程可能被歪曲,为研究目的所允许;

近似相似:某些简化假设下的现象相似,数学建模要保证有效性。

不同领域中的相似有各自的特点,对领域的认识水平也不一样:环境相似(几何相似、参量比例相似等):结构尺寸按比例缩小得到的模型-缩比模型,如风洞、水洞实验所用的模型。

离散相似:差分法、离散相似法把连续时间系统离散化为等价的离散时间系统。

性能相似(等效、动力学相似、控制响应相似等):数学描述相同或者频率特性相同,用于构造各类仿真的相似原则。

感觉相似(运动感觉、视觉、音响感觉等):耳、眼、鼻、舌、

身等感官和经验,MIL仿真把感觉相似转化为感觉信息源相似,培训仿真器、VR均是利用这种相似原则。

思维相似:逻辑思维相似和形象思维相似(比较、综合、归纳等),专家系统、人工神经元网络。

系统具有内部结构和外部行为,因此系统的相似有两个基本水平:结构水平和行为水平。

同构必具有行为等价的特性,但行为等价的两个系统并不一定具有同构关系。

因此,系统相似无论具有什么水平,基本特征都归结为行为等价。

2.3系统建模原则、一般途径和模型型谱

2.3.1建模的基本原则

清晰性:系统模型是由许多分系统、子系统模型构成的,在模型与模型间,除了研究目的需要的信息外,相互耦合要尽量少,使结构尽可能清晰;

切题性:模型只应包括与研究目的有关的那些信息,而不是一切方面;

精确性:在建模时,应考虑所收集到的用以建立模型的信息的精确程度,要根据所研究问题的性质和所要解决的问题来确定对精确程度的要求;对于不同的工程,精度要求是不一样的,即使对于同一工程,由于研究的问题不同,精度要求也是不一样的;

集合性:指把一些个别的实体能组成更大实体的程度,对于一个系统实体的分割,在可能时应尽量合并为大的实体。

2.3.2 建模的一般途径

对于内部结构和特性清楚的系统,即所谓的白箱(多数的工程系统都是),可以利用已知的一些基本规律,经过分析和演绎导出系统模型;

对那些内部结构和特性不清楚或不很清楚的系统,即所谓的灰箱和黑箱,如果允许直接进行实验性观测,则可假设模型并通过实验验证和修正;

对于那些属于黑箱但又不允许直接实验观测的系统(非工程系统多属于这一类),则采用数据收集和统计归纳的方法来假设模型。2.3.3 模型型谱

对于不同领域,可以给出一个数学模型型谱:

经济学、生理学、空气污染过程控制、动力学

图2-1 不同领域的数学模型型谱

2.4 系统模型的有效性与数学建模过程框架

2.4.1 基本模型与模型集总

基本模型(基础模型Base model):

提供了对实际系统行为的完全解释,包含有实际系统应有尽有的分量和相互关系,在各种试验模式下该模型对于真实系统的“全部”输入-输出性状都是有效的。

由于模型包含过多的分量及相互关系,一般是十分复杂而庞大。通常是难以得到的,更何况并不实用。

一般是根据具体建模目标、在一定试验规模下构造出一个比较简单而满足精度要求的模型:排除基本模型中那些与建模目标甚远或涉及不到的分量,并对相关描述分量的相互关系加以简化。

模型集总:排除基本模型次要分量并简化其现存分量相互关系的过程。

集总模型(Lumped model):集总后的模型。

模型研究中使用的模型一般为集总模型。

2.4.2 模型的有效性

数学建模中最重要、最困难的问题之一

模型有效性的问题十分复杂,只介绍一般概念。

所谓模型的有效性:就是在对模型所作的预测精度为基准下,反映实际系统数据与模型数据之间的一致性。

理论上讲,即实际系统与模型的输入-输出一致。可用下式象征性地描述:

实际系统数据?=?模型产生数据

模型的有效性水平可以根据获取的困难程度有强度轻重之分,一般分为三级:

复制有效:模型产生的数据与实际系统所取得的数据相匹配,属于模型有效性的最松水平;

预测有效:从实际系统取得数据之前就能够至少看出匹配数据,属于有效性稍强水平;

结构有效:不仅能够复制实际系统行为,而且能够真实反映实际系统产生此行为的操作,属于更强的有效性水平,可看出实际系统的内部工作情况。

2.4.3 系统数学建模过程框架

考虑模型的有效性水平,要在建模和模型使用时重点考虑一下几个方面:

先验的知识可信性:建模前提的正确性,数学描述的有效性取决于先验知识的可信性;

实验数据的可信性:所选择的数据段是否能反映系统行为特征,模型数据与实际系统数据的偏离程度;

模型应用的可信性:从实际出发,考虑模型运行能否达到预期目标。

因此,在建模方法与步骤上要有所考虑:

后验模型

数学建模过程框架

2.5 常用数学建模方法

2.5.1 常见数学建模方法及分类

基本上分两大类:

◆机理分析建模方法(白箱):依据基本的物理、化学等定律,

进行机理分析,确定模型结构、参数;使用该方法的前提是

对系统的运行机理完全清楚。

◆实验统计建模方法:基于实验数据的建模方法(白箱、灰箱、

黑箱)

?辨识建模:线性、非线性,动态、静态

?统计回归:一般是静态的线性模型

?神经网络:理论上可以对任何数据建模,但学习算法是关键

?模糊方法:

实验统计建模方法使用的前提是必须有足够正确的数据,所建的模型也只能保证在这个范围内有效;

足够的数据不仅仅指数据量多,而且数据的内容要丰富(频带要宽),能够充分激励要建模系统的特性;

(白噪声、最优输入信号设计、数据的质量)

要清楚每种方法的局限性,掌握适用范围;

在实际应用中往往组合采用、互补。

2.5.2 机理分析建模方法

2.5.2.1 机理分析法建模原理

又称为直接分析法或解析法,应用最广泛的一种建模方法。

一般是在若干简化假设条件下,以各学科专业知识为基础,通过分析系统变量之间的关系和规律,而获得解析型数学模型。

其实质是应用自然科学和社会科学中被证明是正确的理论、原理和定律或推论,对被研究系统的有关要素(变量)进行理论分析、演绎归纳,从而构造出该系统的数学模型。 2.5.2.2 机理分析法建模步骤

建模步骤如下:

1) 分析系统功能、原理,对系统作出与建模目标相关的描述; 2) 找出系统的输入变量和输出变量;

3) 按照系统(部件、元件)遵循的物化(或生态、经济)规律列写出各部分的微分方程或传递函数等; 4) 消除中间变量,得到初步数学模型; 5) 进行模型标准化;

6) 进行验模(必要时需要修改模型)。

2.5.3 表格插值建模方法

2.5.

3.1 表格插值建模原理

由于这种方法不允许直接实现动态方程,称之为静态建模技术。但表格插值功能常用于建立系统动态方程。一般用于如下形式:

),,,()(321Λx x x f k y =

Λ,,,321x x x 可以是仿真中的任意变量,如时间、状态变量

或常数等,输入个数可以使任意的,但实际应用中一般小于5,输入量的增加,求解计算时间会增加。

一个有N 个输入的插值函数可以用N 维查找表来计算,每一个变量的跨度为一个一维查找表。插值点的跨度可以是等间距的,也可以是任意的间隔。

插值计算有多种方法,不同的方法再插值计算复杂度和插值函数平滑方面有所不同,一般由两种方法可以满足大多数情况下的需要:?线性插值法

?三次样条插值法

2.5.

3.2线性插值法建模

可以在图上直线连接相邻插值点来进行一维线性插值,如下图。

插值函数是连续的,但其插值点上的微分是不连续的。

[]

L

L L

L L L x x x x y y y y ---+=++11

注:要先确定插值点L 、L+1。

常采用二分法,可以大大节省搜索时间。如果输入值x 在计算范围内小范围内变化,可以先检查输入值是否再上一次计算的插值间隔内,这样就可以简化步骤,省去二分法;

也可以检查前一个插值点间隔、其相邻的插值点间隔(如果必要),有时可省去使用二分法,但第一个插值点的计算除外;

该方法的有效性依赖于输入变量的缓变性,这样两次函数计算之间不会发生快速跳变。条件不成立时,由于附加检查先于二分法,计算过程变慢。

2.5.

3.3三次样条插值法建模

可以得到平滑的插值函数。

三次样条插值是运用三阶多项式估计两个插值点间的函数。这

样,在两个插值点上几两个插值点间,插值函数及其一阶和二阶导数均是连续的。从某种角度上讲,三次样条可以在插值点间获得可能的最平滑的插值。

与线性插值比代价要大,计算时间增加,内存需求也有所增加;算法复杂。

2.5.

3.4多维表格插值法建模

针对对输入变量。

2.5.4 系统辨识建模方法

2.5.

3.1 系统辨识建模原理

1962年,Zadeh给出系统辨识的定义:

就是在输入和输出数据的基础上,从一组给定的模型类中,确定一个与所测系统等价的模型。

明确了辨识的三要素:

?输入输出数据:辨识的基础;

?模型类:寻找模型的范围;

?等价准则:辨识的优化目标。

系统辨识原理图

2.5.

3.2 系统辨识建模一般步骤

一般步骤:

1)明确建模目的和验前知识:目的不同,对模型的精度和形式

要求不同;事先对系统的了解程度。

2)实验设计:变量的选择,输入信号的形式、大小,正常运行

信号还是附加试验信号,数据采样速率,辨识允许的时间及

确定量测仪器等。

3)确定模型结构:选择一种适当的模型结构。

4)参数估计:在模型结构已知的情况下,用实验方法确定对系

统特性用影响的参数数值。

5)模型校验:验证模型的有效性。

2.5.

3.3 最小二乘法

⑴ 输入-输出数据精确已知时确定模型参数的方法

数据精确已知是指测得的系统输入-输出数据是精确的,没有被“噪声”污染。

)

()2()1()()2()1()(2121n k u b k u b k u b n k a k y a k y a k y n n -++-+-+-------=ΛΛ

令:13,1,++=n n n k 可得n 2个方程式:

)1()1()0()1()1()0()(111-++++-----=--n u b u b u b n y a y a y a n y n n n n n ΛΛ )()2()1()()2()1()1(111n u b u b u b n y a y a y a n y n n n n n ++++----=+--ΛΛ

)ΛΛΛ

)

23()2()12()23()2()12()13(111-+++-+------=---n u b n u b n u b n y a n y a n y a n y n n n n n ΛΛ

系统辨识步骤

θ

Φ=Y

????

?

????

???-+=)13()1()(n y n y n y Y M ??????----??????----=Φ)23(),12(),22(,)(,),2(),1(,)1(,),1(),0(,)23(,),12(),22()(,),2(),1()1(,),1(),0(n u n u n u n u u u n u u u n y n y n y n y y y n y y y ΛM ΛΛΛM ΛΛ ??????

??????

????????

??????---=--1111b b b a a a n n n n M M θ

Y 1-Φ=θ

⑵ 最小二乘法估计模型参数的方法

考虑测量不精确或者环境对过程的随机干扰,实际量测到的输出为:

)

()()2()1()()2()1()(2121k n k u b k u b k u b n k a k y a k y a k y n n ξ+-++-+-+-------=ΛΛ

其中:)(k ξ-由量测噪声引起的随机变量 满足如下统计特性:

? 零均值

数学建模知识及常用方法

数学建模知识——之新手上路 一、数学模型的定义现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图像、框图等描述客观事物的特征及其内在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。二、建立数学模型的方法和步骤 1. 模型准备要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 5. 模型分析 对模型解答进行数学上的分析。“横看成岭侧成峰,远近高低各不同”,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差分析,数据稳定性分析。例题:一个笼子里装有鸡和兔若干只,已知它们共有 8 个头和 22 只脚,问该笼子中有多少只鸡和多少只兔?解:设笼中有鸡 x 只,有兔 y 只,由已知条件有 x+y=8 2x+4y=22 求解如上二元方程后,得解 x=5,y=3,即该笼子中有鸡 5 只,有兔 3 只。将此结果代入原题进行验证可知所求结果正确。根据例题可以得出如下的数学建模步骤: 1)根据问题的背景和建模的目的做出假设(本题隐含假设鸡兔是正常的,畸形的鸡兔除外) 2)用字母表示要求的未知量 3)根据已知的常识列出数学式子或图形(本题中常识为鸡兔都有一个头且鸡有 2 只脚,兔有 4 只脚) 4)求出数学式子的解答 5)验证所得结果的正确性这就是数学建模的一般步骤三、数模竞赛出题的指导思想传统的数学竞赛一般偏重理论知识,它要考查的内容单一,数据简单明确,不允许用计算器完成。对此而言,数模竞赛题是一个“课题”,大部分都源于生产实际或者科学研究的过程中,它是一个综合性的问题,数据庞大,需要用计算机来完成。其答案往往不是唯一的(数学模型是实际的模拟,是实际问题的近似表达,它的完成是在某种合理的假设下,因此其只能是较优的,不唯一的),呈报的成果是一篇论文。由此可见“数模竞赛”偏重于应用,它是以数学知识为引导计算机运用能力及文章的写作能力为辅的综合能力的竞赛。四、竞赛中的常见题型赛题题型结构形式有三个基本组成部分: 1. 实际问题背景涉及面宽——有社会,经济,管理,生活,环境,自然现象,工程技术,现代科学中出现的新问题等。一般都有一个

过程控制系统习题解答

《过程控制系统》习题解答 1-1 试简述过程控制的发展概况及各个阶段的主要特点。 答:第一个阶段50年代前后:实现了仪表化和局部自动化,其特点: 1、过程检测控制仪表采用基地式仪表和部分单元组合式仪表 2、过程控制系统结构大多数是单输入、单输出系统 3、被控参数主要是温度、压力、流量和液位四种参数 4、控制的目的是保持这些过程参数的稳定,消除或减少主要扰动对生产过程的影响 5、过程控制理论是以频率法和根轨迹法为主体的经典控制理论,主要解决单输入、单输出的定值控制系统的分析和综合问题 第二个阶段60年代来:大量采用气动和电动单元组合仪表,其特点: 1、过程控制仪表开始将各个单元划分为更小的功能,适应比较复杂的模拟和逻辑规律相结合的控制系统 2、计算机系统开始运用于过程控制 3、过程控制系统方面为了特殊的工艺要求,相继开发和应用了各种复杂的过程控制系统(串级控制、比值控制、均匀控制、前馈控制、选择性控制) 4、在过程控制理论方面,现代控制理论的得到了应用 第三个阶段70年代以来:现代过程控制的新阶段——计算机时代,其特点: 1、对全工厂或整个工艺流程的集中控制、应用计算系统进行多参数综合控制 2、自动化技术工具方面有了新发展,以微处理器为核心的智能单元组合仪表和开发和广泛应用 3、在线成分检测与数据处理的测量变送器的应用 4、集散控制系统的广泛应用 第四个阶段80年代以后:飞跃的发展,其特点: 1、现代控制理论的应用大大促进了过程控制的发展 2、过程控制的结构已称为具有高度自动化的集中、远动控制中心 3、过程控制的概念更大的发展,包括先进的管理系统、调度和优化等。 1-2 与其它自动控制相比,过程控制有哪些优点?为什么说过程控制的控制过程多属慢过程? 过程控制的特点是与其它自动控制系统相比较而言的。 一、连续生产过程的自动控制 连续控制指连续生产过程的自动控制,其被控量需定量控制,而且应是连续可调的。若控制动作在时间上是离散的(如采用控制系统等),但是其被控量需定量控制,也归入过程控制。 二、过程控制系统由过程检测、控制仪表组成 过程控制是通过各种检测仪表、控制仪表和电子计算机等自动化技术工具,对整个生产过程进行自动检测、自动监督和自动控制。一个过程控制系统是由被控过程和检测控制仪表两部分组成。 三、被控过程是多种多样的、非电量的 现代工业生产过程中,工业过程日趋复杂,工艺要求各异,产品多种多样;动态特性具有大惯性、大滞后、非线性特性。有些过程的机理(如发酵等)复杂,很难用目前过程辨识方法建立过程的精确数学模型,因此设计能适应各种过程的控制系统并非易事。 四、过程控制的控制过程多属慢过程,而且多半为参量控制 因为大惯性、大滞后等特性,决定了过程控制的控制过程多属慢过程;在一些特殊工业生产过程中,采用一些物理量和化学量来表征其生产过程状况,故需要对过程参数进行自动检测和自动控制,所以过程控制多半为参量控制。

系统建模方法

系统建模方法 2、1系统抽象与数学描述 2、1、1 实际系统的抽象 本质上讲,系统数学模型就是从系统概念出发的关于现实世界的一小部分或几个方面的抽象的“映像”。 为此,系统数学模型的建立需要建立如下抽象:输入、输出、状态变量及其间的函数关系。这种抽象过程称为模型构造。抽象中,必须联系真实系统与建模目标,其中描述变量起着很重要的作用,它可观测,或不可观测。 从外部对系统施加影响或干扰的可观测变量称为输入变量。 系统对输入变量的响应结果称为输出变量。 输入、输出变量对的集合,表征着真实系统的“输入-输出”性状(关系)。 综上述,真实系统可视为产生一定性状数据的信息源,而模型则就是产生与真实系统相同性状数据的一些规则、指令的集合,抽象在其中则起着媒介作用。系统数学建模就就是将真实系统抽象成相应的数学表达式(一些规则、指令的集合)。

2、1、2 系统模型的一般描述及描述级(水平) 2、1、2、1 系统模型的一般描述: 一个系统的数学模型可以用如下七元组集合来描述: (可观测) 输出变量 (可观测) 输入变量 黑箱 灰箱 白箱 ω(t t ) ω(t )、ρ(t )---输入输出变量对 真实系统建模的抽象过程

2、1、2、2 系统模型描述级(水平): 按照系统论的观点,实际系统可在某种级(水平)上被分解,因此系统的数学模型可以有不同的描述级(水平): ⑴ 性状描述级 性状描述级或称为行为描述级(行为水平)。在此级上描述系统就是将系统堪称黑箱,并施加输入信号,同时测得输出响应,结果就是得出一个输入-输出对:(ω,ρ) 及其关系R s ={(ω,ρ):Ω,ω,ρ}。 因此,系统的性状级描述只给出输入-输出观测结果。其模型为五元组集合结构: S=(T ,X ,Ω,Y , R ) 当ω,ρ满足ρ =f (ω)函数关系时,其集合结构变为: ()λδ,,,,,,Y Q X T S Ω= 其中: :T 时间基,描述系统变化的时间坐标,T 为整数则称为离散时间系统,为实数则称为连续时间系统; :X 输入集,代表外部环境对系统的作用。 :Ω输入段集,描述某个时间间隔内的输入模式,是()T X ,的一个子集。 :Q 内部状态集,描述系统内部状态量,是系统内部结构建模的核心。 :δ状态转移函数,定义系统内部状态是如何变化的,是一个映射。 :Y 输出集,系统通过它作用于环境。 :λ输出函数,是一个映射,给出了一个输出段集。

制造系统建模与仿真知识点1

知识点1 1. 在查阅资料的基础上,了解系统建模与仿真技术在经济建设、新品研发、企业运作以及 社会发展中的功能与作用,包括: ①系统建模与仿真技术在制造企业规划与运营中的应用,如企业选址、车间布局、生产线 平衡、瓶颈分析等。 ②系统建模与仿真技术在工程开发中的应用,如三峡大坝建设、机场选址、城市及区域规 划、大型体育设施建设等。 ③系统建模与仿真技术在工业产品研制中的应用,如长征火箭、神舟飞船、军用及民用飞 机研制、高铁列车开发、汽车产品研制等。 ④系统建模与仿真技术在社会服务系统中的作用,如商业服务企业选址、医院选址与布局、 商业设施的布局规划、游乐设施规划布局、公交线路布点及班次优化等。 ⑤系统建模与仿真技术在物流系统中的应用,如物流企业选址、配送中心选址与布局、物 流系统规划开发、物流设备研制等。 ⑥围绕具体产品(如汽车)或系统(如载人航天工程),分析系统建模与仿真技术的具体应 用。 2.什么是系统,它有哪些特点?结合具体的制造系统、物流系统或服务系统,分析系统的组成要素、功能和边界。 3. 什么是制造系统?它有哪些特点?常见的制造系统有哪些类型? 4. 什么是机械制造系统,它具有哪些特点?简要分析机械制造系统的运行过程。 5. 以机械制造系统为例,分析此类系统运作的基本特点,系统与环境之间存在哪些交互作 用? 6. 在查阅资料的基础上,以汽车整车制造企业为例,分析此类系统中物料流、能量流和信 息流涵盖的内容。 7. 以家用电气产品(如电视机、冰箱、手机等)制造系统为例,分析此类系统在设计及运 行过程可能存在的各类动态和随机性因素。 8.什么是连续系统和离散系统,它们存在哪些区别。结合具体案例,分析连续系统和离散系统分别具有哪些特点。 9.分析系统、模型与仿真三者之间的关系。对系统而言,建模与仿真技术具有哪些作用?10.对制造系统而言,哪些方法能够分析此类系统的性能,它们各具有什么特点?为什么计算机仿真技术的应用越来越普遍? 11. 与实物试验相比,基于模型的试验具有哪些优点? 12. 总体上,系统模型可以分为哪些类型?简要分析每类模型的特点,并给出具体案例。13.制造系统的建模与仿真具有哪些特点? 14. 对制造系统而言,仿真研究的目标可以分为哪几种类型? 15. 分别从“设计决策”和“运行决策”的角度出发,分析仿真技术可以为制造系统设计及运行 提供决策支持。 16. 仿真技术本身具有优化系统设计的功能吗?为什么?试解释之。 17. 在查阅资料的基础上,比较仿真技术与运筹学方法的异同之处。 18. 从建模和仿真研究的角度,机械制造系统建模和仿真时通常涉及哪些类型的建模元素? 19. 以制造系统及物流系统为对象,在查阅资料的基础上,了解下列术语在系统性能评估中 的作用,分析仿真技术与它们之间的关系。 ⑴系统(system)

建立数学模型的方法、步骤、特点及分类

建立数学模型的方法、步骤、特点及分类 [学习目标] 1.能表述建立数学模型的方法、步骤; 2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非 预制性、条理性、技艺性和局限性等特点;; 3.能表述数学建模的分类; 4.会采用灵活的表述方法建立数学模型; 5.培养建模的想象力和洞察力。 一、建立数学模型的方法和步骤 —般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。这种方法称为系统辨识(System Identification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数. 可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。 建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从 §16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示. 图16-5 建模步骤示意图 模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.

数学建模常用的十种解题方法

数学建模常用的十种解题方法 摘要 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。数学建模的十种常用方法有蒙特卡罗算法;数据拟合、参数估计、插值等数据处理算法;解决线性规划、整数规划、多元规划、二次规划等规划类问题的数学规划算法;图论算法;动态规划、回溯搜索、分治算法、分支定界等计算机算法;最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法;网格算法和穷举法;一些连续离散化方法;数值分析算法;图象处理算法。 关键词:数学建模;蒙特卡罗算法;数据处理算法;数学规划算法;图论算法 一、蒙特卡罗算法 蒙特卡罗算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。在工程、通讯、金融等技术问题中, 实验数据很难获取, 或实验数据的获取需耗费很多的人力、物力, 对此, 用计算机随机模拟就是最简单、经济、实用的方法; 此外, 对一些复杂的计算问题, 如非线性议程组求解、最优化、积分微分方程及一些偏微分方程的解⑿, 蒙特卡罗方法也是非常有效的。 一般情况下, 蒙特卜罗算法在二重积分中用均匀随机数计算积分比较简单, 但精度不太理想。通过方差分析, 论证了利用有利随机数, 可以使积分计算的精度达到最优。本文给出算例, 并用MA TA LA B 实现。 1蒙特卡罗计算重积分的最简算法-------均匀随机数法 二重积分的蒙特卡罗方法(均匀随机数) 实际计算中常常要遇到如()dxdy y x f D ??,的二重积分, 也常常发现许多时候被积函数的原函数很难求出, 或者原函数根本就不是初等函数, 对于这样的重积分, 可以设计一种蒙特卡罗的方法计算。 定理 1 )1( 设式()y x f ,区域 D 上的有界函数, 用均匀随机数计算()??D dxdy y x f ,的方法: (l) 取一个包含D 的矩形区域Ω,a ≦x ≦b, c ≦y ≦d , 其面积A =(b 一a) (d 一c) ; ()j i y x ,,i=1,…,n 在Ω上的均匀分布随机数列,不妨设()j i y x ,, j=1,…k 为落在D 中的k 个随机数, 则n 充分大时, 有

数学建模的基本步骤

数学建模的基本步骤 一、数学建模题目 1)以社会,经济,管理,环境,自然现象等现代科学中出现的新问题为背景,一般都有一个比较确切的现实问题。 2)给出若干假设条件: 1. 只有过程、规则等定性假设; 2. 给出若干实测或统计数据; 3. 给出若干参数或图形等。 根据问题要求给出问题的优化解决方案或预测结果等。根据问题要求题目一般可分为优化问题、统计问题或者二者结合的统计优化问题,优化问题一般需要对问题进行优化求解找出最优或近似最优方案,统计问题一般具有大量的数据需要处理,寻找一个好的处理方法非常重要。 二、建模思路方法 1、机理分析根据问题的要求、限制条件、规则假设建立规划模型,寻找合适的寻优算法进行求解或利用比例分析、代数方法、微分方程等分析方法从基本物理规律以及给出的资料数据来推导出变量之间函数关系。 2、数据分析法对大量的观测数据进行统计分析,寻求规律建立数学模型,采用的分析方法一般有: 1). 回归分析法(数理统计方法)-用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式。 2). 时序分析法--处理的是动态的时间序列相关数据,又称为过程统计方法。 3)、多元统计分析(聚类分析、判别分析、因子分析、主成分分析、生存数据分析)。 3、计算机仿真(又称统计估计方法):根据实际问题的要求由计算机产生随机变量对动态行为进行比较逼真的模仿,观察在某种规则限制下的仿真结果(如蒙特卡罗模拟)。 三、模型求解: 模型建好了,模型的求解也是一个重要的方面,一个好的求解算法与一个合

适的求解软件的选择至关重要,常用求解软件有matlab,mathematica,lingo,lindo,spss,sas等数学软件以及c/c++等编程工具。 Lingo、lindo一般用于优化问题的求解,spss,sas一般用于统计问题的求解,matlab,mathematica功能较为综合,分别擅长数值运算与符号运算。 常用算法有:数据拟合、参数估计、插值等数据处理算法,通常使用spss、sas、Matlab作为工具. 线性规划、整数规划、多元规划、二次规划、动态规划等通常使用Lindo、Lingo,Matlab软件。 图论算法,、回溯搜索、分治算法、分支定界等计算机算法, 模拟退火法、神经网络、遗传算法。 四、自学能力和查找资料文献的能力: 建模过程中资料的查找也具有相当重要的作用,在现行方案不令人满意或难以进展时,一个合适的资料往往会令人豁然开朗。常用文献资料查找中文网站:CNKI、VIP、万方。 五、论文结构: 0、摘要 1、问题的重述,背景分析 2、问题的分析 3、模型的假设,符号说明 4、模型的建立(局部问题分析,公式推导,基本模型,最终模型等) 5、模型的求解 6、模型检验:模型的结果分析与检验,误差分析 7、模型评价:优缺点,模型的推广与改进 8、参考文献 9、附录 六、需要重视的问题 数学建模的所有工作最终都要通过论文来体现,因此论文的写法至关重要:

系统建模与仿真课程简介

系统建模与仿真 开课对象:工业工程开课学期:6 学分:2学分;总学时:48学时;理论课学时:40学时; 实验学时:0 学时;上机学时:8学时 先修课程:概率论与数理统计 教材:系统建模与发展,齐欢,王小平编著,清华大学出版社,2004.7 参考书: 【1】离散事件系统建模与仿真,顾启泰,清华大学出版社 【2】现代系统建模与仿真技术,刘兴堂,西北工业大学出版社 【3】离散事件系统建模与仿真,王维平,国防科技大学出版社 【4】系统仿真导论,肖田元,清华大学出版社 【5】建模与仿真,王卫红,科学出版社 【6】仿真建模与分析(Simulaton Modeling and Analysis)(3rd eds.),Averill M. Law, W.David Kelton,清华大学出版社/McGraw-Hill 一、课程的性质、目的和任务 建模与仿真是当代现代科学技术的主要内容,其技术已渗透到各学科和工程技术领域。本课程以一般系统理论为基础,让学生掌握适用于任何领域的建模与仿真的一般理论框架和基本方法。 本课程的目的和任务是使学生: 1.掌握建模基本理论; 2.掌握仿真的基本方法; 3.掌握一种仿真语言及仿真软件; 4.能够运用建模与仿真方法分析、解决工业工程领域的各种常见问题。 二、课程的基本要求 1.了解建模与仿真的作用和发展,理解组成要素。 2.掌握建模的几种基本方法,及模型简化的技术手段。 3.掌握建模的一般系统理论,认识随机数的产生的原因及统计控制方式。 4.能对离散事件进行仿真,并能分析运行结果。 三、课程的基本内容及学时分配 第一章绪论(3学时) 1.系统、模型、仿真的基本概念

系统建模方法1何谓系统模型系统模型有哪些主要特征2.doc

第四章系统建模方法 1、何谓系统模型?系统模型有哪些主要特征? 2、何谓系统分析?系统分析包括有哪些要素?画简图说明这些要素间的关系。 3、为什么在系统分析中,广泛使用系统模型而不是真实系统进行分析? 4、对系统模型有哪些基本要求?系统建模主要有哪些方法,请分别说明这些建模方法的适用对象和建模思路。 5、什么是投入产出分析?它在经济管理中有什么用处? 6、试举例说明某种产品对另一种产品的直接消耗和间接消耗关系。 7、在编制投入产出表时,如何确定部门的划分? 8、设某地区的经济分为工业、农业和其他生产部门,其投入产出表如下表1所示。(1)试求直接消耗系数表; (2)试求完全消耗系数表; (3)如果计划期农业的最终产品为350亿元,工业为2300亿元,其他部门为450 亿元,请计算出各部门在计划期的总产品分别为多少亿元? 表1 某地区的投入产出表(亿元) 9、设某地区的投入产出表如下表2所示。 (1)试求直接消耗系数表; (2)试求完全消耗系数表; (3)如果计划期(翌年)各部门的最终产品量和构成如表3所示,请计算各部门计划期的总产品分别为多少亿元?各部门应提供多少中间产品? (4)如果在计划期间,制造业产品出口量增加20亿元,问各部门的产量要相应增加多少? (5)如果在计划期间,农业由于自然灾害减少4亿元的最终产品,问各部门的总

产品将如何调整? 表2 某地区的投入产出表(亿元) 表3 计划期各部门的最终产品量和构成(亿元) 10、某钢筋车间制作一批直径相同的钢筋,需要长度为3米的90根,长度为4米的60根。已知所用的下料钢筋长度为10米,问怎样下料最省?请建立解决此问题的数学模型。 11、某卫星测控站每天至少需要下列数量的干部值班: 每班值班的干部在班次开始时上班,连续工作8小时。测控站首长需要确定每个班次应派多少干部值班,才能既满足需要又使每天上班的干部人数最少,请帮助建立解决此问题的数学模型。 11、举例说明系统结构、系统单元以及单元之间的关系,试用集合A、A上关系R、关系矩阵M、关系图G以及系统结构或层次结构进行描述。 12、用数学归纳法证明,对任何正整数n下列恒等式成立

数学建模常用方法

数学建模常用方法 建模常用算法,仅供参考: 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必 用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通 常使用L i n d o、L i n g o软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种 暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文 中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理) 一、在数学建模中常用的方法: 1.类比法 2.二分法 3.量纲分析法 4.差分法 5.变分法 6.图论法 7.层次分析法 8.数据拟合法 9.回归分析法 10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划) 11.机理分析 12.排队方法

数据建模目前有两种比较通用的方式

数据建模目前有两种比较通用的方式1983年,数学建模作为一门独立的课程进入我国高等学校,在清华大学首次开设。1987年高等教育出版社出版了国内第一本《数学模型》教材。20多年来,数学建模工作发展的非常快,许多高校相继开设了数学建模课程,我国从1989年起参加美国数学建模竞赛,1992年国家教委高教司提出在全国普通高等学校开展数学建模竞赛,旨在“培养学生解决实际问题的能力和创新精神,全面提高学生的综合素质”。近年来,数学模型和数学建模这两个术语使用的频率越来越高,而数学模型和数学建模也被广泛地应用于其他学科和社会的各个领域。本文主要介绍了数学建模中常用的方法。 一、数学建模的相关概念 原型就是人们在社会实践中所关心和研究的现实世界中的事物或对象。模型是指为了某个特定目的将原型所具有的本质属性的某一部分信息经过简化、提炼而构造的原型替代物。一个原型,为了不同的目的可以有多种不同的模型。数学模型是指对于现实世界的某一特定对象,为了某个特定目的,进行一些必要的抽象、简化和假设,借助数学语言,运用数学工具建立起来的一个数学结构。 数学建模是指对特定的客观对象建立数学模型的过程,是现实的现象通过心智活动构造出能抓住其重要且有用的特征的表示,常常是形象化的或符号的表示,是构造刻画客观事物原型的数学模型并用以分析、研究和解决实际问题的一种科学方法。 二、教学模型的分类 数学模型从不同的角度可以分成不同的类型,从数学的角度,按建立模型的数学方法主要分为以下几种模型:几何模型、代数模型、规划模型、优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型等。 三、数学建模的常用方法 1.类比法 数学建模的过程就是把实际问题经过分析、抽象、概括后,用数学语言、数学概念和数学符号表述成数学问题,而表述成什么样的问题取决于思考者解决问题的意图。类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,

信息系统建模答案

《信息系统建模》 一、单选题 1.(A或者B)可用于描述用户接口、设备控制器和其他具有反馈的子系统,它还可用于描述在生命其中期中跨越多个不同性质阶段的被动对象的行为,在每一个阶段该对象都有自己特殊的行为。 A.状态机视图B.模型管理视图C.动态视图D.静态视图 2.()是对象与其他外部世界相互关联的唯一途径。 A.消息传递 B.状态转换 C.接口 D.函数调用 3.()是在分析模型的基础上,添加了设计元素的结果,使得分析模型更加接近系统实现。A.领域模型 B.数据模型 C.设计模型 D.概念模型 4.在UML活动图中,()表示活动需要输入的对象或者作为活动的处理结果输出的对象。A.并发控制 B.决策点 C.对象 D.活动 5.UML通过图形化的表示机制从多个侧面对系统的分析和设计模型进行刻画,其中()包括构件图,它描述软件系统中各组成构建,构件的内部结构以及构件之间的依赖关系。A.行为视图 B.构件视图 C.结构视图 D.用例视图 6.在UML顺序图中,如果一条消息从对象a传向对象b,那么其()是一条从b指向a 虚线有向边,它表示原消息的处理已经完成,处理结果(如果有的话)沿原消息传回。A.返回消息 B.创建消息 C.自消息 D.销毁消息 7.在UML中,()可以对模型元素进行有效地组织,如类,用例,构件,从而构成具有一定意义的单元。 A.构件 B.包 C.节点 D.连接 8.()描述软件系统中的构件及构件之间的构成关系和依赖关系。 A.状态图 B.对象图

C.构件图 D.部署图 9.泛化使得()操作成为可能,即操作的实现是由它们所使得的对象的类,而不是由调用者确定的。 A.多重 B.多态 C.传参 D.传值 10.在用例图中,执行者之间的关系只有()一种。 A.扩展 B.包含 C.继承 D.实现 11.以下哪个选项不是状态图中三个常用的活动之一? A.入口动作 B.出口动作 C.动作 D.中间动作 12.如果用例A和用例B相似,但A的动作序列是通过改写B的部分动作或者扩展B的动作而获得的,则称()。 A.用例A包含用例B B.用例A扩展用例B C.用例A继承用例B D.用例A实现用例B 13.UML 中所谓的“泛化”可以用以下哪个术语来代替?A或者B A.聚合 B.继承 C.抽象 D.封装 14.在UML活动图中,()表示操作之间的信息交换。 A.控制流 B.信息流 C.初始活动 D.活动 15.在面向对象程序设计中,对象与对象之间的协作是通过_________机制来实现的。A.参数传递 B.消息传递 C.深拷贝 D.浅拷贝 16.一般情况下,可以将面向对象中的聚合概念区分为()关系。 A.继承 B.关联 C.组合 D.聚合

常用数学建模方法

数学建模常用方法以及常见题型 核心提示: 数学建模方法一、机理分析法从基本物理定律以及系统的结构数据来推导出模型 1.比例分析法--建立变量之间函数关系的最基本最常用的方法。 2.代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。3. 逻辑方法--是数学理论研的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。4.常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式。 5.偏微分方程--解决因变量与两个以上自 数学建模方法 一、机理分析法从基本物理定律以及系统的结构数据来推导出模型 1.比例分析法--建立变量之间函数关系的最基本最常用的方法。 2.代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。 3. 逻辑方法--是数学理论研的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。 4.常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式。 5.偏微分方程--解决因变量与两个以上自变量之间的变化规律。 二、数据分析法从大量的观测数据利用统计方法建立数学模型 1.回归分析法--用于对函数f(x)的一组观测值(xi,fi)I=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。 2.时序分析法--处理的是动态的相关数据,又称为过程统计方法。 3.回归分析法--用于对函数f(x)的一组观测值(xi,fi)I=1,2,…,n,确定函数的表达式,于处理的是静态的独立数据,故称为数理统计方法。 4.时序分析法--处理的是动态的相关数据,又称为过程统计方法。

制造系统建模与仿真知识点

知识点2 1. 结合具体制造系统或服务系统,分析离散事件动态系统的基本特征。 2. 什么叫“状态空间爆炸”?产生状态空间爆炸的原因是什么?它给系统性能分析带来哪些 挑战? 3. 常用的离散事件系统建模方法有哪些,它们是如何分类的? 4. 什么是马尔可夫特性?它在离散事件系统建模与分析中有什么作用? 5. 根据功能不同,仿真模型(程序)可以分为哪三个层次?分析三个层次之间的关系。 6. 分析事件调度法、活动循环法、进程交互法和消息驱动法等仿真调度方法的特点,在分 析每种调度方法基本原理的基础上,阐述几种仿真调度方法之间的区别与联系,并绘制每种仿真调度方法的流程图。 7. 结合具体的离散事件系统,如银行、理发店、餐厅、超市、医院、作业车间等,采用事 件调度法、活动循环法或进程交互法分析建立此类系统的仿真模型,试分析仿真模型中的建模元素以及仿真调度流程。 8. 从系统描述、建模要点、仿真时钟推进机制等层面,比较事件调度法、活动循环法和进 程交互法的异同之处。 9. 什么叫仿真时钟,它在系统仿真中有什么作用?什么叫仿真时钟推进机制?常用的仿真 时钟推进机制有哪些?它们的主要特点是什么,分别适合于怎样的系统? 10.结合具体的离散事件系统,分析若采用固定步长时间推进机制、下次事件时间推进机制 或混合时间推进机制时,分别具有哪些优点和缺点,以图形或文字等形式分析时钟推进流程。 11.什么叫仿真效率?什么叫仿真精度?分析影响仿真效率和仿真精度的因素? 12.从仿真效率和仿真精度的角度,分析和比较三种仿真时钟推进机制的特点,并分析三种 仿真时钟推进机制分别适合于什么样的系统? 13. 什么是蒲丰投针试验?绘制蒲丰投针试验原理图,通过推导蒲丰投针试验中针与任一直 线相交的概率,分析采用随机投针试验方法来确定圆周率π的原理。 14. 按照蒲丰投针试验的条件和要求,完成投针试验,在统计投针次数、针与直线的相交次 数的基础上,求解π的估计值,并以报表或图形等形式表达试验结果。具体要求如下: ①自行确定针的长度、直线之间的距离。 ②投针10次、20次、30次、40次、50次、…、100次、…、200次、…,分别计算针 与直线相交的概率、π的估计值。 ③以一随机变量描述上述试验结果,并通过编程或采用商品化软件,以图形、报表等形 式表示投针试验结果,分析其中的规律,并给出结论。 ④写出试验报告。 ⑤在熟悉投针试验原理的基础上,编制投针试验仿真程序,动态运行投针试验的过程。15.什么是蒙特卡洛仿真?它有什么特点,蒙特卡洛仿真应用的基本步骤是什么? 16.采用C或C++等语言,分别编写产生均匀分布、正态分布、指数分布以及威布尔分布的伪随机数序列,通过改变每种分布中参数的数值,分析不同参数数值对随机数值的影响;通过对所产生的伪随机数分布区间的统计、分析和绘图,检验伪随机数的特性及其数值特征。 17. 对于制造系统而言,库存有哪些作用和功能? 18. 在制造企业中,库存大致可以分成四种类型。简要论述四种库存的名称和功能。 19. 什么是安全库存、订货提前期?确定安全库存和订货提前期时分别需要考虑哪些因素? 20. 什么叫“订货点法”?要确定订货点,需要哪些条件?订货点法适合于怎样的库存系统?

数学建模方法详解种最常用算法

数学建模方法详解--三种最常用算法 一、层次分析法 层次分析法[1] (analytic hierarchy process,AHP)是美国著名的运筹学家T.L.Saaty教授于20世纪70年代初首先提出的一种定性与定量分析相结合的多准则决策方法[2,3,4].该方法是社会、经济系统决策的有效工具,目前在工程计划、资源分配、方案 排序、政策制定、冲突问题、性能评价等方面都有广泛的应用. (一) 层次分析法的基本原理 层次分析法的核心问题是排序,包括递阶层次结构原理、测度原理和排序原理[5].下面分别予以介绍. 1.递阶层次结构原理 一个复杂的结构问题可以分解为它的组成部分或因素,即目标、准则、方案等.每一个因素称为元素.按照属性的不同把这 些元素分组形成互不相交的层次,上一层的元素对相邻的下一层的全部或部分元素起支配作用,形成按层次自上而下的逐层支配 关系.具有这种性质的层次称为递阶层次. 2.测度原理 决策就是要从一组已知的方案中选择理想方案,而理想方案一般是在一定的准则下通过使效用函数极大化而产生的.然而对 于社会、经济系统的决策模型来说,常常难以定量测度.因此,层次分析法的核心是决策模型中各因素的测度化.3.排序原理

层次分析法的排序问题,实质上是一组元素两两比较其重要性,计算元素相对重要性的测度问题.(二) 层次分析法的基本步骤 层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一致的[1] . 1.成对比较矩阵和权向量 为了能够尽可能地减少性质不同的诸因素相互比较的困难,提高结果的准确度.T .L .Saaty 等人的作法,一是不把所有因 素放在一起比较,而是两两相互对比,二是对比时采用相对尺度. 假设要比较某一层n 个因素n C C ,,1对上层一个因素O 的影响,每次取两个因素i C 和j C ,用ij a 表示i C 和j C 对O 的影响之比, 全部比较 结 果 可 用 成 对 比 较 阵 1 ,0,ij ij ji n n ij A a a a a 表示,A 称为正互反矩阵.一般地,如果一个正互反阵 A 满足: , ij jk ik a a a ,,1,2,,i j k n (1) 则A 称为一致性矩阵,简称一致阵.容易证明n 阶一致阵A 有下列性质: ①A 的秩为1,A 的唯一非零特征根为n ;②A 的任一列向量都是对应于特征根 n 的特征向量. 如果得到的成对比较阵是一致阵,自然应取对应于特征根n 的、归一化的特征向量(即分量之和为1)表示诸因素n C C ,, 1对 上层因素O 的权重,这个向量称为权向量.如果成对比较阵A 不是一致阵,但在不一致的容许范围内,用对应于A 最大特征根(记

工程技术中常用的数学建模方法概述

工程技术中常用的数学建模方法概述 摘要对目前工程和管理研究领域所涉及的数学建模方法作了简要分析,指出不同的问题所需用到的建模方法,并通过举例说明建模的方法和步骤。 关键词数学建模;建模方法;模型;建模;数学应用 在现实社会生产实践中,随着科学研究的进步,多学科交叉运用越来越多。数学建模就是一种解决实际应用问题的有效方法,当然要在充分了解问题的实际背景的基础上,把实际问题抽象成数学问题,建立起数学模型,利用数学知识对数学模型进行分析探求,得到数学结果,得出应用问题的解。即通过对问题的数学化,模型构建和求解检验[1]。 其一般步骤可分成如下几点: (1)模型准备:了解问题的实际背景,搜集建模必需的各种信息,明确建模目的。 (2)建模:对问题进行必要合理的简化和假设,根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量(变量和常量)之间的关系或其他数学结构。 (3)求模:根据数学知识和方法,求解数学模型,得到数学问题的结果。求模时要注意灵活运用各种数学方法,包括matlab等工程软件[2]。 (4)回归:把数学问题的结果回归到实际问题中,通過分析,判断,验证,得到实际问题的结果。 下面谈谈几种常用的数学建模法,限于篇幅,不便举太多例子。 (1)建立函数模型法 有关成本最低,效益最大,用料或费用最省等应用问题,可考虑建立相应函数关系式,并把实际问题转化为求最值的问题。 (2)建立三角形模型法 有关涉及几何、测量、航海等应用问题可考虑转化为三角问题来解决[3]。 (3)建立数列模型法 对于一些产量增长,细菌繁殖,存款利率,物价调节,人口探测等应用问题,往往需要通过观察分析,归纳抽象,建立出数列模型,然后用数列的有关知识加

数学建模方法归类(很全很有用)

在数学建模中常用的方法:类比法、二分法、量纲分析法、差分法、变分法、图论法、层次分析法、数据拟合法、回归分析法、数学规划(线性规划,非线性规划,整数规划,动态规划,目标规划)、机理分析、排队方法、对策方法、决策方法、模糊评判方法、时间序列方法、灰色理论方法、现代优化算法(禁忌搜索算法,模拟退火算法,遗传算法,神经网络)。 用这些方法可以解下列一些模型:优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型。拟合与插值方法(给出一批数据点,确定满足特定要求的曲线或者曲面,从而反映对象整体的变化趋势):matlab可以实现一元函数,包括多项式和非线性函数的拟合以及多元函数的拟合,即回归分析,从而确定函数;同时也可以用matlab实现分段线性、多项式、样条以及多维插值。 在优化方法中,决策变量、目标函数(尽量简单、光滑)、约束条件、求解方法是四个关键因素。其中包括无约束规则(用fminserch、fminbnd实现)线性规则(用linprog实现)非线性规则、(用fmincon实现)多目标规划(有目标加权、效用函数)动态规划(倒向和正向)整数规划。 回归分析:对具有相关关系的现象,根据其关系形态,选择一个合适的数学模型,用来近似地表示变量间的平均变化关系的一种统计方法(一元线性回归、多元线性回归、非线性回归),回归分析在一组数据的基础上研究这样几个问题:建立因变量与自变量之间的回归模型(经验公式);对回归模型的可信度进行检验;判断每个自变量对因变量的影响是否显著;判断回归模型是否适合这组数据;利用回归模型对进行预报或控制。相对应的有线性回归、多元二项式回归、非线性回归。 逐步回归分析:从一个自变量开始,视自变量作用的显著程度,从大到地依次逐个引入回归方程:当引入的自变量由于后面变量的引入而变得不显著时,要将其剔除掉;引入一个自变量或从回归方程中剔除一个自变量,为逐步回归的一步;对于每一步都要进行值检验,以确保每次引入新的显著性变量前回归方程中只包含对作用显著的变量;这个过程反复进行,直至既无不显著的变量从回归方程中剔除,又无显著变量可引入回归方程时为止。(主要用SAS来实现,也可以用matlab软件来实现)。 聚类分析:所研究的样本或者变量之间存在程度不同的相似性,要求设法找出一些能够度量它们之间相似程度的统计量作为分类的依据,再利用这些量将样本或者变量进行分类。 系统聚类分析—将n个样本或者n个指标看成n类,一类包括一个样本或者指标,然后将性质最接近的两类合并成为一个新类,依此类推。最终可以按照需要来决定分多少类,每类有多少样本(指标)。 系统聚类方法步骤: 1.计算n个样本两两之间的距离 2.构成n个类,每类只包含一个样品 3.合并距离最近的两类为一个新类 4.计算新类与当前各类的距离(新类与当前类的距离等于当前类与组合类中包含的类的距离最小值), 若类的个数等于1,转5,否则转3 5.画聚类图 6.决定类的个数和类。 判别分析:在已知研究对象分成若干类型,并已取得各种类型的一批已知样品的观测数据,在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分类。 距离判别法—首先根据已知分类的数据,分别计算各类的重心,计算新个体到每类的距离,确定最短的距离(欧氏距离、马氏距离) Fisher判别法—利用已知类别个体的指标构造判别式(同类差别较小、不同类差别较大),按照判别式的值判断新个体的类别 Bayes判别法—计算新给样品属于各总体的条件概率,比较概率的大小,然后将新样品判归为来自概率最大的总体 模糊数学:研究和处理模糊性现象的数学(概念与其对立面之间没有一条明确的分界线)与模糊数学相关的问题:模糊分类问题—已知若干个相互之间不分明的模糊概念,需要判断某个确定事物用哪一个模糊概念来反映更合理准确;模糊相似选择—按某种性质对一组事物或对象排序是一类常见的问题,但是用来比

相关主题
文本预览
相关文档 最新文档