当前位置:文档之家› 公路桥梁冲击系数随机变量的概率分布及冲击系数谱(完整版本)

公路桥梁冲击系数随机变量的概率分布及冲击系数谱(完整版本)

公路桥梁冲击系数随机变量的概率分布及冲击系数谱(完整版本)
公路桥梁冲击系数随机变量的概率分布及冲击系数谱(完整版本)

2019桥梁工程计算题

1) 计算图1所示T 梁翼板所构成铰接悬臂板的设计内力。桥梁荷载为公路—Ⅰ级,桥面铺装为80mm 厚C50 混凝土配@φ8100钢筋网;容重为253 kN/m /;下设40mm 厚素混凝土找平层;容重为233 kN/m /,T 梁翼板材料容重为253 kN/m /。 图 1 铰接悬臂行车道板 (单位:mm ) 解:a .恒载及其内力(以纵向1m 宽的板条进行计算) 每延米板上的恒载g ; 钢筋混凝土面层g 1:...kN/m 008?10?25=200 素混凝土找平层g 2:...kN/m 004?10?23=092 T 梁翼板自重g 3: ....kN/m 008+014 ?10?25=2752 合计: i g =g .kN/m =567∑ 每米宽板条的恒载内力 弯矩 ...kN m Ag M gl 2201 =- -?567?100=-284?2 1=2 剪力 g ...kN Ag Q l 0=?=567?100=567 b .公路—Ⅰ级荷载产生的内力 要求板的最不利受力,应将车辆的后轮作用于铰缝轴线上,见图2,后轮轴重为P =140kN ,着地长度为 2=0.2m a ,宽度为 2b .m =060,车轮在板上的布置及其压力分布图见图1-1

图2公路—Ⅰ级荷载计算图式(单位:mm ) 由式 ...m ...m a a H b b H 1212=+2=020+2?012=044=+2=060+2?012=084 一个车轮荷载对于悬臂根部的有效分布宽度: ...m>1.4m a a l 10=+2=044+142=186(两后轮轴距) 两后轮的有效分布宽度发生重叠,应一起计算其有效分布宽度。铰缝处纵向2个车轮对于悬臂板根部的有效分布宽度为: ....m a a d l 10=++2=044+14+142=326 作用于每米宽板条上的弯矩为: () ()A p b P M l a μ10=-1+-24 ..(.).140084=-13??10-2?3264 .kN m =-2205? 作用于每米宽板条上的剪力为: () ..kN .Ap P Q a μ140=1+=13?=279122?326 c. 行车道板的设计内力 ...(.).(.).kN m ......=45.88kN A Ag Ap A Ag Ap M M M Q Q Q =12?+14?=12?-284+14?-2205=-3428?=12?+14?=12?567+14?2791 2) 如图23所示为一座桥面板为铰接的T 形截面简支梁桥,桥面铺装厚度为0.1m ,净跨径为1.4m ,试计算 桥面板根部在车辆荷载作用下的活载弯矩和剪力。(车辆前后轮着地宽度和长度分别为:m b 6.01=和 m a 2.01=;车辆荷载的轴重kN P 140=) 1.4 0.1 板间铰接 图23 解:(1)荷载

连续梁桥汽车冲击系数试验及数值研究

——————————————— 本文为江西省自然科学基金资助。作者简介:张期星(1983-),男,山东人,硕士研究生,从事桥梁结构工程研究(E-mail:zh_q_x123@https://www.doczj.com/doc/a210887027.html,);陈水生 连续梁桥汽车冲击系数试验及数值研究 张期星1 ,陈水生2 (1.2华东交通大学土木建筑学院 江西南昌330013) 摘 要:本文主要分析三跨连续梁桥,应用达朗贝尔原理,推导了三轴半车模型下的车桥耦合振动方程,比较了在不同车速和不同跨径作用下的汽车冲击系数,并且对多个连续梁桥汽车冲击系数的实测结果进行了分析。文中采用有限元法离散,将无限自由度系统转化为有限自由度系统,使用Ansys 软件进行了三跨连续梁桥的模态分析,提取出前10阶模态分量和振型频率,利用模态叠加的方法对车桥耦合振动方程进行解耦,并且利用Matlab 软件编程进行了数值模拟,分析了三跨连续梁桥车桥耦合振动特性。在仅仅考虑竖向位移的情况下,主要采用了Newmark 方法,编程得出了不同车速和不同跨径对三跨连续梁桥汽车冲击系数的影响规律:汽车冲击系数随着车速的提高而增加,车速较低时(一般在20km/h-40km/h)冲击系数变化缓慢,当车速大于50km/h 后,冲击系数变化较大;汽车冲击系数随着跨径的增大而降低,跨径越大,其值越接近于1.0。 关键词:三跨连续梁桥;汽车冲击系数;车桥耦合模型 Experimental and numerical study on Impact coefficient of continuous girder bridge under vehicle Zhang Qixing 1 Chen Shuisheng 2 (Institute of Civil construction,East China Jiaotong University,nanchang,Jiangxi330013,China) Abstract :This paper mainly analyses three-span continuous girder bridge. The coupled vibration functions of vehicle and bridge with five degree of freedom vehicle model are derived using the D’Alembert’s principle. The impact coefficient of vehicle are analysed under condition of various span length and speeds of moving vehicle, and the measured results of several continuous girder bridge are analysed. The studies adopt the method of finite element discrete to turn the system of infinite degree of freedom into the system of finite degree of freedom, and analyse the mode of three-span continuous girder bridge under the use of the Ansys software to exact the mode components and frequencies. Then the coupled vibration functions of vehicle and bridge are decoupled with the method of modal superposition, and the coupled vibration characteristics of vehicle and bridge are analysed by the numerical simulation of Matlab software. On the condition of only considering the vertical displacement, it programs by the method of Newmark to conclude the influence law of impact coefficient of vehicle for three-span continuous girder bridge under condition of various span length and speeds of moving vehicle: impact coefficient of vehicle would rise with the rise of speed of vehicle,when the speed of vehicle is relative lower(approximately 20km/h- 40km/h),the value would change slowly,but the speed surpasses 50km/h,it would change obviously; impact coefficient of vehicle would decrease with the rise of span length,and the more large is the span length,the more close to 1.0 is the value. Key word :three-span continuous girder bridge;impact coefficient of vehicle;vechicle-bridge coupled model 0 引言 目前,车辆对桥梁的冲击作用我们通常采用汽车冲击系数μ或者动力增量φ来描述,即在考虑桥梁静载作用下的响应乘以一个相应的动力系数。由于冲击系数关系到桥梁结构设计的安全与经济性能,所以其取值的大小对于桥梁结构在车辆荷载作用下的安全举足轻重。各国旧规范的冲击系数都是采用跨径或加载长度的递减函数来计算的[1],但是影响车辆与桥梁相互作用的因素很多,比如车辆与桥梁整体系统的刚度、质量、阻尼、桥面的不平整度、加载车辆数目、车辆 间距、加载车道、车辆相向行驶、以及车速与跨径的影响等等[2],它是一个非常复杂的问题,所以单纯的考虑桥梁跨径或者加载长度对于汽车冲击系数来讲是很不严密的。因此04规范给出了与桥梁结构基频的关系。 1 三轴半车模型的建立及求解 如图1所示,为三轴半车模型,假定连续梁桥每跨具有相同的跨长、质量和刚度。由达朗贝尔原理得到车辆振动方程 1f 1f 1f 1f c 11c 111f 1c 11c 111f 111z c z k k l z k z )k k (c l z c z )c c (z m +=+?+++?++θθ (1) 2f 2f 2f 2f c 22c 222f 2c 22c 222f 222z c z k k l z k z )k k (c l z c z )c c (z m +=??+++?++θθ(2)

计算标准差和变化系数

计算“标准差”和“变化系数” “标准差”(以d代表)是各种可能值与“期望值”离差的平方根其计算公式是: 以上述方案A的有关数据代入这个公式进行计算,得 £">a? A = £3 000 -2 0O0)a x 0.25 + (2 000 - 2 000>z x 0,50 + <1 000 —2 000)a x 0.25 -500 tMX) & - ysoo 000 = 707 3 “标准差”主要是由各种可能值与“期望值”之间的差距所决定。它们之间的差距越大,说明有关数值分布的离散程度越大,这是意味着有关方案包含的风险越大;它们之间的差距越小,说明各种可能值的分布越紧凑(越靠近于期望值),实际发生数将会更接近于期望值, 这就意味着有关方案包含的风险越小。所以,一般地说,一个方案标准差的大小,可以看作 其所含风险大小的具体标志。 但“标准差”的数值同时又受各种可能值的数值大小的影响。为了克服“标准差”的这 一缺陷,可同时计算与它相联系的另一个指标,称为“变化系数”(以q代表),其计算公式是以“标准差”除以“期望值”所得商: 以上关于“标准差”和“变化系数”的计算,为便于说明计算原理,只涉及到一个期间。一 个投资方案的现金流动实际上会涉及到许多期间。在这种情况下,整个方案的“标准差”(以 D代表)应以其各个期间的“期望值”和“标准差”为基础作进一步的综合,其算式是: 同时还应把各个期间的“期望值”统一换算为现值,称为“预期的现值”(以EPV代表),其算式是: 而整个方案的“变化系数”(以Q代表),则按下式计算:

Q = — w EPV 例:设上述方案 A 各年的净现金流入量如表所示 表 S 1年 第2年 第3年 园 ? * 倾錢人JS U ) ?审 (7C ) It 率 3 000 0.25 0.20 2 500 D.30 2W0 0.50 3呱 0.60 2 000 0.40 1000 0.25 2 000 0.2D 15D0 0.3D 可据以确定该方案各年净现金流入量的“期望值” 。 £1=3 000x0*25+2 000X0,50 + 1 000X0.25 =:2 000 (无) = 4 000X0.20+ 3 0X0.60 + 2 000X0.20=3 000 (元)r E 3 = 2 500 X 0.30 + 2 000 X 0.40+ 1 500 X 0.30 = 2 000 (元) 以各年净现金流入量的“期望值”为基础,计算各年的“标准差” 。 由=/{3 OW-Z O6o )j x0?25 + <2 00[)-2 000)? XQ .$I (1 000 - 2 (MO)1 25 = 707.1 亦=灯 W0)2xb.2+ (3 00ft-3 000)2x0.6+ (2 000-3 000)^0.2 -632.5 右=/ (2 500 - 2 000)s xfl~3 (2 000 - 2 x 0.4 + (i 500 J 000)a x Q.3 = 387,3 设要求达到的最低收益率为 6 %,则整个方案的“标准差”可计算如下: 707 J 2 ( 623.5^^7^^-931 4 [十 6% )2 (1 + 6% )4 (1 + 6% 户 而其各年净现金流入量的“预期的现值”是: 在确定了 D 和EPV 以后,可据以其出其整个方案的“变化系数”是: EP_咼T 册厂朋?丸236 (元) 3 000

桥梁计算题2014.10.6

六、计算题 1、某公路桥梁由多跨简支梁组成,总体布置如图6-1所示,每孔标准跨径25m ,计算跨径24m ,桥梁总宽10m ,行车道宽8m ,每孔上部结构采用后张法预应力混凝土箱梁,每个桥墩上设四个支座,支座横桥向中心距为4m 。桥墩支承在岩基上,由混凝土独柱墩身和带悬臂 的盖梁组成,桥梁设计荷载等级为公路-I 级,混凝土的重力密度为25kN/m 2 。 问:(1)该桥按规模分为哪一类? (2)该桥的设计安全等级为几级? (3)在计算汽车设计车道荷载时,设计车道数取几? (4)桥梁的车道横向折减系数为多少? (5)在计算主梁的剪力和弯矩时,车道荷载标准值如何取用? 图6-1(图中尺寸单位:m ) 【解】(1)根据《桥规》第1.0.11条表1.0.11可知:该桥按规模分类属大桥; (2)根据《桥规》第1.0.9条表1.0.9可知:该桥的设计安全等级为二级; (3)根据《桥规》第4.3.1条表4.3.1-3可知:设计车道数取2; (4)根据《桥规》第4.3.1条表4.3.1-4可知:车道横向折减系数为1.0; (5)在计算主梁的剪力和弯矩时,车道荷载的均布荷载标准值均为kN/m 5.10=k q ;集中荷载标准值,当桥梁计算跨径小于或者等于5m 时,kN 180=k P ;当桥梁计算跨径等

于或大于50m 时,kN 360=k P ;当桥梁计算跨径在5m ~50m 之间时,k P 值采用直线内插求得。计算剪力时,集中荷载标准值k P 乘以1.2的系数。本题中,计算跨径024m l =。 所以:计算主梁弯矩时的集中荷载标准值:180180(245)/(505)256kN k P =+?--=; 计算主梁剪力时的集中荷载标准值:256 1.2=307.2kN k P =?。 2、某预应力钢筋混凝土箱形截面简支梁桥,计算跨径40m ,设计荷载等级为公路-I 级,桥梁采用上、下行双幅分离式横断面形式,单幅行车道宽16m ,两侧防撞栏杆各0.6m ,单幅桥全宽17.2m 。 问:(1)计算汽车设计车道荷载时,采用几个设计车道数? (2)桥梁的车道横向折减系数为多少? (3)在计算主梁的剪力和弯矩时,车道荷载标准值各为多少? 【解】(1)根据《桥规》第4.3.1条表4.3.1-3可知:设计车道数取4; (2)根据《桥规》第4.3.1条表4.3.1-4可知:车道横向折减系数为0.67; (3)在计算主梁的剪力和弯矩时,车道荷载的均布荷载标准值均取为kN/m 5.10=k q ;集中荷载标准值:当计算主梁弯矩时:180180(405)/(505)320kN k P =+?--=; 当计算主梁剪力时:320 1.2=384kN k P =?。 3、某预应力钢筋混凝土箱形截面简支梁桥,计算跨径40m 。若该主梁跨中横断面面积 2m 6.9=F 、主梁采用C50混凝土,混凝土的弹性模量MPa 1045.34?=c E ,跨中截面的截面 惯性矩4m 75.7=c I 、材料重力密度3 kN/m 0.26=γ,试计算汽车荷载冲击系数μ为多少? 【解】已知:m 40=l ,2 m 6.9=F ,MPa 1045.34?=c E ,3kN/m 0.26=γ,4m 75.7=c I 结构跨中处延米结构重力: 3 26109.6249600N/m G F γ==??= 结构跨中处的单位长度质量:22 /249600/9.8125443Ns /m c m G g === 简支梁桥基频: 3.18Hz f = == 冲击系数:189.00157.01826.3ln 1767.00157.0ln 1767.0=-=-=f μ。 4、图6-2所示为一座桥面板铰接的T 形截面简支梁桥,桥面铺装厚度为0.12m ,桥面板净跨径为 1.42m ,车辆两后轮轴距为 1.4m ,车辆后轮着地宽度和长度分别为:20.6m b =和 20.2m a =;车辆荷载的轴重kN 140=P ,冲击系数3.11=+μ,计算桥面板根部在车辆荷

标准差

标准差 次数分布中的数据不仅有集中趋势,而且还有离中趋势。所谓离中趋势指的是数据具有偏离中心位置的趋势,它反映了一组数据本身的离散程度和差异性程度。标准差能综合反映一组数据的离散程度或个别差异程度。 例如,甲、乙两班学生各50人,其语文平均成绩都是80分,但甲班最高成绩98分,最低42分,而乙班最高成绩86分,最低60分。初步看出,两班语文成绩是不一样的,甲班学生的语文成绩个别差异程度大、水平参差不齐;而乙班学生的语文成绩差异程度小,语文水平整齐度大些。怎样用标准差这个特征量数来刻画一组数据的差异程度呢?下面介绍标准差的概念及计算。 一、标准差概念与计算 1.标准差定义与计算公式 一组数据的标准差,指的是这组数据的离差平方和除以数据个数所得商的算术平方根。若用S 代表标准差,则标准差的计算公式为: 标准差的平方,称为方差,用S2表示方差。 计算标准差时,首先要计算数据的平均数,接着要计算各数据与平均数之间的离差 平方,即()2,最后由公式(2-5)计算标准差S。 例如,4名儿童的身高分别是110厘米,100厘米,120厘米和150厘米,若求4名儿童身高数据的标准差时,其基本步骤如下: ①求平均数:(厘米) ②求离差平方和: )2=(110―120)2+(100―120)2+(120―120)2+(150―120)2 =100+400+0+900=1400(平方厘米) ③求标准差S:S= (厘米)

这样,我们大体可认为,这4名儿童身高差异程度,从平均角度来看,约相差18.71厘米。 2.标准差的计算中心方法 计算标准差的方法有三种,一是按公式逐步分析计算,如上述所示;二是以列表计算的方式;三是利用计算器或计算机进行计算。下面再举一例说明采用列表方式计算标准差S。 [例7] 已知8 位同学在某图形辨认测验中的成绩数据(见表2-2),计算这组数据的标准差。 [分析解答] 采用列表计算方式,应用公式(2-5)确定数据的标准差,详见表2-2。 表2-2 计算标准差S的示例 - () (1) = (2) () = 标准差在实际中有广泛的用途,同时对深化研究数据也具有重要的作用。如不同班级考试成绩的平均数和标准差,不同年度或不同学科测验分数的平均数和标准差,以及其他体能测试或心理测验数据的平均数和标准差,就是一些具体的应用。后续各章内容的学习,将经常用到平均数、标准差和方差这些概念。 由于标准差计算公式结构适合于代数处理,因此,许多具有统计功能的计算器,都有计算方差和标准差的相应功能。学习者只要花少量时间学习与掌握有关计算器的使用,即可以轻松自如地处理大量数据,求取平均数和标准差。 在利用公式(2-5)手工求标准差时,如表2-2所示,由于平均数有小数,这使计算离差平方的数据更加复杂,小数点的位数加倍增加,同时四舍五入的计算误差以及出错的可能性都有所增加。为克服这个弊病,我们可从公式(2-5)出发,通过代数演算,推导出另一个与公式(2-5)等价的新公式,即公式(2-6)。这一新公式对计算标准差来讲,不用通过计 算平均数以及离差平方和,用原始数据直接计算标准差,因而在许多情况下,具有更简便、准确的特点。其计算公式:

随机变量的数学期望与方差

第9讲随机变量的数学期望与方差 教学目的:1.掌握随机变量的数学期望及方差的定义。 2.熟练能计算随机变量的数学期望与方差。 教学重点: 1.随机变量的数学期望 For personal use only in study and research; not for commercial use 2.随机变量函数的数学期望 3.数学期望的性质 4.方差的定义 For personal use only in study and research; not for commercial use 5.方差的性质 教学难点:数学期望与方差的统计意义。 教学学时:2学时。 For personal use only in study and research; not for commercial use 教学过程: 第三章随机变量的数字特征 §3.1 数学期望 For personal use only in study and research; not for commercial use 在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X的概率分布,那么X的全部概率特征也就知道了。然而,在实际问题中,概率分布一般是较难确定的,而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了。因此,在对随机变量的研究中,确定其某些数字特征是重要的,而在这些数字特征中,最常用的是随机变量的数学期望和方差。

1.离散随机变量的数学期望 我们来看一个问题: 某车间对工人的生产情况进行考察。车工小张每天生产的废品数X 是一个随机变 量,如何定义X 取值的平均值呢? 若统计100天,32天没有出废品,30天每天出一件废品,17天每天出两件废品, 21天每天出三件废品。这样可以得到这100天中每天的平均废品数为 27.1100 213100172100301100320=?+?+?+? 这个数能作为X 取值的平均值吗? 可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的 天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是 1.27。 对于一个随机变量X ,若它全部可能取的值是 ,,21x x , 相应的概率为 ,,21P P , 则对X 作一系列观察(试验)所得X 的试验值的平均值是随机的。但是,如果试验次数 很大,出现k x 的频率会接近于K P ,于是试验值的平均值应接近 ∑∞=1k k k p x 由此引入离散随机变量数学期望的定义。 定义1 设X 是离散随机变量,它的概率函数是 ,2 ,1,)()(====k P x X P x p K K k 如果 ∑∞ =1||k k k p x 收敛,定义X 的数学期望为 ∑∞ ==1)(k k k p x X E 也就是说,离散随机变量的数学期望是一个绝对收敛的级数的和。 例1 某人的一串钥匙上有n 把钥匙,其中只有一把能打开自己的家门,他随意地 试用这串钥匙中的某一把去开门。若每把钥匙试开一次后除去,求打开门时试开次数 的数学期望。

冲击系数

公路桥梁冲击系数随机变量的概率分布及冲击系数谱 李玉良 摘要为适应近似概率设计法的应用,公路桥梁冲击系数研究必然引进概率概念。从现场实测入手,采集桥上汽车荷载流对桥梁结构产生的冲击系数随机样本,采用概率与数理统计的方法研究公路桥梁冲击系数的统计规律,得到公路桥梁冲击系数的概率分布及置信度为0.05的冲击系数谱。对冲击系数谱的适应范围及其与国内、外冲击系数的研究成果进行比较和讨论。关键词公路桥梁冲击系数随机变量概率分布冲击系数谱 l 前言 在移动的汽车荷载作用下,桥梁在空间的竖向、纵向和横向三个方向产生振动、冲击等动力效应。通常把竖向动力效应称为汽车荷载对桥粱结构的冲击力。桥梁结构的总竖向汽车荷载效应(SZ)等于竖向汽车荷载静力效应(SJ)与其动力效应之和。在国内、外的各种桥梁设计规范中,均采用把汽车荷载竖向静力效应乘以一个增大系数(1+μ)作为计入汽车荷载竖向动力效应的总竖向荷载效应。即: SZ=(1+μ)×SJ (1) 根据式(1),将冲击系数定义为:考虑移动的汽车荷载对桥梁结构产生竖向动力效应的增大系数。现今世界各国公路桥梁设计规范中有关冲击系数的规定,大都是在定值设计法概念下制定的。不管是理论计算还是现场实测,都基于移动的汽车荷载与桥梁结构产生“共振”求得,这样得到的冲击系数(1+μ)是极大值。它的不足之处是不能反映该数值在桥上出现的概率。调查得知,这样的极大值在桥上实际发生的机会是极为稀少的。 为适应近似概率设计法的应用,公路桥梁冲击系数研究必然引进概率概念。影响公路桥梁冲击系数的因素,归纳起来大致可分为三类: (1)汽车荷载本身的几何与动力特性; (2)桥梁结构的几何与动力特性; (3)激振及冲击的条件。 公路桥梁上通过的汽车荷载流是一个非列车化的问隙性连续流。它的流量大小、车辆间距、轴重大小、行驶速度、车辆的横向位置、车辆的动力特性都具有明显的不确定性,是无法预知的。这表明汽车荷载流本身具有明显的随机性。 桥梁结构的几何尺寸、材料的容重、弹性模量等也都是随机的。 汽车荷载流通过桥梁时的初始条件(如:路桥连接缝的结构状态、引道路面平整度等)和桥面的平整度等因素,也具有不确定性。这些都是移动的汽车激振和对桥梁结构产生振动、冲击等最重要的随机因素。由此我们可认识到,公路桥梁冲击系数是反映诸多影响因素随机组合产生振动、冲击等效应的一个综合性系数,具有明显的随机性。 另外,公路桥梁冲击系数与时间没有明显的关系。它的取值,充满了某一实数区间,不能用一个有限或无限数列表示。因此,本文把公路桥梁冲击系数用连续随机变量概率模型进行研究。 2 公路桥梁冲击系数的概率分布及统计参数 由于随机模拟汽车流、桥梁激振及冲击条件等非常困难,从公路桥梁随机振动与随机冲击等问题的理论研究人手,来解决公路桥梁冲击系数问题,条件尚不成熟。为此,我们的研究从现场实测入手,采集桥上汽 wk_ad_begin({pid : 21});wk_ad_after(21, function(){$('.ad-hidden').hide();}, function(){$('.ad-hidden').show();}); 车荷载流对桥梁结构产生的冲击系数随机样本,用概率与数理统计的方法来研究公路桥梁冲击系数的统计规律。

随机试验和随机变量范文

第5章随机试验和随机变量 教学目的与要求:通过本章教学,使学生理解什么是随机试验以及由它所定义的随机变量,并了解统计学的重要任务之一便是把数据看作随机变量(或称之为无限总体)的样本去推断它的这种或那种特征。作为后续章中所介绍的统计推断方法所必需的预备知识,学生通过本章的学习还应了解与随机试验和随机变量有关的属于概率论范畴的若干基本概念。 重点内容与难点: 1.随机试验及事件、概率等基本概念 2.随机变量的概念:离散型随机变量的分布列和连续性随机变量分布的图示 3.数学期望和方差的定义及数学性质 §5.1 随机试验 一、随机现象 1.概念:在给定的条件下不能确切预见其结果的现象叫作随机现象。 2.随机现象的产生:因大量的偶然因素存在且无法控制,使现象的结果不能确定和不能完全预见的。于是,现象的随机性便产生了。 3.随机现象有一定规律性的。在给定条件下在规律值附近的数值发生的可能性较大,离规律值越近则发生的可能性越大,离规律值越远则发生的可能性越小。统计学就是要通过对随机现象的有限次的观察结果去探寻它的各种统计规律。 二、随机试验 1.概念:对随机现象的观测称作随机试验。 2.种类:随机试验有可重复随机试验和不可重复随机试验两种。前者是指可以在相同条件下重复进行的随机试验;后者是指不能在相同条件下重复进行的随机试验。 要注意,随机现象或随机试验的概念都是同给定的一组条件联系在一起的。给定的一组条件发生了改变,就变成了另外的随机现象和另外的随机试验。 三、事件 (一)事件的种类 1.概念:随机试验的每一种结果或随机现象的每一种表现称作随机事件,简称为事件。 2.种类:一个事件如果不能再被分解为两个或两个以上事件,称作基本事件。 基本事件是试验的最基本结果:每次试验必出现一个基本事件,任何两个基本事件都不会同时出现。由两个或两个以上基本事件所组成的事件称做复合事件。 一项随机试验的所有基本事件的集合,称作该随机试验的基本事件空间。 必然事件是每次试验都一定出现的事件,记作 。任何一次试验都不可能出现的事件称为不可能事件,记作?。 (二)事件的关系和运算 (四)概率 (一)什么是概率 用0与1之间的数值来表明事件A在随机实验中出现的可能性大小,通常记作P(A)。这样的数值叫作事件A的概率。对于概率,通常可有两种解释:(1)某个系统的一种内在特性,这个特性不依赖于我们对该系统的知识;(2)对某一陈述相信程度的度量。

夏普比率-实用标准差-贝他系数

夏普比率-标准差-贝他系数 夏普比率 现代投资理论的研究表明,风险的大小在决定组合的表现上具有基础性的作用。风险调整后的收益率就是一个可以同时对收益与风险加以考虑的综合指标,以期能够排除风险因素对绩效评估的不利影响。夏普比率就是一个可以同时对收益与风险加以综合考虑的三大经典指标之一。投资中有一个常规的特点,即投资标的的预期报酬越高,投资人所能忍受的波动风险越高;反之,预期报酬越低,波动风险也越低。所以理性的投资人选择投资标的与投资组合的主要目的为:在固定所能承受的风险下,追求最大的报酬;或在固定的预期报酬下,追求最低的风险。 ·夏普比率计算公式 ·夏普比率在运用中应该注意的问题 夏普比率(Sharpe Ratio),又被称为夏普指数--- 基金绩效评价标准化指标 夏普比率概述1990年度诺贝尔经济学奖得主威廉·夏普(William Sharpe)以投资学最重要的理论基础CAPM

(Capital Asset Pricing Model,资本资产定价模式)为出发,发展出名闻遐迩的夏普比率(Sharpe Ratio)又被称为夏普指数,用以衡量金融资产的绩效表现。 威廉·夏普理论的核心思想理性的投资者将选择并持有有效的投资组合,即那些在给定的风险水平下使期望回报最大化的投资组合,或那些在给定期望回报率的水平上使风险最小化的投资组合。解释起来非常简单,他认为投资者在建立有风险的投资组合时,至少应该要求投资回报达到无风险投资的回报,或者更多。 夏普比率计算公式夏普比率计算公式:=[E(Rp)-Rf]/σp 其中E(Rp):投资组合预期报酬率 Rf:无风险利率 σp:投资组合的标准差 目的是计算投资组合每承受一单位总风险,会产生多少的超额报酬。比率依据资本市场线(Capital Market Line,CML)的观念而来,是市场上最常见的衡量比率。当投资组合的资产皆为风险性资产时,适用夏普比率。夏普指数代表投资人每多承担一分风险,可以拿到几分报酬;若为正值,代表基金报酬率高过波动风险;若为负值,代表基金操作风险大过于报酬率。这样一来,每个投资组合都可以计算Sharpe Ratio,

两个随机变量和与商的分布函数和密度函数

设(X ,Y )的联合密度函数为f (x ,y ),现求Z=X+Y 的概率密度。 令{(,)|}z D x y x y z =+≤,则Z 的分布函数为: (){} {}(,)((,))Z D z z y F z P Z z P X Y z f x y dxdy f x y dx dy +∞--∞ -∞ =≤=+≤==??? ? (1.1) 固定z 和y 对积分 (,)z y f x y dx --∞ ?作换元,令x y u +=,得 (,)(,)z y z f x y dx f u y y du --∞ -∞ =-?? (1.2) 于是 ()(,)[(,)]z z Z F z f u y y dudy f u y y dy du +∞+∞ -∞-∞ -∞ -∞ =-=-???? (1.3) 由概率论定义,即得Z 的概率密度为 ()(,)Z f z f z y y dy +∞-∞ =-? (1.4) 由X 与Y 的对称性,又可得 ()(,)Z f z f x z x dx +∞-∞ =-? , (1.5) 特别的,当X 与Y 相互独立时,有 ()()()()()Z X Y X Y F z f z y f y dx f x f z x dx +∞ +∞ -∞ -∞ =-=-? ? (1.6) 其中,()X f x 、()Y f y 分别是X 和Y 的密度函数。 式(1.6)又称为()X f x 和()Y f y 的卷积,常记为*()X Y f f z 。因此式(1.6)又称为独立和分布的卷积公式。

设(X ,Y )的联合密度函数为f (x ,y ),又X Z Y =,现求X Z Y =的概率密度,Z 的分布函数为 1 2 (){} (,)(,)Z D D F z P Z z f x y dxdy f x y dxdy =≤=+???? (2.1) 而 1 (,)(,)yz D f x y dxdy f x y dxdy +∞ -∞=?? ? ? (2.2) 对于固定的z ,y ,积分 (,)yz f x y dx -∞ ?作换元x u y = (这里y>0),得 (,)(,)yz z f x y dx yf yu y du -∞ -∞ =?? (2.3) 于是 01 (,)(,)(,)z D z f x y dxdy yf yu y dudy yf yu y dydu +∞-∞+∞ -∞==????? ? (2.4) 类似的可得 2 (,)(,)(,)yz D z f x y dxdy f x y dxdy yf yu y dydu +∞ -∞-∞-∞ ==-??? ? ? ? (2.5) 故有 12 0()(,)(,)[(,)(,)][(,)]Z D D z z F z f x y dxdy f x y dxdy yf yu y dy yf yu y dy du y f yu y dy du +∞-∞ -∞ +∞-∞-∞ =+=-=?????? ? ?? (2.6) 有概率密度定义可得X Z Y = 的概率密度为 ()(,)Z f z y f yz y dy +∞ -∞ =? (2.7) 特别的,当X 与Y 相互独立时,有 ()()()Z X Y f z y f yz f y dy +∞-∞ =? (2.8)

随机变量及其分布知识点整理

随机变量及其分布知识点整理 一、离散型随机变量的分布列 一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ??????,X取每一个值(1,2,,)i x i n =???的概率()i i P X x p ==,则称以下表格 为随机变量X 的概率分布列,简称X 的分布列、 离散型随机变量的分布列具有下述两个性质: (1)0,1,2,,i P i n =???≥ (2)121n p p p ++???+= 1、两点分布 则称X服从两点分布,并称=P(X=1)p 为成功概率、 2、超几何分布 一般地,在含有M件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为: (),0,1,2,3,...,k n k M N M n N C C P X k k m C --=== {}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。 注:超几何分布的模型就是不放回抽样 二、条件概率 一般地,设A,B为两个事件,且()0P A >,称()(|)() P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率、 0(|)1P B A ≤≤ 如果B 与C 互斥,那么[()|](|)(|)P B C A P B A P C A =+ 三、相互独立事件 设A,B两个事件,如果事件A 就是否发生对事件B 发生的概率没有影响(即()()()P AB P A P B =),则称事

件A 与事件B 相互独立。()()()A B P AB P A P B ?=即、相互独立 一般地,如果事件A1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即1212(...)()()...()n n P A A A P A P A P A =. 注:(1)互斥事件:指同一次试验中的两个事件不可能同时发生; (2)相互独立事件:指在不同试验下的两个事件互不影响、 四、n 次独立重复试验 一般地,在相同条件下,重复做的n 次试验称为n次独立重复试验、 在n 次独立重复试验中,记i A 就是“第i 次试验的结果”,显然,1212()()()()n n P A A A P A P A P A ???=??? “相同条件下”等价于各次试验的结果不会受其她试验的影响 注: 独立重复试验模型满足以下三方面特征 第一:每次试验就是在同样条件下进行; 第二:各次试验中的事件就是相互独立的; 第三:每次试验都只有两种结果,即事件要么发生,要么不发生、 n 次独立重复试验的公式: n A X A p n A k 一般地,在次独立重复试验中,设事件发生的次数为,在每次试验中事件发生的概率为,那么在次独立重复试验中,事件恰好发生次的概率为 ()(1),0,1,2,...,.(1)k k n k k k n k n n P X k C p p C p q k n q p --==-===-其中,而称p 为成功概率、 五、二项分布 一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则 ()(1)0,1,2,,k k n k n P X k C p p k n -==-=???, 此时称随机变量X服从二项分布,记作~(,)X B n p ,并称p为成功概率、 六、离散随机变量的均值(数学期望) 则称1122()i i n n E X x p x p x p x p =+++++ 为X 的数学期望或均值,简称为期望.它反映了离散型随机变量取值的平均水平. 则()EY aE X b =+,即()()E aX b aE X b +=+ 2.一般地,如果随机变量X 服从两点分布,那么

平均数、标准差与变异系数

第三章 平均数、标准差与变异系数 本章重点介绍平均数(mean )、标准差(standard deviation )与变异系数(variation coefficient )三个常用统计量,前者用于反映资料的集中性,即观测值以某一数值为中心而分布的性质;后两者用于反映资料的离散性,即观测值离中分散变异的性质。 第一节 平均数 平均数是统计学中最常用的统计量,用来表明资料中各观测值相对集中较多的中心位置。在畜牧业、水产业生产实践和科学研究中,平均数被广泛用来描述或比较各种技术措施的效果、畜禽某些数量性状的指标等等。平均数主要包括有算术平均数(arithmetic mean )、中位数(median )、众数(mode )、几何平均数(geometric mean )及调和平均数(harmonic mean ),现分别介绍如下。 一、算术平均数 算术平均数是指资料中各观测值的总和除以观测值个数所得的商,简称平均数或均数,记为x 。算术平均数可根据样本大小及分组情况而采用直接法或加权法计算。 (一)直接法 主要用于样本含量n ≤30以下、未经分组资料平均数的计算。 设某一资料包含n 个观测值:x 1、x 2、…、x n ,则样本平均数x 可通过下式计算: n x n x x x x n i i n ∑== +++=1 21Λ (3-1) 其中,Σ为总和符号; ∑=n i i x 1表示从第一个观测值x 1 累加到第n 个观测值x n 。当∑=n i i x 1 在意义上已明确时,可简写为Σx ,(3-1)式即可改写为: n x x ∑= 【例3.1】 某种公牛站测得10头成年公牛的体重分别为500、520、535、560、585、 600、480、510、505、490(kg ),求其平均体重。 由于Σx =500+520+535+560+585+600+480+510+505+490=5285,n =10 代入(3—1)式得: .5(kg)52810 5285∑=== n x x 即10头种公牛平均体重为528.5 kg 。 (二)加权法 对于样本含量n ≥30以上且已分组的资料,可以在次数分布表的基础上采用加权法计算平均数,计算公式为:

冲击系数

冲击系数说明书 1、冲击系数原理 桥梁动载实验中,动力荷载作用与桥梁结构上产生的动挠度或动应变,一般较同样的静荷载所产生的相应的静挠度(静应变)要大。以动挠度为例,动挠度与相应的静挠度的比值称为活荷载的冲击系数(1+μ)。由于挠度反映了桥梁结构的整体变形,是衡量结构刚度的主要指标,因此活载冲击系数综合反映了动力荷载对桥梁结构的动力作用。活载冲击系数与桥梁结构的结构形式、车辆行驶速度、桥梁的平整度等因素有关。为了测定桥梁结构的冲击系数,应使车辆以不同的速度驶过桥梁,逐次记录跨中截面的挠度时程曲线,按照冲击系数的定义有: mean Y Y max 1=+μ 式中:max Y ----动载作用下该测点最大动挠度值; mean Y ----相应的静载荷作用下该测点最大挠度值,简称最大静挠度值,其值可由动挠度曲线求得: )(2 1min max Y Y Y mean += 其中min Y 为与mean Y 相应的最小挠度值。如图1所示。 图1 移动荷载作用下桥梁动挠度曲线 同理,在动载实验中测试动应变时,产生的冲击系数(1+μ)的计算公式如下:

mean S S max 1=+μ 式中:max S ----动载作用下该测点最大动应变值; mean S ----相应的静载荷作用下该测点最大应变值,其值可由动应变曲线求得: )(2 1min max S S S mean += 其中min S 为与mean S 相应的最小应变值。 另外,在测试动应变时程曲线时,由于应变片的贴法的正负极性不同,用户实测的动应变曲线的主峰很可能往下(为负值),在这种情况下,冲击系数的计算公式不变,但是max S 、mean S 、min S 都将有所改变,具体如下: max S ----动载作用下该测点最大动应变的绝对值; mean S ----相应的静载荷作用下该测点最大应变的绝对值; min S ----与mean S 相应的最小应变的绝对值。

相关主题
文本预览
相关文档 最新文档