当前位置:文档之家› 中国科学院国家天文台-兴隆观测站

中国科学院国家天文台-兴隆观测站

中国科学院国家天文台-兴隆观测站
中国科学院国家天文台-兴隆观测站

中国科学院国家天文台

兴隆基地2.16米望远镜OMR卡焦光谱仪-----使用手册------

中国科学院国家天文台

北京市朝阳区大屯路甲20号

北京100012

=========目录======== 1.OMR光谱仪概述

历史回顾

OMR光谱仪的基本性能

2.光路图

3. OMR光谱仪各部套的结构与性能

接口法兰盘

狭缝

滤光片

快门

准直镜

光栅及光栅驱动机构

照相机

定标系统

导星系统

CCD

计算机及计算机卡

主控台

电源及电机

电路,编码器和读出

光学系统

4. 附录

流量定标标准星

波长定标比较光谱

1.OMR光谱仪概述

1 历史回顾

在国家85攀登计划项目“天体剧烈活动的多波段观测和研究”于1993年2月召开的专家委员会上,与会的专家建议为我国最大的2.16米望远镜购置一台中低色散卡焦光谱仪,这一建议得到了国家科委和科学院基础局的批准和支持,经过广泛调研,最后确定向美国的Optomechanics Research, Inc(简称OMR)订货,于1993年底正式签署了合同。

1994年底,光谱仪制造完毕,为了保证质量,在Kitt Peak天文台的支持下,利用其2.10米望远镜对光谱仪进行了2个观测夜的实测,实测中发现了一些问题,如相机成像面积不能满足1Kx1K CCD的需要,CCD电缆线不符合要求等等,经与光谱仪和CCD的制造厂家协商,问题都逐一得到了解决。

1995年4月,OMR光谱仪运抵北京天文台兴隆站,厂方代表与兴隆站的工作人员一起进行了最后的测试,测试结果基本符合订货要求。之后又经过一年多的试运行和不断的摸索和改进,使仪器达到了良好的工作状态,并于1996年9月通过了由国家科委高科技和基础司及中科院基础局组织的验收。

2OMR光谱仪的基本性能

工作波段:3700—10000A

狭缝:缝宽0.05—1.0mm,可以由主控台遥控调节,在主控台上显示缝宽对应的电压值,SPEC软件可显示缝宽在望远镜焦面上的投影值(狭缝机构与焦面的夹角为20度)和在探测器上的投影值;有效缝高28.8mm,反光面面积32.8mmx38.0mm。

滤光片:6个滤光片位置,分别为Clear,Corning 4-71,Schott BG-37, BG-39, GG-475, RG-695。

定标系统:有三个波长定标灯,分别为He-Ar,Fe-Ar,Fe-Ne及一个平场灯,可以遥控开关。

准直镜:D=110mm, f=674mm,离轴抛物面反射镜,可遥控调焦。

光栅:目前共有6块,分别装于光栅壳中,人工更换,SPEC软件可自动识别,并可通过计算机控制运动到指定的观测波段。

照相机:D=100mm,f=150mm,Schmidt-Cassegrain式,有效视场25mm

主CCD:TEK1024x1024背照明CCD芯片,AR Coated,液氮制冷

导星CCD:Photometrics STAR I CCD,TH7883科研级芯片(385x576, 23),液体循环制冷,实际导星视场3.0′x4.5′。

制造商:OPTOMECHANICS RESEARCH,Inc

P.O.Box87

Vail,AZ85641

USA

3. OMR光谱仪各部套的结构与功能

1.接口法兰盘

连接OMR光谱仪与2.16米望远镜公共接头的法兰盘由铸铝制成,通过8个匀布的M10螺钉与公共接头相连,法兰盘中心开有160x160mm的通光方孔。

图2 OMR光谱仪的法兰盘接口图

2.狭缝

狭缝位于接口法兰盘之下大约200mm的主光轴之上,在光谱仪的外壳上标出了狭缝机构的位置,拆卸时只需旋下四周的固定螺丝,然后向外轻轻拉出即可。

狭缝机构包括两块上表面镀铝的刀口、调节缝宽调节机构、decker、定标反射镜及其驱动装置。从主控台可以调节缝宽,主控台和SPEC软件的菜单上显示了经投影修正后的缝宽值(狭缝刀口与光轴成70度放置),在主控台上1V=1mm,SPEC菜单上除显示实际缝宽外,还显示了在探测器位置的投影缝宽(其数值等于实际缝宽除以准直镜与照相机焦距之比--4.493)。

狭缝的刀口由不锈钢制成,其上表面和刀口面都经过了精细的加工和抛光,面型精度达1/4波长,对狭缝的任何操作都必须十分小心。

缝宽:0.05-1.00mm (0.5-10.6″)

缝高:28.8mm(5.1′)

反光面积:32.8x38.0mm

3.滤光片

滤光片机构位于狭缝的正下方,在光谱仪的外壳上标出了滤光片机构的位置,拆卸时只需旋下四周的固定螺丝,然后向外轻轻拉出即可。滤光片转轮上有6个位置,使用边长为25mm的方形滤光片,除了一个空位置外,现有的五块吸收滤光片为Corning4-71,SchottBG-37,BG-39,GG-475和RG-695,他们的透光率曲线见附图。滤光片转轮上可安装的滤光片最大厚度为9mm。

按照最初的设计,滤光片的更换应该可以在主控台或SPEC软件的菜单上控制,但由于在实际使用时发现滤光片自动控制的故障率太高,且观测中要求更换滤光片的频率很低,故将滤光片自动控制部分取消,使用时如果变换滤光片,只需将滤光片机构取下,将所需的滤光片转到转轮上的箭头指向的位置,再装回即可。尽管取消了自动控制,但SPEC菜单中的滤光片及工作波段的显示仍然正确。

4快门

OMR光谱仪中有两个电子快门:较小的一个为Uniblitz(Vincent Associates)快门,位于导星CCD(STAR I)前面,根据厂家提供的数据,它的寿命约为一千万次开启。另一个较大的快门为Ilex 1.38英寸快门,原装于CH260 CCD(主CCD)的前面,后被移植于滤光片机构的下面,但仍由CH260控制系统控制。

严禁触摸或让任何油脂接触快门叶片,保持叶面清洁。

5. 准直镜

准直镜位于光谱仪的最底部,准直镜是由派勒克斯玻璃制成的离轴抛物面反射镜,焦距674mm,有效口径110mm,离轴角为8.1°,准直镜表面镀有铝膜和硬质保护膜。准直镜靠上下移动调焦,调焦行程约27mm,这相当于1.4mm的照相机调焦行程。准直镜调焦由主控台控制,在主控台上的调焦读数范围从0.60V-8.60V。

在变换观测波段或更换光栅时都要注意检查是否需要重新进行准直镜调焦,在准直镜调焦时应该尽量使用较窄的缝宽。

6.光栅及光栅驱动机构

光栅及光栅驱动机构在光谱仪中占有较大体积,光栅驱动机构位于滤光片法兰的正下方,光栅的拆卸在光谱仪本体的另一侧,并有文字标记。

目前共有6块光栅,分别装于光栅壳中,手动更换,SPEC软件可自动识别,并可自动运动到指定的观测波段。

在使用中应绝对避免触摸光栅表面,光栅表面轻微的灰尘可用吹气球或干燥的压缩空气吹掉。更彻底的清洁需要极度的细心和经验,最好送到光栅生产厂家去处理。

光栅驱动机构包含下列重要组件:

16线,2相步进电机(1.8°/步,Superior Electric,#23)

2 Microstepping electronics (Intelligent Motion

Sysytems,Inc.,ModelIM483 microstepping driver),设置为50000步

/rev。

3涡轮/涡杆,精度为50000/4.5°或11111步/度,蜗杆由弹簧拉住以消除隙4位置读出,由一个绝对码盘(U.S.Digital Corp.,Model A2)和一个点位器组成。绝对码盘的分辨率为0.00075度,用于SPEC软件提供位置信息;

电位器的分辨率为0.01度,用于为主控台提供位置信息。另外在光

谱仪的外壳上还有一个刻度盘,供使用者粗略读出光栅位置

5光栅识别开关,这是3个微开关,与光栅壳上的凸起耦合,产生二进制码供光栅仪和SPEC软件识别不同的光栅。

6光栅转动控制电路,这是为光栅驱动装置提供脉冲的电路,快动时的角速度约为1°/秒,慢动约0.01°/秒。

7. 照相机

OMR光谱仪的照相机位于主CCD的前面,与CCD杜瓦瓶固定在同一个接口板上。照相机为半固体施密特-卡塞格林系统,焦距为150mm,有效口径100mm,此照相机的原型是由I.S.Bowen设计的一种有着较大工作距离(即最后一片镜片的外表面到焦平面的距离)和大光力的相机,设计这种相机是为了在当时的“先进天文探测系统”中使用像增强器。但是CCD的广泛应用要求照相机有更大的工作距离,Richard Buchroeder为适应这种新的需求对Bowen相机进行了重新设计,我们的照相机就是按照Buchroeder的设计制造的,它的工作距离为16.5mm。但是在Kitt Peak 2.1m望远镜的实测中我们发现由于场曲的存在限制了照相机的视场,不能满足TEK1024 CCD的需要。在NOAO工作的梁明帮助我们重新设计了场镜,在其中增加了一块平场透镜,从而显著的改善了边缘的像质,使有效工作视场达到了25mm,满足了TEK1024 CCD的成像要求。图4-图7为照相机的示意图,从图6还可看到在轴外有明显的渐晕,这一点是使用如此大光力和大视场的照相机

所无法避免的。

照相机的机械部分及其接口都经过精密的加工和调整,因此除了在极少的场合需要对照相机进行调焦外,不要对其作任何调整。对照相机进行调焦的方法是沿着照相机室轻轻的推动相机的底部,需要注意的是照相机对调焦非常敏感,与准直镜调焦相比,其灵敏度为缩焦比的平方倍,即4.521=20.44。

制造照相机所用的光学玻璃全部为石英玻璃,两个内反射表面镀了铝膜,由于考虑到照相机的宽工作波段及固体石英块在加热时的安全,在其它石英-空气的接触面没有镀增透膜。

8. 定标系统

OMR光谱仪的定标系统包含4个光源,用于波长定标和平场。它们分别为:

Fe/Ne空心阴极灯:标准的1.5英寸灯泡(ISTC Model #WL-22810),也可换用其它的牌号(如Hamamatsu , Starna及部分国产品牌)。最大工作电流为20mA,正常工作电流为10-12mA,高压电源为300VDC,20mA,负载电阻为15K,此灯的实际电压降为150VDC。在上述工作环境下此灯的寿命大于1000小时,较高的工作电流会增强铁线相对于氖线的强度,但会影响灯的寿命。

Fe/Ar空心阴极灯: ISTC Model #WL-22611,其它与Fe/Ne灯相同。

He/Ar灯:据我们所知这种灯已经停止生产了,现用的是NOAO赠送给我们的,应该注意爱护。为了适于作为光谱定标灯使用,它一定要用DC供电。

平场灯(F/F):这是标准的12VDC,1.5A卤钨灯(Sylvania#808-301550或国家的同等型号),寿命约为1000-2000小时。

定标系统的位置在光谱仪外壳上作了标明。定标系统还包括两个电机和一块反射镜,在选定了定标光源后,反射镜会自动移动到适当的位置。

定标系统由使用者通过主控台控制,在SPEC软件的菜单上也显示哪个光源正在工作。当主控台上的定标灯电源打开时,严禁转动定标灯选择钮,否则会损坏电路和/或光源。对定标灯灯泡应小心操作,注意不要让有机物(如手印)粘在灯泡上,否则使用时在紫外线的照射下,有机物会溶入灯泡外壳。另外在主控台上还有一个可以在定标灯关闭时控制反光镜移入/移出狭缝的开关,平时这一开关应该放在“OFF”的位置。

9. 导星系统

导星系统的作用是将狭缝机构反射面上的天区成像在导星CCD(STAR I)上,其光学部分包括一块镀铝的反射镜和两块消色差透镜。反射镜用于改变光路方向

(见光路图),改变方向后的光束先经过一块直径50mm,焦距260mm的透镜变成平行光,然后由第二块直径36mm,焦距85mm的透镜将其成像于STAR I上。第二块透镜固定在马达驱动的支架上,由主控台可以控制马达进行导星光路的调焦,整个调焦行程约为25mm,有限位开关进行保护。

在观测中应该注意先对导星系统进行调焦,使得狭缝的像在STAR I的监视器上清晰后,再对望远镜调焦才有意义。

10. CCD

OMR光谱仪上共有两个CCD,一个是用于光谱数据采集的主CCD,另一个是导星CCD(STAR I)。

https://www.doczj.com/doc/a210091433.html,D

主CCD采用的是美国Photometrics公司生产的CH260数据系统,其芯片为Tektronix(SITE) TK1024AB2科研级(grade 1)薄片CCD,1024x1024像元,像元尺寸为24x24,详细资料见附表:

以上资料来源为P hotometrics于1994年9月29日提供的CCD系统最终测试报告和1995年2月3日提供的系统改进后的测试报告

图8为厂家1995年2月3日提供的最终测试报告中的CCD量子效率

该CCD采用液氮制冷,由于原厂的杜瓦瓶的低温维持时间太短(~8hrs),现用的杜瓦瓶是在北京天文台冉隆均主持下在国内制造的,维持时间约24小时。CCD 杜瓦瓶固定于照相机焦平面处,由一根短电缆与固定在光谱仪外壳上的CCD控制器CE200相连,CE200通过一根20米长的电缆与控制室内的计算机和接口板相连。

2.导星CCD (STAR I)

导星CCD采用的是美国P hotometrics公司的STAR I系统,它使用液体循环式电制冷(LC200),CCD芯片为Thomson TH7883 科研级芯片,384x576像元,像元尺寸为23x23,控制器代有图像缓存、视频显示和鼠标控制功能。附表列出了STAR

I的详细性能。

资料来源为P hotometrics公司于1994年5月20日所做的系统最终测试报告

STAR I的CCD头和LC200液体循环系统都位于光谱仪本体之上,其余部分(包括控制器、鼠标和监视器)都位于控制室内,通过一根13米长的电缆与CCD头相连。

使用时要注意在未开LC200液体循环系统时不要操作CCD,另外每隔一段时间(3-6个月)要检查一下LC200中冷却液的消耗情况,消耗超标要及时补充。

图8 TEK1024CCD的量子效率

11 计算机及计算机卡

OMR光谱仪自带一台计算机用于主CCD(TEK1024)的数据采集和光谱仪的自动控制。计算机为GATEWAY2000 PENTIUM60,8M RAM,750M硬盘。目前使用的所有相关软件都在DOS环境下运行。

为了实现对光谱仪的自动控制和数据传递,计算机中安装了数个专用的插卡,它们的基本功能如下:

--ComputerBoards, Inc. CIO-DAS08,8通道模拟输入,3个计数器,31位I/O。用于对光谱仪的控制。

--Paradise Accelerator 24显卡:这是P hotometrics公司CCD9000软件的指定显卡。

--P hotometrics,Ltd.AT总线接口卡:用于CH260与光谱仪的通信。

--US DIGITAL AD2 RS232接口:用于光栅位置绝对码盘与计算机串口的通信。

12主控台

主控台位于控制室内,是使用者对光谱仪进行遥控操作的基本工具。它通过一根20米长的屏蔽电缆与光谱仪直接相连,另有一根来自光谱仪本体的电源线为其提供12VDC的电源和良好的接地。主控台与计算机相邻放置,由一根扁平电缆连接主控台上的DB37接口和计算机的CIO-DAS08卡。无论计算机是否打开,利用主控台都可以实现对光谱仪的所有操作。

13 电源与电机

为整个光谱仪供电的电源固定于光谱仪的外壳之上,电源的生产厂家是ACDC Electronics,Inc.,型号为ECV151。它的工作电压为115-240VAC,47-440Hz,输出为5VDC,2A和12VDC,4A。

OMR光谱仪中使用了两种电机,一种是最大工作电压为12V的小直流电机(Maxon, Inc.,P/N 41.016.026),其无负载电流为100毫安,转速由电压控制,另一种电机是用于驱动光栅转动的步进电机,它工作于微步进,(microstepping)模式(50000步/rev.),工作电压也是12VDC。

14 电路,编码器和读出

现将OMR光谱仪中的电路系统列出:

1.光谱仪的功能支持与控制

A.导星调焦

B.缝宽

C.定标灯选择

D.定标反光镜控制

E.滤光片位置

F.快门

G.准直镜调焦

H.光栅转动

I.CIO-DAS08卡

J.电源

K.控制主控台

L.电缆

https://www.doczj.com/doc/a210091433.html,D系统的功能支持与控制

A.STAR I CCD

1 控制器/STAR I控制操作系统

2 鼠标

3 视频输出

4 电缆

B.CH260CCD(主CCD)

1 CE200控制器/温控装置

2 AT总线计算机接口卡

3 电缆

3. 计算机

A.PENTIUM计算机系统

B.SPEC控制软件

C.CH260CCD数据采集与控制软件包(CCD9000)

以上各电路系统的详细资料请见电路图集成(可向国家天文台科技处借阅)

编码器(多为电位器)负责提供位置信息,其读数通过主控台上的数字电压表显示,或通过一个12比特接口卡传到计算机。编码器的参考电压为10V。

--狭缝宽度:10K欧,10转电位器,读出的单位为毫米(主控台上显示的1.00即为100微米)

--滤光片位置:代表滤光片位置的二进制码在主控台或SPEC软件中被转换成十进制码,1代表空位置

--准直镜调焦位置:由一个线性20K欧电位器编码,读数没有单位。

--光栅指示:原理与滤光片位置指示相同,主控台上的4个LED分别对应最初订货时的4块光栅(对应关系见“光栅及光栅驱动机构”一节表格中的光栅代号),光栅指示机构能够识别的最多光栅数为7块。

--光栅转角:主编码器为一绝对码盘(US Digital Corp.,Model A2),其分辨率为每转60000,同时还有一个10-转电位器辅助绝对码盘并为主控台提供较粗略的读数。SPEC软件利用A2码盘的读数将光栅转角转换为轴上波长。

15 光学系统

1. 缝前光学系统

A 定标灯光学系统

1 定标灯聚光镜:4个,石英或派勒克斯玻璃,直径25mm,焦距38mm,

未镀膜

2 转像镜:镀铝

3 场镜:石英玻璃,直径38mm,焦距64mm,未镀膜

4 狭缝反光镜:镀铝

B 导星反光系统

1 狭缝反光镜:镀铝,面型精度为1/4波长

2 传递透镜:直径50mm,焦距260mm,双胶合消色差,镀膜

3 聚焦透镜:直径36mm,焦距85mm,双胶合消色差,镀膜

2. 狭缝刀口:1/4波长平面,不锈钢本体,表面镀铝,与望远镜的光轴成

70°放置,有效面积32.8mm x 38mm。

3. 滤光片:六个位置,25x25mm滤光片,除空位置外分别为

Corning4-71,Schott BG-37,BG-39,GG-475,RG-695。

4. 准直镜:由派勒克斯玻璃磨制的离轴抛物面反光镜,焦距674mm,有效口

径110mm,离轴角为8.1°,镀铝。

离约16毫米

主CCD:TEK1024x1204背照明CCD芯片,AR Coated,液氮制冷

导星CCD:Photometrics STAR I CCD,TH7883科研级芯片(385x576,23),液体循环制冷,实际导星视场3.0′x 4.5′。

制造商:OPTOMECHANICS RESEARCH,Inc

P.O.Box87

Vail,AZ85641

USA

中国科学院国家天文台(总部)天文学领域 全日制博士研究生培养方案

中国科学院国家天文台(总部)天文学领域 全日制博士研究生培养方案 (2010年6月修订) 为了适应创新型国家建设及社会发展对高层次人才的新要求,保证研究生培养质量,根据《中国科学院研究生院关于修订研究生培养方案的指导意见》,结合我台情况特制定本方案。 一、培养目标 博士生教育应以培养教学、科研方面的高层次创造性人才为主。博士生不仅要掌握坚实宽广的基础理论和系统深入的专门知识,且能够独立地、创造性地从事科学研究工作,或解决和探索我国经济、社会发展问题的能力。国家天文台博士研究生的培养目标: 1.拥护中国共产党的基本路线和方针政策,热爱祖国,遵纪守法,具有良好的职业道德和敬业精神,具有科学严谨、诚实守信和求真务实的学习态度与工作作风。 2.具有天文领域的基础理论知识,熟练掌握先进的科学研究与技术方法及手段, 具有创新和创业精神,具有独立承担专业技术和从事创新科研工作的能力。 3.至少熟练掌握一门外国语,能熟练地阅读本专业的外文资料,具有一定的写作能力和进行国际学术交流的能力。 4.具有健康的体质和良好的心理素质。 二、学科专业与研究方向 国家天文台博士研究生培养专业分为天体物理专业和天文技术与方法专业,天体物理专业的主要研究方向为:宇宙大尺度结构、星系形成和演化、天体高能和激发过程、恒星形成和演化、太阳磁场活动和日地空间环境、天文地球动力学、太阳系天体和人造天体动力学等,天文技术与方法专业的主要研究方向为:天文数据处理、图像处理、卫星导航、射电天文方法、空间天文观测手段和空间探测、天文新技术和新方法等。 三、培养方式及学习年限 国家天文台博士研究生采用全日制全脱产的学习方式,分公开招考和

中国科学院力学研究所岗位管理实施办法

中国科学院力学研究所岗位管理实施办法 (力发人教字〔2007〕134号) 第一章总则 第一条根据中国科学院《关于印发〈中国科学院岗位管理实施办法〉的通知》(科发人教字〔2007〕207号)的有关规定,为实现我所人力资源管理的科学化、规范化、制度化,结合我所科技发展的规划,制定本办法。 第二条围绕我所科技发展规划的要求,遵循按需设岗、职数控制、结构合理、动态优化、管理规范的原则,按照院核定的岗位总量和结构比例科学设置各类岗位。 第三条本办法适用于我所在岗人员。所级领导干部按照干部人事管理权限的有关规定执行。 第二章岗位类别与岗位等级 第四条我所设置创新岗位和项目聘用两种岗位,分别包括科技、支撑和管理三类岗位。 第五条科技岗位是指各实验室(研究部)从事基础研究和战略高技术研究工作,具有相应专业技术水平和能力要求的工作岗位。我所科技岗位包括自然科学研究系列、工程技术系列专业技术岗位。 科技岗位执行自然科学研究系列或工程技术系列,等级设置按照《中国科学院岗位管理实施办法》规定(见附表1)。 第六条支撑岗位是指为我所科技工作提供技术支撑和辅助性工作的岗位,主要设置在实验平台技术支撑、实验室(研究部)学术与行政助理、网络与图书信息保障、学会期刊出版等岗位。 支撑岗位主要执行专业技术系列中的工程技术系列、实验技术系列、图书资料和出版系列等专业技术岗位,也包括工勤技能系列岗位。 对兼有管理职责要求的支撑岗位,确因工作需要,也可执行职员系列。 支撑岗位的等级设置按照《中国科学院岗位管理实施办法》规定(见附

表1)。 第七条管理岗位是指职能部门承担领导职责或管理职责的工作岗位。管理岗位主要执行职员系列,等级设置按照《中国科学院岗位管理实施办法》规定(见附表1)。 对兼有专业技术职责要求的科技管理岗位,根据工作需要,可设置为相应的专业技术岗位。会计、审计等国家有职业资格要求的岗位,设置相应的专业技术岗位。 第八条项目聘用岗位系列的设置与等级同上述创新岗位,但原则上,不设置正高级专业技术岗位和五级及以上职员岗位。 第三章岗位结构比例 第九条创新岗位中科技、支撑与管理三类岗位的宏观结构比例为70%、20%、10%。 第十条创新科技岗位(含执行专业技术系列的管理岗位)中,高级科技岗位(专业技术一至七级岗位)的比例占科技岗位总数的70%,正高级岗位(专业技术一至四级岗位)不超过高级科技岗位总数的40%。其中:正高级科技岗位中,专业技术一级岗位为国家专设的特级岗位,由国家实行总量控制和管理,专业技术二级、三级、四级岗位之间的宏观结构比例为2:4:4; 副高级科技岗位中,专业技术五级、六级、七级岗位之间的结构比例为3:4:3; 中级科技岗位中,专业技术八级、九级、十级岗位之间的结构比例为4:4:2; 初级科技岗位中,专业技术十一级、十二级岗位之间的结构比例为8:2。 第十一条创新支撑岗位中,高级支撑岗位(专业技术三至七级岗位)不超过支撑岗位总数的50%,正高级支撑岗位(专业技术三至四级岗位)不超

中国科学院国家天文台高性能计算集群使用及付费协议

中国科学院国家天文台高性能计算集群使用及付费协议 甲方(项目/课题名称): 乙方:国家天文台信息与计算中心 经友好协商,乙方向甲方提供高性能计算机计算服务,签订本协议。一. 项目说明及所需计算资源情况 项目/课题简介:(项目来源、名称、研究内容、手段,及计算方法) 项目/课题类别 科学研究( ) 数据处理( ) 应用软件 自行开发( ) 名称: 商业软件( ) 名称: 计算资源需求 使用时间 20 年 月 日 至 20 年 月 日 集群名称 深腾6800 使用帐号 CPU数(颗) 计算核心数(个) 内存总量(G) 单节点内存量(G) 计算节点个数 8G内存节点( ) 个 16G内存节点 ( ) 个 计算节点名 机时总量 (CPU小时) 技术支持 需求情况 操作系统( ) 远程环境( ) 并行开发( ) 应用软件使用( )

详细说明: 甲方使用乙方提供的计算机资源,需要支付相应的机时费用,付款方式及协议金额如下: 付费方式预付费()后付费()计费方式0.5元/CPU小时 支付方式 内部转账( )汇款( ) 付费金额 (元/CPU小时) 付费约定 可供选择的付费方式有:①预付费;②后付费; 针对预付费:一次性购入或定期续费。 针对后付费:机时用完后5个工作日内付清款额。 注:国台内部课题组,收取费用?%以发展基金的形式返还课题。 二.权利和义务 1.甲方权利和义务 (1)甲方不得利用乙方提供的计算资源从事与其申请计算内容无关的计算活动,不得从事危害国家安全和其它违反中华人民共和国有关法律法规 的活动。 (2)甲方不得恶意耗费乙方计算资源与网络流量;否则乙方有权单独解除协议,不退回相关费用,由此造成的经济损失及法律责任一律由甲方承担。(3)甲方不得盗用计算主机超级用户、其他用户帐号、资料,否则应承担由此造成的一切经济损失及法律责任。 (4)甲方保证不进行影响主机正常运行的操作,如果发生上述操作,乙方有权终止甲方操作。 (5)甲方不得使用依据本协议租赁所获得的计算资源进行转租等不在本协议约定范围内的业务。否则,乙方有权随时收回为甲方提供的计算资源, 由此造成的经济损失和法律责任均由甲方承担。

大事记-中国天文学会-中国科学院

大事记 (1982-1992) 1982年5月 29 日 中国天文学会四届常务理事会二次会议同意中国天文学会下设“天文图书情报小组”,后改为“天文图书情报出版工作委员会”。 1982年6 月 我国第一座太阳塔在南京大学天文系建成并通过国家鉴定。后于1985年获国家科技进步二等奖。 1982年7月 中国科学院批准在青海德令哈建立亳米波天文观测站(属紫金山天文台),决定与美国ESSCO公司合作研制口径13.7米的毫米波射电望远镜。 1982年8月17日-26 日 中国天文学会派出5人代表团参加在希腊举行的国际天文学联合会第18届大会。会上正式宣布恢复中国天文学会在国际天文学联合会上的地位。 1982年8月28日 苏州青少年天文观测站建立。 1982年11月17日 陕西天文学会成立大会暨第一次会员代表大会在临潼召开。出席会议代表89人,交流学术论文19篇。 1983年4月1日 北京古观象台经修复,重新对外开放。 1983年6月 中国科学院日全食观测队赴巴布亚新几内亚观测 6月 11 日的日全食。 1983年6月27日 中国天文学会“天文学名词审定委员会”成立,张钰哲任主任。 1983年下半年 中国天文学会同意,并经中国科学院和国家科委批准由上海天文台主办的《天文学进展》于1983年下半年开始公开发行。 1983年9月-l984年10月 我国有13架经典仪器,2架多普勒接收机和1架人卫激光测距仪参加了全球性合作项目——国际地球自转联测(MERIT)。 1983年10月27日 国际天文学联合会秘书长R.WEST应中国天文学会邀请访华。 1983年11月21日-26日 国际太阳物理会议在昆明召开,国内代表60余人,外国专家40余人参加了会议。1984年5月21日-26日 中日天文会议“恒星活动和观测技术报告会”在北京召开。 1984年l0月1日-5日 中国天文学会派代表团参加在日本召开的国际天文学联合会第三次亚太地区天文会议。1984 年10月18日-20日 北京天文台密云米波综合孔径射电望远镜通过院级鉴定。后于1985年获得国家科学技术进步二等奖。

中国科学院大气物理研究所

中国科学院大气物理研究所 中国科学院大气物理研究所简介 大气物理研究所前身是1928年成立的原中央研究院气象研究所。现有职工325人,其中科技人员251人,有中国科学院院士7人,研究员46人,副研究员和高级工程师86人,中级科技人员108人。大气所是博士、硕士学位授予单位和博士后流动站建站单位。是中国科学院博士生重点培养基地,国家毕业生就业重点保证单位。现有在学博士生211人,硕士生105人,博士后18人。 大气物理研究所主要研究大气中各种运动和物理化学过程的基本规律及其与周围环境的相互作用,特别是研究在青藏高原、热带太平洋和我国复杂陆面作用下的东亚天气气候和环境的变化机理、预测理论及其探测方法,以建立东亚气候系统和季风环境系统的理论体系及遥感观测体系,发展新的探测和试验手段,为天气、气候和环境的监测、预测和控制提供理论和方法。四个优势创新研究领域是:气候系统动力学和预测理论研究、大气环境和人类生存环境变化动力学和预测理论研究、中层大气与遥感理论和技术研究、中小尺度天气系统与灾害研究。 大气物理研究所拥有的科研部门包括:大气科学和地球流体力学数值模拟国家重点实验室、大气边界层物理与大气化学国家重点实验室、中国科学院东亚区域气候-环境重点实验室、中层大气遥感与探测开放实验室、云降水物理与强风暴实验室、国际气候与环境科学中心、竺可桢--南森国际研究中心、灾害性气候研究与预测中心、中国生态系统研究络大气分中心、季风系统研究中心。另外还设有信息科学中心。 2005年,大气物理所知识创新工程全面推进阶段工作进展顺利,科研工作取得若干重要进展,气候数值模式、模拟及气候可预报性研究项目荣获2005年度国家自然科学二等奖;获得湖北省科技进步一等奖1项,中国人民解放军科学技术进步二等奖1项,中国气象局气象科技奖成果应用奖一等奖 1项,国家教育部科学技术进步二等奖1项。共发表科技论文469篇,其中ScI收录论文126篇,申报专利5项。队伍建设和人才培养工作成效显著,叶笃正荣获国家科学技术最高奖,并作为第一主持人荣获国家科学技术进步二等奖;吕达仁当选为中国科学院院士。一批科研和管理人员以及研究生获得了各类奖项,取得佳绩。制度化、民主化、科学化三化建设继续向前推进。 2005年,申请获得973项目北方干旱化与人类适应1项、973课题2项、863专题3项;获得国家自然科学基金各类项目29项,包括4个重点基金、面上基金23项,杰出A和杰出B各1项;获院方向性项目3项,课题1项。还获

中科院力学所科技成果——高速列车系列技术

中科院力学所科技成果——高速列车系列技术2008年科技部与原铁道部签订了两部联合行动计划即《中国高速列车自主创新行动计划》,启动了国家支撑计划重大项目“高速列车关键技术研究及装备研制”,目标是研制最高运行时速380公里的新一代高速列车。在此背景下,初步形成了目前的高速列车空气动力学科研团队。 团队核心成员主要围绕高速列车气动性能和气动噪声评估、气动优化设计、动模型气动实验技术、列车结构静/动强度评估和设计、气动对车辆运行安全性和舒适性影响等开展研究。涉及空气动力学、结构动力学、车辆动力学、噪声工程、实验技术等多学科系统耦合问题。该团队参与了我国已研制和在研的所有高速列车气动性能评估和气动定型设计,具有较强的团队精神、科研攻关能力,对我国高速列车设计技术提升和高铁产业的发展起到了不可替代的作用。 技术介绍及特点 在国家科技支撑计划重大项目“中国高速列车关键技术研究及装备研制”的资助下,中国科学院力学研究所高速列车团队形成了较完备的高速列车空气动力学设计技术。建立了优化设计方法和动模型实验平台,形成了我国高速列车空气动力学研究体系。其主要特点有: 1、基于压缩空气加速、磁涡流非接触制动、实验快速恢复等发明技术,研制了世界上规模最大、实验速度最高的双向运行高速列车动模型实验平台。同时,研制了具有弹性隔振支撑、加减速段限位和实验段自动切换的车载六分量测力天平,填补了动模型气动力测量的

技术空白。利用该平台,已为我国多种高速列车研制提供了气动实验支撑数据。 2、发展了多目标优化设计方法,构建了高速列车气动优化设计平台。以气动阻力、尾车升力和远场气动噪声为设计目标,通过优化,得到了性能更优的标准动车组气动方案。大西线线路考核试验表明,中国标准动车组具有更加优良的气动性能。 3、本项目发展的高速列车气动优化设计技术,已用于我国CRH380系列、中国标准动车组、更高速度等级高速列车、城际列车等研制,为中国高速铁路发展做出了突出贡献。参与“京沪高速铁路工程”项目获2015年国家科学技术进步特等奖。主持“高速列车空气动力学优化设计及评估技术”项目分别获2016年中国力学科技进步一等奖和2014年第五届中国侨界创新成果贡献奖。参与“设计时速380公里高速动车组技术研发及应用”项目获2012年铁道科技进步特等奖。 应用领域 1、高速列车的气动特性评估 2、高速列车动模型试验 3、高速列车外形优化设计 技术成熟度及应用案例 1、CRH380系列高速列车气动定型设计 针对新一代CRH380A高速列车研制,完成了多种头型方案无横风和不同强度横风运行场景下的气动性能和气动噪声评估;完成了单

国内研究所排名

国内研究所排名.txt两个人吵架,先说对不起的人,并不是认输了,并不是原谅了。他只是比对方更珍惜这份感情。0201 理论经济学 37 87802 黑龙江省社会科学院 64 0202 应用经济学 69 87802 黑龙江省社会科学院 62 0302 政治学 35 87902 上海国际问题研究所 67 87802 黑龙江省社会科学院 64 0303 社会学 31 87802 黑龙江省社会科学院 64 0403 体育学 27 84601 国家体育总局体育科学研究所 71 0504 艺术学 39 84201 中国艺术研究院 77 84202 中国电影艺术研究中心 65 0601 历史学 39 87802 黑龙江省社会科学院 64 0701 数学 62 80002 中国科学院数学与系统科学研究院 94 0702 物理学 57 80008 中国科学院物理研究所 95 82801 中国原子能科学研究院 70 0703 化学 51 80032 中国科学院化学研究所 96 0704 天文学 11 80025 中国科学院国家天文台 80 80022 中国科学院上海天文台 78 0705 地理学 26 80076 中国科学院寒区旱区环境与工程研究所 86 0706 大气科学 8 80058 中国科学院大气物理研究所 84 85101 中国气象科学研究院 71 0707 海洋科学 12 85301 国家海洋局第一海洋研究所 74 85303 国家海洋局第三海洋研究所 68 0710 生物学 64 80100 中国科学院上海生命科学研究院 81 80103 中国科学院动物研究所 77 0712 科学技术史 10 80029 中国科学院自然科学史研究所 77 0801 力学 42 80007 中国科学院力学研究所 88 0802 机械工程 73 80139 中国科学院长春光学精密机械与物理研究所 70 83303 煤炭科学研究总院(上海分院) 64 83801 铁道部科学研究院 63 0803 光学工程 28 80139 中国科学院长春光学精密机械与物理研究所 85 80142 中国科学院西安光学精密机械研究所 85 0804 仪器科学与技术 27 82932 中国航空研究院(304 研究所) 68 0805 材料科学与工程 72 80144 中国科学院金属研究所 92 82913 中国航空研究院(621 研究所) 75 83801 铁道部科学研究院 64 0808 电气工程 26 80148 中国科学院电工研究所 78 83801 铁道部科学研究院 64 0810 信息与通信工程 42 83000 中国电子科技集团公司电子科学研究院 78 0812 计算机科学与技术 71 83801 铁道部科学研究院 63 0815 水利工程 20 82306 南京水利科学研究院 72 0816 测绘科学与技术 11 86001 中国测绘科学研究院 72 0817 化学工程与技术 41 83310 煤炭科学研究总院(北京煤化所) 64 0818 地质资源与地质工程 20 83306 煤炭科学研究总院(西安分院) 67 0819 矿业工程 15 83311 煤炭科学研究总院(北京开采所) 71 83304 煤炭科学研究总院(抚顺分院) 67

中国科学院力学研究所研发成功等离子体生活垃圾气化发电技术

中国科学院力学研究所研发成功等离子体生活垃圾气化发电技术 我国生活垃圾处理方式主要是填埋和焚烧。填埋不仅侵占大量土地,还污染地下水,是不得已而为之的选择。尽管如此,对于土地资源紧张的地区已没有多少场地可供填埋使用。焚烧法虽然减容比高,并能回收能量,但却因二噁英等污染问题遭到公众强烈反对,急需发展新一代的绿色环保、节能降耗的替代焚烧技术。 等离子体是物质第四态,具有许多异于固态、液态和气态的独特的物理化学性质,如温度和能量密度都很高、可导电和发光、化学性质活泼并能加强化学反应等,环保性能优良。通过电弧放电产生高达7000 C的等离子体,将垃圾加热至很高的温度,从而迅速有效地摧毁废物。可燃的有机成分充分裂解气化,转化成可燃性气体,可以用于能源回收,一般称为“合成气”(主要成分是CO+H )。不可 2 燃的无机成分经等离子体高温处理后成为无害的渣体。 采用等离子体处理垃圾是目前减容效果最显著、无害化最彻底、资源化程度最高的绿色环保技术。与焚烧法相比,等离子体技术最突出的优点有: (1)处理温度高:有害物质摧毁更彻底,二噁英前驱体被彻底破坏分解; (2)可采用还原性气氛或部分氧化性气氛,采用电能作为外加热源,二次污染物排放比焚烧低2-3个数量级,裂解底渣是无害的; (3)合成气流量约为焚烧烟气量的5-10%,易于净化,后处理设备尺寸大大减小,节约了投资成本; (4)能源回收效率高,将筛上物制成合成气,后续利用气体发动机发电,发电效率可高达39%,而焚烧法采用蒸汽轮机,发电效率很难超过22%; (5)等离子体系统可快速启动与停机,等离子体核心工艺灵活,可根据不同的处理目的搭配不同的配套系统; (6)整套设备紧凑,占地小,经济效益好。

全国研究所代码 (标准)

研究所代码 代码研究所 80005 中国科学院武汉岩土力学研究所 80007 中国科学院力学研究所 80008 中国科学院物理研究所 80009 中国科学院高能物理研究所 80010 中国科学院声学研究所 80012 中国科学院理论物理研究所 80014 中国科学院上海原子核研究所 80017 中国科学院近代物理研究所 80018 中国科学院国家天文台南京天文光学技术研究所80019 中国科学院国家天文台长春人造卫星观测站80020 中国科学院武汉物理与数学研究所 80021 中国科学院紫金山天文台 80022 中国科学院上海天文台 80023 中国科学院云南天文台 80024 中国科学院国家授时中心 80025 中国科学院国家天文台 80026 中国科学院声学研究所东海研究站 80027 中国科学院渗流流体力学研究所 80028 中国科学院新疆理化技术研究所 80029 中国科学院自然科学史研究所 80030 中国科学院理化技术研究所 80032 中国科学院化学研究所 80033 中国科学院广州化学研究所 80035 中国科学院上海有机化学研究所 80036 中国科学院成都有机化学研究所 80037 中国科学院长春应用化学研究所 80038 中国科学院大连化学物理研究所 80039 中国科学院兰州化学物理研究所 80040 中国科学院上海硅酸盐研究所 80041 中国科学院过程工程研究所 80042 中国科学院生态环境研究中心 80043 中国科学院山西煤炭化学研究所 80045 中国科学院福建物质结构研究所 80046 中国科学院青海盐湖研究所 80053 中国科学院兰州地质研究所 80054 中国科学院古脊椎动物与古人类研究所 80055 中国科学院南京地质古生物研究所 80057 中国科学院测量与地球物理研究所 80058 中国科学院大气物理研究所 80060 中国科学院地理科学与资源研究所 80061 中国科学院南京地理与湖泊研究所

关于中国科学院的基本情况和今后工作任务的报告

标题: 关于中国科学院的基本情况和今后工作任务的报告 责任者 作者: 郭沫若 播发日期: 1954-01-28 出处 选自《新华月报》1954年第4号 文献资料 文献文件 选自《新华月报》1954年第4号 中华人民共和国成立以来,中国的科学研究工作,在中央人民政府的领导下,经过全体科学工作者的努力,已经为科学研究有计划地服务于国家建设,为我国科学事业的进一步发展创造了一定的条件。对于中国科学院来说,今天也已经有可能从现有基础上出发,根据国家地过渡时期的总路线和总任务的要求,提出今后工作的方针和任务。 中国科学院的大部分研究所是在原来中央研究院和北平研究院等科学机构的基础上建立起来的。1952年以前,科学院主要进行了团结科学家和调整机构的工作,使过去机构重叠、人力分散和思想混乱的情况,得到了改善。1952年接受了东北人民政府工业部所移交的东北科学研究所及其大连分所,并会同从上海、北京迁往东北的其他研究机构,组成东北分院,加强了科学院技术科学方面的力量。随着革命事业在各个方面的胜利,特别是在各种社会改革运动和抗美援朝的胜利,随着工农业生产的恢复和发展,我国的科学事业同样也起了根本的变化。过去被反动的国民党政权当作装饰品的科学研究机构,已经转变为人民事业的一部分了。绝大科学家都已经参加了“镇反”、“三反”、抗美援朝和思想改造学习运动,并热烈响应学习苏联先进科学的号召,部分科学家曾经参加“土改”、“五反”等社会改革运动,同时还参加了对自然资源调查、随军入藏和反对细菌战等工作,因而大大地提高了他们的政治觉悟。在科学研究工作本身,也完成了一些有价值的科学研究题目。 1953年9月底的统计,科学院共有36个科学研究机构(25个研究所,4个独立的研究室,4个研究所的筹备处和天文台、仪器馆、菌种保藏委员会),其中15个在北京,13个在华东,8个在东北。全院共有1725个专业的科学研究人员,其中副研究员以上的高级研究人员347人。4年中,在科学研究方面主要有下面一些成绩:(1)在国家自然条件调查与资源勘察方面:配合地质部进行了大规模的地质调查与勘探工作,扩大了某些矿区,提高了矿藏的估计储量,如内蒙、大冶的铁矿,东北、西北的煤矿,甘肃的有色金属矿等都有新的发现;与气象局合作改进了短期天气预报、提高了准确度,并开始中期天气预报,对国防、农田水利起了相当大的作用,又会同农、林等部门进行了植物、土壤与鱼类的调查。(二)在配合工农业生产方面:球墨铸铁的试制成功,在机械工业上提供了成本低、性能好的新的金属材料,人造橡胶的合成已有结果,现在继续研究改进其品质;甲苯的提炼与试制的成功,有利于解决国防工业重要原料生产的问题;纸浆及各种特效药物的试制等,对有关的工业生产都有一定的作用;除草防蚜的办法,已在华北主要植棉区推广;大豆根瘤菌的分离与选择,鱼病的防治,对提高农业与水产产量方面都有所贡献。(三)在自然科学基本理论研究方面:物理学的研究上,在原子核物理方面及其他方面进行了一些工作;数学的研究上,修订出版了堆垒数论;化学的研究上,解决了橘霉素结构的立体化学问题;生物学的研究上,关于家蚕混精杂交实验的结果给米丘林遗传学说提供了新的论证。(四)社会科学

中科院848植物生理学复习资料

第一章植物细胞的结构与功能 1、细胞膜成分:由蛋白质、脂类、糖、水和无机离子组成。 ○1膜脂主要是复合脂类,包括磷脂、糖脂、硫脂和固醇。 ○2膜蛋白分为两类:外在蛋白(水溶性)和内在蛋白(疏水性)。 ○3膜糖,细胞膜中的糖类大部分与膜蛋白共价结合,少部分与膜脂结合,分别形成糖蛋白和糖脂。 ○4水,植物细胞膜中的水大部分是呈液晶态的结合水 ○5金属离子在蛋白质与脂类中可能起盐桥的作用 2、细胞膜的功能: ○1分室作用:细胞的膜系统不仅把细胞与外界环境隔开,而且把细胞内的空间分割,使细胞内部区域化,即形成各种细胞器,从而使细胞的代谢活动“按室进行” ○2代谢反应的场所:细胞内的许多生理生化过程在膜上有序进行 ○3物质交换:质膜的另一个重要特性是对物质的透过具有选择性,控制膜内外进行物质交换 ○4识别功能:质膜上的多糖链分布于其外表面,似“触角“一样能够识别外界物质,并可接收外界的某种刺激或信号,使细胞做出相应的反应 3、细胞壁组成:是由胞间层初生壁以及次生壁组成。 植物细胞壁的成分中,90%左右是多糖,10%左右是蛋白质、酶类以及脂肪酸等。多糖主要是纤维素、半纤维素和果胶类,次生细胞壁中还有大量木质素。 4、细胞壁的功能:○1维持细胞形状,控制细胞生长○2物质运输与信息传递○3防御与抗性○4代谢与识别功能 第二章植物的水分生理 1、束缚水:在细胞中被蛋白质等亲水性生物分子组成的胶体颗粒或渗透物质所吸附不能自由移动的水。 2、自由水:是指不被胶体颗粒或渗透物质所吸附或吸附力很小而能自由移动的水。 3、水势:就是每偏摩尔体积水的化学势。单位为N·m-2 Ψw=Ψs+Ψp+Ψm+Ψg(Ψw--水势;Ψs--细胞液渗透势;Ψp--细胞壁对内容物产生的压力势;Ψm—亲水胶体对水分子的吸附产生的衬质势;Ψg--重力势) 4、主动吸水的动力是根压,被动吸水的动力是蒸腾拉力。但无论哪种方式,吸水的基本动力仍然是细胞的渗透作用。 5、影响根系吸水的因素: 1)根系自身因素:根系的有效性决定于根系的范围和总表面积以及表面的透性,而透性又随根龄和发育阶段而变化2)土壤因素: ○1土壤水分状况:当土壤含水量下降时,土壤溶液水势亦下降,土壤溶液与根部之间的水势差减少,根部吸水减慢,引起植物体内含水量下降 ○2土壤通气状况:在通气良好的土壤中,根系吸水能力强;土壤透气状况差,吸水受抑制(土壤通气不良造成根系吸水困难的原因:1根系环境内O2缺乏,CO2积累,呼吸作用受到抑制,影响根系主动吸水2长时期缺氧下根进行无氧呼吸,产生并积累较多的乙醇,根系中毒受害,吸水更少3土壤处于还原状态,加之土壤微生物的活动,产生一些有毒物质,这对根系生长和吸收都是不利的) ○3土壤温度:土壤温度不但影响根系的生理生化活性,也影响土壤水的移动性。因此,在一定的温度范围内,随土温提高,根系吸水加快;反之,则减弱(低温影响根系吸水的原因:1原生质黏性增大,对水的阻力增大,水不易透过生活组织,植物吸水减弱2水分子运动减慢,渗透作用降低3根系生长受抑,吸收面积减少4根系呼吸速率降低,离子吸收减弱,影响根系吸水高温加速根的老化过程,使根的木质化部位几乎到达根尖端,根吸收面积减少,吸收速率也减少) ○4土壤溶液浓度:土壤溶液浓度过高,其水势降低。若土壤溶液水势低于根系水势,植物不能吸水,反而要丧失水分 6、蒸腾速率:指植物在一定时间内,单位叶面积上散失的水量,常用g·dm-2·h-1表示 蒸腾比率:指植物在一定时间内干物质的积累量与同期所消耗的水量之比 蒸腾系数:指植物制造1g干物质所消耗的水量(g) 第三章植物的矿质营养 1、植物必须元素的3条标准:○1缺乏该元素,植物生长发育受阻,不能完成其生活史○2缺乏该元素,植物表现出专一的病症,这种却素病症可以加入该土壤元素的方法预防或恢复正常○3该元素在植物营养生理上能表现直接的效果,而不是由于土壤的物理、化学、微生物条件的改善而产生的间接效应。 2、植物细胞吸收矿质元素的方式:被动吸收、主动吸收和胞饮作用

中科院力学所科技成果——利科岩土工程分析软件

中科院力学所科技成果——利科岩土工程分析软件技术介绍及特点 利科(LinkFEA)岩土工程分析软件是针对水利水电工程的渗流、堤坝的应力变形与结构安全性和边坡的稳定性计算分析而自主开发的有限元软件系统。包括渗流计算模块LinkFEA-Seepage、渗流与应力耦合计算模块LinkFEA-Stress和基于有限元应力计算结果的边坡稳定分析模块LinkFEA-Slope三部分。该软件用Fortran语言开发,经历了近20年的水利水电工程分析应用与软件改进扩展,具有计算收敛性好、计算结果可靠等优点。能进行复杂工况下的地下水三维渗流计算、堤坝三维渗流与应力变形耦合计算、堤坝与边坡二维稳定计算。 应用领域 大渡河瀑布沟水电站

澜沧江如美水电站 主要应用于水利水电工程的渗流分析、堆石坝的应力变形与结构安全性分析和边坡稳定分析。近20年来,已经在大渡河瀑布沟、大渡河长河坝、大渡河双江口、澜沧江如美4个里程碑级水电站工程和雅鲁藏布江加查、澜沧江黄登、大渡河硬梁包、黑水河毛尔盖、拉萨河扎雪、象泉河阿青、三岔河引子渡等10多个水电站工程设计的关键问题研究中应用。现正在用于澜沧江如美、金沙江拉哇和雅鲁藏布江米林等超大水电站的设计研究中。该软件也曾应用于上海洋山港码头的研究和部分工程的地下水环境评价分析。 技术成熟度及应用案例 LinkFEA软件的核心计算功能经过若干考题考核,在水利水电行业有近20年的应用,在水电站渗流控制、堆石坝结构设计和边坡稳定评价与边坡工程设计中,其计算分析成果,已经作为工程设计的依据,得到水电行业设计与审查部门的认可。依据工程分析的需要,软件的功能还在不断得到扩充。但软件本身在友好交互界面、建模和后

中国科学院理化技术研究所科研物资采购管理暂行办法

中国科学院理化技术研究所 科研物资采购管理暂行办法 为规范理化所科研物资采购管理,严格执行国家相关法规和管理制度,根据财政部和中国科学院有关事业单位国有资产管理实施办法以及政府采购的相关规定,结合我所实际情况特制订《理化所科研物资采购管理暂行办法》。 一、科研物资采购范围 科研物资采购范围包括科研材料与科研设备等。 科研材料主要指用于科研活动直接需要和间接需要的不纳入固定资产管理的各类物资; 科研设备包括整机设备、自行研制设备、委托加工设备等。 二、科研物资采购经费 科研物资采购经费包括课题项目经费、所公用经费以及研究所其它经费等。 三、科研物资采购流程 科研物资采购流程包括采购计划报批、确定采购方案、实施采购、验收入库等环节。 1.采购计划报批:

凡属政府采购范围内的科研物资,采购部门须在采购计划报批之前,根据上级部门的统一要求提前跨年度申报预算(具体申报时间以所资产办下发通知为准)。 采购3万元(含)以上科研物资,采购部门须填报《理化所科研物资采购审批表》(附件1)。其中主管业务部门须依据项目任务书或科研活动的需要对物资采购申请进行严格把关。 其中对于采购金额在50万元(含)以上的进口设备,采购部门实施采购前,还需通过资产办组织所外专家进行评审,并上报财政部审批。 2.确定采购方案: 采购部门在完成《理化所科研物资采购审批表》逐级审批后,即可进入采购方案的论证阶段。须组建采购小组,由采购小组组织并通过调研和论证等方式确定采购方案,填报《理化所科研物资采购方案论证报告》(附件2)。 对于单项或批量采购金额一次性在50万元(含)以上的科研物资,须执行政府采购相关规定。 对于单项或批量采购金额一次性在120万元(含)以上的科研物资,须采用公开招标方式(由资产办组织实施),附招投标过程相关文件与材料。 对于委托加工与研制的科研物资,附选定供货商的资质证明等(有效期限内的营业执照、生产许可证复印件)。

中国科学院大气物理研究所

中国科学院大气物理研究所 2006年博士生入学试题 《大气化学》(满分100) 一、解释下列各对名词(每组2分,共计40分) 1)干沉降和湿沉降2)光学等效直径和空气动力学等效直径3)气溶胶及 PM 10、PM 2.5 4)热化学平衡和光化学平衡5)原生粒子和次生粒子6)元素 和同位素7)细粒子和硫酸盐8)反应物和前体物9)自由基和链式反应10)化学反应速率常数和平衡常数11)雾和光化学烟雾12)粒子数浓度和质量浓度13)pH 值和酸雨14)光化学反应和量子效率15)温室气体和温室效应16)人工降雨和凝结核17)爱根核和云18)酸雨和酸沉降19)大气寿命和半衰期20)均相化学反应和非均相化学反应 二、简答题(每题10分,共计20分) 1.写出《京都议定书》明确要求发达国家减少排放的6种(类)人造物质名称和 分子式,并从它们大气化学降解速率和过成的角度说明必须减少向大气排放这些物质的原因。(10分) 2.N 2 O是一种重要的温室气体,主要从土壤排放到大气,消耗于平流层。当前国 际上测量土壤N 2 O排放普遍使用的方法是用一定体积的箱子罩在一定面积的土壤 上,通过测量箱内N 2 O浓度随时间的变化率,从而计算其界面交换通量(单位时 间单位面积的质量)。设在两地分别测量土壤N 2 O的排放,采样箱参数和测定值如下表,请问A、B哪个排放通量大?(提示:使用理想气体状态方程,0 ℃=273.5 K ) (10分) (t0浓度是指开始罩箱时的N2O浓度;t1是指开始罩箱后的t1时刻N2O浓度) 三、述题(40分,每题20分) 1.目前城市大气中两种最重要的O 3前体物是VOC和NOx(NO+NO 2 ),下图显示的是 第1页共2页

中科院所有研究所

北京市 数学与系统科学研究院 力学研究所 物理研究所 高能物理研究所 声学研究所 理论物理研究所 国家天文台 渗流流体力学研究所 自然科学史研究所 理化技术研究所 化学研究所 过程工程研究所 生态环境研究中心 古脊椎动物与古人类研究所大气物理研究所 地理科学与资源研究所 遥感应用研究所 空间科学与应用研究中心 对地观测与数字地球科学中心地质与地球物理研究所 数学科学学院 物理学院 化学与化工学院 地球科学学院 资源与环境学院 生命科学学院 计算机与控制学院 管理学院 人文学院

外语系 工程管理与信息技术学院 材料科学与光电技术学院 电子电气与通信工程学院 华大教育中心 动物研究所 植物研究所 生物物理研究所 微生物研究所 遗传与发育生物学研究所 心理研究所 计算技术研究所 工程热物理研究所 半导体研究所 电子学研究所 自动化研究所 电工研究所 软件研究所 国家科学图书馆 微电子研究所 计算机网络信息中心 科技政策与管理科学研究所 北京基因组研究所 青藏高原研究所 光电研究院 国家纳米科学中心 信息工程研究所 空间应用工程与技术中心(筹)天津市 天津工业生物技术研究所

河北省 渗流流体力学研究所 遗传与发育生物学研究所农业资源研究中心山西省 山西煤炭化学研究所 辽宁省 大连化学物理研究所 沈阳应用生态研究所 沈阳计算技术研究所 金属研究所 沈阳自动化研究所 吉林省 长春人造卫星观测站 长春应用化学研究所 东北地理与农业生态研究所 长春光学精密机械与物理研究所 上海市 上海应用物理研究所 上海天文台 声学研究所东海研究站 上海有机化学研究所 上海硅酸盐研究所 上海生命科学研究院 上海药物研究所 上海微系统与信息技术研究所 上海光学精密机械研究所 上海技术物理研究所 上海巴斯德研究所

第六届国际流体力学会议简介 - 中国科学院力学研究所机构

第41卷第5期力学进展Vol.41No.5 2011年9月25日ADVANCES IN MECHANICS Sep.25,2011 第六届国际流体力学会议简介 李家春1符松2詹杰民3 1中国科学院力学研究所,北京100190 2清华大学航天航空学院,北京100084 3中山大学应用力学与工程系,广州510275 由中国力学学会主办,中山大学承办的第六届国际流体力学会议(The6th International Con-ference on Fluid Mechanics,ICFM6)于2011年6月30~7月3日在广州举行.来自中国、挪威、俄罗斯、日本、美国、英国等19个国家的近200名代表参加了会议.参会嘉宾有我国流体力学专家周恒院士、李家春院士、符松教授、佘振苏教授、林建忠教授、沈清教授、刘桦教授、曹志先教授、香港的W.Shyy教授及流体力学专业委员会诸委员,还有来自日本的M.Yamamoto教授、挪威的John Grue教授、俄罗斯的V.V.Kozlov教授、A. A.Maslov教授、美国的E.S.Oran教授、英国的N.D.Sandham教授等等. 6月30日,国际流体力学会议科学委员会主席周恒院士主持并召开了会议的科学委员会、学术委员会联合会议,就第六届国际流体力学会议的学术质量以及如何办好第七届国际流体力学会议的若干问题进行了讨论.大会开幕式在7月1日上午举行,清华大学符松教授主持,会议主席李家春院士致开幕辞.李院士代表会议组织者向与会代表表示欢迎.在回顾过去ICFM系列会议对促进我国流体力学发展的历史贡献时,他向会议的奠基人以及老一代的流体力学家表达了深深的敬意.展望未来,他指出当前流体力学在传统和交叉前沿领域发展迅速,必将在空天海洋、能源环境、人类健康、材料信息工程的应用中发挥重要作用.随后,中山大学校长助理魏明海教授、美国著名流体力学专家、ASME代表T.E.Tezduyar教授、上海大学常务副校长王宽城基金会代表周哲玮教授分别发表了热情洋溢的讲话,并预祝大会圆满成功.会议期间,中国科学院院士、中山大学校长许宁生教授专程看望了与会专家和嘉宾,并与大家进行了交流. 会议围绕流动转捩与湍流、空气动力学、水动力学、工业及环境流体力学、生物力学、磁流体动力学和化学流体力学、多相流及多孔介质中的流动、微流体力学等8个主题,组织了4场大会学术报告和15场分会学术交流,交流充分,讨论异彩纷呈.来自全球19个国家和地区,150多位代表做了精彩的报告.会议就多相流体动力学及其在航天器的应用、条带破裂与壁湍流、内波破碎与强底部流动、高速边界层的流动控制、流动分离泡的物理机理、反应流的随机性与动力学、含沙水流多尺度运动理论及其应用、降落伞群的流体结构相互作用模拟等邀请了国内外著名学者作了8个大会报告和12个邀请报告.这8个大会邀请报告为: (1)香港科技大学W.Shyy教授的“Multiphase ?uid dynamics for spacecraft applications”. (2)美国海军计算物理与流体力学实验室E. S.Oran教授的“Stochasticity and dynamics of high-speed reactive?ows”. (3)俄罗斯Khristianovich理论与应用力学研究所A.A.Maslov教授的“High speed boundary layer stability and control”. (4)美国莱斯大学T. E.Tezduyar教授的“Fluid-structure interaction modeling of ringsail parachute clusters”. (5)挪威奥斯陆大学John Grue教授的“Inter-nal wave induced breaking and strong bottom cur-rents”. (6)日本东京都大学M.Asai的“Streak break-

中科院国家天文台项目聘用人员聘用待遇审核备案表

中科院国家天文台项目聘用人员聘用待遇审核备案表

例一: XXXXXX创新团组,首席研究员李四,负责主持国家“973”项目“XXXXXX”(项目执行期:2007.01.01-2011.12.31)。需聘用张三(男,1968年6月出生,博士学位,一级副教授(即专业技术5级),来前单位为清华大学,非本台事业编制人员,住址XXXXXXXX,身份证号码XXXXXXXX,中国国籍),负责承担国家“973”项目“XXXXXX”中的XXXXXX工作,聘用期限为1年,自2009年1月1日开始。 根据被聘人员张三承担工作的重要性和工作量,李四与张三协商确定:李四以“创新项目聘用”的方式聘用张三,聘用待遇为7370元/月,其中“基本工资和各类补贴”为3170元/月,“岗位津贴”为2400元/月,“绩效津贴”为1000元/月,“其它应付费用”为800元/月(房租补贴)。 按《中国科学院国家天文台关于规范各类项目聘用人员聘用待遇的有关规定》,“绩效津贴”以外的各类聘用待遇(合计6370元/月)由李四的项目/课题经费中支出,1000元/月的“绩效津贴”应由李四可支配的绩效津贴中支出。现李四决定,“绩效津贴”中的400元/月由其可支配的绩效津贴中支出,余下的600元/月由其项目/课题经费中支出(需额外上交600元/月的管理费)。椐此,形成如下结果: 1、台负责发放张三6970元/月的聘用待遇(“基本工资和各类补贴”3170元/月+“岗位津贴”2400元/月+“其它应付费用”800元/月+“绩效津贴”600元/月); 2、李四负责发放张三余下的400元/月的“绩效津贴”; 3、李四上交台里项目/课题经费(课题号:XXXXXXXX)7570元/月(“基本工资和各类补贴”3170元/月+“岗位津贴”2400元/月+“其它应付费用”800元/月+“绩效津贴”600元/月+“管理费”600元/月)。

中科院各大研究所

中国科学院数学与系统科学研究院 *中国科学院数学研究所 *中国科学院应用数学研究所 *中国科学院系统科学研究所 *中国科学院计算数学与科学工程计算研究所 中国科学院物理研究所 中国科学院理论物理研究所 中国科学院高能物理研究所 中国科学院力学研究所 中国科学院声学研究所 中国科学院理化技术研究所 中国科学院化学研究所 中国科学院生态环境研究中心 中国科学院过程工程研究所 中国科学院地理科学与资源研究所 中国科学院国家天文台 *中国科学院云南天文台 *中国科学院乌鲁木齐天文工作站 *中国科学院长春人造卫星观测站 *中国科学院南京天文光学技术研究所 中国科学院遥感应用研究所 中国科学院地质与地球物理研究所 中国科学院古脊椎动物与古人类研究所 中国科学院大气物理研究所 中国科学院植物研究所 中国科学院动物研究所 中国科学院心理研究所 中国科学院微生物研究所 中国科学院生物物理研究所 中国科学院遗传与发育生物学研究所 *中国科学院遗传与发育生物学研究所农业资源研究中心(原中国科学院石家庄农业资源研究所) 中国科学院计算技术研究所 中国科学院软件研究所 中国科学院半导体研究所 中国科学院微电子研究所 中国科学院电子学研究所 中国科学院自动化研究所 中国科学院电工研究所 中国科学院工程热物理研究所 中国科学院空间科学与应用研究中心 中国科学院自然科学史研究所 中国科学院科技政策与管理科学研究所

中国科学院光电研究院 北京基因组研究所 中国科学院青藏高原研究所 国家纳米科学中心 院直属事业单位(京外) 中国科学院山西煤炭化学研究所 中国科学院沈阳分院 中国科学院大连化学物理研究所 中国科学院金属研究所 中国科学院沈阳应用生态研究所 中国科学院沈阳自动化研究所 中国科学院海洋研究所 青岛生物能源与过程研究所(筹) 烟台海岸带可持续发展研究所(筹) 中国科学院长春分院 中国科学院长春光学精密机械与物理研究所 中国科学院长春应用化学研究所 中国科学院东北地理与农业生态研究所 *中国科学院东北地理与农业生态研究所农业技术中心(原中国科学院黑龙江农业现代化研究所) 中国科学院上海分院 中国科学院上海微系统与信息技术研究所 中国科学院上海技术物理研究所 中国科学院上海光学精密机械研究所 中国科学院上海硅酸盐研究所 中国科学院上海有机化学研究所 中国科学院上海应用物理研究所(原子核研究所) 中国科学院上海天文台 中国科学院上海生命科学院 *生物化学与细胞生物学研究所 *神经科学研究所 *药物研究所 *植物生理生态研究所 *国家基因研究中心 *健康科学研究中心 *中国科学院上海生命科学信息中心 *营养科学研究所 *中国科学院上海生物工程研究中心 中国科学院上海巴斯德研究所(筹) 中国科学院福建物质结构研究所 中国科学院城市环境研究所 中国科学院宁波材料技术与工程研究所(筹) 中国科学院南京分院

相关主题
文本预览
相关文档 最新文档