当前位置:文档之家› 矿物掺合料对高性能混凝土碳化性能的影响

矿物掺合料对高性能混凝土碳化性能的影响

矿物掺合料对高性能混凝土碳化性能的影响
矿物掺合料对高性能混凝土碳化性能的影响

第六届全国土木工程研究生学术论坛 清华大学 2008

———————————————

本文为国家自然科学基金重点项目。作者简介:李春晖(1983—),女,湖南衡阳人,硕士研究生,从事混凝土结构耐久性研究 (E-mail: hanshaoyuan0325@https://www.doczj.com/doc/ac2348848.html,) ;牛荻涛(1964—),男,陕西西安人,教授,博士生导师,从事混凝土结构耐久性研究.

矿物掺合料对高性能混凝土碳化性能的影响

李春晖,牛荻涛

( 西安建筑科技大学土木工程学院,陕西 西安 710055)

摘 要:工程实际证明,采用两种或两种以上矿物原料复合,并掺入各种改性剂,可以达到优势互补,比单一品种更有利于改善混凝土综合性能。本文研究了粉煤灰、矿渣、硅粉各自的二次水化作用,及其对高性能混凝土孔结构的影响,探讨了孔结构对混凝土抗渗性能的影响,分析了矿物掺合料复掺时对混凝土碳化性能的影响。结果表明:单掺粉煤灰、矿渣对混凝土抗碳化性能是没有明显改善,但是当粉煤灰掺量不大于40%时,与矿渣粉复合使用,可以改善混凝土的抗碳化性能。单掺硅粉在早期养护好的情况下,能稍微的改善碳化深度,但是若早期养护不好,则会增加碳化深度。当硅粉与粉煤灰、矿渣复合使用时,则能充分利用其高抗腐蚀性和高抗渗性,提高混凝土的抗碳化性能。

关键词:矿物掺合料;二次水化;碳化;孔隙率;渗透性

Effect of Mineral Admixture on Carbonation of High-performance Concrete

LI Chunhui , NIU Ditao

(Xi’an University of Architecture & Technology , College of Civil Engineering , Xi’an 710055 , China)

Abstract: In the present paper, quadratic hydration of fly ash (FA) ,blast furnaced slag (BS) and silica fume (SF) , the effect of which on pore of concrete , and effect of pore of concrete on permeability and carbonation is reseached. The results indicate that the properties are not improved obviously when single mineral is incorporated,however, properties of concrete such as anti-carbonation will be better , if two or more mineral admixture mixed tegether because of their complement each other. Key words: mineral; quadratic hydration; carbonation ; permeability;porosity

1 前言

近年来,由于掺合料具有独特的优越性:不仅能提高材料的力学性能、耐久性以及环境友好性,而且可以节约能源、资源,减少造成温室效应的气体排放,它们在工程中的应用越来越广泛. 工程实际证明,采用两种或两种以上矿物原料复合,并掺入各种改性剂,可以达到优势互补,比单一品种更有利于改善混凝土综合性能。

2 掺和料二次水化及其对高性能混凝土孔结构的影响

混凝土是一种多相的多孔材料,在拌制混凝土的过程中, 水占据着一定的空间,随着混凝土的凝结,水化反应后多余的水分会蒸发,离开原来所占的空间,形成一定数量的微孔或毛细管。这种空间越大,CO 2渗透的通道将越畅通,从而使混凝土碳化的速度加快。

许多学者通过试验证明,随着水化龄期的发展,掺有矿物掺合料的水泥石中有害的大孔减少,无害或者少害的小孔或者微孔增多,即孔结构得到改善:水泥石的渗透性随空隙率的降低而下降,渗

透性很低的混凝土能抵抗环境中侵蚀性介质的侵入,因而可有高耐久性。

一般将混凝土中的孔区分为未被水化产物所填充的细孔和水化产物本身固有的孔(凝胶孔、层间孔等),随水化的进行,水化产物数量增加,毛细孔数量不断减少,而凝胶孔数量增加。因此分析矿物掺合料对孔结构的影响时需要考虑水化产物的数量。在水胶比相同的条件下,混凝土中的孔隙率随水化产物数量的增加而降低,但是在普通混凝土中总含有未水化的颗粒和大小的毛细孔。在矿物掺合料大掺量的情况下,体系中水化产物数量显著减少,使孔隙率提高,矿物掺合料的应用能够使毛细孔对渗透性有较大影响。

2.1 粉煤灰二次水化及其对高性能混凝土孔结构的影响

粉煤灰中含有大量的玻璃体球形颗粒,内部结构致密,与其它多孔结构的活性混合材料相比,内比表面积较小,吸附水的能力较小,这样在后期由于混凝土失水所留下的孔隙较小。

粉煤灰由于密实填充作用及二次水化反应,可以

提高混凝土密实程度,粉煤灰等量替代水泥后,与相同水灰比的空白混凝土相比,混凝土孔隙率明显下降,特别是大孔孔隙率的降低幅度尤为显著。但随着粉煤灰掺量增加,混凝土大孔孔隙率略有增加,其原因可能是由于粉煤灰掺量增加,早龄期时混凝土中总的水化产物相对减少,混凝土总孔隙率降低主要由于粉煤灰的密实填充作用,但不能有效堵塞90%相对湿度下的失水通道。预计,随着养护龄期的延长,粉煤灰混凝土随着水泥水化和粉煤灰的二次水化作用的进一步进行,以及粉煤灰的微集料效应,将能有效减少混凝土中大孔含量,进一步改善混凝土的孔结构。

在新拌混凝土中,粉煤灰微珠既有独特的“滚珠轴承”和“解絮”作用,又能与水泥和细砂共同发挥混凝土颗粒级配中的微集料充填作用,其充填的特点是活性充填,即粉煤灰活性颗粒的水化反应,消耗大量的易被腐蚀的氢氧化钙,使粉煤灰颗粒与水泥浆体的界面胶合,并对水泥盗用体和骨料的界面起致密作用。水泥的致密作用减少了混凝土的毛细孔通道,从而能显著延缓二氧化碳等在混凝土中的扩散,这对混凝土耐久性非常重要。

2.2 矿渣二次水化及其对高性能混凝土孔结构的影响

有资料表明,普通硅酸盐水泥在水化7天时,生成的Ca(OH)2含量最高,加入矿渣后可降低水泥石中的Ca(OH)2含量,使之转化为有效的水化产物,而磨细矿渣粉更为有效,因为磨细矿渣能迅速吸收水泥熟料矿物水化生成的Ca(OH)2,即矿渣与硅酸盐水泥熟料矿物生成的氢氧化钙发生反应,生成C-S-H 和钙矾石,降低溶液中的氢氧化钙浓度,又加速了熟料矿物的分解,这有利于改善水泥石的微观结构,提高水泥石的性能。磨细矿渣微粉加人混凝土后,能部分地减少水泥石内部的孔隙,阻断CO2进入的毛细通道,使得混凝土整体结构密实,可以改善部分孔结构。

2.3 硅粉二次水化及其对高性能混凝土孔结构的影响

与粉煤灰及矿渣相比,硅灰具有较高的细度和火山灰活性,其密实填充效应和火山灰效应更为显著,硅灰对混凝土孔隙率影响更大。此外,硅灰对混凝土大孔孔隙率的降低尤为显著,且随硅灰掺量增加,没有出现类似粉煤灰掺量增加时混凝土中大孔孔隙率增长的现象,这与硅灰活性较高,可以较快发生二次水化反应有关。

2.4 掺和料复掺二次水化及其对高性能混凝土孔结构的影响

在水泥净浆中双掺粉煤灰和矿渣,虽然两者的活性相差较大,但二者的化学成分具有互补性。在水泥石的后期发展上,主要是水泥熟料水化析出的Ca(OH)2,通过液相扩散到粉煤灰球形玻璃体表面,促使粉煤灰发生“二次水化反应”,表现出“叠加效应”。“叠加效应”产生是有条件的:一是细度,二是最佳比例。同时掺入粉煤灰和矿渣一方面填充了水泥水化和硬化过程中残留的孔隙,另一方面,复合掺合料中的细微颗粒均匀分散到水泥浆体中会成为大量水化产物的核心,随着水化过程的进展,这些细微颗粒及其水化产物填充了水泥石的空隙,从而改善了水泥浆体的孔结构。

硅灰与粉煤灰复合时,混凝土总孔隙率和毛细孔隙率较单掺混凝土能进一步降低,这与C+FA+SF三元胶凝体系的密实填充性能改善和复合胶凝效应相关,起到了一定优势互补的作用。相对单掺粉煤灰的混凝土而言,硅灰与粉煤灰双掺混凝土孔隙率下降,毛细孔孔结构进一步改善,说明粉煤灰与硅灰复合双掺取代部分水泥起到一定的优势互补作用。

磨细的矿渣粉和硅灰双掺,与水泥构成三元复合胶凝材料时可以改善混凝土性能。当掺合料的活性组分与水泥水化生成的Ca(OH)2作用时,可以生成低碱度的水化产物同时改善凝胶体的质量,由于矿物掺合料的作用,硬化水泥浆体的密实度提高,从而增强混凝土的抗渗透性能。

3 孔结构对混凝土抗渗性能及碳化的影响

混凝土的渗透性随总孔隙率的增加而提高,但是两者之间的关系并不是简单的线性关系。总孔隙率高的混凝土,渗透性不一定就高,如图1[1],因为孔隙率相同的混凝土的孔径分布不一定相同,孔的连通情况也不相同。总孔量与孔径间隔存在一定的微分关系[2],若以K表示孔的总量,以T表示孔径间隔,以r 表示孔半径,则:

K

T

K d r

?

?

=∫(1)平均孔径是混凝土孔结构的一个重要指数,表征了孔结构的总体情况。文献[3]认为平均孔径可以作为混凝土渗透性能的主要参数。文献[4]研究了矿物掺和料对渗透性能的影响,认为矿物掺和料降低了平均孔径,从而可以提高混凝土的抗渗透性。

图1 混凝土的渗透性示意图

因此,在其它情况相同的条件下,随着混凝土中孔径减小,总孔量相应减少,渗透性降低。矿物掺合料降低了混凝土中的平均孔径即可看作降低了混凝土中的所有孔径,进而使其渗透性降低。

4 混凝土碳化性能与孔结构的关系

孔隙率和混凝土碳化深度存在线性关系结果[5],如图2所示。在相同条件下,混凝土孔隙率增大,CO2气体在混凝土中的扩散速度增加,混凝土的碳化深度增大。

蒸发水法测孔隙率

图2 混凝土碳化深度与其孔隙率之间的关系

5 矿物掺合料复掺时对混凝土碳化性能的影响

在粉煤灰和矿渣取代水泥总量一定的前提下,粉煤灰所占比重越大则混凝土的碳化的深度越大,这表明粉煤灰对碳化起到劣化作用,而矿渣对改善混凝土碳化起到积极作用。这是由于当水泥中的CaO含量越高时,则可吸收的CO2的量越多,碳化速率就越慢。由于粉煤灰与水泥熟料中水解时产生的Ca(OH)2结合,从而降低了混凝土孔隙中的液相碱度,加快了碳化的速度。而在粉煤灰、矿渣和硅粉同时掺入混凝

土中取代砂时,碳化深度比空白混凝土碳化深度明显

减小。

6 结论

从上面分析可以看出矿物掺合料单掺不一定能改

善混凝土的抗碳化能力,甚至在早期对水泥硬化浆体

的孔结构有一定的劣化作用,但是在后期,双掺矿物

掺合料能在一定程度上改善混凝土的孔结构,如矿渣

与粉煤灰双掺时,均能明显降低水泥浆体中的中等孔

径并改善水泥石的孔径分布,尤其是三掺能将混凝土

中的大孔变成小径的孔或者是无害的孔,所以能改善

混凝土的抗碳化能力,进而提高混凝土结构的耐久

性。

参考文献:

[1] 刘军刑锋董必钦混凝土孔结构和渗透性能关系研究混

凝土 2007 218(12):35-37.

[2] 姚燕王玲田培高性能混凝土北京:化学工业出版社

2006.281-283.

[3] Yang C C,Cho S W,Wang L C.The relationship between pore

structure and chloride diffusivity from ponding test in

cement-based materials[J]. Materials Chemistry and

Physics,2006,100(2-3):203-221.

[4] Soh Y S,So H S.Resistance to chloride ion penetration and

pore structure of concrete containing pozzolanic

admixtures[J].Journal of Korea Concrete Institute,2002,14(1):100-109.

[5] 龙广成谢友均尹健马昆林掺矿物掺和料结构混凝土性

能与其孔隙率的关系研究铁道科学与工程学报 2006 3

(3):62-68.

混凝土碳化机理及处理措施

混凝土碳化机理及处理措施 朱茂根田芝龙李建民 1 前言 混凝土的强度和耐久性是混凝土结构的两个重要指标。现行规范对强度指标有详细的计算和试验方法,达不到指标的即为不合格产品,而对耐久性,却没有严格的衡量参数,同一强度指标的混凝土其实际耐久性可能相差很大。混凝土抗碳化能力是衡量混凝土结构耐久性非常重要的一个指标。过去由于在设计和施工时对混凝土碳化问题重视不够,导致混凝土抗碳化能力较低,造成不少建筑物的耐久性差,被迫提前加固。本文通过对混凝土碳化和钢筋去钝化物理化学反应的分析,揭示了混凝土碳化对结构破坏的机理和规律,提出了在设计和施工时对混凝土防碳化处理的建议,并提供了一些在除险加固工程中实用的防碳化处理方案。 2 混凝土碳化机理 拌和混凝土时,硅酸盐水泥的主要成份CaO水化作用后生成Ca(OH)2,它在水中的溶解度低,除少量溶于孔隙液中,使孔隙液成为饱和碱性溶液外,大部分以结晶状态存在,成为孔隙液保持高碱性的储备,它的PH值为12.5~13.5。空气中的CO2气体不断地透过混凝土中未完全充水的粗毛细孔道,气相扩散到混凝土中部分充水的毛细孔中,与其中的孔隙液所溶解的Ca(OH)2进行中和反应。反应产物为CaCO3和H2O,CaCO3溶解度低,沉积于毛细孔中。该反应式为: Ca(OH)2+CO2→CaCO3↓+H2O 反应后,毛细孔周围水泥石中的羟钙石补充溶解为Ca2+和OH-,反向扩散到孔隙液中,与继续扩散进来的CO2反应,一直到孔隙液的PH值降为8.5~9.0时,这层混凝土的毛细孔中才不再进行这种中和反应,此时即所谓“已碳化”。确切地说,碳化应称为碳酸盐化。另外,凡是能与Ca(OH)2进行中和反应的一切酸性气体,如SO2、SO3、H2S以至于气相HCI 等,均能进行上述中和反应,使混凝土碱度降低,故混凝土碳化应广义地称为“中性化”。混凝土表层碳化后,大气中的CO2继续沿混凝土中未完全充水的毛细孔道向混凝土深处气相扩散,更深入地进行碳化反应。 碳化后的混凝土质地疏松,强度降低。 3 混凝土中钢筋锈蚀机理 最初的混凝土孔隙中充满了饱和Ca(OH)2溶液,它使钢筋表层发生初始的电化学腐蚀,该腐蚀物在钢筋表面形成一层致密的覆盖物,即Fe2O3和Fe3O4,这层覆盖物称为钝化膜,在高碱性环境中,即PH≥11.5时,它可以阻止钢筋被进一步腐蚀。 当混凝土碳化深度超过保护层达到钢筋表面时,钢筋周围孔隙液的PH值降低到8.5~9.0,钝化膜被破坏,钢筋将完成电化学腐蚀,导致钢筋锈蚀。

混凝土回弹与碳化深度

应该是“混凝土碳化作用”,是指碳酸气或含碳酸的水与混凝土中氢氧化钙作用生成碳酸钙的反应,正确地说,应是“碳酸化作用”,可是在国内已有通称“碳化作用”的习惯。碳化作用通常是指C02气体的作用,它不会直接引起混凝土性能的劣化,经过碳化的水泥混凝土,表面强度、硬度、密度还能有所提高。混凝土碳化作用的机理,即:碳化过程乃是外界环境中的C02通过混凝土表层的孔隙和毛细孔,不断地向内部扩散的过程。混凝土的碳化一定要有水分存在。若在毛细孔的孔壁上附着一层含有Ca(OH)2的水膜,则碳化就从带水膜的毛细孔壁开始。当环境的相对湿度为50--60%时,碳化的反应最快,可是当孔隙全部为水分所充满时,也会妨碍CO 2的扩散。CO2扩散的深度,通常用来作为评价混凝土抗碳化性能的技术参数,因为表面暴露在大气之中的混凝土,无论如何都免不了被碳化,只是碳化速度和抑制碳化进展的能力不同而已。 碳化对混凝土的不利影响:混凝土碳化后强度硬度有所提高,但由于碳化一般均在结构表面,深度不大,故对整体结构强度影响不大。但是混凝土碳化后会产生体积收缩,当收缩应力超过混凝土表面抗拉强度时,会在表面产生裂缝。潮湿空气进入裂缝使裂缝处的混凝土碳化收缩,继而使裂缝向混凝土内部发展。当裂缝穿透混凝土保护层到达钢筋时,由于混凝土碱性降低,湿气锈蚀钢筋,锈蚀严重时会胀裂保护层,加速锈蚀进程,最终有可能影响结构安全。耐久性良好的混凝土应该具有一定的抗拉强度、良好的抗渗透性能及良好的体积稳定性。 砼碳化指砼中的Ca(OH)2与空气中CO2或水中溶的CO2或其它酸性物质反应变成CaCO3而失去碱性的过程。砼的碳化值指砼自表面的碳化深度。它是钢筋保层厚度的依据。当砼失去碱性环境,钢筋就易锈蚀膨胀并胀裂砼,最终削弱砼对钢筋的握裹力,导至钢筋砼构件的破坏。

粉煤灰掺合料对混凝土的影响

粉煤灰掺合料对混凝土的影响 发表时间:2012-03-30T17:07:55.123Z 来源:《时代报告》2012年第1月(上)供稿作者:彭明1高虎2 [导读] 在混凝土的中掺入矿粉、粉煤灰等矿物掺合料,已经成为我公司较为成熟的技术。 彭明1高虎2 无锡建邦混凝土有限公司江苏省无锡 214142 中图分类号:TU528文献标识码:A 文章编号:41-1413(2012)01-0000-01 摘要:在混凝土的中掺入矿粉、粉煤灰等矿物掺合料,已经成为我公司较为成熟的技术。在混凝土生产中,掺入矿粉和粉煤灰等矿物掺合料,可以改善混凝土的工作性、内部结构和后期强度等,并能很好地抑制混凝土的碱-集料反应。本文主要介绍了在混凝土中掺入粉灰对混凝土的工作性及耐久性的影响。同时,讨论混凝土中粉煤灰的最大与最佳掺量,以期更好地做到节约资源保护环境的目的。 关键词:混凝土;粉煤灰;混凝土性能 1 前言 混凝土是当今世界上用量最大的人造材料,由于其原料丰富、价格低廉、制备简单、相对耐久性好等不可取代的优点,在今后相当长的时间里,仍将是最主要的建筑材料。我国在2003年,水泥产量已高达8.25亿吨,混凝土用量达15亿方,已是世界首位。目前,我国每年用在建造房屋和铁路、桥梁等基础建设上的混凝土就要40亿方。相应地,我国水泥产量逐年增长,在2007年就已占世界水泥总量的50%以上。世界范围来看,建筑业消耗了世界资源近40%。这些,给我国和世界的资源和生态都带来了巨大的压力和负担。 另外,我国每年的生产的粉煤灰达2.5亿t。粉煤灰这样的工业副产品中含有少量的重金属。大量的粉煤灰如果得不到有效的利用,将会造成土地、空气和地下水污染。而在混凝土中掺入粉煤灰,可以钳制粉煤灰中绝大多数的有害金属,使之安全地与水泥水化产物结合。 所以,在保证混凝土性能――甚至有可能的话,提高混凝土的一些性能――的前提下,在混凝土的生产中,合理地掺入工业生产中的矿物废弃物作为混凝土中的矿物掺合料,替代原生产中的水泥,无论是对社会还是对生态,都有着积极意义。 1982年,英国Sarwick机场的停机坪扩建工程在两条相邻的道面上对掺与不掺粉煤灰的混凝土进行了对比。所用粉煤灰混凝土中粉煤灰掺量达到了46%。该工程经运行4年后所拍的照片清楚地显示出:与纯硅酸盐水泥混凝土相对照,掺粉煤灰混凝土道面表面层抗滑构造基本完好,而前者已坑坑点点,受到一定的破坏。 这一实例有力地说明了,在混凝土中掺入一定量的粉煤灰,不仅可以减少混凝土中水泥的使用,节约成本,保护环境;更是能够提高混凝土如耐久性等的一些性能。 2 粉煤灰的性质 2.1 粉煤灰的化学成分 查阅了相关资料后发现,不同国家,不同地区的粉煤灰的化学成分的差别很大。(表2-1) 表2-1 一些国家粉煤灰的氧化物[] 但是,粉煤灰的化学成分对粉煤灰的品质影响并不大,重要的是矿物成分和颗粒形貌(粒径和形状),它们决定着粉煤灰对混凝土性能的影响。 2.2 粉煤灰的矿物成分 粉煤灰的火山灰活性主要取决于玻璃相的数量和组成。经过超高温处理后的粉煤灰通常含有60%~90%的下玻璃体,而玻璃体的化学成分和活性又主要取决于钙的含量。 由烟煤产生的低钙粉煤灰中主要的晶体矿物是石英、莫来石、硅线石等,这些矿物不具备任何的火山灰活性。高钙粉煤灰中的晶体矿物主要是石英、铝酸三钙、硫铝酸钙、硬石膏、游离氧化钙等。所以高钙粉煤灰会具有较高的活性。 2.3粉煤灰的颗粒特性 一般来说,在机理上,粉煤灰掺合料对新拌混凝土和硬化混凝土性能的影响主要取决于颗粒的形貌,而不是化学成份。 相对于高炉矿渣等其他掺合料,粉煤灰为球形颗粒,这对于减少混凝土拌合物的需水量和提高混凝土拌合物的工作性具有积极作用。 另外,粉煤灰的火山灰活性通常与小于10μm的颗粒含量呈正比,而大于45μmr的粉煤灰颗粒很小或不具备火山灰活性。 3 粉煤灰掺合料对混凝土性能的影响

混凝土碳化的几点原因

1.混凝土碳化 混凝土的碳化是指大气中的二氧化碳首先渗透到混凝土内部的孔隙中,而后溶解于毛细孔中的水分,与水泥水化过程中所产生的水化硅酸钙和氢氧化钙等水化产物相互作用,生成碳酸钙等产物。所以,混凝土碳化是由于混凝土存在着孔隙,里面充满着水分和空气,在混凝土的气相、液相、固相中进行着一个十分复杂的多相物理化学连续过程。 2.混凝土碳化影响因素 有内在因素,也有外界因素。 2.1影响混凝土碳化的内在因素 不同的水泥,其矿物组成、混合材量、外加剂、生料化学成分不同,直接影响着水泥的活性和混凝土的碱度,对碳化速度有重要影响。一般而言,水泥中熟料越多,则混凝土的碳化速度越慢。外加剂(减水剂、引气剂)一般均能提高抗渗性,减弱碳化速度,但含氯盐的防冻、早强剂则会严重加速钢筋锈蚀,应严格控制其用量。集料品种和级配不同,其内部孔隙结构差别很大,直接影响着混凝土的密实性。材质致密坚实,级配较好的集料的混凝土,其碳化的速度较慢。 增加水泥用量,一方面可以改变混凝土的和易性,提高混凝土的密实性;另一方面还可以增加混凝土的碱性储备,使其抗碳化性能增强,碳化速度随水泥用量的增大而减少。 在水泥用量一定的条件下,增大水灰比,混凝土的孔隙率增加,密实度降低,渗透性增大,空气中的水分及有害化学物质较多的浸入混凝土体内,加快混凝土碳化。 施工质量差表现为振捣不密实,造成混凝土强度低,蜂窝、麻面、空洞多,为大气中的二氧化碳和水分的渗入创造了条件,加速了混凝土的碳化。

混凝土成型后,必须在适宜的环境中进行养护。养护好的混凝土,具有胶凝好、强度高、内实外光和抗侵蚀能力强,能阻止大气中的水分和二氧化碳侵入其内,延缓碳化速度。 2.2影响混凝土碳化的外界因素 酸性气体(如CO2)渗入混凝土孔隙溶解在混凝土的液相中形成酸,与水泥石中的氢氧化钙、硅酸盐、铝酸盐及其他化合物发生中和反应,导致水泥石逐渐变质,混凝土的碱度降低,这是引起混凝土碳化的直接原因。试验研究已证明,混凝土的碳化速度与二氧化碳浓度的平方根成正比,即混凝土碳化速度系数随二氧化碳浓度的增加而加快。 在混凝土浸水饱和或水位变化部位,由于温度交替变化,使混凝土内部孔隙水交替地冻结膨胀和融解松弛,造成混凝土大面积疏松剥落或产生裂缝,导致混凝土碳化。渗漏水会使混凝土中的氢氧化钙流失,在混凝土表面结成碳酸钙结晶,引起混凝土水化产物的分解,其结果是严重降低混凝土强度和碱度,恶化钢筋锈蚀条件。混凝土温度骤降,其表面收缩产生拉力,一旦超过混凝土的抗拉强度,混凝土表面便开裂,导致形成裂缝或逐渐脱落,为二氧化碳和水分渗入创造了条件,加速混凝土碳化。

矿物质掺合料对混凝土耐久性的影响

矿物质掺合料对混凝土耐久性的影响 【摘要】混凝土耐久性主要是指其抵抗物理和化学侵蚀,如冻结、高温、碳化、侵蚀等能力,混凝土耐久性不满足要求是导致铁路不能达到设计寿命和寿命降低的主要原因,本文针对高性能混凝土所使用的粉煤灰、矿渣粉等矿物质掺合料对混凝土抗渗性、抗冻性、抗裂性、抗腐蚀及抗氯离子渗透及抑制碱骨料反应等方面做出了一系列的分析和研究。 【关键词】粉煤灰;矿渣粉;混凝土;耐久性 1.前言 近年来,随着高性能混凝土在建筑行业的日益盛行,高性能混凝土所使用的矿物掺合料已得以广泛使用,粉煤灰、矿渣粉是目前铁路建设中不可缺少的矿物质材料,在我国已建和在建的铁路中得以全面使用,粉煤灰、矿渣粉等矿物质的使用不仅可以减少水泥使用量,降低成本,改善和提高混凝土工作性能和力学性能,同时能够提高混凝土耐久性,如混凝土的抗冻性、抗渗性、抗蚀性及抗碳化能力等,混凝土结构耐久性满足设计与否直接影响着铁路的质量、安全及使用寿命,是铁路混凝土结构的核心。 2.粉煤灰、矿渣粉对混凝土抗渗性能的影响 2.1粉煤灰对混凝土抗渗性能的影响 抗渗性与混凝土耐久性的关系十分密切,因为一切破坏作用的因素总是随液体或气体进人混凝土。粉煤灰在混凝土具有充填行为和致密作用,粉煤灰的致密作用是粉煤灰在混凝土中活性充填行为的综合结果,在新拌混凝土阶段,粉煤灰充填于水泥颗粒之间,使水泥颗粒解絮扩散,改善了和易性,增加浇筑密实性,从而使混凝土初始结构致密化;在硬化发展阶段,主要发挥了物理充填料的作用;在硬化后期,又发挥了活性充填料的作用,粉煤灰的活性物质在混凝土中会发生二次水化反应,使粉煤灰具有一定胶凝性,填充了水泥水化后微小孔隙,使混凝土密实度得以提高,使混凝土的抗渗性能得以大大提高,但若要最大功效地发挥粉煤灰在混凝土的抗渗功能,其在胶凝在材料中的掺量控制尤为重要,目前,在铁路桥梁施工中粉煤灰在胶材中的取代率在12%~20%为宜。 2.2矿渣粉对混凝土抗渗性能的影响 矿渣粉的主要成分为SiO2和Al2O3,具有超高活性,将其作为掺合料掺入水泥混凝土中,这些活性的SiO2和Al2O3即可与水泥的C2S水化产生反应,进一步形成水化硅酸钙产物,大幅度提高水泥混凝土的致密性,从而改善孔结构,减少孔隙率和最大孔径尺寸,使混凝土形成密实填充结构和细观层次的自紧密堆积体系,达到提高混凝土抗渗性能,使混凝土的水渗透系数得到明显降低,同时防止产生泌水和离析现象的发生。研究表明,采用粉煤灰与矿物掺合料双掺,同

矿物掺合料在混凝土应用

矿物掺合料在混凝土应用 一、矿物掺合料定义及分类 1.矿物掺合料不同于生产水泥时与熟料一起磨细混合材,它是指在混凝土或砂浆搅拌前或搅拌中加入的,具有一定细度和活性的用于改善新拌混凝土的性能(特别耐久性)的某些矿物类产品。 2.掺合料按其性质可分为两类,活性掺合料和非活性掺合料。目前使用矿物掺合料绝大多数是具有一定活性的掺合料、如粉煤灰、磨细矿渣粉、硅灰、天然沸石粉等。复合矿物掺合料指这些掺合料的复合物。 二、矿物掺合料的作用机理 1.掺合料不仅可以取代部分水泥、减少混凝土的水泥用量、降低成本,而且可以改善混凝土拌合物和硬化混凝土的各项性能。 2.矿物掺合料特别是磨细矿物掺合料用作混凝土的掺合料能改善或提高混凝土的综合性能,其作用机理在于磨细矿物掺合料在混凝土中具有填充效应、火山灰效应和形态效应等。 (1)填充效应 混凝土为连续级配颗粒堆积体系,粗集料的间隙由细集料填充,细集料的间隙由水泥颗粒填充,水泥颗粒之间的间隙则需要更细的颗粒来填充,增加混凝土密实性,改善混凝土的和易性。填充作用的另一好处是增加黏聚性,防止混凝土泌水离析,改善可泵性。(2)火山灰效应 水泥从加水拌合开始与水结合发生水化反应,产生各种水化产

物。C-S-H(水化硅酸钙),Ca(OH)2(氢氧化钙),Aft和Afm水化铝酸钙和水化硫铝酸钙等。随着水泥水化进行,生成氢氧化钙。混凝土中掺入磨细掺合料吸收水泥水化时形成的氢氧化钙,且能促进水泥进一步水化生成更多有力的水化硅酸钙凝胶,使集料接口区的氢氧化钙晶粒变小,改善了混凝土微观结构,掺合料通过二次水化反应改善混凝土的抗渗性,提高混凝土密实度。水泥浆体的孔隙率明显下降,强化了集料和胶凝从材料粘接力混凝土更加密实,使混凝土物理力学性能大大提高。 (3)形态效应 有些磨细矿物掺合料,如粉煤灰颗粒是煤粉在高温燃烧过程中形成的,绝大多数为玻璃微珠,这些玻璃体光滑、致密、粒细,比表面积小又有级配,能减少颗粒间的摩阻力,从而减少混凝土的用水量起到减水作用。

混凝土碳化的几点原因

混凝土碳化的几点原因集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

1.混凝土碳化 混凝土的碳化是指大气中的二氧化碳首先渗透到混凝土内部的孔隙中,而后溶解于毛细孔中的水分,与水泥水化过程中所产生的水化硅酸钙和氢氧化钙等水化产物相互作用,生成碳酸钙等产物。所以,混凝土碳化是由于混凝土存在着孔隙,里面充满着水分和空气,在混凝土的气相、液相、固相中进行着一个十分复杂的多相物理化学连续过程。 2.混凝土碳化影响因素 有内在因素,也有外界因素。 2.1 影响混凝土碳化的内在因素 不同的水泥,其矿物组成、混合材量、外加剂、生料化学成分不同,直接影响着水泥的活性和混凝土的碱度,对碳化速度有重要影响。一般而言,水泥中熟料越多,则混凝土的碳化速度越慢。外加剂(减水剂、引气剂)一般均能提高抗渗性,减弱碳化速度,但含氯盐的防冻、早强剂则会严重加速钢筋锈蚀,应严格控制其用量。 集料品种和级配不同,其内部孔隙结构差别很大,直接影响着混凝土的密实性。材质致密坚实,级配较好的集料的混凝土,其碳化的速度较慢。 增加水泥用量,一方面可以改变混凝土的和易性,提高混凝土的密实性;另一方面还可以增加混凝土的碱性储备,使其抗碳化性能增强,碳化速度随水泥用量的增大而减少。 在水泥用量一定的条件下,增大水灰比,混凝土的孔隙率增加,密实度降低,渗透性增大,空气中的水分及有害化学物质较多的浸入混凝土体内,加快混凝土碳化。 施工质量差表现为振捣不密实,造成混凝土强度低,蜂窝、麻面、空洞多,为大气中的二氧化碳和水分的渗入创造了条件,加速了混凝土的碳化。

混凝土成型后,必须在适宜的环境中进行养护。养护好的混凝土,具有胶凝好、强度高、内实外光和抗侵蚀能力强,能阻止大气中的水分和二氧化碳侵入其内,延缓碳化速度。 2.2影响混凝土碳化的外界因素 酸性气体(如CO2)渗入混凝土孔隙溶解在混凝土的液相中形成酸,与水泥石中的氢氧化钙、硅酸盐、铝酸盐及其他化合物发生中和反应,导致水泥石逐渐变质,混凝土的碱度降低,这是引起混凝土碳化的直接原因。试验研究已证明,混凝土的碳化速度与二氧化碳浓度的平方根成正比,即混凝土碳化速度系数随二氧化碳浓度的增加而加快。 在混凝土浸水饱和或水位变化部位,由于温度交替变化,使混凝土内部孔隙水交替地冻结膨胀和融解松弛,造成混凝土大面积疏松剥落或产生裂缝,导致混凝土碳化。渗漏水会使混凝土中的氢氧化钙流失,在混凝土表面结成碳酸钙结晶,引起混凝土水化产物的分解,其结果是严重降低混凝土强度和碱度,恶化钢筋锈蚀条件。 混凝土温度骤降,其表面收缩产生拉力,一旦超过混凝土的抗拉强度,混凝土表面便开裂,导致形成裂缝或逐渐脱落,为二氧化碳和水分渗入创造了条件,加速混凝土碳化。

掺合料对混凝土力学性能的影响机理

第45卷第5期2017年5月 硅酸盐学报Vol. 45,No. 5 May,2017 JOURNAL OF THE CHINESE CERAMIC SOCIETY https://www.doczj.com/doc/ac2348848.html, DOI:10.14062/j.issn.0454-5648.2017.05.00 掺合料对混凝土力学性能的影响机理 吴凯1,施惠生1,徐玲琳1,高云2,叶光3 (1. 同济大学材料科学与工程学院,上海 201804; 2. 东南大学材料科学与工程学院,南京 211189; 3. Faculty of Civil Engineering and Geosciences, TU Delft, 2628 CN Delft, The Netherlands) 摘要:系统测试了利用石灰石粉、矿粉及不同集料体积掺量、粒径分布配制试件的抗压强度与动弹模量,采用压汞法对相应试件孔径分布特征进行对比分析,研究掺合料对基体与界面过渡区(ITZ)孔结构的分别作用,深入分析掺合料调控ITZ微结构对混凝土力学性能的影响机理。结果表明:掺加5%石灰石粉可细化样品孔结构,使总孔隙率及10nm以上孔的含量有所降低;掺加10%石灰石粉则会提高总孔隙率和10nm~100nm这一区间孔体积,但降低100nm以上孔的含量;掺加35%矿粉虽然减少了试件的总孔隙率及10nm以上孔的含量,但会提高10nm以下孔的体积;在大掺量矿粉时(70%),大于10nm的毛细孔有所减少,而小于10nm的微孔含量显著增加;掺加5%石灰石粉或35%矿粉,试件56d抗压强度、动弹模量略有增加,且增加幅度随集料体积掺量增加或集料平均粒径的减小而增大;对比添加掺合料后不同区间孔的体积变化后发现,混凝土力学性能的改善主要取决于100nm以上区间即界面过渡区孔结构的优化。 关键词:界面过渡区;力学性能;压汞;掺合料;微结构 中图分类号:TQ172 文献标志码:A 文章编号:0454–5648(2017)05–0000–08 网络出版时间:网络出版地址: Effect of Mineral Admixture on Mechanical Properties of Concrete WU Kai1, SHI Huisheng1, XU Linglin1, GAO Yun2, YE Guang3 (1. School of Materials Science and Engineering, Tongji University, Shanghai 201804, China; 2. School of Materials Science and Engineering, Southeast University, Nanjing 211189, China; 3. Faculty of Civil Engineering and Geosciences, TU Delft, 2628 CN Delft, The Netherlands) Abstract: The compressive strength and elastic modulus of concrete with slag, limestone powder, and aggregate were determined. The effect of the mineral admixture on the porosity features of cement matrix and interfacial transition zone (ITZ) was investigated, and the improved mechanism for the mechanical properties was analyzed from the ITZ microstructure point of view. The results show that 5% addition of limestone powder is able to refine the pore structure by reducing the total pore volume and the volume of pores of > 10 nm. Increasing the limestone powder replacement level to 10% can increase the total pore volume and the volume of pores between 10 and 100 nm, and reduce the volume of pores of > 100 nm. Replacing 35% of cement by slag can reduce the total porosity and the volume of pores of > 10 nm. However, the addition of large amount of slag (70%) can increase the volume of pores of < 10 nm, while the volume of pores of > 10 nm decreases. Moreover, 5% addition of limestone powder or 35% addition of slag increase the compressive strength and elastic modulus of samples cured after 56 d. This increment is more remarkable as the aggregate volume content increases or the mean aggregate size decreases. Comparing the pore volume in a specific range with those of the reference, we find that the modification of mechanical properties is more related to the variation of pores in the range of > 100 nm. Keywords: interfacial transition zone; mechanical properties; mercury intrusion porosimetry; mineral admixture; microstructure 收稿日期:2016–07–01。修订日期:2016–08–29。 基金项目:国家自然科学基金项目(51378390, 51402216, 51608382)。第一作者:吴凯(1987—),男,博士,助理教授。Received date:2016–07–01. Revised date: 2016–08–29. First author: WU Kai (1987–), male, Ph.D. E-mail: wukai@https://www.doczj.com/doc/ac2348848.html,

混凝土掺合料

第四章混凝土掺合料 在混凝土拌和物制备时,为了节约水泥、改善混凝土性能、调节混凝土强度等级,而加人的天然的或者人造的矿物材料,统称为混凝土掺合料。 用于混凝土中的掺合料可分为活性矿物掺合料和非活性矿物掺合料两大类。非活性矿物掺合料一般与水泥组分不起化学作用,或化学作用很小,如磨细石英砂、石灰石、硬矿渣之类材料。活性矿物掺合料虽然本身不水化或水化速度很慢,但能与水泥水化生成的Ca(OH):反应,生成具有水硬性的胶凝材料。如粒化高炉矿渣,火山灰质材料、粉煤灰、硅灰等。 通常使用的掺合料多为活性矿物掺合料。由于它能够改善混凝土拌和物的和易性,或能够提高混凝土硬化后的密实性、抗渗性和强度等,因此目前较多的土木工程中都或多或少地应用混凝土活性掺合料。特别是随着预拌混凝土、泵送混凝土技术的发展应用,以及环境保护的要求,混凝土掺合料的使用将愈加广泛。 活性矿物掺合料依其来源可分为天然类、人工类和工业废料类(表4—1)。 本章着重介绍粉煤灰、沸石粉和硅粉等几种活性矿物掺合料。 第一节粉煤灰 粉煤灰是由燃烧煤粉的锅炉烟气中收集到的细粉末,其颗粒多呈球形,表面光滑。 粉煤灰有高钙粉煤灰和低钙粉煤灰之分,由褐煤燃烧形成的粉煤灰,其氧化钙含量较高(一般大于10%),呈褐黄色,称为高钙粉煤灰,它具有一定的水硬性;由烟煤和无烟煤燃烧形成的粉煤灰,其氧化钙含量很低(一般小于10%),呈灰色或深灰色,称为低钙粉煤灰,一般具有火山U灰活性。 低钙粉煤灰来源比较广泛,是当前国内外用量最大、使用范围最广的混凝土掺合料。用其做掺合料有两方面的效果。 (1)节约水泥。一般可节约水泥10%~15%,有显著的经济效益。 (2)改善和提高混凝土的下述技术性能:①改善混凝土拌和物的和易性、可泵性和抹 第63页 面性;②降低了混凝土水化热,是大体积混凝土的主要掺合料;③提高混凝土抗硫酸及硫酸盐侵蚀的性能;④提高混凝土抗渗性;⑤抑制碱集料反应。 一。化学成分及主要技术性能 (一)化学成分 粉煤灰的化学成分因煤的品种及燃烧的条件不同而存在一定的差异,但其主要的成分还是SiO2、A12O3和Fe2O,等,它们的总含量约占粉煤灰质量的75%以上。表4—2中给出了我国一些产煤地区煤种的粉煤灰化学成分及烧失量的统计指标。

混凝土碳化影响因素及减缓措施

混凝土碳化影响因素及减缓措施 摘要:所谓混凝土的碳化,是指水泥石中的水化产物与周围环境中的二氧化碳作用,生成碳酸盐或其他物质的现象。碳化将使混凝土的内部组成及组织发生变化,使得混凝土结构内部环境由强碱性变为弱碱性,破坏钢筋表面的钝化膜,导致钢筋锈蚀,严重的将导致混凝土结构的保护层剥落。 关键词:混凝土;碳化;保护层 1.混凝土碳化影响因素 1.1材料因素:材料因素包括水灰比、水泥品种与用量、掺合料、外加剂等,它们主要通过影响混凝土的碱度和密实性来影响混凝土碳化速度。 (1)水灰比 水灰比W/C是决定混凝土孔结构与孔隙率的主要因素,其中游离水的多少还关系着孔隙饱和度(孔隙水体积与孔隙总体积之比)的大小,因此,水灰比是决定CO2有效扩散系数及混凝土碳化速度的主要因素之一。水灰比增加,则混凝土的孔隙率加大,CO2有效扩散系数扩大,混凝土的碳化速度也加大。水灰比在正常施工条件下,混凝土的碳化速度随水灰比减小而降低。此外,龚洛书最早通过试验给出了水灰比对碳化深度的影响系数拟合公式,碳化深度随水灰比的变大而线性升高。 (2)水泥品种和水泥用量 用矿渣水泥的混凝土比同水灰比的普通混凝土碳化程度快10%~20%。水泥用量越大,则单位体积混凝土中可碳化物质的含量越多,消耗的CO2也越多,从而碳化速度越慢。在水泥用量相同时,掺混合材料的水泥水化后单位体积混凝土中可碳化物质含量减少,且一般活性混合材由于二次水化反应还要消耗一部分可碳化物质Ca(OH)2,使可碳化物质含量更少,故碳化速度加快。因此,相同水泥用量的硅酸盐水泥混凝土的碳化速度最小,普通硅酸盐水泥混凝土次之,粉煤灰水泥、火山灰质硅酸盐和矿渣硅酸盐水泥最大。同一品种的掺混合材水泥,碳化速度随混合材掺量的增加而加大 (3)粉煤灰掺量 在硅酸盐水泥混凝土中,掺入粉煤灰有正负两方面的作用,一方面由于水泥用量减少,水化反应生成的可碳化物质减少,碱储备降低,抗碳化能力降低。另一方面,粉煤灰的二次水化填充效应可显著改善混凝土的孔结构,提高混凝土的密实性。

混凝土回弹与碳化深度

混凝土回弹与碳化深度

综述:碳化深度过深会降低混凝土的碱性,影响结构的耐久度。碳化就是混凝土中的Ca(OH)2和空气中的CO2反应生成CaCO3和水的过程。 碳化深度主要与水灰比和周围环境有关。一般说来,水泥用量一定的时候,水灰比越大,碳化越快。当水灰比一定的时候,水泥用量越少,碳化越快。从碳化的定义我们可以看出如果水泥用量多的话,混凝土中的Ca(OH)2就多碱性就越强,越不容易碳化。还有就是周围的环境,CO2的浓度及湿度。非常潮湿和非常干燥的时候,混凝土都不易碳化。太湿可以隔离CO2与Ca(OH)2的反映,太干CO2无法结合到水生成H2CO3(碳酸),混凝土也不会碳化。 回弹检测混凝土强度是以混凝土的表面硬度来推断混凝土强度的.碳化会增大混凝土表面硬度,所以回弹判定其强度时需要检测碳化深度进行修正。 一、混凝土碳化机理及原因 1、混凝土碳化机理 拌和混凝土时,硅酸盐水泥的主要成份CaO水化作用后生成Ca(OH)2,它在水中的溶解度低,除少量溶于孔隙液中,使孔隙液成为饱和碱性溶液外,大部分以结晶状态存在,成为孔隙液保持高碱性的储备,它的PH值为12.5~13.5。空气中的CO2气体不断地透过混凝土中未完全充水的粗毛细孔道,气相扩散到混凝土中部分充水的毛细孔中,与其中的孔隙液所溶解的Ca(OH)2进行中和反应。反应产物为CaCO3和H2O,CaCO3溶解度低,沉积于毛细孔中。

该反应式为:Ca(OH)2+CO2→CaCO3↓+H2O 反应后,毛细孔周围水泥石中的羟钙石补充溶解为Ca2+和OH-,反向扩散到孔隙液中,与继续扩散进来的CO2反应,一直到孔隙液的PH值降为8.5~9.0时,这层混凝土的毛细孔中才不再进行这种中和反应,此时即所谓“已碳化”。确切地说,碳化应称为碳酸盐化。另外,凡是能与Ca(OH)2进行中和反应的一切酸性气体,如SO2、SO3、H2S以至于气相HCI等,均能进行上述中和反应,使混凝土碱度降低,故混凝土碳化应广义地称为“中性化”。混凝土表层碳化后,大气中的CO2继续沿混凝土中未完全充水的毛细孔道向混凝土深处气相扩散,更深入地进行碳化反应。 2、混凝土碳化原因 混凝土的主要成分有水泥、粗细骨料、水以及外加剂。水泥掺与混凝土的拌合中,水泥中主要成分是CaO,经水化作用后生成Ca(OH)2 ,混凝土的碳化,是指混凝土中的Ca(OH)2与空气中的CO2起化学反应,生成中性的碳酸盐CaCO3 。未碳化的混凝土呈碱性,混凝土中钢筋保持钝化状态的最低(临界)碱度是PH 值为11.5,碳化后的混凝土PH值为8.5~9.5。碳化使混凝土的碱度降低,同时,增加混凝土孔溶液中氢离子数量,使混凝土对钢筋的保护作用减弱。当碳化超过混凝土的保护层时,在水与空气存在的条件下,就会使混凝土失去对钢筋的保护作用,钢筋开始生锈。钢筋锈蚀后,锈蚀产生的体积比原来膨胀2~4倍,从而对周围混凝土产生膨胀应力,锈蚀越严重,铁锈越多,膨胀力越大,最后导致混凝土开裂形

矿物掺合料取样与检验

第六章矿物掺和料 第一节概述 矿物掺合料是以硅、铝、钙等一种或多种氧化物为主要成份,并具有规定细度,掺入混凝土中能改善混凝土性能的活性粉体材料。矿物掺和料在混凝土中科学、合理的应用是为了达到改善混凝土的性能,提高工程质量,延长混凝土结构物使用寿命。矿物掺合料可包括粉煤灰、粒化高炉矿渣主要可分以下几种: 一、用于水泥和混凝土中的粉煤灰(GB/T1596-2005) 粉煤灰是从煤粉炉烟道气体中收集的粉体材料,包括原状粉煤灰和磨细粉煤灰,分为F类和C类。 F类粉煤灰:由无烟煤或烟煤煅烧收集的粉煤灰。 C类粉煤灰:由褐煤或次烟煤煅烧收集的粉煤灰,其氧化钙含量一般大于10%。 拌制混凝土和砂浆用粉煤灰分为三个等级:Ⅰ级、Ⅱ级、Ⅲ级。 二、、用于水泥和混凝土中的粒化高炉矿渣粉(GB/T18046-2008) 以粒化高炉矿渣为主要原料,可掺加少量石膏磨制成一定细度的粉体。简称矿渣粉。 分为:S105、S95、S75三个等级。 三、硅灰 在冶炼硅铁合金或工业硅时通过烟道排出的粉尘,经收集得到的无形二氧化硅为主要成分的粉体材料。 四、复合矿物掺合料

由二种以上矿物掺合料按一定比例复合后的粉体材料。 五、用于水泥和混凝土中的钢渣粉(GB/T20491-2006) 由符合YB/T022标准规定的转炉或电炉钢渣(简称钢渣),经磁选除铁处理后粉磨达到一定细度的产品。 粉磨时允许加入适量符合GB/T5483的石膏和符合JC/T667的水泥粉磨工艺外加剂。 分为一级和二级。 第二节依据标准 1.《用于水泥和混凝土中的粉煤灰》(GB/T1596-2005) 2.《用于水泥和混凝土中的钢渣粉》(GB/T20491-2006) 3.《用于水泥和混凝土中的粒化高炉矿渣粉》(GB/T18046-2008) 4.《混凝土矿物掺合料应用技术规程》(DB21/T1891-2011) 5.《混凝土质量控制标准》(GB50164-2011) 6.《用于水泥和混凝土中的粉煤灰》GBJ146-1990 第三节检验内容和使用要求 1.检验内容 (1)粉煤灰的主要控制项目应包括:细度、需水量比、烧失量和三氧化硫含量,C类粉煤灰的主要控制项目还应包括游离氧化钙含量和安定性。 (2)粒化高炉矿渣粉的主要控制项目应包括:比表面积、流动度比和活性指数。 (3)复合矿物掺合料的主要控制项目应包括:细度、烧失量。(4)硅灰主要控制项目应包括:比表面积、二氧化硅含量。(5)钢渣粉的主要控制项目应包括比表面积、流动度比和安定性。

混凝土碳化深度与处理措施

目录 一、碳化作用机理 (2) 二、影响商品混凝土碳化的因素 (2) 三、商品混凝土碳化的预防措施 (5) 四、混凝土碳化处理措施 (6)

混凝土碳化的影响因素及其预防措施 商品混凝土碳化是影响商品混凝土耐久性的一个重要因素。本文对商品混凝土碳化的影响因素及其预防措施进行了总结。从商品混凝土本身的密实度和碱性大小的角度考虑,商品混凝土的碳化受材料、环境和施工等因素的影响。降低水灰比、优化配合比设计、加强养护和增加保护层厚度可以提高商品混凝土的抗碳化能力。 一、碳化作用机理 空气中CO2渗透到商品混凝土内,与其碱性物质发生化学反应生成碳酸盐和水,使商品混凝土碱度降低的过程称为商品混凝土碳化,也可称为中性化,其化学反应为: Ca(OH)2 + CO2 = CaCO3 + H2O 水泥在水化过程中生成大量的氢氧化钙,使商品混凝土空隙中充满了饱和C a(OH)2溶液,其碱性介质对钢筋有良好的保护作用,使钢筋表面生成难溶的Fe 2O3和Fe3O4,称为钝化膜。 碳化本身对商品混凝土没有破坏作用,其主要危害是由于碳化会降低商品混凝土的碱度。当碳化超过商品混凝土的保护层时,在水与空气同时存在的条件下,钢筋开始生锈。钢筋锈蚀产生的体积膨胀将导致钢筋长度方向出现纵向裂缝,并使保护层脱落,进而使得构件的截面减小、承载能力降低,最终将使结构构件破损或者失效。 二、影响商品混凝土碳化的因素 影响商品混凝土碳化最主要的因素是商品混凝土本身的密实度和碱性大小,即商品混凝土的渗透性及其Ca(OH)2含量。影响商品混凝土碳化的因素主要分为三个方面:材料因素、环境因素和施工因素。 2.1 材料因素 材料因素包括水灰比、水泥品种与用量、掺合料、外加剂、骨料品种与级配、商品混凝土表面覆盖层等等,主要通过影响商品混凝土的碱度和密实性来影响商品混凝土的碳化速度。 2.1.1 水灰比 水灰比是决定混凝土性能的重要参数,对混凝土碳化速度影响极大。众所周知,水灰比基本上决定了混凝土的孔结构,水灰比越大,混凝土内部的孔隙率就越大。混凝土中的气孔主要有胶孔、气孔和毛细孔。胶孔的半径很小,CO2分子很难自由进出;CO2扩散均在内部的气孔和毛细孔中进行。因此水灰比一定程度上决定了CO2在混凝土中的扩散速度,水灰比越大,孔隙率越高,CO2的扩散越容易,混凝土碳化速度越快。另外,水灰比大会使商品混凝土孔隙中的游离水增多,一定程度上也有利于碳化反应。研究结果表明:当水灰比大于0.65时,碳化深度会急剧加大。国内外进行了大量的快速碳化试验和长期暴露试验来研究水灰比与混凝土碳化速度的关系。得到碳化速度与水灰比的关系,暴露试验给出了碳化速度系数与水灰比的表达式:

大掺量矿物掺合料混凝土施工应用 (1)

大掺量矿物掺合料混凝土施工应用-建筑论文 大掺量矿物掺合料混凝土施工应用 郑博 (中铁二十一局集团有限公司,甘肃兰州730000)【摘要】本文介绍大掺量矿物掺合料混凝土的组成,阐述大掺量矿物掺合料混凝土的特点,经过实际工程研究其优势,并简述其施工应用。 关键词混凝土;掺合料;施工应用 现在,越来越多的工程都在利用矿物掺合料。在实际工程中,大掺量矿物掺合料混凝土,特别是大掺量粉煤灰混凝土,具有低水化温升,强度成长快的优点,并能有效改进混凝土结构的抗开裂性,不但简化混凝土生产程序,节约工程投资,而且减少能源消耗、保护环境和提高经济效益,适用于大体积混凝土。 1 简介 大掺量矿物掺合料混凝土是指在混凝土拌合时添加拥有一定细度和活性的用于改良新拌合硬化混凝土性能的矿物掺合料(如粉煤灰,磨细矿渣粉,硅灰粉等)的比例在40%以上的混凝土。矿物掺合料可单独使用,也可复合运用。对大体积混凝土来说,通常使用粉煤灰,有时也将粉煤灰和磨细矿渣粉混合使用。 2 作用 伴随着现代建筑业的迅猛发展,建筑工程多采用大跨度、重荷载的结构形式,超高层及高层建筑物的荷载相对较大,设计常采用厚而大的钢筋混凝土筏板基础,因此对混凝土的强度和耐久性要求越来越高。施工时,为了保证钢筋混凝土筏板结构的完整性,达到设计承载力,通常采用整体浇筑,除沉降后浇带外,不留其他后浇带。并且还要严格控制混凝土结构内部的温升不能偏高,防止因过大

的温度收缩而导致混凝土开裂。 在混凝土水化硬化时,一定伴随着体积收缩。混凝土结构中所存在的各类约束条件作用下,如果混凝土体积收缩过大,就会产生开裂,会对混凝土的承载力和耐久性有不利作用。为了避免混凝土收缩开裂、增加混凝土的耐久性,施工时用矿物掺合料代替一定量的水泥就是最好的选择。 在制定混凝土配合比时,加入适量的矿物掺合料不但可以减少水泥的使用,使混凝土的水化热温升减慢,而且因为掺合料的形态、微集料和火山灰效应有效提高了混凝土的工作性,不仅增加了混凝土的后期强度,且使混凝土的内部结构发生改善,所以提高了混凝土的抗开裂性及耐久性。 3 特点 大掺量矿物掺合料混凝土的特点是水胶比低、胶凝材料使用量大、水泥用量低。其结构性能的特点是:初期强度发展慢,后期强度稍低;干缩较大,抗碳化性较差;水化温升值和温升速度相对较低。因为矿物掺合料的水化反应程度受温度影响较大,混凝土结构中水泥的水化热能使其反应加快,性能提升。因此大掺量矿物掺合料混凝土,尤其是大掺量粉煤灰混凝土在实际结构中的强度要高于试验室试件。 掺合料混凝土所用水泥量小,并使工业废渣得以利用,降低了CO2的排放,增加了混凝土的绿色度。 表1 某高层住宅建筑底板的混凝土配合比

混凝土碳化研究现状_武俊曦

四川建筑科学研究Sichuan Building Science 第37卷第6期2011年12月 收稿日期:2010-06-10作者简介:武俊曦(1977-),男,陕西西安人,工程师,主要从事建筑施工工作。 E -mail :wujunxi1977@126.com 混凝土碳化研究现状 武俊曦1 ,王 艳 2 (1.陕西建工集团第三建筑工程有限公司,陕西西安710054;2.西安建筑科技大学土木工程学院,陕西西安710055) 摘要:混凝土碳化是一个非常复杂的物理化学过程,国内外众多学者分别从碳化机理、影响碳化的因素、碳化深度预测模型 等方面, 对这个问题进行了深入研究。本文对这些成果进行了总结与分类,在此基础上提出了尚存在的问题,并对混凝土碳化研究发展方向进行了展望。 关键词:混凝土;碳化;碳化速度;碳化深度中图分类号:TU528文献标识码:B 文章编号:1008-1933(2011)06-202-03 0前言 Mahta 教授在题为《混凝土耐久性———50年进 展》的主旨报告中指出:“当今世界,混凝土破坏原 因,按重要性递减顺序排列是钢筋腐蚀、寒冷气候下 的冻害、侵蚀环境的物理化学作用”。因此,钢筋锈 蚀是影响混凝土耐久性的主要因素之一。而混凝土碳化又是引起钢筋锈蚀最主要的原因。20世纪60年代,国际上一些发达国家就开始重视混凝土结构的耐久性问题,对混凝土碳化进行了大量的试验研究及理论分析。国内从20世纪80年代开始研究混凝土碳化与钢筋锈蚀问题,通过快速碳化实验、长期暴露实验及实际工程调查,研究混凝土碳化的影响因素与碳化深度预测模型。经过40多年的研究,国内外对混凝土碳化机理与影响因素已经有了深刻的 认识, 并提出了很多种碳化深度的计算模型。1混凝土碳化机理的研究 混凝土碳化是一个非常复杂的物理化学过程, 国内外很多学者从不同的角度对这个问题进行了深入研究。 普通水泥混凝土水泥熟料的主要矿物成分是硅酸三钙C 3S (3CaO ·SiO 2)、硅酸二钙C 2S (2CaO ·SiO 2)、铁铝酸四钙C 4AF (4CaO ·Al 2O 3·Fe 2O 3)和 铝酸三钙C 3A (3CaO ·Al 2O 3), 另外,还有少量的石膏C SH 2(CaSO 4·2H 2O )等。其水化产物为氢氧化钙(约占25%)、水化硅酸钙(约占60%)、水化铝酸钙、水化硫铝酸钙等,充分水化后,混凝土孔隙水溶液为氢氧化钙饱和溶液,其pH 值约为12 13,呈强碱性。在水泥水化过程中,由于化学收缩、自由水蒸发等多种原因,在混凝土内部存在大小不同的毛细 管、 孔隙、气泡等,大气中的二氧化碳通过这些孔隙向混凝土内部扩散,并溶解于孔隙内的液相,在孔隙溶液中与水泥水化过程中产生的可碳化物质发生碳 化反应, 生成碳酸钙。混凝土碳化的主要化学反应式如下[1] :Ca (OH )2+CO 2→CaCO 3+H 2O 3CaO ·2SiO 2·3H 2O +3CO 2→3CaCO 3·2SiO 2 ·3H 2O 3CaO ·SiO 2+3CO 2+γH 2O →SiO 2·γH 2O +3CaCO 3 2CaO ·SiO 2+2CO 2+γH 2O →SiO 2·γH 2O +2CaCO 3 文献[2]研究表明,混凝土孔溶液中绝大多数组分为Na + , K +和与其保持电性平衡的OH –,Ca 2+含量微乎其微, Ca (OH )2大部分是以晶体存在的。当CO 2扩散到混凝土孔溶液,并分别与Na + , K +,Ca 2+反应生成Na 2CO 3,K 2CO 3,CaCO 3。由于Na 2CO 3,K 2CO 3溶解度大,孔溶液中的Na + ,K +浓度不会发生变化,除非这些溶液干燥时达到过饱和析 出晶体;而孔溶液中的Ca 2+与CO 2- 3发生反应生成溶解度极低的CaCO 3,并沉积在孔壁表面,导致孔溶 液中Ca 2+ 浓度降低,因此Ca (OH )2晶体继续溶解,并补充孔溶液中失去的Ca 2+ 浓度。Ca (OH )2晶体逐渐溶解而碳化反应过程中CaCO 3晶体逐渐增多,这种循环反应一直进行到Ca (OH )2晶体完全溶解和消耗为止,此时混凝土pH 值降低,混凝土发生中性化现象。 混凝土孔溶液的pH 值越高,CaCO 3溶解度越小,孔溶液中发生中性化反应之后Ca 2+ 的浓度减少 得也越多, Ca (OH )2晶体的溶解速度也越快。随着中性化过程的继续,孔溶液的pH 不断降低, Ca (OH )2晶体的溶解速度也会减慢,碳化速度相应会有一些降低。 另外,由于碳化反应的主要产物碳酸钙属非溶 解性钙盐,比原反应物的体积膨胀约11.6%[3] ,因 2 02

相关主题
文本预览
相关文档 最新文档