当前位置:文档之家› 高中物理二轮复习——带电粒子在磁场中的运动

高中物理二轮复习——带电粒子在磁场中的运动

高中物理二轮复习——带电粒子在磁场中的运动
高中物理二轮复习——带电粒子在磁场中的运动

(本专题对应学生用书第26~30页)

一、 洛伦兹力

1. 公式:F=qvBsin α(α为v 与B 的夹角).

2. 特点:洛伦兹力F 的方向既垂直于磁场B 的方向,又垂直于运动电荷的速度v 的方向,即F 总是垂直于B 和v 所在的平面.故洛伦兹力始终不对运动电荷做功.

3. 方向的判断:左手定则. 二、 带电粒子在磁场中的圆周运动

1. 向心力由洛伦兹力提供:qvB=m .

2. 轨道半径公式:r==.

3. 周期公式:T==.

4. 频率公式:f==.

5. 动能公式:E k =mv 2=.

6. 粒子圆周运动的等效电流公式:I==.

能力提升

带电粒子在磁场中的圆周运动

2

v r mv

qB 2πr v 2πm

qB 1T 2πqB

m 1

22222q B r m q T 22πq B

m

定圆心、画轨迹、找关系是解决这类问题的关键.

(1) 确定圆心的方法

①由两速度的垂线定圆心;②由两条弦的垂直平分线定圆心;③由两洛伦兹力的延长线定圆心;④综合定圆心.一条切线,一条弦的垂直平分线,一条洛伦兹力的延长线,选择其中任两条都可以找出圆心.

(2) 画轨迹的方法

①对称法:带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向与出射速度方向与边界的夹角相等,利用这一结论画出粒子的轨迹.

②动态圆法:若在磁场中向垂直于磁场的各个方向发射粒子,则粒子的运动轨迹是围绕发射点旋转的动态圆,用这一规律可确定粒子的运动轨迹.

③放缩法:带电粒子在磁场中以不同的速度运动时,圆周运动的半径随着速度的变化而变化,因此可以将半径放缩,探索出临界点的轨迹,使问题得以解决.

(3) 找关系

①用几何知识(勾股定理、三角函数等)求出半径大小.②粒子在磁场中运动一

周的时间为T,当粒子运动的圆弧所对应的圆心角为α时,其运动时间为t=T(或

t=T).

例1 (2014·海安中学)在半径为R的圆形区域内有垂直于纸面向里的匀强磁场,磁感应强度大小为B.有两个相同的带正电的粒子从A点垂直于磁场方向进入磁场中,

进入磁场时的速度v

1和v

2

大小未知、方向与AO的夹角均为α,如图所示.已知两粒子

的质量均为m、电荷量均为q,它们在磁场中做匀速圆周运动的半径也是R(不计粒子的重力和它们之间的相互作用).求:

(1) 两粒子的运动速度v

1和v

2

的大小.

(2) 两粒子在磁场中运动的时间之差.

(3) 两粒子离开磁场的位置之间的距离.

0 360α

2πα

思维轨迹:

解析:(1) 两粒子在磁场中圆周运动的半径都是R,所以速度大小相同,设为v,

则qvB=m.所以v

1=v

2

=v=.

(2) 设以v

1运动的粒子从圆上的M点离开磁场区域,轨迹的圆心为O

1

,由题

可知O

1A=O

1

M=OA=OM,即OAO

1

M是菱形,所以O

1

M∥OA.设轨迹圆的圆心角为α

1

,则

∠OAO

1=90°+α.α

1

=180°-∠OAO

1

=90°-α.

同理,设以v

2运动的粒子从圆上的N点离开磁场区域,轨迹的圆心为O

2

,则OAO

2

N

是菱形,O

2

N∥OA.

设轨迹圆的圆心角为α

2,则

2

v

R

qBR

m

∠OAO 2=90°-α.α2=180°-∠OAO 2=90°+α. 两轨迹圆的圆心角的差值为Δα=α2-α1=2α.

设粒子在磁场中圆周运动的周期为T ,有T=. 两粒子在磁场中运动的时间差为Δt=T=.

(3) 由以上分析可知α1=∠OAO 2.

说明两菱形除边长相等外顶角也相等,两菱形全等.O 2N 、O 1M 到OA 的距离相等,即O 2N 、O 1M 在同一直线上.

在三角形MON 中,∠MON=α2-α1=2α. 所以,MN=2Rsin α.

答案:(1) (2) (3) 2Rsin α

变式训练1 (2014·泰州中学)如图所示,在0≤x ≤d 的空间,存在垂直xOy 平面向里的匀强磁场.y 轴上的P 点有一小孔,可以向y 轴右侧垂直于磁场方向不断发射速率均为v 且与y 轴所成夹角θ可在0~180°范围内变化的带负电的粒子.已知当θ=45°时,粒子恰好从磁场右边界与P 点等高的Q 点射出磁场,不计粒子重力及粒子间的相互作用.求:

(1) 磁场的磁感应强度.

(2) 若θ=30°,粒子射出磁场时与磁场边界的夹角(可用三角函数、根式表示). (3) 能够从磁场右边界射出的粒子在磁场中经过的区域的面积(可用根式表示).

解析:(1) 粒子在磁场中做匀速圆周运动,设粒子的轨道半径为R ,磁场的磁感

2πm

qB Δ2πα

2m qB αqBR

m 2m qB

α

应强度为B ,则qvB=m .

如下图实线所示,由几何关系d=2Rcos 45°,

解得B=.

(2) 如下图虚线所示,由几何关系d=Rcos 30°+Rcos α,

解得cos α=.

(3) 能够从磁场右边界射出的粒子在磁场中经过的区域,如图中两圆弧间斜线部分所示,由几何关系R 2- (d-R)2=(PM)2.

两个圆弧与水平线之间围成的面积是相等的,所以所求区域面积为矩形PQNM 的面积,

S=d ·|PM|,解得S=d

答案:(1)

(2) cos α=(3) d

2

v R qd qd

带电粒子在相邻多个磁场中的运动

粒子在相邻多个磁场中连续运动时,会画出不同的轨迹,从复杂的轨迹中找出规律,寻找解决问题的突破口,解决这类问题时,关键在于能画出轨迹,弄清楚粒子的运动过程,找出粒子在不同磁场中运动的联系,借助圆周运动的特点解决问题.

例2 (2014·海安中学)如图所示,在xOy平面内,以O'(0,R)为圆心、R为半径的圆内有垂直于平面向外的匀强磁场,x轴下方有垂直于平面向里的匀强磁场,两个磁场区域的磁感应强度大小相等.第四象限有一个与x轴成45°角倾斜放置的挡板PQ,P、Q两点在坐标轴上,且O、P两点间的距离大于2R,在圆形磁场左侧0

(1) 磁场的磁感应强度B的大小.

(2) 挡板端点P的坐标.

(3) 挡板上被粒子打中的区域的长度.

思维轨迹:

(1) 以任一粒子为研究对象→找出圆心,画出轨迹→用几何知识求出轨道半径→由洛伦兹力提供向心力求出磁感应强度B

(2) 粒子从O点进入三四象限时相当于一个速度大小相等的粒子源→作出圆心

的轨迹→作出粒子可能到达的空间位置→找出打到挡板上从O点射出的粒子范围→

利用几何知识求出P点坐标

(3) 根据第2小题中作出的包络圆的轨迹→利用几何知识求出粒子打在挡板上的长度

解析:(1) 设粒子从磁场边界的A 点进入磁场,该粒子由O 点射出圆形磁场,轨迹如图甲所示,过A 点作速度的垂线,在垂线上取点C(满足OC=AC),确定轨迹圆的圆心为C.连接AO'、CO ,可证得ACOO'为菱形,根据图中几何关系可知,粒子在圆形磁场中的轨道半径r=R ,

由qvB=m ,解得B=.

甲 乙

(2) 欲使有一半的粒子打到挡板上,则需满足从O 点射出的沿x 轴负方向的粒子、沿y 轴负方向的粒子轨迹刚好与挡板相切,如图乙所示.过圆心D 作挡板的垂线交于E 点,由几何关系可知

R ,

+1)R. 所以P 点的坐标为

+1)R ,0].

(3) 设能打到挡板最左侧的粒子落在挡板上的F 点,如图丙所示,则OF=2R ,过O 点作挡板的垂线交于G 点,则

2

v r mv qR

+1)R ·=

R.

R. EG=R.

挡板上被粒子打中的区域长度

l=FE=

R=R.

答案: (1)

+1)R ,0]

(3) R

变式训练2 (2014·姜堰中学)如图所示,直角坐标平面xOy 内有一条直线AC 过

坐标原点O 且与x 轴成45°角,在OA 与x 轴负半轴之间的区域内存在垂直xOy 平面向外的匀强磁场B 1,在OC 与x 轴正半轴之间的区域内存在垂直xOy 平面向外的匀强磁场B 2.现有一质量为m ,带电荷量为q(q>0)的带电粒子以速度v 从直线AC 上的P 点竖直向下射出,P 点坐标为(L ,L),经测量发现,此带电粒子每经过相同的时间T ,会再将回到P

1?+ ??22mv

qR

点,已知磁感应强度B 2=(不计粒子重力).

(1) 请在图中画出带电粒子的运动轨迹,并求出匀强磁场B 1与B 2的比值(B 1、B 2

磁场范围足够大).

(2) 求出带电粒子相邻两次经过P 点的时间间隔T.

(3) 若保持磁感应强度B 2不变,改变B 1的大小,但不改变其方向,使B 1=.

现从P 点向下先后发射速度分别为和的与原来相同的带电粒子(不计两个带电粒

子之间的相互作用力,并且此时算作第一次经过直线AC),如果它们第三次经过直线AC 时轨迹与AC 的交点分别记为E 点和F 点(图中未画出),试求EF 两点间的距离.

解析:(1) 带电粒子从P 点匀速运动到Q 点,然后做半径为R 2==L 的匀速圆周

运动,运动到H 点时的速度方向与AC 垂直,从H 点匀速运动到D 点,之后又做匀速圆周运动到P 点.根据平面几何知识可知,=

L ,四边形PODO 1

为棱形,O 1为圆心,即带电粒子在匀强磁场B 1中做匀速圆周运动的半径R 1L

根据qvB 1=m ,得B 1=

=B 2,所以B 1与B 2

的比值为.

(2) T=t 1+t 2+t 3+t 4.

t 1=, t 2=T 2=,

mv

qL 2mv

qL 4v

3v 2mv

qB PO OD 21v R 2qL 22L

v 383π4L v

t 3=, t 4=T 1=,

则T=t 1+t 2+t 3+t 4=.

(3) 两带电粒子在磁场B 2中运动时的半径为

R'2==,R ″2==.

B 1==,

故粒子在磁场B 1中的运动半径R 1==2R 2,则两带电粒子都刚好运动圆周到达A 点.所以,E 、F 两点间的距离d EF =0(如图所示).

答案:(1) 带电粒子的运动轨迹见解析

(2) (3) 0

带电粒子在磁场中的临界问题

解决带电粒子在磁场中运动的临界问题的关键是找准临界点.带电粒子在磁场中以不同的速度运动时,圆周运动的半径随着速度的变化而变化,因此可以将半径放缩,运用“放缩法”探索出临界点的轨迹,使问题得以解决;对于范围型问题,求解时关键寻找引起范围的“临界轨迹”及“临界半径”,然后利用粒子运动的实际轨迹半径与临界

L v 584L

v 2·

4v

m qB 4L

2·3v m qB 3L 2mv qL 2

2B 1mv qB 1

42

半径的大小关系确定范围.常用的结论有:① 直径是圆的最大弦;② 同一圆中大弦对应大的圆心角;③ 刚好穿出磁场边界的临界条件是带电粒子在磁场中运动的轨迹与边界相切.

例3 (2014·如东中学)如图所示,中轴线PQ 将矩形区域MNDC 分成上、下两个部分,上部分充满垂直纸面向外的匀强磁场,下部分充满垂直纸面向里的匀强磁场,磁感应强度均为B.一质量为m 、电荷量为+q 的粒子从P 点进入磁场,速度与边MC 的夹角θ=30°.MC 边长为a ,MN 边长为8a ,不计粒子重力.则:

(1) 若要该粒子不从MN 边射出磁场,求其最大速度.

(2) 若要该粒子恰从Q 点射出磁场,求其在磁场中运行的最短时间. 思维轨迹:

(1) 速度越大,半径越大←临界条件:粒子轨迹与磁场边界相切时,半径最大 (2) 时间越短,圆心角越小←临界条件:粒子以较大速度运动到达Q 点穿出磁场的次数最少

解析:(1) 设该粒子恰好不从MN 边射出磁场时的轨迹半径为r ,由几何关系得

rcos 60°=r-a ,解得

r=a.

又由qvB=m ,

解得最大速度v=

.

1

22

v r qBa

m

(2) 粒子每经过分界线PQ 一次,在PQ 方向前进的位移为轨迹半径r

. 设粒子进入磁场后第n 次经过

PQ 线时恰好到达Q 点, 有n

解得n=n 所能取的最小自然数为5.

粒子做圆周运动的周期为T=.

粒子每经过PQ 分界线一次用去的时间为

t=T=.

粒子到达Q 点的最短时间为t min =5t=. 答案:(1) (2)

变式训练3

(2014·沭阳中学)如图所示,在边长为L 的正方形区域内存在着垂直于纸面向里的匀强磁场,磁感应强度大小为B.P 点位于正方形的对角线CE 上,其到

CF 、CD 的距离均为,在P 点处有一个发射粒子的装置(图中未画出),它能连续不

断向纸面内的各方向发射出速率不同的带正电的粒子.已知粒子的质量为m ,带电荷量为q ,不计粒子重力及粒子间的相互作用力.

(1) 速率在什么范围内的粒子不可能射出正方形区域?

2πm

qB 1

32π3m qB 10π3m

qB qBa

m 10π3m qB 4L

(2) 求速率v=的粒子在DE 边的射出点与D 点的距离d 的范围.

解析:因粒子的速度方向垂直于磁场方向,故其在洛伦兹力的作用下做匀速圆周运动.

(1) 依题意可知,粒子在正方形区域内做圆周运动,不射出该区域的半径为r

≤.

对粒子,由牛顿第二定律有qvB=m .

即v=≤.

(2) 当v=时,设粒子在磁场中做圆周运动的半径为R ,则由qvB=m 可得,

R==.

要使粒子从DE 边射出,则其一定不能从CD 边射出,其临界状态是粒子的轨迹与CD 边相切.

甲 乙

设切点与C 点的距离为x ,其轨迹如图甲所示,由几何关系得

R 2=

+, 解得x=L.

1332qBL

m 8L 2

v r qBr

m 8qBL m 1332qBL

m 2v R mv qB 1332

L 2

-4L x ?? ???2

-4L R ?? ???58

设此时粒子在DE 边的射出点与D 点的距离为d 1, 由几何关系有(L-x)2+(R-d 1)2=R 2,

解得d 1=.

而当粒子的轨迹与DE 边相切时,粒子必将从EF 边射出,设此时切点与D 点的距离为d 2,其轨迹如图乙所示,由几何关系有

R 2=

+, 解得d 2=.

故速率v=的粒子在DE 边的射出点距离D 点的距离范围为≤d<

.

答案:(1) v ≤ (2) ≤d<

带电粒子在磁场中的多解问题

带电粒子在洛伦兹力作用下做匀速圆周运动,由于多种因素的影响,使问题形成多解.多解形成原因一般从以下几个方面来分析.

(1) 带电粒子电性不确定形成多解:受洛伦兹力作用的带电粒子,可能带正电,也可能带负电,当粒子具有相同速度时,正、负粒子在磁场中的运动轨迹不同,导致多解.

(2) 磁场方向不确定形成多解:磁感应强度是矢量,如果题述条件只给出磁感应强度的大小,而未说明磁感应强度方向,则应考虑因磁场方向不确定而导致的多解.

(3) 临界状态不唯一形成多解:带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧状,因此,它可能穿过去了,也可能转过180°从入射面边界反向飞出,于是形成了多解.

4L

2

3-4L R ?? ???2

2-4L d ?

? ???1332qBL m 4L

(28L

8qBL m 4L

(4) 运动的往复性形成多解:带电粒子在不同磁场(如周期性变化的磁场)的空间中运动时,运动往往具有往复性,从而形成多解.

例4 (2014·江苏)某装置可以利用磁场控制带电粒子的运动,工作原理如图所示.装置的长为L,上下两个相同的矩形区域内存在匀强磁场,磁感应强度大小均为B,方向与纸面垂直且相反,两磁场的间距为d.装置右端有一收集板,M、N、P为板上的三点,M位于轴线OO'上,N、P分别位于下方磁场的上、下边界上.在纸面内,质量为m、电荷量为-q的粒子以某一速度从装置左端的中点射入,方向与轴线成30°角,经过上方的磁场区域一次,恰好到达P点.改变粒子入射速度的大小,可以控制粒子到达收集板上的位置,不计粒子的重力.

(1) 求磁场区域的宽度h.

(2) 欲使粒子到达收集板的位置从P点移到N点,求粒子入射速度的最小变化量Δv.

(3) 欲使粒子到达M点,求粒子入射速度大小的可能值.

思维轨迹:

(1)

(2) 粒子到达收集板的位置从P点移到N点→粒子运动半径变小→粒子运动

速度变小→粒子第一次经过下方磁场后到达N点→根据运动的对称性,作出粒子的运动轨迹→利用几何知识列式计算

(3) 欲使粒子到达M点→M点与入射点O在同一直线上→根据运动的对称性,作出粒子的运动轨迹→考虑多种可能情况利用几何知识列方程求解

解析:(1) 设带电粒子在磁场中运动的轨道半径为r ,依题意作出带电粒子的运动轨迹如下图所示,

由图中几何关系有L=3rsin 30°+,

h=r(1-cos 30°).

解得h=

. (2) 设带电粒子初始入射速度为v 1,改变速度后仍然经过上方的磁场区域一次后到达N 点,此时速度的改变量最小,设改变后的速度为v 2,粒子改变速度后,在磁场中运动的轨道半径为r',带电粒子的运动轨迹如下图所示:

由图中几何关系有L=4r'sin 30°+.

根据牛顿第二定律有qv 1B=m ,qv 2B=m .

粒子入射速度的最小变化量Δv=|v 2-v 1|.

联立以上各式解得Δ

(3) 粒子可能从上方磁场出来后经过M 点,也可能从下方磁场出来后经过M 点,不妨假设粒子共n 次经过了磁场区域到达了M 点,此时在磁场中运动的轨道半径为r n ,

32tan30d

23L ??? ? ????0

32tan30d

21v r 2

2

'v r

速度为v n ,根据牛顿第二定律有qv n

根据几何关系有L=2nr n sin 30°

解得v n 由于粒子经过上方的磁场区域一次,恰好到达P 点,因此粒子不可能只经过上方一次直接到达M 点,则n ≥2.

又因为粒子必须经过磁场改变其运动的方向才能到达M 点,因此满足n<

tan 30°

.

所以,v n =(其中2≤n 为整数).

答案

变式训练4 (2014·如皋期末)如图甲所示,空间内有垂直于纸面向里的有界匀强磁场,MN 是磁场的上边界,磁场宽度足够大,磁感应强度B 0=1×10-4 T.现有一=2×1011 C/kg 的正离子以某一速度从P 点水平向右射入磁场,已知P 点到边

界MN 的垂直距离d=20 cm ,不计离子的重力.求:

(1) 若离子以速度v 1=3×106 m/s 水平射入磁场,求该离子从MN 边界射出时的位置到P 点的水平距离s.

(2) 若要使离子不从MN 边界射出磁场,求离子从P 点水平射入的最大速度v m . (3) 若离子射入的速度满足第(2)问的条件,当离子从P 点射入时,再在该磁场区域加一个如图乙所示的变化磁场(正方向与B 0方向相同,不考虑磁场变化所产生的电场),求该离子从P 点射入到第一次回到P 点所经历的时间t.

解析:(1) 离子在磁场中做匀速圆周运动,由洛伦兹力提供向心力可得B 0qv 1=

,解得r 1=0.15 m.

由s 21)2 ,

代入数据解得≈0.14 m.

(2) 离子刚好不从边界射出时的最大半径为r 2

B 0qv m v m =2×106 m/s.

(3) 离子在原磁场中的运动周期

T 1π×10-7 s.

离子在磁场中运动直到第一次遇到外加磁场的过程中轨迹对应的圆心角

θ1

=×2π.

施加附加磁场后,离子在磁场中做圆周运动的半径将变小,周期T 2为

T 2==×10-7 s.

即离子刚好能运动一个完整的圆周,接下来在B 0磁场中继续偏转,对照外加磁

×10

-7 s 离子在周期性外加磁场时做半径更小的圆周运动,

离子可做5

次完整的匀速圆周运动,如图所示,最后还经过P 点.离子从P

点射入磁场

到第一次回到

P 点的总时间t=T 1+5T 2,

解得10-7 s.

答案:(1) 0.14 m (2) 2×106 m/s

10-7 s

能力呈现

【考情分析】

【备考策略】

带电粒子在磁场中的运动是每年高考的必考内容.常见题型有选择题、计算题,甚至是压轴题,试题对学生的空间想象能力、分析物理过程和运用规律的综合能力以及运用数学知识解决物理问题的能力进行考查.解答时要从受力分析和运动分析入手,根据洛伦兹力产生的条件、大小的计算、方向的判定、永不做功等特点以及带电粒子在匀强磁场中做圆周运动的规律列式,并善于运用几何关系来解题.

1. (2014·苏南调研)如图所示,无限长导线,均通以恒定电流I.直线部分和坐标轴接近重合,弯曲部分是以坐标原点O为圆心的相同半径的一段圆弧,已知直线部分在原点O处不形成磁场,则下列四个图中O处磁感应强度和题图中O处的磁感应强度相同的是( )

解析:可以采用填补法,在题图中相当于一个顺时针方向的环形电流的一半,在选项

高中物理二轮复习

专题二 一、选择题(1~6题只有一项符合题目要求,7~9题有多项符合题目要求) 1.物体a和b在同一条直线上向右运动,物体a在前且一直做匀速运动,物体b在后先做匀减速再做反方向匀加速运动,行驶中物体a和b相遇两次,用v-t图象表示两物体的速度随时间变化的关系,用x-t图象表示两物体的位移随时间变化的关系,则能正确反映物体a和物体b运动关系的图(取向右为正方向)是() 解析:图A中物体b的速度没有反向,A错;图B中,两物体不可能相遇,B错;图C中物体b不是先做匀减速运动再做匀加速运动,C错;图D满足题中所述运动,D对.答案: D 2.以24 m/s的速度行驶的汽车,紧急刹车后做匀减速直线运动,其加速度大小为6 m/s2,则刹车后() A.汽车在第1 s内的平均速度为24 m/s B.汽车在第1 s内的平均速度为12 m/s C.汽车在前2 s内的位移为36 m D.汽车在前5 s内的位移为45 m 解析:汽车刹车时间为t0=4 s,刹车位移为x0=242 2×6 m=48 m,到第4 s末汽车已停 止,汽车在5 s内位移为48 m,D错误,根据位移x=v0t-1 2at 2可知第1 s内的位移x1=21 m,平均速度v=21 m/s,A、B均错误;汽车在前2 s内位移为36 m,C正确.答案: C 3.(2014·西安市质检二)如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为2m和m,各接触面间的动摩擦因数均为μ.重力加速度为g.要使纸板相对砝码运动,所需拉力的大小至少应大于()

高中物理运动学公式总结

高中物理运动学公式总结 The Standardization Office was revised on the afternoon of December 13, 2020

高中物理运动学公式总结 一、质点的运动——直线运动。 1)匀变速直线运动。 1、平均速度;t x V =定义式平均速率;t s V = 2、有用推理ax Vo Vt 222=- 3、中间时刻速度;202V Vt V Vt +==平 4、末速度Vt=V0+at 5、中间位置速度2 2220Vt V Vx += 6、位移 t 2t 2a t 0t t 2V V V s =+==平 7、加速度t V Vt a 0 +=(以V0为正方向,a 与V0同向[加速]a ?0,反向则a <0) 8、实验推论;S1-S2=S3-S2=S4-S3= =?x=a t 2 9、初速度为0n 个连续相等的时间内s 的比;s1:s2:s3 :Sn=1:3:5 :(2n-1) 10、初速度为0的n 个连续相等的位移内t 之比; t1:t2:t3 :tn=1:(12-0):(23-): :(1--n n ) 11、a=t n m Sn Sm 2--(利用上个段位移,减少误差---逐差法) 12、主要物理量及单位:初速度V0= s m ;加速度a=s m 2;末速度Vt= s m 1s m =h k m 注; 1平均速度是矢量, 2物体速度大,加速度不一定加大 2)自由落体运动 1初速度V0=0 2末速度Vt=gt 23下落高度)位置向下计算从00(22V g h t = 4推论t 2V =2gh 注; 1自由落体运动是初速度为0的匀加速直线运动,遵循匀变速直线运动规律。

高三物理二轮复习策略精选

高三物理二轮复习策略 我们已经顺利结束了高三物理的第一轮复习,在第一轮的复习中,学生大都能掌握物理学中的基本概念、规律及其应用等知识,但较为零散,故学生对知识的综合运用还不够熟练.上周,我们参加了临沂市高三物理后期教学研讨会,通过参加会议,我们学习到在二轮复习中,要以专题复习为主,把整个高中知识网络化、系统化,突出知识的横向联系与延伸、拓展,使学生在第一轮复习的基础上,进一步提高学生运用知识解决物理问题的能力.如何才能在二轮复习中充分利用有限的时间,取得更好的效益?下面结合我们自己的实际情况,谈谈我们在教学工作中的一些做法和几点心得体会,与同行们交流探讨: 【材料选用】 第一:学案组织:我们以市二轮资料为基础,集合多种优秀资料进行优化组合,形成有针对性的习题,以期达到更好的复习效果. 第二:要重视理科综合中物理的定时训练,习题的选择以各地优秀的模拟试题为基础,每周至少一次理科综合训练,一次物理单科定时训练,让学生在一次次的训练中找到速度、时间、准确的切合点,养成规范的审题、答题习惯. 【具体做法】 (一)我们集思广益,制定切实有效的课堂模式 二轮复习与一轮复习不同,它是知识的升华.第二轮复习的任务是把前一阶段中较为凌乱、繁杂的知识系统化、条理化、模块化,建立起知识之间的联系,提高综合运用知识的能力.本阶段进行专题复习,着重进行思维方法与解题技巧的训练. (二)提高审题能力 在物理综合问题的解决上,审题是第一步,也是最关键的一步.通过审题,从题目中获取有用的信息,构建物理模型,分清物理过程,是顺利解题的关键.虽是一种阅读能力,实质上还是理解能力.每次考试总是有人埋怨自己因看错了题而失分,甚至还有一些人对某些题根本看不懂(主要是信息类题,因题干太长,无法

高中物理新课程磁现象和磁场教学设计案例

高中物理新课程磁现象和磁场教学设 计案例 高中物理新课程磁现象和磁场教学设计案例 发布者:李昌茂 内容:选修3-1第三章《磁现象和磁场》(普通高中课程标准实验教科书) 教材分析 磁现象和磁场是新教材中磁场章节的第一节课,从整个章节的知识安排来看,本节是此章的知识预备阶段,是本章后期学习的基础,是让学生建立学习磁知识兴趣的第一课,也是让学生建立电磁相互联系这一观点很重要的一节课,为以后学习电磁感应等知识提供铺垫。整节课主要侧重要学生对生活中的一些磁现象的了解如我国古代在磁方面所取得的成就、生活中熟悉的地磁场和其他天体的磁场(太阳、月亮等),故本节课首先应通过学生自己总结生活中与磁有关的现象。电流磁效应现象和磁场对通电导线作用的教育是学生树立起事物之间存在普遍联系观点的重要教学点,是学生在以后学习物理、

研究物理问题中应有的一种思想和观点。 学生分析 磁场的基本知识在初中学习中已经有所接触,学生在生活中对磁现象的了解也有一定的基础。但磁之间的相互作用毕竟是抽象的,并且大部分学生可能知道电与磁的联系,但没有用一种普遍联系的观点去看电与磁的关系,也没有一种自主的能力去用物理的思想推理实验现象和理论的联系。学生对磁场在现实生活中的应用是比较感兴趣的,故通过多媒体手段让学生能了解地磁场、太阳的磁场和自然界的一些现象的联系(如黑子、极光等),满足学生渴望获取新知识的需求。 教学目标 一、知识与技能 1、让学生自己总结生活中与磁有关的现象,了解现实生活中的各种磁现象和应用,培养学生的总结、归纳能力。 2、通过实验了解磁与磁、磁与电的相互作用,掌握电流磁效应现象。使学生具有普遍联系事物的能力,培养观察实验能力和分析、推理等思维能力。

高中物理二轮复习《直流电与交流电》

P UI P EI U E η== =外 专题四 电路和电磁感应 第一讲 直流电路与交流电路 何洁 知识主干 一、电功和电热 电功W =qU =UIt ;电热Q =I 2Rt. (1)对纯电阻电路,电功等于电热,即电流流经纯电阻电路,消耗的电能全部转化为内 能,所以W =Q =UIt =I 2Rt =U 2R t. (2)对非纯电阻电路(如电动机和电解槽),电能一部分转化为内能,另一部分转化为其他形式的能(如机械能或化学能等),所以电功必然大于电热,即W>Q ,这时电功只能用W =UIt 计算,电热只能用Q =I 2Rt 计算,两式不能通用. (3)电流流经纯电阻电路,消耗的电能全部转化为内能;流经非纯电阻电路,消耗的电能一部分转化为内能,另一部分转化为其他形式的能. (4)电源的功率与效率 ①电源的功率P :也称为电源的总功率,是电源将其他形式的能转化为电能的功率,计算式为:P= IE ②电源内阻消耗功率P 内:是电源内阻的热功率,也称为电源的损耗功率,计算式为:P 内= I 2r . ③电源的输出功率P 外:外电路上消耗的功率,计算式为:P 外= IU 外 . ④电源的效率: ⑤电源的输出功率与外电阻R 的关系: 因此可知当电源内外电阻相等时,输出功率最大。 当R >r 时,随着R 的增大输出功率越来越小. 当R <r 时,随着R 的增大输出功率越来越大. 当R 由小于r 增大到大于r 时,随着R 的增大输出功率先增大后减小(非单调变化). 4.含容电路的分析技巧 电容器两极板间的电压等于与电容器并联的电阻两端的电压,与电容器串联的电阻两端的电压一定为零(有阻无流,则无电压). 二、交变电流 22 2 2()()4RE E P UI R r R r r R ===-++外

高中物理运动学经典习题30道 带答案

一.选择题(共28小题) 1.(2014?陆丰市校级学业考试)某一做匀加速直线运动的物体,加速度是2m/s2,下列关于该物体加速度的理解 D 9.(2015?沈阳校级模拟)一物体从H高处自由下落,经时间t落地,则当它下落时,离地的高度为() D 者抓住,直尺下落的距离h,受测者的反应时间为t,则下列结论正确的是()

∝ ∝ 光照射下,可观察到一个下落的水滴,缓缓调节水滴下落的时间间隔到适当情况,可以看到一种奇特的现象,水滴似乎不再下落,而是像固定在图中的A、B、C、D四个位置不动,一般要出现这种现象,照明光源应该满足(g=10m/s2)() 地时的速度之比是 15.(2013秋?忻府区校级期末)一观察者发现,每隔一定时间有一滴水自8m高的屋檐落下,而且看到第五滴水 D

17.(2014秋?成都期末)如图所示,将一小球从竖直砖墙的某位置由静止释放.用频闪照相机在同一底片上多次曝光,得到了图中1、2、3…所示的小球运动过程中每次曝光的位置.已知连续两次曝光的时间间隔均为T,每块砖的厚度均为d.根据图中的信息,下列判断正确的是() 小球下落的加速度为 的速度为 :2 D: 2 D O点向上抛小球又落至原处的时间为T2在小球运动过程中经过比O点高H的P点,小球离开P点至又回到P 23.(2014春?金山区校级期末)一只气球以10m/s的速度匀速上升,某时刻在气球正下方距气球6m处有一小石 2

v0v0D 27.(2013?洪泽县校级模拟)一个从地面竖直上抛的物体,它两次经过同一较低a点的时间间隔为T a,两次经 g(T a2﹣T b2)g(T a2﹣T b2)g(T a2﹣T b2)D g(T a﹣T b) 28.(2013秋?平江县校级月考)在以速度V上升的电梯内竖直向上抛出一球,电梯内观者看见小球经t秒后到 h=

高三物理二轮复习专题一

专题定位 本专题解决的是受力分析和共点力平衡问题.高考对本专题内容的考查主要有:①对各种性质力特点的理解;②共点力作用下平衡条件的应用.考查的主要物理思想和方法有:①整体法和隔离法;②假设法;③合成法;④正交分解法;⑤矢量三角形法;⑥相似三角形法;⑦等效思想;⑧分解思想. 应考策略 深刻理解各种性质力的特点.熟练掌握分析共点力平衡问题的各种方法. 1. 弹力 (1)大小:弹簧在弹性限度内,弹力的大小可由胡克定律F =kx 计算;一般情况下物体间相互作用的弹力可由平衡条件或牛顿运动定律来求解. (2)方向:一般垂直于接触面(或切面)指向形变恢复的方向;绳的拉力沿绳指向绳收缩的方向. 2. 摩擦力 (1)大小:滑动摩擦力F f =μF N ,与接触面的面积无关;静摩擦力0

(1)大小:F洛=q v B,此式只适用于B⊥v的情况.当B∥v时F洛=0. (2)方向:用左手定则判断,洛伦兹力垂直于B、v决定的平面,洛伦兹力总不做功.6.共点力的平衡 (1)平衡状态:静止或匀速直线运动. (2)平衡条件:F合=0或F x=0,F y=0. (3)常用推论:①若物体受n个作用力而处于平衡状态,则其中任意一个力与其余(n-1) 个力的合力大小相等、方向相反.②若三个共点力的合力为零,则表示这三个力的有向线段首尾相接组成一个封闭三角形. 1.处理平衡问题的基本思路:确定平衡状态(加速度为零)→巧选研究对象(整体法或隔离法)→受力分析→建立平衡方程→求解或作讨论. 2.常用的方法 (1)在判断弹力或摩擦力是否存在以及确定方向时常用假设法. (2)求解平衡问题时常用二力平衡法、矢量三角形法、正交分解法、相似三角形法、图解 法等. 3.带电体的平衡问题仍然满足平衡条件,只是要注意准确分析场力——电场力、安培力或洛伦兹力. 4.如果带电粒子在重力场、电场和磁场三者组成的复合场中做直线运动,则一定是匀速直线运动,因为F洛⊥v. 题型1整体法和隔离法在受力分析中的应用 例1如图1所示,固定在水平地面上的物体P,左侧是光滑圆弧面,一根轻绳跨过物体P 顶点上的小滑轮,一端系有质量为m=4 kg的小球,小球与圆心连线跟水平方向的夹角θ=60°,绳的另一端水平连接物块3,三个物块重均为50 N,作用在物块2的水平力F=20 N,整个系统平衡,g=10 m/s2,则以下正确的是() 图1 A.1和2之间的摩擦力是20 N B.2和3之间的摩擦力是20 N

高中物理新课标版人教版1优秀教案磁现象和磁场

第三章磁场 全章教学设计 全章教学内容分析 我们生活在磁的世界里,但是磁对我们来说,依然相当神秘。本章从磁现象和电流磁效应导入磁场,首先介绍了磁场的性质及描述,进而研究磁场对通电导线和运动电荷的作用力。最后介绍带电粒子在磁场中的运动。全章的知识结构始终遵循“从充满问题的现象入手,从实验中发现本质,从本质中体会应用”这一思路。 磁场对电流的作用——安培力在本章中起着承上启下的作用,它不仅是磁场性质的重要体现,而且是学习电流表工作原理和推导洛伦兹力公式的基础,还是电磁感应动态分析的重要组成部分。在洛伦兹力公式的处理上,教材从“磁场对电流有力的作用”和“电流是由电荷的定向移动形成的”这两个事实出发,提出磁场对运动电荷有作用力的设想,然后用实验来验证,在此基础上引入洛伦兹力概念,并借助电流的微观模型推导洛伦兹力。一般情况下,带电粒子在磁场中的运动比较复杂,它被广泛运用于探索物质的微观结构图相互作用并且在现代科技中有着广泛的应用。教材结合显像管、质谱仪、回旋加速器应用实例主要介绍了带电粒子垂直进入匀强磁场中的匀速圆周运动,旨在让学生掌握粒子运动与控制的研究方法。 课标要求 1.内容标准 (1)列举磁现象在生活和生产中的应用。了解我国古代在磁现象方面的研究成果及其对人类文明的影响。关注与磁相关的现代技术发展。 例1:观察计算机磁盘驱动器的结构,大致了解其工作原理。 (2)了解磁场,知道磁感应强度和磁通量。会用磁感线描述磁场。 例2:了解地磁场的分布、变化,及其对人类生活的影响。 (3)会判断通电直导线和通电线圈周围磁场的方向。 (4)通过实验认识安培力,会判断安培力的方向。会计算匀强磁场中安培力的大小。 例3:利用电流天平或其他简易装置,测量或比较磁场力。 例4:了解磁电式电表的结构和工作原理。 (5)通过实验认识洛伦兹力。会判断洛伦兹力的方向,会计算洛伦兹力的大小。了解电子束的磁偏转原理及其在科学技术中的应用。 例5:观察阴极射线在磁场中的偏转。 例6:了解质谱仪和回旋加速器的工作原理。 (6)认识电磁现象的研究在社会发展中的作用。 2.活动建议 (1)用电磁继电器安装一个自动控制电路。 (2)观察电视显像管偏转线圈的结构,讨论控制电子束偏转的原理。 知识版块及知识结构 磁场的概念→磁场的描述→磁场对通电导线的作用力→磁场对运动电荷的作用力→带电粒子在匀强磁场中的运动 知识结构图

高中物理选修3-1总复习.doc

高中物理选修3-1总复习 I.electric field 1.two kinds of charge and charge conservation law, element charge: (E = 1. 60 * 10T9C) ; charged body charge is equal to the integral times of the element charge 2.: F 二kQlQ2/r2 (Coulomb force F: in vacuum) {point charge between (N), k: constant static power k 二9 * 109N m2/C2, QI, Q2:? Two charge (C), the distance between the two r: charge (m), in the direction of their attachment, force with the reaction force, like charges repel each other, uni ike charges attract each other} 3.electric field strength: E = F/q (definition, formula) {E: (N/C), the electric field intensity is a vector (the superposition principle of electric field), Q: electricity inspection charge (C)} 4.vacuum point (source) E electric charge formation = kQ/r2 {R: source charge to the location distance (m), Q: source charge} E 5. field uniform electric field voltage = UAB/d {UAB:AB (V) between two points, d:AB points in the field direction distance (m)} 6.electric force: F = qE {F: (N), electric charge q: by electric field force power (C), E: field (N/C)} 7.potential and potential difference: UAB = phi A- phi B, UAB 二WAB/q = - Delta EAB/q The work of 8. electric force: WAB 二qUAB 二Eqd {WAB: from A to B when the charged body electric field force work (J), q: (C), the charge

高中物理运动学公式word版(带答案)可编辑

匀变速直线运动公式: 加速度的定义式:a=速度与时间的关系:v= 位移与时间的关系:X=平均速度与中间时刻瞬时速度的关系:末速度与初速度的平方差关系:等时相邻的两段位移差的关系:ΔX=a 某段时间内中间时刻的瞬时速度:经过某段位移中点时的瞬时速度: 初速为零的匀加速直线运动的比例关系: ①前1秒、前2秒、前3秒……前n秒末的速度之比为: 1 : 2 : 3 : …… : n ②第1秒、第2秒、第3秒……第n秒末的速度之比为: 1 : 2 : 3 : …… : n ③前1秒、前2秒、前3秒……前n秒内的位移之比为: 1 : 4 : 9 : …… : ④第1秒、第2秒、第3秒……第n秒内的位移之比为: 1 : 3 : 5 : …… : (2n-1) ⑤前1米、前2米、前3米……前n米所用的时间之比为: 1 : : : …… : ⑥第1米、第2米、第3米……第n米所用的时间之比为: 1 : : : …… : ⑦第1米、第2米、第3米……第n米末的速度之比为: 1 : : : …… : 自由落体运动规律: 加速度:a=速度与时间的关系:v= 下落高度与时间的关系:h=平均速度与中间时刻瞬时速度的关系:末速度与下落高度的关系:等时相邻的两段高度差的关系:Δh=g 某段时间内中间时刻的瞬时速度:经过某段下落高度中点时的瞬时速度:落地时间:t= 竖直上抛运动规律: 运动性质:上升时为_匀减速直线运动__,下落时为自由落体运动 . 加速度:a=速度与时间的关系:v= 上升的时间:回到抛出点的时间:

位移与时间的关系(位移的初位置在抛出点):X= 上升时的平均速度与初速度的关系: . 最高点离抛出点的高度:h m=落回抛出点的速度为v=- 平抛运动 1、实质:水平方向做匀速直线运动,竖直方向做自由落体运动。 2、水平分运动:水平分速度:水平位移: 3、竖直分运动:竖直分速度:竖直位移:。 4、合运动:位移:X=速度:V=。 5、下落时间:t= 6、任意时刻:速度与水平面夹角α的正切值: 位移与水平面夹角β的正切值: 7、某时刻速度、位移与初速度方向的夹角α、β的关系为 8、平抛运动的物体,任意时刻随时速度的反向延长线一定通过水平位移的中点。 顺着斜面平抛物体,物体又重新落在斜面上 1、落在斜面上时速度方向与斜面加角恒定 . 2、物体在斜面上运动时间: 3、运动过程中距离斜面的最大距离: 4、运动过程中离斜面距离最大的时间:t= 5、水平位移和竖直位移的关系: 6、物体的位移:X=

高三物理二轮复习备考策略和方法

2019届高三物理二轮复习备考策略和方法 命题题型变化和趋势 1.从实际问题中提炼物理模型及利用理论知识解决实际问题的能力是高考考查的趋势。新课改要求应引导学生关注科学技术与社会、经济发展的联系,注重物理在生产、生活等方面的应用,因此从实际问题中提炼物理模型及利用理论知识解决实际问题的能力必然成为高考考查的一大趋势。 2.主干部分的基本知识的依然是考查的重点。力学、电学的主干知识依然是新课改后高考考查的重点部分,由于新课改对物理教学的要求是更加重视知识的形成过程,因此对物理概念和规律内涵的理解和应用的考查,仍应是今年考查的重中之重。 3.运用数学知识解答物理问题的能力是高考考查的重点之一。近年来,在物理试题中考查学生的数学能力一直是高考的热点,考生应在今后的复习中更加重视各部分知识与数学知识之间的联系。 二轮备考策略和方法 1.依托考纲,回归课本。在后期的复习中考生应回归课本,课本中的很多内容都体现了新课程的思想,尤其是加入很多与生活、生产实际和新科技相联系的知识,学生可以依照考纲的考点,有针对性地回归课本,一一对照,对于考纲上的考点,全面复习,做到各个击破。尤其是那些平时不太注意

的边缘知识,必须认真阅读课本,做到心中有数。 2.利用针对性的专项练习,突破重点知识,清除知识死角。 高中物理中有一些普遍的重点知识,例如必考部分功能关系、 电学实验中仪器的选择、带电粒子在复合场中的运动等,选 考部分的碰撞问题、理想气体状态的变化等。同时也有一些 同学们各自的重点知识,就是那些同学们在历次练习过程中、 模拟考试中“丢分”比较集中的知识点。对这些重点知识, 我们要进行定点清除。如果觉得哪部分知识中有很大问题, 在每次做题过程中只要碰到就感到十分棘手,应尽快加大投入,定点攻破,不应再留有此类死角。因为物理题直观性很强,如果在考试中浏览试卷的时候,发现有极为害怕头疼的 知识或图形,就会影响考试的信心,因此必须现阶段及早清除,做到迎难而上,尽快扫除障碍。考生可以针对自己在综 合训练中暴露出来的问题,为自己设置专项训练。例如:如 果自己选择题的失分率较高,可以针对这一问题,进行20分钟选择题专项训练。如果实验题没把握,可以进行实验题 专项练习等等。通过集中大量的专项练习,可以定向突破, 调整做题心态,以提高解题的正确率。同时。将以往做过的 习题加以整理回顾,尤其是当时做过的错题应做到温故知新, 重点回顾方法。 3.规范解题过程,以提高计算题的得分率。物理计算题在考 试过程中规范性是很重要的。很多同学平时做题不计步骤,

高中物理磁现象和磁场导学案

第三章第一节磁现象和磁场 【课前预习纲要】 【预习导学】 1、在初中我们已接触了一些磁有关的知识,生活中有哪些与磁有关的现象和应 用? 2、磁场的基本特性是什么? 3、磁感线的作用是什么?磁感线的方向是怎样规定的? 4、指南针的原理是什么? 【基础自测】 1、一根条形磁铁从中间断开后,每半段磁铁磁极的个数是() A.一个 B.两个 C.零 D.上述三种都可能 2、下列说法中错误的是() A.磁感线是磁场中实际存在的曲线 B.磁体周围的磁感线都是从磁体北极出来回到磁体的南极 C.磁场虽然看不见,摸不到,在磁体周围确实存在着磁场 D.磁感线是一种假想曲线,是不存在的 3、条形磁铁周围存在着磁场,在右图中能正确表示所 在点磁感线方向的小磁针是() A.小磁针A、B B.小磁针B、C C.小磁针C、D D.小磁针A、D 4、地球是一个大磁体,它的磁场分布情况与一个条形磁铁的磁场分布情况相似,以下说法正确的是( ) A.地磁场的方向是沿地球上经线方向的 B.地磁场的方向是与地面平行的 C.地磁场的方向是从北向南方向的 D.在地磁南极上空,地磁场的方向是竖直向下的 【课内学习纲要】 【要点简析】 一.磁现象 1.磁性:磁铁能吸引铁、钴、镍等物质,磁体的这种性质叫做磁性. 2.磁体:具有磁性的物质叫磁体. 3.磁极:磁体上磁性最强的部分叫磁极.每个磁体都有两个磁极 4.磁体的指向性:可以在水平面上自由转动的条形磁体或小磁针静止时,总是一端指南,另一端指北;指南的磁极叫南极,用“S”表示,指北的磁极叫北

极,用“N”表示. 5.磁极间的作用规律:同名磁极相互排斥,异名磁极相互吸引. 6.磁化:一些物体在或的作用下会获得这种现象叫做磁化.7.像软铁之类的物质获得磁性后磁性易消失,称之为软磁体;钢获得磁性后磁性不易消失,称之为硬磁体。实验室用的永磁体应该用磁体材料。 二.磁场 1.磁场:磁体或通电导体的周围存在的一种特殊物质,能够传递磁体 与磁体之间、磁体与通电导体之间、通电导体与通电导体之 间的_________。 2.基本性质:对放入其中的_____或_________产生力的作用。 3.产生: (1)磁体周围。 (2)通电导体的周围——电流的磁效应。 三、地球的磁场 1.地磁场 地球本身是一个_____,在其周围产生的磁场叫做地磁场。 2.地磁两极和地理两极的关系 地磁南极(S极)在地理____附近,地磁北极(N极)在地理___附近,二者并不重合。 【典例精析】 一、磁现象和电流的磁效应 例1:物理实验都需要有一定的控制条件。奥斯特做电流磁效应实验时,应排除地磁场对实验的影响。关于奥斯特的实验,下列说法中正确的是( ) A.该实验必须在地球赤道上进行 B.通电直导线应该竖直放置 C.通电直导线应该水平东西方向放置 D.通电直导线应该水平南北方向放置 练习1:实验表明:磁体能吸引一元硬币,对这种现象的解释正确的是( ) A.硬币一定是铁做的,因为磁体能吸引铁 B.硬币一定是铝做的,因为磁体能吸引铝 C.磁体的磁性越强,能够吸引的物质种类越多 D.硬币中含有磁性材料,磁化后能被吸引 二、探究磁场及磁场的基本性质 例2: 下列关于磁场的说法中正确的是( ) A.磁体周围的磁场看不见、摸不着,所以磁场不是客观存在的 B.将小磁针放在磁体附近,小磁针会发生偏转是因为受到磁场力的作用 C.磁体与磁体之间、磁体与通电导体之间、通电导体与通电导体之间的相互 作用都是通过磁场发生的 D.当磁体周围撒上铁屑时才能形成磁场,不撒铁屑磁场就消失 练习2:关于磁场,下列说法中正确的是( ) A.磁场和电场一样,都是客观存在的特殊物质 B.磁场对处在其中的磁体有磁场力的作用

高中物理运动学公式总结

高中物理运动学公式总结 一、质点的运动——直线运动。 1)匀变速直线运动。 1、平均速度;t x V =定义式平均速率;t s V = 2、有用推理ax Vo Vt 222=- 3、中间时刻速度;202V Vt V Vt +==平 4、末速度Vt=V0+at 5、中间位置速度2 2220Vt V Vx += 6、位移 t 2t 2a t 0t t 2V V V s =+==平 7、加速度t V Vt a 0 +=(以V0为正方向,a 与V0同向[加速]a ?0,反向则a <0) 8、实验推论;S1-S2=S3-S2=S4-S3=ΛΛ=?x=a t 2 9、初速度为0n 个连续相等的时间内s 的比;s1:s2:s3ΛΛ:Sn=1:3:5ΛΛ:(2n-1) 10、初速度为0的n 个连续相等的位移内t 之比; t1:t2:t3ΛΛ:tn=1:(12-0):(23-):ΛΛ:(1--n n ) 11、a=t n m Sn Sm 2--(利用上个段位移,减少误差---逐差法) 12、主要物理量及单位:初速度V0= s m ;加速度a=s m 2;末速度Vt=s m 1s m =h k m 注; 1平均速度是矢量, 2物体速度大,加速度不一定加大 2)自由落体运动 1初速度V0=0 2末速度Vt=gt 23下落高度)位置向下计算从00(22 V g h t = 4推论t 2V =2gh 注; 1自由落体运动是初速度为0的匀加速直线运动,遵循匀变速直线运动规律。

2a=g=s 2m ≈10s 2m (重力加速度在赤道附近较小,在高山处比平底小,方向竖直向下)3) 竖直上抛运动 1位移S=Vot-22 gt 2末速度Vt=Vo-gt 3有理推论02 2V Vt -=-2gs 4上升最大高度Hm= g Vo 22(从抛出到落回原位置的时间) 5往返时间g t Vo 22= 注; 1全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。 2分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性。 称性上升与下落过程具有对3:1如在同点,速度等值反向。 2上升过程经过两点所用时间与下落过程经过这两点所 用时间相等。 物理规律汇总 1)相互作用力 1重力 【1】方向竖直向下,但不一定与接触面垂直,不一定指向地心。(除赤道与两级) 【2】重力是由地球的引力而产生,但重力≠引力(除两级) 2弹力 【1】绳子的拉力方向总是沿着绳,且指向绳子收缩的方向。、 【2】同一根绳子上的力相同。 【3】杆的力可以是拉力,也可以是推力。方向可以沿各个方向。 3摩擦力 【1】摩擦力不一定是阻力,也可以使动力。 【2】受滑动摩擦力的物体也可能是静止的。 【3】受静摩擦力的物体也可能是运动的。 2)牛顿运动定律 1力是改变物体运动状态的原因, 2力是产生加速度的原因, 3物体具有加速度,则物体一定具有加速度,物体具有加速度,则一定受力。 4质量是惯性大小的唯一量度, 5物体具有向下的加速度时,物体处于失重状态, 6物体具有向上的加速度时,物体处于超重状态。 打点计时器

高中物理磁现象和磁场知识点总结

第三章第1节磁现象和磁场 一、磁现象 磁性、磁体、磁极:能吸引铁质物体的性质叫磁性。具有磁性的物体叫磁体,磁体中磁性最强的区域叫磁极。 二、磁极间的相互作用规律:同名磁极相互排斥,异名磁极相互吸引.(与电荷类比) 三、磁场 1.磁体的周围有磁场 2.奥斯特实验的启示: ——电流能够产生磁场, 运动电荷周围空间有磁场 导线南北放置 3.安培的研究:磁体能产生磁场,磁场对磁体有力的作用;电流能产生磁场,那么磁场对电流也应该有力的作用。 磁场的基本性质 ①磁场对处于场中的磁体有力的作用。 ②磁场对处于场中的电流有力的作用。 第三章第3节几种常见的磁场 一、磁场的方向 物理学规定: 在磁场中的任一点,小磁针北极受力的方向,亦即小磁针静止时北极所指的方向,就是该点的磁场方向。 二、图示磁场 1.磁感线——在磁场中假想出的一系列曲线 ①磁感线上任意点的切线方向与该点的磁场方向一致; (小磁针静止时N极所指的方向)

②磁感线的疏密程度表示磁场的强弱。 2.常见磁场的磁感线 永久性磁体的磁场:条形,蹄形 直线电流的磁场 剖面图(注意“”和“×”的意思) 箭头从纸里到纸外看到的是点 从纸外到纸里看到的是叉 环形电流的磁场(安培定则:让右手弯曲的四指和环形电流的方向一致,伸直的大拇指所指的方向就是环形导线中心轴线上磁感线的方向。) 螺线管电流的磁场(安培定则:用右手握住螺旋管,让弯曲的四指所指的方向跟电流方向一致,大拇指所指的方向就是螺旋管内部磁感线的方向。) 常见的图示: 磁感线的特点: 1、磁感线的疏密表示磁场的强弱 2、磁感线上的切线方向为该点的磁场方向 3、在磁体外部,磁感线从N极指向S极;在磁体内部,磁感线从S极指向N极 4、磁感线是闭合的曲线(与电场线不同) 5、任意两条磁感线一定不相交 6、常见磁感线是立体空间分布的 7、磁场在客观存在的,磁感线是人为画出的,实际不存在。 四、安培分子环流假说 1.分子电流假说 任何物质的分子中都存在环形电流——分子电流,分子电流使每个分子都成为一个微小的磁体。 2.安培分子环流假说对一些磁现象的解释: 未被磁化的铁棒,磁化后的铁棒 永磁体之所以具有磁性,是因为它内部的环形分子电流本来就排列整齐. 永磁体受到高温或猛烈的敲击会失去磁性,这是因为在激烈的热运动或机械振动的影响下,分子电流的取向又变得杂乱无章了。 3.磁现象的电本质

高中物理二轮复习资料

高中物理二轮复习资料 1 物体带电的标志:能够吸引轻小物体。(带电体的性质) 2 摩擦起电:用摩擦的方法使物体带电,叫摩擦起电。 3 摩擦起电的原因:不同物质的原子核束缚电子的能力不同,在摩擦时,束缚电子能力强的物质就得到电子带负电,束缚电子能力差的物质就失去电子带正电。 4 正电荷:绸子摩擦过的玻璃棒上带的电荷叫做正电荷。 负电荷:毛皮摩擦过的橡胶棒上带的电荷叫做负电荷。 5 电荷的相互作用规律:同种电荷相互排斥,异种电荷相互吸引。 6 验电器的作用:用来检验物体是否带电。 验电器的工作原理:利用同种电荷相互排斥的原理工作的。 7 电量:电荷的多少叫做电量。电量的单位是库仑,简称库。 8 电子电量:一个电子所带的电量叫电子电量。它是*10-19库。 9 中和:放在一起的等量异种电荷完全抵消的现象,叫做中和。 10 1897年英国科学家汤姆逊发现了电子。 11 电流方向:把正电荷移动的方向规定为电流的方向。

电子移动方向与它正好相反。 12 导体:容易导电的物体叫导体。如金属、石墨、人体、大地及酸碱盐水液。 绝缘体:不容易导电的物体叫绝缘体。如橡胶、玻璃、陶瓷、塑料、油等。 13 电源:能够提供持续电流的装置。在干电池中电能是以化学能的形式存在。 14 自由电子:在金属导体中能脱离原子核束缚而在金属内部自由移动的电子。 15 电路:把用电器、电源、开关用导线连接起来的电流路径。 电路图:用符号表示电路连接情况的图。 16 通路:处处接通的电路。开路:某处断开的电路。 短路:不经过用电器直接把导线接在电源两端的电路。 17 串联电路:把电路元件逐个顺次连接起来的电路。特点:电流依次通过每个用电器。 并联电路:把电路元件并列连接起来的电路。特点电流在某处分支,再在某处会合。 对于定滑轮,动滑轮和滑轮组明确以下5个关系对于分析问题是很重要的(以竖直向上提升重物的滑轮、滑轮组为例) (1)当不考虑动滑轮重及绳与滑轮之间摩擦时,拉力与

高中物理运动学公式总结

高中物理运动学公式总结 一、质点的运动——直线运动。 1)匀变速直线运动。 1、平均速度; t x V = 定义式平均速率; t s V = 2、有用推理ax Vo Vt 22 2 =- 3、中间时刻速度;2 2V Vt V Vt += =平 4、末速度Vt=V0+at 5、中间位置速度2 2 2 2 Vt V Vx += 6、位移 t 2t 2 a t 0t t 2 V V V s = +==平 7、加速度t V Vt a 0 += (以V0为正方向,a 与V0同向[加速]a ?0,反向则a <0) 8、实验推论; S1-S2=S3-S2=S4-S3= =? x=a t 2 9、初速度为0n 个连续相等的时间内s 的比;s1:s2:s3 :Sn=1:3:5 :(2n-1) 10、初速度为0的n 个连续相等的位移内t 之比; t1:t2:t3 :tn=1:(12-0):(23- ): :( 1-- n n ) 11、a= t n m Sn Sm 2 --(利用上个段位移,减少误差---逐差法) 12、主要物理量及单位:初速度V0=s m ;加速度a=s m 2 ;末速度Vt= s m 1 s m =3.6 h km 注; 1平均速度是矢量, 2物体速度大,加速度不一定加大 2)自由落体运动 1初速度V0=0 2末速度Vt=gt 23下落高度 ) 位置向下计算 从00(2 2 V g h t = 4推论t 2 V =2gh

注; 1自由落体运动是初速度为0的匀加速直线运动,遵循匀变速直线运动规律。 2a=g=9.8s 2 m ≈10s 2 m (重力加速度在赤道附近较小,在高山处比平底小,方向竖直向下) 3)竖直上抛运动 1位移S=V o t- 22 gt 2末速度Vt=V o-gt 3有理推论0 2 2 V Vt -=-2gs 4上升最大高度H m= g Vo 22 (从抛出到落回原位置的时间) 5往返时间g t Vo 2 2= 注; 1全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。 2分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性。 称性上升与下落过程具有对 3:1如在同点,速度等值反向。 2上升过程经过两点所用时间与下落过程经过这两点所 用时间相等。 物理规律汇总 1)相互作用力 1重力 【1】方向竖直向下,但不一定与接触面垂直,不一定指向地心。(除赤道与两级) 【2】重力是由地球的引力而产生,但重力≠引力(除两级) 2弹力 【1】绳子的拉力方向总是沿着绳,且指向绳子收缩的方向。、 【2】同一根绳子上的力相同。 【3】杆的力可以是拉力,也可以是推力。方向可以沿各个方向。 3摩擦力 【1】摩擦力不一定是阻力,也可以使动力。 【2】受滑动摩擦力的物体也可能是静止的。 【3】受静摩擦力的物体也可能是运动的。 2)牛顿运动定律 1力是改变物体运动状态的原因, 2力是产生加速度的原因, 3物体具有加速度,则物体一定具有加速度,物体具有加速度,则一定受力。 4质量是惯性大小的唯一量度, 5物体具有向下的加速度时,物体处于失重状态, 6物体具有向上的加速度时,物体处于超重状态。

高中物理总复习资料精选

对称思想在物理解题中的应用 对称方法是速解高考命题的一种有效手段,是考生掌握的难点. ●难点磁场 1.(★★★★) (2001年全国)惯性制导系统已广泛应用于 弹道式导弹工程中,这个系统的重要元件之一是加速度 计.加速度计构造原理的示意图如图27-1所示:沿导 弹长度方向安装的固定光滑杆上套一质量为m 的滑块, 滑块两侧分别与劲度系数均为k 的弹簧相连;两弹簧的 另一端与固定壁相连.滑块原来静止,弹簧处于自然长 度.滑块上有指针,可通过标尺测出滑块的位移,然后通过控制系统进行制导.设某段 时间内导弹沿水平方向运动,指针向左偏离0点的距离为s ,则这段时间内导弹的加速 度 A .方向向左,大小为ks /m B .方向向右,大小为ks /m C .方向向左,大小为2 ks /m D .方向向右,大小为2 ks /m 2.(★★★★★)(2000年全国)如图27-2,两个共轴的圆筒 形金属电极,外电极接地,其上均匀分布着平行于轴线 的四条狭缝a 、b 、c 和d ,外筒的外半径为r 0.在圆筒 之外的足够大区域中有平行于轴线方向的均匀磁场,磁 感应强度的大小为B .在两极间加上电压,使两圆筒之 间的区域内有沿半径向外的电场.一质量为m 、带电量 为+q 的粒子,从紧靠内筒且正对狭缝a 的S 点出发,初速为零.如果该粒子经过一段 时间的运动之后恰好又回到出发点S ,则两电极之间的电压U 应是多少?(不计重力,整 个装置在真空中.) ●案例探究 [例1](★★★★★)(时间对称)一人在离地H 高度处,以相同的速率v 0同时抛出两小 球A 和B ,A 被竖直上抛,B 被竖直下抛,两球落地时间差为Δt s ,求速率v 0. 命题意图:考查综合分析灵活处理问题的能力.B 级要求. 图 27-1 图27-2

(新)高中物理二轮复习功能关系专题

一、动能定理 动能定理的推导 物体只在一个恒力作用下,做直线运动 w =FS =m a ×a V V 22 122- 即 21222121mv mv w -= 推广: 物体在多个力的作用下、物体在做曲线运动、物体在变力的作用下 结论: 合力所做的功等于动能的增量 ,合力做正功动能增加,合力做负功动能减小 合力做功的求法: 1、受力分析求合力,合力乘以在合力方向的位移(合力是恒力,位移相对地的位移) 2、合力做的功等于各力做功的代数和 二.应用动能定理解题的步骤 (1)确定研究对象和研究过程。 (2)对研究对象受力分析,判断各力做功情况。 (3)写出该过程中合外力做的功,或分别写出各个力做的功(注意功的正负) (4)写出物体的初、末动能。按照动能定理列式求解。 【例】如图所示,质量为m 的钢珠从高出地面h 处由静止自由下落,落到地面进入沙坑h/10停止,则 (1)钢珠在沙坑中受到的平均阻力是重力的多少倍? (2)若让钢珠进入沙坑h/8,则钢珠在h 处的动能应为多少?设钢珠在沙坑中所受平均阻 力大小不随深度改变。 三、高中物理接触到的几种常用的功能关系 1、 重力做功等于重力势能的减小量 2、 弹力做功等于弹性势能的减小量 3、 电场力做功等于电势能的减小量 4、 合外力做功等于动能的变化量(动能定理) 5、 除重力以外其它力做功等于机械能的变化量 6、 摩擦力乘以相对位移代表有多少机械能转化为内能用于发热 7、 电磁感应中克服安培力做功量度多少其他形式能转化为电能用于发热 8、能量守恒思路

1.(2013·长春模拟)19世纪初,科学家在研究功能关系的过程中,具备了能量转化和守恒的思想,对生活中有关机械能转化的问题有了清晰的认识,下列有关机械能的说法正确的是( ) A .仅有重力对物体做功,物体的机械能一定守恒 B .仅有弹力对物体做功,物体的机械能一定守恒 C .摩擦力对物体做的功一定等于物体机械能的变化量 D .合外力对物体做的功一定等于物体机械能的变化量 2.(2013·东北四市联考)在高度为h 、倾角为30°的粗糙固定的斜面上,有一质量为m 、与一轻弹簧拴接的物块恰好静止于斜面底端。物块与斜面的动摩擦因数为33,且最大静摩擦力等于滑动摩擦力。现用一平行于斜面的力F 拉动弹簧的A 点,使m 缓慢上行到斜面顶端。此过程中( ) A .F 对该系统做功为2mgh B .F 对该系统做功大于2mgh C .F 对该系统做的功等于物块克服重力做功与克服摩擦力做功之和 D .F 对该系统做的功等于物块的重力势能与弹簧的弹性势能增加量之和 3.(2013·山东泰安一模)如图所示,在竖直平面内有一个半径为R ,粗细不计的圆管轨道。半径OA 水平、OB 竖直,一个质量为m 的小球自A 正上方P 点由静止开始自由下落,小球恰能沿管道到达最高点B ,已知AP =2R ,重力加速度为g ,则小球从P 到B 的运动过程中( ) A .重力做功2mgR B .机械能减少mgR C .合外力做功mgR D .克服摩擦力做功12 mgR 4.(2013吉林摸底)如图所示,足够长的传送带以恒定速率顺时针运行。将一个物体轻轻 放在传送带底端,第一阶段物体被加速到与传送带具有相同的速度,第二阶段与传送 带相对静止,匀速运动到达传送带顶端。下列说法中正确的是( ) A .第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功 B .第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加 C .第一阶段物体和传送带间的摩擦生热等于第一阶段物体机械能的增加 D .物体从底端到顶端全过程机械能的增加等于全过程物体与传送带间的摩擦生热 5.如图所示长木板A 放在光滑的水平地面上,物体B 以水平速度冲上A 后,由于摩擦力作用,最后停止在木板A 上,则从B 冲到木板A 上到相对板A 静止的过程中,下述说法中正确是( ) A .物体 B 动能的减少量等于系统损失的机械能 B .物体B 克服摩擦力做的功等于系统内能的增加量 C .物体B 损失的机械能等于木板A 获得的动能与系统损失的机械能之和 D .摩擦力对物体B 做的功和对木板A 做的功的总和等于系统内能的增加量

相关主题
文本预览
相关文档 最新文档