当前位置:文档之家› 量子力学数学基础学习知识说明介绍

量子力学数学基础学习知识说明介绍

量子力学数学基础学习知识说明介绍
量子力学数学基础学习知识说明介绍

目录

第1章量子力学简史 (2)

第2章量子力学重要内容简介 (3)

2.1基本假设 (3)

2.2对易力学量完全集 (4)

2.3态矢量、算符 (4)

2.3.1态矢量 (4)

2.3.2算符 (5)

第3章泛函分析简介 (5)

3.1集合与空间 (5)

3.1.1集合 (5)

3.1.2拓扑空间 (6)

3.1.3度量空间 (6)

3.1.4赋范线性空间 (6)

3.1.5内积空间 (7)

3.1.6希尔伯特空间 (7)

3.1.7希尔伯特空间的重要性质 (7)

3.1.8综述 (8)

3.2线性算子 (9)

3.2.1线性算子 (9)

3.2.2线性运算与乘法 (10)

3.2.3伴算子 (10)

3.2.4自伴算子 (11)

第4章量子力学中泛函分析的应用 (12)

4.1量子态的矩阵表示 (12)

4.2算符 (13)

4.3本征方程 (13)

4.4平均值 (14)

第5章后序 (14)

参考文献 (16)

第一章量子力学简史

1900年,普朗克提出辐射量子假说,假定电磁场和物质交换能量是以间断的形式(能量子)实现的,能量子的大小同辐射频率成正比,比例常数称为普朗克常数,从而得出黑体辐射能量分布公式,成功地解释了黑体辐射现象。1905年,爱因斯坦引进光量子(光子)的概念,并给出了光子的能量、动量与辐射的频率和波长的关系,成功地解释了光电效应。其后,他又提出固体的振动能量也是量子化的,从而解释了低温下固体比热问题。1913年,玻尔在卢瑟福原有核原子模型的基础上建立起原子的量子理论。按照这个理论,原子中的电子只能在分立的轨道上运动,在轨道上运动时候电子既不吸收能量,也不放出能量。原子具有确定的能量,它所处的这种状态叫“定态”,而且原子只有从一个定态到另一个定态,才能吸收或辐射能量。这个理论虽然有许多成功之处,但对于进一步解释实验现象还有许多困难。在人们认识到光具有波动和微粒的二象性之后,为了解释一些经典理论无法解释的现象,法国物理学家德布罗意于1923年提出了物质波这一概念。认为一切微观粒子均伴随着一个波,这就是所谓的德布罗意波。由于微观粒子具有波粒二象性,微观粒子所遵循的运动规律就不同于宏观物体的运动规律,描述微观粒子运动规律的量子力学也就不同于描述宏观物体运动规律的经典力学。当粒子的大小由微观过渡到宏观时,它所遵循的规律也由量子力学过渡到经典力学。量子力学与经典力学的差别首先表现在对粒子的状态和力学量的描述及其变化规律上。在量子力学中,粒子的状态用波函数描述,它是坐标和时间的复函数。为了描写微观粒子状态随时间变化的规律,就需要找出波函数所满足的运动方程。这个方程是薛定谔在1926年首先找到的,被称为薛定谔方程。当微观粒子处于某一状态时,它的力学量(如坐标、动量、角动量、能量等)一般不具有确定的数值,而具有一系列可能值,每个可能值以一定的几率出现。当粒子所处的状态确定时,力学量具有某一可能值的几率也就完全确定。这就是1927年,海森伯得出的测不准关系,同时玻尔提出了并协原理,对量子力学给出了进一步的阐释。量子力学和狭义相对论的结合产生了相对论量子力学。经狄拉克、海森伯(又称海森堡,下同)和泡利(pauli)等人的工作发展了量子电动力学。20世纪30年代以后形成了描述各种粒子场的量子化理论——量子场论,它构成了描述基本粒子现象的理论基础。

第2章 量子力学重要内容简介

2.1基本假设

量子力学的基本假设是整个量子力学体系的基础,有如下四个。这四个

假设可推导出整个量子力学(非相对论)。

(1) 一个物理系统于时间点t 的状态可以由希尔伯特空间

中的一个归一化矢量ψ来定义。这里的希尔伯特空间指的是定义了内积的平方可积的线

性矢量空间。 (2) 每个可观测量A 可以通过状态空间中的一个线性厄米算符?A 来表示,可观

测量A 在状态ψ的期望值(即测量结果的平均值)为

*

?A d τ+∞

-∞ψψ? 。进一步的,对应于可观测量的厄米算符的所有本征态构成希尔伯特空间中的正

交归一的完备函数系。任意一个态矢量都可以由该算符的本征态展开。如

果系统处于算符的本征态上,对应的可观测量具有唯一确定的测量值,即

该本征态对应的本征值。对于任意的态,观测量的测量值是各本征值的带

权平均。量子力学中的测量是不可逆的,测量后系统处于该测量值的一个

特征矢量上。

(3) 位置算符和动量算符之间满足正则对易关系

qp pq i -=h

由此对易关系可以确定动量算符的表达式,而所有的其他算符都可以由位

置算符和动量算符表出。

(4) 状态矢量ψ的动力学演化由薛定谔方程表示:

2

22i H V t m ?ψ=ψ=-?ψ+ψ?h h 在这里哈密顿算符H 通常对应于系统的总能量E 。

2.2对易力学量完全集

设有一组彼此独立而且相互对易的厄米算符()

12???,,A A A L ,它们的共同本征态记为αψ,α表示一组完备的量子数。设给定一组量子数α之后,就能够

确定体系的唯一一个可能状态,则我们称()

12??,,A A L 构成体系的一组对易可观测量完全集(complete set of commuting obserbables ,简称CSCO ),习惯称为对易力学量完全集,或简称力学量完全集[1]。

CSCO 在量子力学中是个很重要的概念,是完全描述系统的最小集合,

即从中抽出任何一个可观测量后,就不再构成CSCO 。其中可观测量的数目一般等于体系的自由度。一个给定的体系往往可以找到多个CSCO ,且涉及体系的对称性。

一组力学量完全集可以找到对应的共同本征态,其性质用共同本征函数

描述。所有本征态的本征函数构成本征函数系,本征函数系是完备的,所有物理系统的量子状态可以在该本征函数系中进行展开。至于本征函数系的完备性是个很复杂的问题,本文对此不做详细讨论(可参见参考文献[2])。

2.3态矢量、算符

2.3.1态矢量

量子力学的基本假设中已经提到,物理系统的某个状态用希尔伯特空间中归一化矢量来描述,这个矢量叫做态矢量(state vector ),简称态矢。态矢量是一个关于时间和空间的函数,它描述物理系统的所有物理性质。由于物理意义上的需要,态矢量函数还需要满足以下三个条件:

①单值的,即在空间每一点ψ只能有一个值;

②连续的,即ψ的值不能出现突跃;(),,,x y z t ψ 对,,,x y z t 的一级微商也应是连续的;

③平方可积的(有限),即ψ在整个空间的积分

*d τ+∞

-∞ψψ?应为一有限值,通

常要求波函数归一化,即

*

1d τ+∞-∞ψψ=?。 在薛定谔图像中,态矢量随时间的演化、随空间的变化要满足薛定谔方程(非相对论理论),在海森堡图像中则要满足海森堡方程。这两个方程是等价的,描

述同样的物理规律。

2.3.2算符

定义算符?A 满足*

*?n n n

n A A a a A

d τ+∞-∞==ψψ∑?的数学符号称为算符。 其中n n n

a ψψ=∑,{}n ψ为算符?A

的本征函数系,n A 为算符?A 作用到本征态n ψ而得到的本征值,A 为所有本征值的加权平均。

量子力学中的算符源自数学中的算子理论,关于算子理论的内容将在下一小节中做简要介绍。量子力学中的可观测量(observable),或称力学量,由一个线性厄米算符表示。算符的线性要求也正是态叠加原理的反映。

假设物理系统处于力学量?A 的本征态n

ψ,则算符、本征函数与本征值之间的关系在本征方程中得到鲜明体现:

?n

n A A ψψ= 对于哈密顿算符则有:

?n n

H E ψψ= 其中E 即为系统总能量。

第3章 泛函分析简介

上面对量子力学中与数学相关的基本概念做了简单介绍,下面将介绍这些概念背后严密的数学基础。

3.1集合与空间

3.1.1集合

集合这一数学概念的使用非常广泛,它是如此之一般,以致很难给它下一个不归结为其同义词的定义。这些同义词无非是元素的总体,元素的全体等。集合简称集。

3.1.2拓扑空间

定义 设X (某一个集)是“空间承载子”,τ是X 的子集G 所成的任一集族。如果τ满足下列两条公理:

1) 集X 本身与空集?皆属于τ,

2) τ中任意多个(有限个或无限个)集的和G ααU 及任意有限个集的交1n

k k G =I 都

属于τ,

则称τ为X 中的拓扑。

集X 与在其中给定的拓扑τ,即偶(,)X τ称为拓扑空间(topological space )。 简单的说,如果对一个非空集合X 给予适当的结构,使之能引入微积分中的极限和连续的概念,这样的结构就称为拓扑,具有拓扑结构的空间称为拓扑空间。

引入拓扑结构的方法有多种,如邻域系、开集系、闭集系、闭包系、内部系等不同方法。

3.1.3度量空间

定义 由元素(点)的某集(空间)X 及距离ρ组成的偶(,)X ρ叫做度量空间(metric space ),其中距离是由X 中任何x 与y 确定的单值实函数(),x y ρ,它满足以下三条公理:

1)(),0x y ρ≥,当且仅当x y =时(),0x y ρ=,

2)()(),,x y y x ρρ= (对称公理),

3)()()(),,,x z x y y z ρρρ≤+ (三角形公理),

称(),x y ρ为空间X 的一个度量(距离)。

度量空间也叫距离空间。度量空间中最符合我们对于现实直观理解的是三维欧氏空间。这个空间中的欧几里德度量定义两点之间距离为连接这两点的直线的长度。

3.1.4赋范线性空间

以往的函数我们一般用()f x 来表示,此时的函数我们用?

表示,对应()f x ,? 对应x 。设K 代表实数域R 或复数域C 。

设X 是实数域(或复数域)上的线性空间,函数:X R ?→满足条件:

①对任意x X ∈,0x ≥;且0x =,当且仅当0x =;(注意:0x =为X 上的零元)

②对任意x X ∈及K α∈,‖x x αα=(齐次性);

③对任意,x y X ∈,x y x y +≤+(三角不等式)。 称?是X 上的一个范数,X 上定义的范数?称为赋范线性空间,记为(,)X ?[3]。

范数概念是n R 欧几里德空间模长脱离了精确定义之后的推广。完备化的赋范空间就是Banach 空间。

3.1.5内积空间

定义了内积的矢量空间称为内积空间(Inner product space )。

内积公理 (定义在实数或复数域K 上的)矢量空间中矢量,x y r r 的内积,x y <>r r 是它们的标量值函数,满足: 1),x y <>r r 与,y x <>r r 互为复共轭,即*,,x y y x <>=<>r r r r ; 2)**,,,x y z x z y z αβαβ<+>=<>+<>r r r r r r r ,其中α和β是数域K 上的标量; 3)对于任何x r ,,0x x <>≥r r ;当且仅当0x =r 时,,0x x <>=r r 。

3.1.6希尔伯特空间

在一个复向量空间H 上的给定的内积

可以按照如下的方式导出一个范数(norm )?:

x

如果此规定构成的空间对于这个范数来说是完备的,那么这个空间称为是一个希尔伯特空间(Hilbert space )。

3.1.7希尔伯特空间的重要性质

定义:(1)设,x y H ∈。若,0x y <>=,则说x 与y 正交或直交,记为x y ⊥。

(2)设{:}i x i I H ∈?。若当i j ≠时i j x x ⊥,则称{}i x 为正交系。若{}i x 是正交系且1i x ≡(这等价于,i j ij x x δ<>=,ij δ是Konecker 记号),则称{}i x 为标准正交系。

(3)设,A B H ?。约定,A B a A b B ⊥??∈?∈,有a b ⊥;x A a A ⊥??∈,有x a ⊥;{:}A x H x A ⊥=∈⊥,称A ⊥为A 的正交补。当A B ⊥时,称A 与B 相互正交。

性质:若{:1}i x i n ≤≤是一有限正交系,则有

2

2i i i i x x =∑∑。一般地,若K(1)i i n α∈≤≤,类似地有222i i i i i i x

x αα=∑∑。

性质:不含零元的正交系必线性无关。

性质:设{:N}i e i ∈是H 中的标准正交系。若x H ∈可表为i i i x e α=∑,则有

,i i x e α=<>,即表达式i i i

x e α=∑中的系数惟一确定。

定义:若每个x H ∈均可表为i i i x e α=∑,则称{}i e 为H 的标准正交基。

定理 设{:N}i e i ∈是Hilbert 空间H 中的标准正交系,则以下条件相互等价:

(1){}i e 是H 的标准正交基;

(2){}i e 是H 的基本集;

(3){}i e 是极大正交系,即若()i x e i N ⊥?∈,则0x =;

(4)对任给的x H ∈,成立如下的Parseval 等式:

22

,i i x x e =<>∑;

(5)对任给的,x y H ∈,成立如下内积公式:

*,,,i i i

x y x e y e <>=<><>∑。

推论(标准正交基的存在问题):设H 是一个可分的无限维Hilbert 空间,则其一定存在标准正交基。

3.1.8综述

一个集合,加上一套公理就称为一个空间。对一个集合赋予一定的拓扑机构就构成一个拓扑空间。度量空间就是一种拓扑空间。同样,赋范空间属于度量空间,因为如果在任一赋范空间中引入度量[4]:

(,)x y x y ρ=-

则可推知其满足度量空间的公理,故赋范空间是一种度量空间。内积可以诱导出范数,故内积空间又属于赋范空间。完备化的内积空间就是希尔伯特空间

[5]。如下图所示:

???→????→????→????→公理拓扑结构度量公理范数、线性集合空间拓扑空间度量空间赋范线性空间

????→???→内积公理完备化内积空间希尔伯特空间

量子力学所使用的希尔伯特空间是函数空间,即空间的元素是函数,更确切的说是定义在一定区间上(有界或无界)上的复值平方可积函数(即对于()f x ,确保2

()b

a f x dx ?有限)[6]。可以证明,这样的平方可积函数的集合对于加法和数

乘是封闭的,因此构成一个线性空间(矢量空间)。

量子力学中内积的定义如下:

对于任意两个函数,ψφ定义

()*,d ψφψφτ=?全

为对应量子体系的内积,也叫标积(scalar product )[1]。

3.2线性算子

3.2.1线性算子

假设,,X Y Z 等是K (实数或复数)上的向量空间。

定义: 若一个映射:T X Y →满足

()(,,,)T x y Tx Ty

x y X αβαβαβ+=+∈∈K ,

则称T 为从X 到Y 的线性算子。 容易看出,上述等式可推广到更一般的情形:()i i i i i i

T x Tx αα=∑∑。

若0()Tx Y x X ≡∈∈,则称T 为零算子,就记为0;若(),Tx x x X αα≡∈∈K 为常数,则称T 为纯量算子(或相似变换,若0α≠),记作I α,当0α=与1时,I α分别是零算子和单位算子。

3.2.2线性运算与乘法

对线性算子可定义两种自然的运算:线性运算与乘法。若,:T S X Y →是线性算子,,αβ∈K ,则:T S X Y αβ+→是一个线性算子,它定义为

()().

T S x Tx Sx x X αβαβ+=+∈

若:R Y Z →是另一个算子,则由 ()()().RT x R Tx x X =∈

定义出一个线性算子:RT X Z →,称它为R 与T 的乘积。实际上,线性算子的乘积就是它们的复合。容易验证,如上定义的运算有以下性质:

11(),()();R T S RT RS R R T RT R T +=+??+=+?分配律

()();()Q RT QR T =结合律

()()(),()RT R T R T αααα==∈K

只要以上等式的一端有意义。

3.2.3伴算子

定义 设L 和M 为定义在一定函数空间内的线性(微分)算子,若对于该函数空间内的任意函数u 和v ,恒有

(,)(,)v Lu Mv u = 即 ()*

*

b b

a a v Ludx Mv udx =?? 则称M 是L 的伴算子[6]。

若L 为微分算子=d L dx

,于是 *

**b b

b a a a du dv v dx v u udx dx dx =-?? 所以,当u 和v 都满足边界条件()()y a y b =时,

d dx 的伴算子是d dx -。 如果M 是L 的伴算子,则对于任意函数u 和v 也有 ()()**

****b b b

b a a a a

v Mudx Mu vdx u Lvdx Lv udx ????===????????????

所以,L 也是M 的伴算子。

3.2.4自伴算子

定义 若算子L 的伴算子就是它本身,则称L 是自伴算子。

若L 是自伴算子,则对于该函数空间内的任意函数u 和v ,恒有

()(),,v Lu Lv u = 即 ()**

b b a a v Ludx Lv udx =??

定义 设L 为自伴算子,则方程

()()Ly x y x λ=

称为自伴算子的本征值问题。

自伴算子的本征值问题具有一下几个重要的基本性质:

(1) 自伴算子的本征值必然存在。本征值有无数多个,构成可数集。

(2) 自伴算子的本征值必为实数,且构成可数集。

(3) 自伴算子的本征函数具有正交性,即对应不同本征值的本征函数一定

正交。

(4) 自伴算子的本征函数(的全体)构成一个完备函数组,即任意一个在

区间[],a b 中有连续二阶导数、且满足和自伴算子L 相同的边界条件的

函数()f x ,均可按本征函数{}()n y x 展开为绝对而且一致收敛的级数

1()()n n n f x c y x ∞

==∑

其中

**

()()()()b

n a

n b n n a f x y x dx c y x y

x dx

=??。

特别是,如果本征函数是归一化的,则上式分母为1,展开形式更加简单。 算子的自伴性总是和一定的函数空间联系在一起的。通常,我们总是要求函数定义在给定的区间上,要求函数具有足够的连续性,(例如,对于二阶微分算子,就要求函数的二阶导数连续,至少分段连续;如果是无界区间,则要求函数平方可积),我们实际上总是限于希尔伯特空间。并且,还要求函数满足一定的(齐次)边界条件,即总是局限在希尔伯特空间中的特定子空间内。绝不能脱离边界条件的约束来讨论算子的自伴性。一个算子,相对于某一个函数是自伴的,但相对于另一个函数,就可能不是自伴的[6]。

伴算子也叫共轭算子,自伴算子也叫自共轭算子。算子也叫算符。量子力学的基本假设中已经提到,要求可观测量用一个线性厄米算符表示。一般认为厄米算符就是自伴算子(自共轭算子),按着自伴算子的数学性质进行数学运算(实际上两者有微小区别,数学上已证明,自共轭算符一定是厄密算符,反之不然。自共轭算符不一定具有完备的本征函数组[7])。所以量子力学中关于算符的各种运算,比如加法、乘法、乘幂以及算符的函数,还有算符的复共轭、转置、厄米共轭等都是根据泛函分析里有关算子的数学性质得出的。

第4章 量子力学中泛函分析的应用

由上面介绍的数学知识可知,自伴算子的本征函数组构成完备函数系,即满足上述条件的函数均可在该函数系中展开。这也正如量子力学的假设中提到的,对应于可观测量的厄米算符的所有本征态构成希尔伯特空间中的正交归一的完备函数系。任意一个态矢量都可以由该算符的本征态展开。

4.1量子态的矩阵表示

假设某一力学量的厄米算符为?A

,本征值为A ,本征方程为 ?k k

A A ψψ= (1,2,3k =L ) {}k ψ为力学量?A

的本征函数系,也就是在?A 表象下的基矢,不妨用狄拉克符号表示为k 。那么对于任意一个量子态ψ可以展开为:

k k

a k ψ=∑

由基矢的正交归一性,可知

k a k =ψ 它表示ψ在基矢k 上的“投影”。当所有k a 都给定,就给定了一个态ψ,

所以这组数{}{}k

a k =ψ就是态ψ在?A 表象中的表示。排成列矢为: 1212a a ψ???? ? ?=ψ ? ? ? ?????

M M 此即量子态的矩阵表示形式[1]。

4.2算符

已知

n n n

a ψψ=∑

设算符?A 作用到态矢量ψ(已归一化)上,使之变为Φ态(已归一化),

n n n b ψΦ=∑,则

?A

ψ=Φ ??n n n n n n n n n

A a a A b ψψψ==∑∑∑

两边乘左*m ψ,取内积可得

?(,)n m n n mn n

n n

b A a A a ψψ==∑∑ 假设{}n ψ为力学量F 的本征函数系,则?(,)mn m n

A A ψψ=即为算符?A 在F 表象下的矩阵元。

故关系式

?A

ψ=Φ 可以写成矩阵的形式如下:

111121221222b L L a b L L a ?????? ? ???= ? ??? ? ?????????

K K M K K K M 。 薛定谔方程的矩阵表示

111121221222a H H a i a H H a t ??????? ? ???= ? ???? ? ?????????

K h K M K K K M ij H 为哈密顿算符在F 表象中的矩阵元[1]。

4.3本征方程

?A

A ψ=ψ 可变为

?n n n

n n n a A a A ψψ=∑∑

两边左乘*m ψ取标积,并假设波函数已归一化,得

mn n m n

A a Aa =∑

所以可得

()0mn mn n n A

A a δ-=∑

这既是?A

的本征方程在F 表象中的形式,它是线性齐次代数方程组,有非平庸解的充要条件为

det 0mn mn A A δ-=

1112

1321222331

32

330A A A A A A A

A A A A A --=-L L L L L L L

4.4平均值

矩阵形式的平均值为

()()

**??,,n n n m n nm n

nm nm A A a A a a A a ψψ=ψψ==∑∑ ()11

1211221222,,A A a a a A A a ???? ???= ??? ???????

L L L L L L M 第5章 后序

在1926年左右,出现了两种量子物理的理论,即海森堡、波恩和约当的矩阵力学和薛定谔的波动力学。1926年,薛定谔第一个证明两者的等价性,虽然薛定谔的证明在数学上不够严谨。稍后狄拉克和约当给出了更为严谨的证明。但是他们的证明都使用了当时在数学上存在疑问的狄拉克delta 函数。1927年冯·诺依曼严格地证明了波动力学和矩阵力学的等价性。在这些证明过程中,尤其是冯·诺依曼的证明,量子力学被构建在无穷维可分离的希尔伯特空间之中。冯·诺依曼在其中引入勒贝格测度下的平方可积函数作为一组基。波动力学被视为量子力学在这一组基下的实现。1930年保罗·狄拉克出版了他的著作《量子力学原理》(Principles of Quantum Mechanics ),这是整个科学史上的一个里程碑之作。狄拉克在书中引入了此后被广泛应用的左右矢记号和狄拉克delta 函数。从而量

子力学可以表示为不依赖特定基的形式。量子力学的数学基础是由埃尔温·薛定谔,保罗·狄拉克,帕斯库尔·约当和约翰·冯·诺伊曼相继建立和严格化的。

参考文献

[1] 曾谨言.量子力学卷一[M].北京:科学出版社,2007:121-272

[2]A.Messiah,Quantum Mechanics[M],vol.1,p,188

[3] 孙永生,王昆扬.泛函分析讲义[M].北京:北京师范大学出版社,2007,59-60

[4] A.H.柯尔莫戈洛夫,C.B.佛明.段虞荣,郑洪深,郭思旭.函数论与泛函分析初步[M].北京:高等教育出版社,2006,1-200

[5] 李梧龄.组合希尔伯特空间和*代数[J].自然杂志,1987,10,6:407-412

[6] 吴崇试.数学物理方法[M].北京:北京大学出版社,2003:276-284

[7]陶宗英,谈量子力学的数学基础[J]. 数理统计与应用概率,1998,9,13:247-250

量子力学知识点总结(精.选)

1光电效应:光照射到金属上,有电子从金属上逸出的现象。这种电子称之为光电子。 2光电效应有两个突出的特点:①存在临界频率ν0 :只有当光的频率大于一定值v 0 时,才有光电子发射出来。若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。②光电子的能量只与光的频率有关,与光的强度无关。光的强度只决定光电子数目的多少。 3爱因斯坦光量子假说:光(电磁辐射)不仅在发射和吸收时以能量E= h ν的微粒形式出现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子 4康普顿效应:高频率的X 射线被轻元素如白蜡、石墨中的电子散射后出现的效应。 ⒕康普顿效应的实验规律:射光中,除了原来X 光的波长λ外,增加了一个新的波长为λ'的X 光,且λ' >λ;波长增量Δλ=λ-λ随散射角增大而增大 5戴维逊-革末实验证明了德布罗意波的存在 6波函数的物理意义:某时刻t 在空间某一点(x,y,z)波函数模的平方与该时刻t 该地点(x,y,z)附近单位体积内发现粒子的几率密度(通常称为几率)dw(x,y,z,t)成正比。按照这种解释,描写粒子的波是几率波 7波函数的归一化条件 1),,,( 2 ?∞=ψτd t z y x 8定态:微观体系处于具有确定的能量值的状态称为定态。定

态波函数:描述定态的波函数称为定态波函定态的性质:⑴由定态波函数给出的几率密度不随时间改变。⑵粒子几率流密度不随时间改变。⑶任何不显含时间变量的力学量的平均值不随时间改变 9算符: 作用在一个函数上得出另一个函数的运算符号,量子力学中的算符是作用在波函数上的运算符号。 10厄密算符的定义:如果算符 F ?满足下列等式() ? ?dx F dx F φψφψ**??=,则称F ?为厄密算符。式中ψ和φ为任意波函数,x 代表所有的变量,积分范围是所有变量变化的整个区域。 推论:量子力学中表示力学量的算符都是厄密算符。 11厄密算符的性质:厄密算符的本征值必是实数。厄密算符的属于不同本征值的两个本征函数相互正交。 12简并:对应于一个本征值有一个以上本征函数的情况。简并度:对应于同一个本征值的本征函数的数目。 13量子力学中力学量运动守恒定律形式是: 01=??????+??=H F i t F dt F d ?,?η 量子力学中的能量守恒定律形式是01=??????=H H i dt H d ?,??η 14 15斯特恩-革拉赫实验证明电子存在自旋理由 16黑体辐射揭示了经典物理学的局限性。 17玻尔的量子化条件:在量子理论中,角动量必须是h 的整数 的近似求解方法。 求出,由求出微扰论:由n n n n E E ψψ)0()0(

量子力学主要知识点复习资料

大学量子力学主要知识点复习资料,填空及问答部分 1能量量子化 辐射黑体中分子和原子的振动可视为线性谐振子,这些线性谐振子可以发射和吸收辐射能。这些谐振子只能处于某些分立的状态,在这些状态下,谐振子的能量不能取任意值,只能是某一最小能量ε 的整数倍εεεεεn ,,4,3,2,??? 对频率为ν 的谐振子, 最小能量ε为: νh =ε 2.波粒二象性 波粒二象性(wave-particle duality )是指某物质同时具备波的特质及粒子的特质。波粒二象性是量子力学中的一个重要概念。在经典力学中,研究对象总是被明确区分为两类:波和粒子。前者的典型例子是光,后者则组成了我们常说的“物质”。1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。 德布罗意公式h νmc E ==2 λ h m p = =v 3.波函数及其物理意义 在量子力学中,引入一个物理量:波函数 ,来描述粒子所具有的波粒二象性。波函数满足薛定格波动方程 0),()](2[),(2 2=-?+??t r r V m t r t i ψψ 粒子的波动性可以用波函数来表示,其中,振幅 表示波动在空间一点(x ,y,z )上的强弱。所以, 应 该表示 粒子出现在点(x,y,z )附件的概率大小的一个量。从这个意义出发,可将粒子的波函数称为概率波。 自由粒子的波函数)](exp[Et r p i A k -?=ψ=ψ 波函数的性质:可积性,归一化,单值性,连续性 4. 波函数的归一化及其物理意义 常数因子不确定性设C 是一个常数,则 和 对粒子在点(x,y,z ) 附件出现概率的描述是相同的。 相位不定性如果常数 ,则 和 对粒子在点(x,y,z )附 件出现概率的描述是相同的。 表示粒子出现在点(x,y,z )附近的概率。 表示点(x,y,z )处的体积元 中找到粒子的概率。这就是波函数的统计诠释。自然要求该粒子在空间各点概率之总和为1 必然有以下归一化条件 5. 力学量的平均值 既然 表示 粒子出现在点 附件的概率,那么粒子2|(,,)|x y z ψ2 |(,,)|x y z x y z ψ???x y z τ?=?? ?2 |(,,)|1 x y z dxdydz ψ∞=? (,,)x y z ψ(,,)c x y z ψαi e C =(,,)i e x y z αψ(,,)x y z ψ22|()||(,,)| r x y z ψψ=),,(z y x r = 23*3+∞+∞

量子力学知识总结

量子力学基础知识总结 一.微观粒子的运动特征 1.黑体辐射和能量量子化 黑体:一种能全部吸收照射到它上面的各种波长辐射的物体 普朗克提出能量量子化假设:定温下黑体辐射能量只与辐射频率有关,频率为ν的能量,其数值是不连续的,只能是hν的整数倍,称为能量量子化。 2.光电效应与光子学说 爱因斯坦将能量量子化概念用于电磁辐射,并用以解释光电效应。其提出了光子学说,圆满解释了光电效应。 光子学说内容: ①光是一束光子流,每一种频率的的光的能量都有一个最小单位,称为光子 光子能量ε=hν/c ②光子质量m=hν/c2 ③光子动量p=mc=hν/c= h/λ ④光的强度取决于单位体积内光子的数目,即光子密度。光电效应: hν= W+E K =hν +2 1 mv2,W为脱出功,E k 为光电子的动能。 3.实物微粒的波粒二象性 德布罗意提出实物微粒也具有波性:E=hν p=h/λ 德布罗意波长:λ=h/p=h/(mv) 4. 测不准原理:?x?x p≥h?y?p y ≥h?z?p y ≥h?tE≥h 二、量子力学基本假设 1. 假设1:对于一个量子力学体系,可以用坐标和时间变量的函数ψ(x,y,z,t)来描述,它包括体系的全部信息。这一函数称为波函数或态函数,简称态。 不含时间的波函数ψ(x,y,z)称为定态波函数。在本课程中主要讨论定态波函数。 由于空间某点波的强度与波函数绝对值的平方成正比,即在该点附近找到粒子的几率正比于ψ*ψ,所以通常将用波函数ψ描述的波称为几率波。在原子、分子等体系中,将ψ称为原子轨道或分子轨道;将ψ*ψ称为几率密度,它就是通常所说的电子云;ψ*ψdτ为空间某点附近体积元dτ中电子出现的几率。 对于波函数有不同的解释,现在被普遍接受的是玻恩(M. Born)统计解释,这一解释的基本思想是:粒子的波动性(即德布罗意波)表现在粒子在空间出现几率的分布的波动,这种波也称作“几率波”。 波函数ψ可以是复函数, 合格(品优)波函数:单值、连续、平方可积。 2. 假设2:对一个微观体系的每一个可观测的物理量,都对应着一个线性自厄算符。 算符:作用对象是函数,作用后函数变为新的函数。

量子力学知识点总结

量子力学期末复习完美总结 一、 填空题 1.玻尔-索末菲的量子化条件为: pdq nh =?,(n=1,2,3,....), 2.德布罗意关系为:h E h p k γωλ == = =; 。 3.用来解释光电效应的爱因斯坦公式为: 21 2 mV h A υ=-, 4.波函数的统计解释:()2 r t ψ ,代表t 时刻,粒子在 空间r 处单位体积中出现的概率,又称为概率密度。这 是量子力学的基本原理之一。波函数在某一时刻在空间的强度,即其振幅绝对值的平方与在这一点找到粒子的几率成正比,和粒子联系的波是概率波。 5.波函数的标准条件为:连续性,有限性,单值性 。 6. , 为单位矩阵,则算符 的本征值为: 1± 。 7.力学量算符应满足的两个性质是 实数性和正交完备性 。 8.厄密算符的本征函数具有: 正交性,它们可以组成正交归一性。即 ()m n mn d d λλφφτδφφτδλλ**''==-??或 。 9.设 为归一化的动量表象下的波函数,则 的物理意义为:表示在()r t ψ,所描写 的态中测量粒子动量所得结果在p p dp →+范围内的几率。 10. i ; ?x i L ; 0。 11.如两力学量算符 有共同本征函数完全系,则 _0__。 12.坐标和动量的测不准关系是: () () 2 2 2 4 x x p ??≥ 。 自由粒子体系,_动量_守恒;中心力场中运动的粒子__角动量__守恒 13.量子力学中的守恒量A 是指:?A 不显含时间而且与?H 对易,守恒量在一切状态中的平均值和概率分布都不随时间改变。 14.隧道效应是指:量子力学中粒子在能量E 小于势垒高度时仍能贯穿势垒的现象称为隧道效应。 15. 为氢原子的波函数, 的取值范围分别为:n=1,2,3,… ;l=0,1,…,n -1;m=-l,-l+1,…,0,1,…l 。 16.对氢原子,不考虑电子的自旋,能级的简并为: 2 n ,考虑自旋但不考虑自旋与轨道角动量的 耦合时,能级的简并度为 22n ,如再考虑自旋与轨道角动量的耦合,能级的简并度为 12+j 。 17.设体系的状态波函数为 ,如在该状态下测量 力学量 有确定的值 ,则力学量算符 与态矢量 的关系为:?F ψλψ =。 18.力学量算符 在态 下的平均值可写 为 的条件为:力学量算符的本征 值组成分立谱,并且()r ψ是归一化波函数。 19.希尔伯特空间:量子力学中Q 的本质函数有无限多 个,所以态矢量所在的空间是无限维的函数空间。 20.设粒子处于态 , 为 归一化波函数, 为球谐函数,则系数c 的取值为: 1 6 , 的可能值为: 13 , 本征值为 出现 的几率为: 1 2 。

第一章 量子力学基础知识

《结构化学基础》 讲稿 第一章 孟祥军

第一章 量子力学基础知识 (第一讲) 1.1 微观粒子的运动特征 ☆ 经典物理学遇到了难题: 19世纪末,物理学理论(经典物理学)已相当完善: ? Newton 力学 ? Maxwell 电磁场理论 ? Gibbs 热力学 ? Boltzmann 统计物理学 上述理论可解释当时常见物理现象,但也发现了解释不了的新现象。 1.1.1 黑体辐射与能量量子化 黑体:能全部吸收外来电磁波的物体。黑色物体或开一小孔的空心金属球近似于黑体。 黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。 ★经典理论与实验事实间的矛盾: 经典电磁理论假定:黑体辐射是由黑体中带电粒子的振动发出的。 按经典热力学和统计力学理论,计算所得的黑体辐射能量随波长变化的分布曲线,与实验所得曲线明显不符。 按经典理论只能得出能量随波长单调变化的曲线: Rayleigh-Jeans 把分子物理学中能量按自由度均分原则用到电磁辐射上,按其公式计算所得结果在长波处比较接近实验曲线。 Wien 假定辐射波长的分布与Maxwell 分子速度分布类似,计算结果在短波处与实验较接近。 经典理论无论如何也得不出这种有极大值的曲线。 ? 1900年,Planck (普朗克)假定: 黑体中原子或分子辐射能量时作简谐振动,只能发射或吸收频率为ν, 能量为 ε=h ν 的整数倍的电磁能,即振动频率为 ν 的振子,发射的能量只能是 0h ν,1h ν,2h ν,……,nh ν(n 为整数)。 ? h 称为Planck 常数,h =6.626×10-34J ?S ? 按 Planck 假定,算出的辐射能 E ν 与实验观测到的黑体辐射能非常吻合: ●能量量子化:黑体只能辐射频率为 ν ,数值为 h ν 的整数倍的不连续的能量。 能量波长 黑体辐射能量分布曲线 () 1 /81 3 3 --= kt h c h e E ννπν

量子力学期末考试知识点+计算题证明题

1. 你认为Bohr 的量子理论有哪些成功之处?有哪些不成功的地方?试举一例说明。 (简述波尔的原子理论,为什么说玻尔的原子理论是半经典半量子的?) 答:Bohr 理论中核心的思想有两条:一是原子具有能量不连续的定态的概念;二是两个定态之间的量子跃迁的概念及频率条件。首先,Bohr 的量子理论虽然能成功的说明氢原子光谱的规律性,但对于复杂原子光谱,甚至对于氦原子光谱,Bohr 理论就遇到了极大的困难(这里有些困难是人们尚未认识到电子的自旋问题),对于光谱学中的谱线的相对强度这个问题,在Bohr 理论中虽然借助于对应原理得到了一些有价值的结果,但不能提供系统解决它的办法;其次,Bohr 理论只能处理简单的周期运动,而不能处理非束缚态问题,例如:散射;再其次,从理论体系上来看,Bohr 理论提出的原子能量不连续概念和角动量量子化条件等,与经典力学不相容的,多少带有人为的性质,并未从根本上解决不连续性的本质。 2. 什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的? 答:当一定频率的光照射到金属上时,有大量电子从金属表面逸出的现象称为光电效应;光电效应的规律:a.对于一定的金属材料做成的电极,有一个确定的临界频率0υ,当照射光频率0υυ<时,无论光的强度有多大,不会观测到光电子从电极上逸出;b.每个光电子的能量只与照射光的频率有关,而与光强无关;c.当入射光频率0υυ>时,不管光多微弱,只要光一照,几乎立刻910s -≈观测到光电子。爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完 成的。(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比。(3)光子能量与其频率成正比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子。 3.简述量子力学中的态叠加原理,它反映了什么? 答:对于一般情况,如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加:1122c c ψψψ=+(12c c ,是复数)也是这个体系的一个可能状态。这就是量子力学中的态叠加原理。态叠加原理的含义表示当粒子处于态1ψ和2ψ的线性叠加态ψ时,粒子是既处于态1ψ,又处于态2ψ。它反映了微观粒子的波粒二象性矛盾的统一。量子力学中这种态的叠加导致在叠加态下观测结果的不确定性。 4. 什么是定态?定态有什么性质? 答:体系处于某个波函数()()[]exp r t r iEt ψψ=-,所描写的状态时,能量具有确定值。这种状态称为定态。定态的性质:(1)粒子在空间中的概率密度及概率流密度不随时间变化;(2)任何力学量(不显含时间)的平均值不随时间变化;(3)任何力学量(不显含时间)取各种可能测量值的概率分布也不随时间变化。 5. 简述力学量与力学量算符的关系? 答:算符是指作用在一个波函数上得出另一个函数的运算符号。量子力学中采用算符来表示微观粒子的力学量。如果量子力学中的力学量F 在经典力学中有相应的力学量,则表示这个力学量的算符?F 由经典表示式F (r,p )中将p 换为算符?p 而得出的,即:

(完整版)人教版高中物理选修3-5知识点总结

人教版高中物理选修3-5知识点总结 一.量子论的建立黑体和黑体辐射Ⅰ (一)量子论 1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。 2.量子论的主要内容: ①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。 ②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。 3.量子论的发展 ①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。 ②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。 ③到1925年左右,量子力学最终建立。 4.量子论的意义 ①与量子论等一起,引起物理学的一场重大革命,并促进了现代科学技术的突破性发展。 ②量子论的革命性观念揭开了微观世界的奥秘,深刻改变了人们对整个物质世界的认识。 ③量子论成功的揭示了诸多物质现象,如光量子论揭示了光电效应 ④量子概念是一个重要基石,现代物理学中的许多领域都是从量子概念基础上衍生出来的。 量子论的形成标志着人类对客观规律的认识,开始从宏观世界深入到微观世界;同时,在量子论的基础上发展起来的量子论学,极大地促进了原子物理、固体物理和原子核物理等科学的发展。(二)黑体和黑体辐射

1.热辐射现象 任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。 这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。 ①.物体在任何温度下都会辐射能量。 ②.物体既会辐射能量,也会吸收能量。物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。 辐射和吸收的能量恰相等时称为热平衡。此时温度恒定不变。 实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。 2.黑体 物体具有向四周辐射能量的本领,又有吸收外界辐射 来的能量的本领。 黑体是指在任何温度下,全部吸收任何波长的辐射的 物体。 3.实验规律: 1)随着温度的升高,黑体的辐射强度都有增加; 2)随着温度的升高,辐射强度的极大值向波长较短方向移动。 二.光电效应光子说光电效应方程Ⅰ 1、光电效应

量子力学知识点小结(良心出品必属精品)

第一章 ⒈玻尔的量子化条件,索末菲的量子化条件。 ⒉黑体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。 ⒎普朗克量子假说: 表述1:对于一定频率ν的辐射,物体只能以hν为能量单位吸收或发射电磁辐射。 表述2:物体吸收或发射电磁辐射时,只能以量子的方式进行,每个量子的能量为:ε=hν。 表述3:物体吸收或发射电磁辐射时,只能以能量ε的整数倍来实现,即ε,2ε,3ε,…。 ⒏光电效应:光照射到金属上,有电子从金属上逸出的现象。这种电子称之为光电子。 ⒐光电效应有两个突出的特点: ①存在临界频率ν0:只有当光的频率大于一定值v0 时,才有光电子发射出来。若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。 ②光电子的能量只与光的频率有关,与光的强度无关。光的强度只决定光电子数目的多少。 ⒑爱因斯坦光量子假说: 光(电磁辐射)不仅在发射和吸收时以能量E= hν的微粒形式出

现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子。爱因斯坦方程 ⒒光电效应机理: 当光射到金属表面上时,能量为 E= h ν 的光子立刻被电子所吸收,电子把这能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面后的动能。 ⒓解释光电效应的两个典型特点: ①存在临界频率v 0:由上式明显看出,当h ν- W 0 ≤0时,即ν≤ν0 = W 0 / h 时,电子不能脱出金属表面,从而没有光电子产生。 ②光电子动能只决定于光子的频率:上式表明光电子的能量只与光的频率ν有关,而与光的强度无关。 ⒔康普顿效应:高频率的X 射线被轻元素如白蜡、石墨中的电子散射后出现的效应。 ⒕康普顿效应的实验规律: ①散射光中,除了原来X 光的波长λ外,增加了一个新的波长为λ'的X 光,且λ' >λ; ②波长增量Δλ=λ-λ随散射角增大而增大。 ⒖量子现象凡是普朗克常数h 在其中起重要作用的现象 ⒗光具有微粒和波动的双重性质,这种性质称为光的波粒二象性 ⒘与运动粒子相联系的波称为德布罗意波或物质波。 ???? ? ???? ======n k h k n h P h E λππλων2 ,2

光量子即光子 量子力学知识点

E*dv表示在频率范围(v,v+dv)中的黑体辐射能量密度。 λ—辐射波长(μm) T—黑体绝对温度(K、T=t+273k) C—光速(2.998×10^8m·s ) h—普朗克常数,6.626×10^-34 J·S K—玻尔兹曼常数(Boltzmann),1.3806505*10^-23J/K基本物理常数 玻尔兹曼常数(Boltzmann constant)(k 或kB)是有关于温度及能量的一个物理常数。玻尔兹曼是一个奥地利物理学家,在统计力学的理论有重大贡献,波兹曼常数具有相当重要的地位。光量子即光子。能量的传递不是连续的,而是以一个一个的能量单位传递的。这种最小能量单位被称作能量子(简称量子)。 原始称呼是光量子(light quantum),电磁辐射的量子,传递电磁相互作用的规范粒子,记为γ。其静止质量为零,不带电荷,其能量为普朗克常量和电磁辐射频率的乘积,E=hv,在真空中以光速c运行,其自旋为1,是玻色子。 光子是光线中携带能量的粒子。一个光子能量的多少正比于光波的频率大小,频率越高, 能量越高。当一个光子被原子吸收时,就有一个电子获得足够的能量从而从内轨道跃迁到外轨道,具有电子跃迁的原子就从基态变成了激发态。 光子具有能量,也具有动量,更具有质量,按照质能方程,E=MC^2=hν,求出M=hν/C^2, 光子由于无法静止,所以它没有静止质量,这儿的质量是光子的相对论质量。光就既具有波动性(电磁波),也具有粒子性(光子),即具有波粒二象性 玻色子是依随玻色-爱因斯坦统计,自旋为整数的粒子。玻色子不遵守泡利不相容原理,在低温时可以发生玻色-爱因斯坦凝聚。玻色子包括:.胶子-强相互作用的媒介粒子,它们具有整数自旋(0,1,……),它们的能量状态只能取不连续的量子态,但允许多个玻色子占有同一种状态。,有8种;光子-电磁相互作用的媒介粒子,这些基本粒子在宇宙中的“用途”是构成实物的粒子(轻子和重子)和传递作用力的粒子(光子、介子、胶子、w和z玻色子)。在这样的一个量子世界里,所有的成员都有标定各自基本特性的四种量子属性:质量、能量、磁矩和自旋。如光子、粒子、氢原子等, Bose-Einstein condensation (BEC) 玻色-爱因斯坦凝聚(BEC)是科学巨匠爱因斯坦在80年前预言的一种新物态。这里的“凝聚”与日常生活中的凝聚不同,它表示原来不同状态的原子突然“凝聚”到同一状态(一般是基态)。即处于不同状态的原子“凝聚”到了同一种状态。即当温度足够低、原子的运动速度足够慢时,它们将集聚到能量最低的同一量子态。此时,所有的原子就象一个原子一样,具有完全相同的物理性质。 磁光阱是一种囚禁中性原子的有效手段。它由三对两两相互垂直.具有特定偏振组态井且负失谐的对射激光束形成的三维空间驻波场和反向亥姆雹谊线圈产生的梯度磁场构成.磁场的零点与光场的中心重合,负失谐的激光对原子产生阻尼力.梯度磁场与激光的偏振相结合产生了对原子的束缚力.这样就在空间对中性原子构成了一个带阻尼作用的简谐势阱。 量子力学是描写微观物质的一个物理学理论,与相对论一起被认为是现代物理学的两大基本支柱 普朗克常数记为h ,是一个物理常数,用以描述量子大小。在量子力学中占有重要的角色,马克斯·普朗克在1900年研究物体热辐射的规律时发现,只

《量子力学》考试知识点(精心整理)

《量子力学》考试知识点 第一章:绪论―经典物理学的困难 考核知识点: (一)、经典物理学困难的实例 (二)、微观粒子波-粒二象性 考核要求: (一)、经典物理困难的实例 1.识记:紫外灾难、能量子、光电效应、康普顿效应。 2.领会:微观粒子的波-粒二象性、德布罗意波。 第二章:波函数和薛定谔方程 考核知识点: (一)、波函数及波函数的统计解释 (二)、含时薛定谔方程 (三)、不含时薛定谔方程 考核要求: (一)、波函数及波函数的统计解释 1.识记:波函数、波函数的自然条件、自由粒子平面波 2.领会:微观粒子状态的描述、Born几率解释、几率波、态叠加原理(二)、含时薛定谔方程 1.领会:薛定谔方程的建立、几率流密度,粒子数守恒定理 2.简明应用:量子力学的初值问题 (三)、不含时薛定谔方程 1. 领会:定态、定态性质 2. 简明应用:定态薛定谔方程 第三章:一维定态问题

一、考核知识点: (一)、一维定态的一般性质 (二)、实例 二、考核要求: 1.领会:一维定态问题的一般性质、束缚态、波函数的连续性条件、反射系数、透射系数、完全透射、势垒贯穿、共振 2.简明应用:定态薛定谔方程的求解、 第四章量子力学中的力学量 一、考核知识点: (一)、表示力学量算符的性质 (二)、厄密算符的本征值和本征函数 (三)、连续谱本征函数“归一化” (四)、算符的共同本征函数 (五)、力学量的平均值随时间的变化 二、考核要求: (一)、表示力学量算符的性质 1.识记:算符、力学量算符、对易关系 2.领会:算符的运算规则、算符的厄密共厄、厄密算符、厄密算符的性质、基本力学量算符的对易关系 (二)、厄密算符的本征值和本征函数 1.识记:本征方程、本征值、本征函数、正交归一完备性 2.领会:厄密算符的本征值和本征函数性质、坐标算符和动量算符的本征值问题、力学量可取值及测量几率、几率振幅。 (三)、连续谱本征函数“归一化” 1.领会:连续谱的归一化、箱归一化、本征函数的封闭性关系

原子物理量子力学主要知识点复习

1.爱因斯坦关系是什么什么是波粒二象性 答:爱因斯坦关系:?? ? ??========k n n h n c h n c E p h hv E ρηρηρρρρηηλπλνπω 22 其中 波粒二象性:光不仅具有波动性,而且还具有质量、动量、能量等粒子的内禀属性,就 是说光具有波粒二象性。 2.α粒子散射与夫兰克-赫兹实验结果验证了什么 答:α粒子散射实验验证了原子的核式结构,夫兰克-赫兹实验验证了原子能量的量子化 3.波尔理论的内容是什么波尔氢原子理论的局限性是什么 答:波尔理论: (1)原子能够而且只能够出于一系列分离的能量状态中,这些状态称为定态。出于定态时,原子不发生电磁辐射。 (2)原子在两个定态之间跃迁时,才能吸收或者发射电磁辐射,辐射的频率v 由式 12E E hv -=决定 (3)原子处于定态时,电子绕原子核做轨道运动,轨道角动量满足量子化条件:ηn r m = υ 局限性: (1)不能解释较复杂原子甚至比氢稍复杂的氦原子的光谱; (2)不能给出光谱的谱线强度(相对强度); (3)从理论上讲,量子化概念的物理本质不清楚。 4.类氢体系量子化能级的表示,波数与光谱项的关系 答:类氢体系量子化能级的表示:()2 2202 442n Z e E n ηπεμ-= 波数与光谱项的关系Λ,4,5.3,3,5.2,121 ?22=?? ? ??-=n n R v 5.索莫菲量子化条件是什么,空间取向量子化如何验证 答:索莫菲量子化条件是nh q p =?d 空间取向量子化通过史特恩-盖拉赫(Stern-Gerlach )实验验证。、 6.碱金属的四个线系,选择定则,能级特点及形成原因 答:碱金属的四个线系:主线系、第一辅线系(漫线系)、第二辅线系(锐线系)、柏格曼系(基线系) 碱金属的选择定则:1,0,1±=?±=?j l 碱金属的能级特点:碱金属原子的能级不但与主量子数n 有关,还和角量子数l 有关;且对于同一n ,都比氢(H)能级低。 形成原因:原子实外价电子只有一个,但是原子实的极化和轨道的贯穿产生了影响,产生了与氢原子能级的差别 7.自旋假设内容,碱金属光谱精细结构特点

《量子力学》的诞生(知识点总结)

第一讲 量子力学的诞生 ★重点与难点解析 一、经典物理碰到的严重困难(不能解释的典型物理现象) 1. 无法解释黑体辐射问题 (1)一些基本概念 黑体;热辐射;单色辐出度;辐射出射度。 (2)单色辐出度的一些理论公式与实验结果的差异 维恩(Wien )公式只在短波波段(高频部分)与实验符合,而在长波波段(低频部分)与实验差别较大。 瑞利—金斯(Rayleigh-Jeans )公式只在长波波段(低频部分)与实验符合,而在短波波段(高频部分)与实验有明显差异,历史上称为“紫外灾难”。 普朗克通过改进维恩公式,得到了一个辐射公式(后称为普朗克公式),其与实验符合的很好。但无法用经典物理来解释这个公式 2. 无法解释光电效应 (1)什么是光电效应;什么是光电子 (2)光电效应的特点 A )对于一定的金属材料做成的(表面光洁的)电极,有一个确定的临界频率0ν,当照射光频率0νν<时,无论光的强度多大,都不会观测到光电子从电极上逸出; B )每个光电子的能量只与照射光的频率有关,而与光强度无关。光强度只影响到光电流的强度,即单位时间从金属电极单位面积上逸出的电子的数目; C )当入射光频率0νν>时,不管光多微弱,只要光一照上,几乎立刻观测到光电子。这与经典电磁理论计算结果不一致。 以上三个特点中,C )是定量上的问题,而A )和B )在原则上无法用经典物理学来解释。 3. 无法解释原子结构 经典理论无法解释原子的线状光谱和稳定性等: (1)根据经典理论,原子向外辐射电磁波,随电子运动轨道的半径不断减小,辐射电磁波的频率将连续变化。而实验发现,原子光谱是离散的线状光谱,并非连续; (2)原子的核型结构是不稳定的,绕核旋转的电子最终将落到原子核上,但实际原子是稳定的,电子不会落到原子核上。 4. 无法解释极低温下固体与分子的比热问题 在极低温下,由经典统计力学的能量均分定理等得到的固体与分子的比热与实验不符。 二、能量量子化思想对上述问题的解释 1. 普朗克(Planck )能量子假说 1900年,普朗克发现:如作下列假设,就可以根据玻尔兹曼分布律从理论上导出与实验结果相符合的普朗克黑体辐射公式。

原子物理量子力学主要知识点复习

1.爱因斯坦关系是什么?什么是波粒二象性? 答:爱因斯坦关系:?? ? ??========k n n h n c h n c E p h hv E λπλνπω 22 其中 波粒二象性:光不仅具有波动性,而且还具有质量、动量、能量等粒子的内禀属性,就是 由式 n r = 局限性: (1)不能解释较复杂原子甚至比氢稍复杂的氦原子的光谱; (2)不能给出光谱的谱线强度(相对强度); (3)从理论上讲,量子化概念的物理本质不清楚。

4.类氢体系量子化能级的表示,波数与光谱项的关系? 答:类氢体系量子化能级的表示:()2 2202 442n Z e E n πεμ-= 波数与光谱项的关系 ,4,5.3,3,5.2,121 ?22=?? ? ??-=n n R v 了与氢原子能级的差别 7.自旋假设内容,碱金属光谱精细结构特点? 答:自旋假设内容:

(1)电子具有自旋角动量s p ,它在空间任何方向上的投影只能取两个值: 21±=sz p (2)电子具有自旋磁矩 s μ ,它在空间任何方向上的投影只能取两个值: B sz sz m e p m e μμ±=±=- =2 碱金属光谱精细结构特点: 原子态:2 52 32 12 12 1D 3,P 3,P 2,S 2,S 122222 ----n 层数 (表示L 的S,P,D,F )J ,其中电子总角动量 J=轨道角动量L+自旋角动量S 。 电子自旋耦合:通过电子之间的自旋产生彼此的效果力。 9.碱土族元素光谱特点?

答:Mg 的光谱与He 类似。也形成两套线系,有两个主线系、两个第一辅线系、两个第二辅线系等等。Mg 原子也有两套能级,一套是单层能级——单态,另一套是三层能级——三重态。单层能级间的跃迁产生单线,三层能级间的跃迁产生多线光谱。 10.LS 耦合与jj 耦合过程?两种耦合方式的原子态表示? 答:略 L+S S 最J 值13.磁场中原子磁矩的表示及引起的能量差。 答:原子磁矩:φμp m e iA 2= =,而对于两个或两个以上电子的原子,其磁矩表达式为:J e J P m e g μ2=

物理奥赛辅导第十七章量子力学基础知识

第十七章量子力学基础知识 量子力学是研究微观粒子(如电子,原子和分子等)运动规律的学科 量子力学的建立经历了由经典物理学到旧量子论,再由旧量子论到量子力学两个历史发展阶段。 微观粒子运动的特征 1 、几个代表性的实验 经典物理学发展到19世纪末,在理论上已相当完善,对当时发现的各种物理现象都能加以理论上的说明。它们主要由牛顿的经典力学,麦克斯韦的电、磁和光的电磁波理论,玻耳兹曼和吉布斯等建立的统计物理学组成。19世纪末,人们通过实验发现了一些新的现象,它们无法用经典物理学解释,这些具有代表性的实验有以下3个。 (1)黑体辐射 黑体是指能全部吸收各种波长辐射的物体,它是一种理想的吸收体,同时在加热它时,又能最大程度地辐射出各种波长的电磁波。 绝热的开有一个小孔的金属空腔就是一种良好的黑体模型。进入小孔的辐射,经多次吸收和反射,可使射入的辐射实际上全部被吸收,当空腔受热时,空腔会发出辐射,称为黑体辐射。 实验发现,黑体辐射能量与波长的关系主要与温度有关,而与空腔的形状和制作空腔的材料无关。在不同温度下,黑体辐射的能量(亦称辐射强度)与波长的关系如图所示。 许多物理学家试图用经典热力学和统计力学方法解释黑体辐射现象。瑞利(Rayleigh J W)和金斯(Jeans J H)把分子物理学中能量按自由度均分的原理用于电磁辐射理论,得到的辐射能量公式在长波处接近实验结果,在短波处和实验明显不符。特别是瑞利-金斯的理论预示在短波区域包括紫外以至x射线、γ射线将有越来越高的辐射强度,完全与事实不符,这就是物理学上所谓的“紫外灾难”。维恩(Wien W)假设辐射按波长分布类似于麦克斯韦的分子速度分布,得到的公式在短波处和实验结果接近,在长波处相差很大。 1900年普朗克(Planck M)在深入研究了实验数据,并在经典力学计算的基础上首先提出了“能量量子化”的假设,他认为黑体中原子或分子辐射能量时做简

八年级物理上册1-3章知识点 总结

前三章知识点总结 1、著名天文学家、自然科学先驱哥白尼用“日心说”否定了影响人类千年之久的托勒密的“地心说” 2、伽利略率先用望远镜观察天空,由此得到天体的运行的结果支持了哥白尼的日心说,后被判为终 生 监禁。牛顿奠定了具有划时代意义的经典物理学基础。普朗克、波尔等量子力学主要奠基人发现了微观世界和宏观世界有很大差异。 3、物理学是研究自然界的物质,相互作用和运动规律的自然科学 4、科学探究的七个环节:提出问题、猜想与假设、设计实验与制定计划、进行实验与搜集证据、分析与讨论、评估、交流与合作。 5、机械运动:在物理学中,把一个物体相对于另一个物体位置的改变称为机械运动,简称运动,被选作参照标准的物体叫做参照物 6、判断物体是运动还是静止①选取参照物②看研究物体与参照物是否发生位置变化 7、参照物选取说明 ①参照物是任意选择的,既可以是运动的也可以是静止的,要视具体情况、研究方便而定 ②同一物体由于选择不同的参照物,其运动状态的描述结果往往不同 ③参照物的选择并不唯一,但是参照物一旦被选定,就认为它是静止的 ④参照物不能选择对象本身,因为以研究对象本身为参照物,则物体永远是静止的 ⑤地面常作为参照物 注:一般以题目给的物体作为参照物 8、长度测量的工具是刻度尺,长度的国际基本单位是米,符号是m;常用单位还有千米(km)、分米(dm)、厘米(cm)、毫米(mm)、微米(μm)、纳米(nm)等。换算关系:  1km=1000m 1m=10dm 1dm=10cm 1m=1000mm 1mm=1000μm 1μm=1000nm 9、进行单位换算的步骤:1、数字不变 2、 乘以进率 3、加上目标单位 10、刻度尺是学习和生活中常用的测量长度的工具,常用刻尺的分度值是1mm和1cm 分度值为1mm时估读到0.1mm也就是0.01cm(百分位),分度值为1cm估读到0.1cm(十分位)  11、测量时间的工具是停表或者秒表,时间的国际基本单位是秒,符号是s;常用的单位还有小时(h)、分(min)等。它们之间的换算关系是

量子力学2012复习题

量子力学2012复习题 一、 简答题: 1. 试简述Bohr 的量子理论。 2. 试给出测不准关系的数学表达式,并说明其意义。 3. 简述量子力学的态叠加原理及其与测量概率的关系。 4. 写出在任意态|ψ?下测量力学量F 所得平均值的一般表达式。 5. 设粒子在势场V (r )中运动,写出相应的含时薛定谔方程和定态薛定谔方程;或给定态函 数求势能表达式。 6. 简述束缚态、非束缚态及相应能级的特点。 7. 在坐标表象中写出自由粒子哈密顿量的表达式及其本征波函数,指出其本征值及其特征。 8. 下列函数哪些函数是算符 2 2dx d 的本征函数,其本征值是什么? ①2x , ② x e , ③x sin , ④x cos 3, ⑤x x cos sin + 9. 简述一维谐振子粒子数表象的意义,并在该表象中写出谐振子的哈密顿量表达式和相应 的本征态、本征值和本征方程。对三维谐振子,情况又怎样? 10. 力学量F 的平均值随时间变化满足 d 1[,]d F F F H t i t ?= + ? ,由此可得出力学量F 为守恒量 的条件,试写出相应条件。 11. 简述量子力学表象变换的意义、幺正变换矩阵满足的条件及幺正变换的特征。 12. 全同粒子有何特点?对波函数有什么要求? 13. 中心力场中粒子处于定态,试讨论轨道角动量是否有确定值。 14. 写出中心力场中粒子的所有守恒量。 15. 力学量完全集2(,)z L L 的共同本征函数是什么?写出相应的本征值及本征方程。 16. 写出氢原子哈密顿算符的本征值(能级)和本证态,简要描述各量子数的意义。 17. 简要描述自旋算符与泡利矩阵的关系以及泡利矩阵的对应关系;在z σ表象中写出泡利矩 阵,,z x y σσσ的具体表示。 18. 简述微扰论的基本思想,写出非简并微扰论的能量公式(至二级修正)及波函数(至一 级修正),并能计算相关问题。 19. 简述变分法的基本思想及选取试探波函数的一般原则。

最新量子力学知识点总结

量子力学期末复习完美总结 一、 填空题 1.玻尔-索末菲的量子化条件为: pdq nh =?,(n=1,2,3,....), 2.德布罗意关系为:h E h p k γωλ == = =; 。 3.用来解释光电效应的爱因斯坦公式为: 21 2 mV h A υ=-, 4.波函数的统计解释:() 2 r t ψ ,代表t 时刻,粒子在 空间r 处单位体积中出现的概率,又称为概率密度。这 是量子力学的基本原理之一。波函数在某一时刻在空间的强度,即其振幅绝对值的平方与在这一点找到粒子的几率成正比,和粒子联系的波是概率波。 5.波函数的标准条件为:连续性,有限性,单值性 。 6. , 为单位矩阵,则算符 的本征值为: 1± 。 7.力学量算符应满足的两个性质是 实数性和正交完备性 。 8.厄密算符的本征函数具有: 正交性,它们可以组成正交归一性。即 ()m n mn d d λλφφτδφφτδλλ**''==-??或 。 9.设 为归一化的动量表象下的波函数,则 的物理意义为:表示在()r t ψ,所描写 的态中测量粒子动量所得结果在p p dp →+范围内的几率。 10. i ; ?x i L ; 0。 11.如两力学量算符 有共同本征函数完全系,则 _0__。 12.坐标和动量的测不准关系是: () () 2 2 2 4 x x p ??≥ 。 自由粒子体系,_动量_守恒;中心力场中运动的粒子__角动量__守恒 13.量子力学中的守恒量A 是指:?A 不显含时间而且与?H 对易,守恒量在一切状态中的平均值和概率分布都不随时间改变。 14.隧道效应是指:量子力学中粒子在能量E 小于势垒高度时仍能贯穿势垒的现象称为隧道效应。 15. 为氢原子的波函数, 的取值范围分别为:n=1,2,3,… ;l=0,1,…,n -1;m=-l,-l+1,…,0,1,…l 。 16.对氢原子,不考虑电子的自旋,能级的简并为: 2 n ,考虑自旋但不考虑自旋与轨道角动量的 耦合时,能级的简并度为 22n ,如再考虑自旋与轨道角动量的耦合,能级的简并度为 12+j 。 17.设体系的状态波函数为 ,如在该状态下测量 力学量 有确定的值 ,则力学量算符 与态矢量 的关系为:?F ψλψ =。 18.力学量算符 在态 下的平均值可写 为 的条件为:力学量算符的本征 值组成分立谱,并且()r ψ是归一化波函数。 19.希尔伯特空间:量子力学中Q 的本质函数有无限多 个,所以态矢量所在的空间是无限维的函数空间。 20.设粒子处于态 , 为 归一化波函数, 为球谐函数,则系数c 的取值为: 1 6 , 的可能值为: 13 , 本征值为 出现 的几率为: 1 2 。

大学物理下必考15量子物理知识点总结

§15.1 量子物理学的诞生—普朗克量子假设 一、黑体辐射 物体由其温度所决定的电磁辐射称为热辐射。物体辐射的本领越大,吸收的本领也越大,反之亦然。能够全部吸收各种波长的辐射能而完全不发生反射和透射的物体称为黑体。 二、普朗克的量子假设: 1. 组成腔壁的原子、分子可视为带电的一维线性谐振子,谐振子能够与周围的电磁场交换能量。 2. 每个谐振子的能量不是任意的数值, 频率为ν的谐振子,其能量只能为hν, 2 hν, …分立值, 其中n = 1,2,3…,h = 6.626×10 –。 3. 当谐振子从一个能量状态变化到另一个状态时, 辐射和吸收的能量是hν的整数倍。 §15.2 光电效应 爱因斯坦光量子理论 一、光电效应的实验规律 金属及其化合物在光照射下发射电子的现象称为光电效应。逸出的电子为光电子,所测电流为光电流。 截止频率:对一定金属,只有入射光的频率大于某一频率ν0时, 电子才能从该金属表面逸出,这个频率叫红限。 遏制电压:当外加电压为零时, 光电流不为零。 因为从阴极发出的光电子具有一定的初动能,它可以克服减速电场而到达阳极。当外加电压反向并达到一定值时,光电流为零,此时电压称为遏制电压。 21 2 m m eU =v 二、爱因斯坦光子假说和光电效应方程 1. 光子假说 一束光是一束以光速运动的粒子流,这些粒子称为光子; 频率为v 的每一个光子所具有的能量为h εν=, 它不能再分割,只能整个地被吸收或产生出来。 2. 光电效应方程 根据能量守恒定律, 当金属中一个电子从入射光中吸收一个光子后,获得能量hv ,如果hv 大于该金属的电子逸出功A ,这个电子就能从金属中逸出,并且有 上式为爱因斯坦光电效应方程,式中2m 1 2 m v 为光电子的最大初动能。当h A ν< 时,电子无法获得足够能量脱离金属表面,因此存在 三、光(电磁辐射)的波粒二象性 光子能量2E mc h ν==

量子力学复习题汇总

概念简答题 (每小题2分,2*8=16分) 1、何为束缚态? 2、当体系处于归一化波函数ψ(,)?r t 所描述的状态时,简述在ψ(,)? r t 状态中测量力学量F 的可能值及其几率的方法。 3、设粒子在位置表象中处于态),(t r ? ψ,采用Dirac 符号时,若将ψ(,)? r t 改写为 ψ(,) ? r t 有何不妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 4、简述定态微扰理论。 5、Stern —Gerlach 实验证实了什么? 6、简述波函数的统计解释; 7、对“轨道”和“电子云”的概念,量子力学的解释是什么? 8、力学量G ?在自身表象中的矩阵表示有何特点? 9、简述能量的测不准关系; 10、电子在位置和自旋z S ?表象下,波函数??? ? ??=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的 几率意义。 20、厄米算符有那些特性? 23.描述氢原子状态需要几个量子数?量子数目取决于什么? 1. 微观实物粒子的波粒二象性 1. Bohr 的原子量子论 3. 态迭加原理 4. 波函数的标准条件 5. 定态 6 .束缚态 7. 几率波 8 归一化波函数 9. 几率流密度矢量 10. 线性谐振子的零点能 11. 厄密算符 12. 简并度 13. 力学量的完全集合 14. 箱归一化 15. 函数的正交性 16. 角动量算符 17. 力学量算符的本征函数的正交归一性 18. 表象 19. 希耳伯特空间 20. 幺正变换 单项选择题(每小题2分)2*10=20分 1.能量为100ev 的自由电子的De Broglie 波长是 A. 1.2A 0 . B. 1.5A 0 . C. 2.1A 0 . D. 2.5A 0 .

相关主题
文本预览
相关文档 最新文档