当前位置:文档之家› 有关柯西准则的一些试题

有关柯西准则的一些试题

有关柯西准则的一些试题
有关柯西准则的一些试题

柯西准则及其应用

柯西准则及其应用 摘 要:柯西准则是实数完备性六大定理之一,它是极限论的基础.它的应用贯穿于数学分析课程学习始终.一般地,数学分析课程教材在讨论柯西准则时都只就0x x →一种情形来讨论,本文将补给并详细证明其它五种情形函数极限的柯西准则,同时探讨总结柯西准则在极限、级数、积分等方面的灵活应用. 关键词:柯西准则;应用;极限存在;优越性 引言:柯西准则是实数完备性六大定理之一,它是极限论的基础.它的应用非常广泛,贯穿于数学分析课程学习始终.一般地,数学分析课程教材在讨论柯西准则时都只就0x x →一种情形来讨论,即 设函数()f x 在00(;)U x δ'内有定义,0 0()lim x x f x →存在的充要条件是:任给0ε>,存在正数 δ(<δ'),使得对任何x ',x ''∈00(;)U x δ,都有()()f x f x '''-<ε. 事实上,当0x x +→,0x x - →,x →+∞,x →-∞,x →∞五种情形函数极限存在的柯西 准则可以类比,它们的应用也非常广泛.本文将详细叙述并证明其它五种情形函数极限的柯西准则,同时探讨总结柯西准则在极限、级数、积分等方面的灵活应用,充分展示其在解决上述几个方面问题的优越性和博大精深之处. 1 柯西准则的其它五种形式 定理1.1 设函数f 在00(;)U x δ+'内有定义.0 0()lim x x f x + →存在的充要条件是:任给0ε>,存 在正数()δδ'<,使得对任何x ',x ''∈00(;)U x δ+,均有()()f x f x '''-<ε. 证 必要性 设0 ()lim x x f x A + →=,则对任给的ε>0,存在正数δ(<δ'),使得对 00(;)x U x δ+?∈, 有()2 f x A ε -<.于是对00(;)x x U x δ+'''?∈,,有 充分性 设数列{}00(;)n x U x δ+?且0lim n n x x →∞ =,按假设,对任给的ε>0,存在正数δ(<δ'),使得对任何x ',x ''∈00(;)U x δ+,有()()f x f x ε'''-<. 由于0()n x x n →→∞,对上述的δ>0,存在N >0,使得当n m ,>N 时有00(;)n m x x U x δ+∈, 从而有 ()()n m f x f x ε-<. 于是,按数列极限的柯西收敛准则,数列{}()n f x 的极限存在,记为A ,即()lim n n f x A →∞ =.

柯西极限存在准则

柯西极限存在准则 柯西极限存在准则又叫柯西收敛原理,给出了数列收敛的充分必要条件。数列{Xn}收敛的充分必要条件是:对于任意给定的正数ε,存在着这样的正整数N,使得当m>N,n>N时就有|Xn-Xm|<ε这个准则的几何意义表示,数列{Xn}收敛的充分必要条件是:对于任意给定的正数ε,在数轴上一切具有足够大号码的点Xn中,任意两点间的距离小于ε . 充分性证明: (1)、首先证明Cauchy列有界 取ε=1,根据Cauchy列定义,存在自然数N,对一切n>N,有 Ia(n)-a(N+1)I<1。 令M=max{|a(1)|,|a(2)|,…,|a(N)|,|a(N+1)|+1} 则对一切n,成立|a(n)|≤M。 所以Cauchy列有界。 (2)、其次在证明收敛 因为Cauchy列有界,所以根据Bolzano-Weierstrass定理(有界数列有收敛子列)存在一个子列aj(n)以 A为极限。那么下面就是要证明这个极限A也就是是Cauchy列的极限。(注意这种证明方法是实数中常用 的方法:先取点性质,然后根据实数稠密性,考虑点领域的性质,然后就可以证明整个实数域的性质了) 因为Cauchy列{a(n)}的定义,对于任意的ε>0,都存在N,使得m、n>N时有 |a(m)-a(n)|<ε/2 取子列{aj(n)}中一个j(k),其中k>N,使得 |aj(k)-A|<ε/2 因为j(k)>=k>N,所以凡是n>N时,我们有 |a(n)-A|<=|a(n)-aj(k)|+|aj(k)-A|<ε/2+ε/2=ε 这样就证明了Cauchy列收敛于A. 即得结果:Cauchy列收敛

柯西不等式的应用(整理篇)

柯西不等式的证明及相关应用 摘要:柯西不等式是高中数学新课程的一个新增内容,也是高中数学的一个重要知识点,它不仅历史悠久,形式优美,结构巧妙,也是证明命题、研究最值问题的一个强有力的工具。 关键词:柯西不等式 柯西不等式变形式 最值 一、柯西(Cauchy )不等式: ()2 2211n n b a b a b a +++Λ()()2 222122221n n b b b a a a ++++++≤ΛΛ()n i R b a i i Λ2,1,,=∈ 等号当且仅当021====n a a a Λ或i i ka b =时成立(k 为常数,n i Λ2,1=) 现将它的证明介绍如下: 方法1 证明:构造二次函数 ()()()2 2 222 11)(n n b x a b x a b x a x f ++++++=Λ =()()() 2 222122112222212n n n n b b b x b a b a b a x a a a +++++++++++ΛΛΛ 由构造知 ()0≥x f 恒成立 又22120n n a a a +++≥Q L ()()() 0442 2221222212 2211≤++++++-+++=?∴n n n n b b b a a a b a b a b a ΛΛΛ 即()()() 22221222212 2211n n n n b b b a a a b a b a b a ++++++≤+++ΛΛΛ 当且仅当()n i b x a i i Λ2,10==+ 即12 12n n a a a b b b ===L 时等号成立 方法2 证明:数学归纳法 (1) 当1n =时 左式=()211a b 右式=()2 11a b 显然 左式=右式 当2=n 时 右式 ( )()()()2 2 22 22222212 1211222112a a b b a b a b a b a b =++=+++ ()()()2 22 1122121212222a b a b a a b b a b a b ≥++=+=左式 故1,2n =时 不等式成立 (2)假设n k =(),2k k ∈N ≥时,不等式成立 即 ()()() 22 221222212 2211k k k k b b b a a a b a b a b a ++++++≤+++ΛΛΛ 当 i i ma b =,m 为常数,k i Λ2,1= 或120k a a a ====L 时等号成立 设A=22221k a a a +++Λ B=2 2221k b b b +++Λ 1122k k C a b a b a b =+++L 2 C AB ≥∴

数学分析Cauchy收敛准则及迭代数列极限

第七章实数的完备性 §1.Cauchy 收敛准则及迭代数列极限 一引言 问题 极限{}n x 收敛、发散是什么意思?答如果存在数a ,使得lim n n x a →∞=,则称数列{}n x 收敛;反之称为发散。 问题上述关于数列“收敛性”的定义有何缺陷? 答涉及数a ,这在理论上不够完美。 问题 能否不涉及数a ,仅根据{}n x 本身的特性判断{}n x 的收敛性?答可以,如前面已学过的“单调有界定理”,“两边夹法则”,“Stolz 定理”等。 问题 上述方法只是数列{}n x 收敛的“充分条件”,有无“充要条件”?答有,Cauchy 收敛准则――它是具有重要原则意义的敛散性充要判别法则,它揭示了实数的完备性。 二、基本数列(引进此概念仅为叙述方便) 不严格的讲,如果lim n n x a →∞ =?n 充分大时,n x a ≈?当n ,m 充分大时,0n m x x a a -≈-=,即从第m 个起,数列{}n x 的任意两项差别可以任意小。严格的讲,有以下定义: 定义1对每个ε>0,都能找到一个自然数N ,对一切n ,m ≥N ,成立不等式n m x x ε-<,则称{}n x 为 (cauchy )基本数列,记作,lim ()0n m n m x x →∞-=。 简写:{}n x 是收敛数列?,lim ()0n m n m x x →∞ -=?0,,,N n m N ε?>??≥,n m x x ε-<。例1若{}n x 收敛,则{}n x 必是基本数列例2{}(1)n -不是基本数列例31n n +?????? 是基本数列。三、Cauchy 收敛准则 {}n x 收敛?{}n x 是基本数列 四、实数系的完备性 实数所组成的基本数列{}n x 比存在实数极限――实数系完备性;有理数域不具有完备性,如1(1)n n ??+??? ?:1lim(1)n n e n →∞+=(无理数)。五、函数极限的Cauchy 收敛准则 设f 在点a 某个去心邻域有定义,则极限lim ()x a f x →存在且为有限?lim[()()]0x a x a f x f x '→''→'''-=0ε??>,

数学学习计划基础阶段

数学学习计划(基础阶段) 高等数学01 第一单元学习计划——函数极限连续 计划对应教材:高等数学上册同济大学数学系编高等教育出版社第六版 本单元中我们应当学习—— 1.函数的概念及表示方法; 2.函数的有界性、单调性、周期性和奇偶性; 3.复合函数、分段函数、反函数及隐函数的概念; 4.基本初等函数的性质及其图形; 5.极限及左右极限的概念,极限存在与左右极限之间的关系; 6.极限的性质及四则运算法则; 7.极限存在的两个准则,会利用其求极限;两个重要极限求极限的方法; 8.无穷小量、无穷大量的概念,无穷小量的比较方法,利用等价无穷小求极限; 9.函数连续性的概念,左、右连续的概念,判断函数间断点的类型; 10.连续函数的性质和初等函数的连续性,闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),会用这些性质.

第一单元学习计划调整任务

第二单元学习计划——一元函数微分学 计划对应教材:高等数学上册同济大学数学系编高等教育出版社第六版 本单元中我们应当学习—— 1.导数和微分的概念、关系,导数的几何意义、物理意义,会求平面曲线的切线方程和法线方程,函数的可导性与连续性之间的关系; 2.导数和微分的四则运算法则,复合函数的求导法则,基本初等函数的导数公式,一阶微分形式的不变性; 3.高阶导数的概念,会求简单函数的高阶导数; 4.会求以下函数的导数:分段函数、隐函数、由参数方程所确定的函数、反函数; 5.罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理、泰勒(Taylor)定理、柯西(Cauchy)中值定理,会用这四个定理证明; 6.会用洛必达法则求未定式的极限; 7.函数极值的概念,用导数判断函数的单调性,用导数求函数的极值,会求函数的最大值和最小值; 8.会用导数判断函数图形的凹凸性,会求函数图形的拐点,会求函数的水平、铅直和斜渐近线;

柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用 柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等 式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为, 正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。 柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。 一、柯西不等式的各种形式及其证明 二维形式 在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式 ()() ()2 2222 bd ac d c b a +≥++ 等号成立条件:()d c b a bc ad //== 扩展:( )()()2 2222 2222123123112233n n n n a a a a b b b b a b a b a b a b +++???++++???+≥+++???+ 等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==?? ==???= ?=????? 当或时,和都等于,不考虑 二维形式的证明: ()()() ()()() 2 22222222222 222222222 2 2,,,220=a b c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立 三角形式 ad bc ≥ =等号成立条件: 三角形式的证明: 222111n n n k k k k k k k a b a b ===?? ≥ ??? ∑∑∑

柯西收敛准则的3种不同证法

柯西收敛准则的不同证法方法一:用定理2证明柯西收敛准则 证明:必要性:易知,当{ a n }有极限时(设极限为a),{ a n }一定是一个柯 西数列。因为对任意的ε>0,总存在N(N为正整数)。使得当n ,m>N时,有| a n -a|< ε, | a m -a|<ε ∴| a n - a m |≤| a n -a|+| a m -a|<ε,即{ a n }是一个柯西数列。 充分性:先证明柯西数列{ a n }是有界的。不妨取ε=1,因{ a n }是柯西数 列,所以存在某个正整数N 0,当n > N 时有| a n –a No+1 |<1,亦即当n ,N> N 时| a n |≤| a No+1 |+1即{ a n }有界。不妨设{ a n }?[a ,b],即a≤a n≤b,我们 可用如下方法取得{ a n }的一个单调子列{ a nk }: (1)取{ a nk }?{ a n }使[a,a nk ]或[a nk,b]中含有无穷多的{ a n }的项; (2)在[a,a nk ]或[a nk ,b]中取得a nk+1∈ { a n }且满足条件(1)并使nk+1>nk; (3)取项时方向一致,即要么由a→b要么由b→a。 由数列{ a n }的性质可知以下三点可以做到,这样取出一个数列{ a nk }?{ a n} 且{ a nk }是一个单调有界数列,必有极限设为a,下面我们证明{ a n }收敛于a。 因为lim n→∞a nk =a,则对ε>0,正整数K,当k >K时| a nk -a|< 2 ε 。另一方面由于 { a nk }是柯西数列,所以存在正整数N,使得当n ,m>N时有| a n – a m |< 2 ε , 取n 0=max(k+1,N+1),有n 0≥n N+1>N以及 > k+1 >k。所以当n >N时| a n-a|≤| a n – a m |+| a m -a|<ε。 ∴{ a n }收敛于a。 方法二:用定理3证明柯西收敛准证 证明:必要性显然。下证充分性。 设{x n }是柯西数列,即对任意的ε>0,存在N >0,使得当n , m > N时, 有| x n – x m | <ε (1) 令y n =sup{ x n+p | p =1,2,…} z n =inf { x n+p | p =1,2,…} 显然,y n 是单调递减数列,z n 是单调递增数列。取M =max{ x 1 ,x 2 ,…,

(完整word版)柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用 柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等 式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为, 正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。 柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。 一、柯西不等式的各种形式及其证明 二维形式 在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式 ()() ()2 2222 bd ac d c b a +≥++ 等号成立条件:()d c b a bc ad //== 扩展:( )()()2 2222 2222123123112233n n n n a a a a b b b b a b a b a b a b +++???++++???+≥+++???+ 等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==?? ==???= ?=????? 当或时,和都等于,不考虑 二维形式的证明: ()()() ()()() 2 22222222222 222222222 2 2,,,220=a b c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立 三角形式 ad bc =等号成立条件: 三角形式的证明: 222111n n n k k k k k k k a b a b ===?? ≥ ??? ∑∑∑

在实际应用中柯西积分公式的用途正文

柯西积分公式的应用 姓名:武小娜 班级:2014级数学教育 学号:201430626 摘要:阐述了柯西积分公式在解析函数理论中的重要地位,叙述了各种不同表示形式的柯西积分公式和高阶导数公式,并举例说明了这些公式在积分计算中的应用. 关键词:解析函数;复积分;柯西积分公式. 1 前言 的相关资料,力求把课本上的知识运用到实践中去. 2 预备知识 2.1 柯西积分定理 设函数)(z f 在z 平面上的单连通区域D 内解析,C 为D 内任一条周线,则0)(=?c dz z f . 2.2 推广的柯西积分定理

设C 是一条周线,D 为C 之内部,函数)(z f 在闭域C D D +=上解析,则 0)(=?c dz z f . 2.3 复周线柯西积分定理 设D 是有复周线---++++=n C C C Λ210C C 所围成的有界1+n 连通区域,函数 )z (f 在D 内解析,在C D D +=上连续,则0)(=?c dz z f . 2.4 柯西积分公式 3.2 高阶导数公式 设区域D 的边界是周线(或复周线)C ,函数)(z f 在D 内解析,在C D D +=上连续,则函数)(z f 在区域D 内有各阶导数,并且有 这是一个用解析函数)(z f 的边界值表示其各阶导函数内部值的积分公式. 现行教材中,仅应用数学归纳法证明了它的特殊形式——高阶导数公式,而数学归纳法比较繁琐.下面首先给出引理,然后利用该结论导出高阶导数公式一

种简单的证明. 引理 设Γ是一条可求长的曲线,)(z f 是Γ上的连续函数,对于每个自然数m 及复平面C 上的每个点Γ?z ,定义函数 那么每个)(z F m 在区域Γ-=C D 上解析,且 证明:首先证明)(z F m 是区域G 上的连续函数,即要证明,对于G 内的任意点a ,不论0>ε多么小,总存在0>δ,只要δ<-a z (z 在G 内的点),就有 2 ,2r r z r r a >≥->≥-ζζ.于是有(2)得 l r Mm a z a F z F m m m 1)2()()(+-<-, 其中l 为曲线Γ的长. 令 l Mm r a z l r Mm a z m m m 1112)2(+++<-?<-εε.

论文分析中的柯西准则

分析中的柯西准则 【摘要】本文主要论述了数列的柯西收敛准则,函数极限存在的柯西准则,级数收敛的柯西准则,函数列一致收敛的柯西准则,函数项级数一致收敛的柯西准则,平面点列的柯西准则,含参量反常积分一致收敛的柯西准则的应用并进行了总结和证明,并通过大量的例题体现了它们的地位和作用.柯西收敛准则是证明收敛与发散的基本方法,并且通过此种方法还推出了很多简单的方法,由此可见柯西准则的重要地位,此种方法的优越性也是显而易见的,就是通过本身的特征来判断是否收敛,这就给证明带来了方便,本文将这几种准则作了以下总结,并且探讨了它们之间的一些关系. 【关键词】柯西准则,收敛,一致收敛 Some Canchy criteria in the Mathematical Analysis 【Abstract】This passeage discusses the sequence of cauchy criterion function limit, the convergence of cauchy criterion, the convergence of the series, the function of cauchy criterion listed uniform convergence of cauchy criterion function series, uniform convergence of cauchy criterion, plane of cauchy criterion, some abnormal integral parameter uniform convergence of cauchy criterion and summarized and proof, and through a lot of sample reflected their status and role. Cauchy convergence criteria is proved the convergence and spread the basic method and through this method also launched many simple method, thus the important position of cauchy criterion, this kind of method is obvious superiority of the characteristics of itself, through to judge whether to prove the convergence, and this will bring convenience to the standards for the following summary, and probes into some of the relationship between them. 【Key words】cauchy criterion, convergence, uniform convergence

02第二讲 函数列的一致收敛性,柯西准则

数学分析第十三章函数列与函数项级数 函数列的一致收敛性 柯西准则 第二讲

数学分析第十三章函数列与函数项级数 定义1{ ,}n f f D 设函数列与函数定义在同数集上一,x D ∈对一切都有 |()()|n f x f x ε-<, {}n f D f 则称函数列在上一致收敛于,记作 →→()()(),. n f x f x n x D →∞∈由定义看到, 一致收敛就是对D 上任何一点, 于极限函数的速度是“一致”的. 函数列趋若对,,N ε任给的正数总存在某一正整数使当n N 时,>这种一致性体现为:函数列的一致收敛性

数学分析第十三章函数列与函数项级数 例2 中的函数列sin nx n ?????? 是一致收敛的,,x ε正数不论(,)-∞+∞因为对任意给定的取上什么值, N ε1只要取=,n N 当时恒有>

数学分析第十三章函数列与函数项级数 在D 上不一致收敛于f 的正面陈述是: {}n f 函数列存在某正数0,ε对任何正数N , 必定存在0x D ∈和00x n 与的取值与N 有关), ( 注意: >0n N 正整数使得0000 ()().n f x f x ε-≥{}(0,1)0.n x 在上不可能一致收敛于由例1 知道, 下面来证明这个结论. 事实上, 若取01,2,2N ε对任何正整数=≥10011(0,1),N n N x N 取正整数及??==-∈ ???就有001101.2 n x N -=-≥

高数课本_同济六版

第一章函数与极限(考研必考章节,其中求极限是本章最重 要的内容,要掌握求极限的集中方法) 第一节映射与函数(一般章节) 一、集合(不用看)二、映射(不用看)三、函数(了解) 注:P1--5 集合部分只需简单了解 P5--7不用看 P7--17 重点看一下函数的四大性态:单调、奇偶、周期、有界 P17--20 不用看 P21 习题1.1 1、2、3大题均不用做 4大题只需做(3)(5)(7)(8) 5--9 均做 10大题只需做(4)(5)(6) 11大题只需做(3)(4)(5) 12大题只需做(2)(4)(6) 13做14不用做15、16重点做 17--20应用题均不用做 第二节数列的极限(一般章节本章用极限定义证的题目考纲不作要求,可不看) 一、数列极限的定义(了解)二、收敛极限的性质(了解) P26--28 例1、2、3均不用证 p28--29 定理1、2、3的证明不用自己证但要会理解 P30 定理4不用看 P30--31 习题1-2 1大题只需做(4)(6)(8) 2--6均不用做 第三节(一般章节)(标题不再写了对应同济六版教材标题) 一、(了解)二、(了解) P33--34 例1、2、3、4、5只需大概了解即可 P35 例6 要会做例7 不用做 P36--37 定理2、3证明不用看定理3’4”完全不用看 p37习题1--3 1--4 均做5--12 均不用做 第四节(重要) 一、无穷小(重要)二、无穷大(了解)

p40 例2不用做 p41 定理2不用证 p42习题1--4 1做 2--5 不全做 6 做 7--8 不用做 第五节(注意运算法则的前提条件是各自存在) p43 定理1、2的证明要理解 p44推论1、2、3的证明不用看 p48 定理6的证明不用看 p49 习题1--5 1题只需做(3)(6)(7)(8)(10)(11)(13)(14) 2、3要做4、5重点做6不做 第六节极限存在准则(重要) 两个重要极限(重要两个重要极限要会证明 p50 准则1的证明要理解 p51 重要极限一定要会独立证明(经典重要极限) p53另一个重要极限的证明可以不用看 p55--56柯西极限存在准则不用看 p56习题1--7 1大题只做(1)(4)(6) 2全做3不用做4全做,其中(2)(3)(5)重点做 第七节(重要) p58--59 定理1、2的证明要理解 p59 习题1--7 全做 第八节(基本必考小题) p60--64 要重点看第八节基本必出考题 p64 习题1--8 1、2、3、4、5要做其中4、5要重点做 6--8不用做

柯西不等式及排序不等式及其应用经典例题透析

经典例题透析类型一:利用柯西不等式求最值1.求函数 的最大值.思路点拨:利用不等式解决最值问题,通常设法在不 等式一边得到一个常数,并寻找不等式取等号的条件.这个函数的解析式是两部分的和,若能化为ac+bd的形式就能利用柯西不等式求其最大值.也可以利用导数求解。 解析:法一:∵且, ∴函数的定义域为,且, 当且仅当时,等号成立, 即时函数取最大值,最大值为法二:∵且, ∴函数的定义域为 由, 得 即,解得∴时函数取最大值,最大值 为. 总结升华:当函数解析式中含有根号时常利用柯西不等式求解.不等式中的等号能否取得是求最值问题的关键. 举一反三: 【变式1】(2011,24)已知函数f(x)=|x-2|-|x-5|。 (I)证明:-3≤f(x)≤3; (II)求不等式f(x)≥x2-8x+15的解集。 【答案】 (Ⅰ) 当时,. 所以.…………5分

(Ⅱ)由(Ⅰ)可知, 当时,的解集为空集; 当时,的解集为; 当时,的解集为. 综上,不等式的解集为.……10分 【变式2】已知,,求的最值. 【答案】法一: 由柯西不等式 于 是的最大值为,最小值为. 法二: 由柯西不等式 于是的最大值为,最小值为. 【变式3】设2x+3y+5z=29,求函数的最大值. 【答案】 根据柯西不等式 , 故。 当且仅当2x+1=3y+4=5z+6,即时等号成立, 此时,评注:根据所求最值的目标函数的形式对已知条件进行配凑. 类型二:利用柯西不等式证明不等式

利用柯西不等式证明某些不等式显得特别方便,而利用柯西不等式的技巧也有很多。如常数的巧拆、结构的巧变、巧设数组等。 (1)巧拆常数:2.设、、为正数且各不相等,求证: 思路点拨:∵、、均为正,∴为证结论正确只需证: 而,又,故可利用柯西不等式证明之。 证明: 又、、各不相等,故等号不能成立 ∴。 (2)重新安排某些项的次序:3.、为非负数,+=1,,求证: 思路点拨:不等号左边为两个二项式积, ,直接利用柯西不等式,得不到结论,但当把第二个小括号的两项前后调换一下位置,就能证明结论了。 证明:∵+=1 ∴ 即(3)改变结构:4、若>>,求证: 思路点拨:初见并不能使用柯西不等式,改造结构后便可使用柯西不等式了。 ,,∴,∴所证结论改为证

柯西收敛准则

第十讲、柯西收敛准则 定理10.1 . (柯西收敛准则)数列{x n}极限存在的充要条件是:对于 ?>存在正数N , 使当n >N 时, 对于一切p∈+有| | εx x ε0 +?< n p n 注记10.1. (I)柯西准则的意义是:数列{x n}是否有极限可以根据其一 般项的特性得出,而不必事先知晓其极限的具体值(见下面的例子10.2)。(II)定理10.1 的逆否命题为: (柯西收敛准则)数列{x n}极限不存在的充要条件是: ?ε0 > 0,使得对 ?∈, 均存在n >N 时, 存在p∈,使得 N | | + +?≥ + x x ε n p n 0 例子10.1 设x n sin 2n =,试用柯西收敛准则证明该数列极限存在。 n 证明:注意到 sin 2(n p) sin 2n sin 2(n p) sin 2n ++ |x x |= ??≤ + n+p n ++ n p n n p n 1 1 2 ≤+≤ n p n n +

2 ∈有于是,对?ε> 0,取正数ε, 则当n >N 时, 对于一切p N= + 2 sin 2n n p n n +?≤<。故由定理10.1 柯西收敛准则可知 ε n n 证毕。 例子10.2.设x n 1 1 1 =++++,证明数列{ } 1 x 收敛。 2 3 n 2 2 2 n 证明:注意到

1 1 1 |x x |= n p n +?+++ +++ 2 2 2 (n 1) (n 2) (n p) 1 1 1 ≤+++ n(n 1) (n 1)(n 2) (n p 1)(n p) ++++?+ 1 1 1 1 1 1 =?+++?++++??+ n n 1 n 1 n 2 n p 1 n p 1 1 1 =?< n n p n + 1 于是,对?ε> 0,取正数ε, 则当n >N 时, 对于一切p N= 1 |x x | n p n +?≤<ε。故由定理10.1 柯西收敛准则可知 n ++++ 1 1 1 存在。 lim 1 n→∞n 2 3 2 2 2 ∈有 +

柯西不等式各种形式的证明及其应用培训资料

柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用 柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角 度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。 柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。 一、柯西不等式的各种形式及其证明 二维形式 在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式 ()() ()2 2222 bd ac d c b a +≥++ 等号成立条件:()d c b a bc ad //== 扩展:()()()2 2222 2222123123112233n n n n a a a a b b b b a b a b a b a b +++???++++???+≥+++???+ 等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==??==???= ?=?????当或时,和都等于,不考虑 二维形式的证明: ()()() ()()() 2 22222222222 222222222 2 2,,,220=a b c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立 2 22 111n n n k k k k k k k a b a b ===??≥ ??? ∑∑∑

柯西积分定理与柯西积分公式的由来及其应用

( 2012 届) 本科毕业论文(设计) 题目:柯西积分定理与柯西积分公式的由来及其应用 学院:教师教育学院 专业:数学与应用数学(师范) 班级:数学082 学号: 姓名: 指导教师: 完成日期: 教务处制

诚信声明 我声明,所呈交的论文(设计)是本人在老师指导下进行的研究工作及取得的研究成果。据我查证,除了文中特别加以标注和致谢的地方外,论文(设计)中不包含其他人已经发表或撰写过的研究成果,也不包含为获得______或其他教育机构的学位或证书而使用过的材料。我承诺,论文(设计)中的所有内容均真实、可信。 论文(设计)作者签名:签名日期:年月日

授权声明 学校有权保留送交论文(设计)的原件,允许论文(设计)被查阅和借阅,学校可以公布论文(设计)的全部或部分内容,可以影印、缩印或其他复制手段保存论文(设计),学校必须严格按照授权对论文(设计)进行处理,不得超越授权对论文(设计)进行任意处置。 论文(设计)作者签名:签名日期:年月日

柯西积分定理与柯西积分公式的由来及其应用 王莉莉 (嘉兴学院数学与信息工程学院) 摘要:复变函数是综合性大学或师院类院校理工专业的必修课,是实变函数微积分的推广和发展.其中柯西积分定理和柯西积分公式是复变函数理论的基础,是研究复变函数理论的关键.它的核心内容是柯西积分定理,即解析函数沿围线的积分值为零.本文研究了柯西积分定理和柯西积分公式的相关概念、证明、推广及在代数基本定理证明、实积分计算中的应用,论述了柯西积分定理与复变函数的积分有着密切的联系,利用柯西积分定理很容易导出著名的柯西积分公式,还对留数定理作了简要介绍,利用留数定理可以分别得到复变函数中的柯西积分定理、柯西积分公式和高阶导数公式. 关键词:复变函数;柯西积分定理;柯西积分公式;留数定理

《高等数学》 详细上册答案1-7

2014届高联高级钻石卡基础阶段学习计划 《高等数学》上册(一----七) 第一单元、函数极限连续 使用教材:同济大学数学系编;《高等数学》;高等教育出版社;第六版; 同济大学数学系编;《高等数学习题全解指南》;高等教育出版社;第六版;核心掌握知识点: 1.函数的概念及表示方法; 2.函数的有界性、单调性、周期性和奇偶性; 3.复合函数、分段函数、反函数及隐函数的概念; 4.基本初等函数的性质及其图形; 5.极限及左右极限的概念,极限存在与左右极限之间的关系; 6.极限的性质及四则运算法则; 7.极限存在的两个准则,会利用其求极限;两个重要极限求极限的方法; 8.无穷小量、无穷大量的概念,无穷小量的比较方法,利用等价无穷小求极限; 9.函数连续性的概念,左、右连续的概念,判断函数间断点的类型; 10.连续函数的性质和初等函数的连续性,闭区间上连续函数的性质(有界性、最大值和最 小值定理、介值定理),会用这些性质. 天数学 习 时 间 学 习 章 节 学习知识点 习 题 章 节 必做题目 巩固习题 (选做) 备注 第一天2 h 第 1 章 第 1 节 映 射 与 函 数 函数的概念 函数的有界性、单调性、 周期性和奇偶性 复合函数、反函数、分段 函数和隐函数 初等函数具体概念和形 式,函数关系的建立 习 题 1 - 1 4(3) (6) (8),5(3)★, 9(2),15(4) ★,17★ 4(4)(7),5(1), 7(2),15(1) 本节有两部分内容 考研不要求,不必 学习: 1. “二、映射”; 2. 本节最后—— 双曲函数和反双曲 函数

第二天3 h 1 章 第 2 节 数 列 的 极 限 数列极限的定义 数列极限的性质(唯一 性、有界性、保号性) 习 题 1 - 2 1(2) (5) (8) ★ 3(1) 1. 大家要理解数 列极限的定义中各 个符号的含义与数 列极限的几何意 义; 2. 对于用数列极 限的定义证明,看 懂即可。 第 1 章 第 3 节 函 数 的 极 限 函数极限的概念 函数的左极限、右极限与 极限的存在性 函数极限的基本性质(唯 一性、局部有界性、局部 保号性、不等式性质,函 数极限与数列极限的关 系等) 习 题 1 - 3 2,4★3, 1. 大家要理解函 数极限的定义中各 个符号的含义与函 数极限的几何意 义; 2. 对于用函数极 限的定义证明,看 懂即可。 第三天3 h 第 1 章 第 4 节 无 穷 小 与 无 穷 大 无穷小与无穷大的定义 无穷小与无穷大之间的 关系 习 题 1 - 4 4,6★1,5 大家要搞清楚无穷 大与无界的关系

归纳柯西不等式的典型应用

归纳柯西不等式的典型应用

归纳柯西不等式的典型应用 【摘要】:柯西不等式是一个非常重要的不等式,本文用五种不同的 方法证明了柯西不等式,介绍了如何利用柯西不等式技巧性解题,在证明不等式或等式,解方程,解三角形相关问题,求函数最值等问题的应用方面给出几个典型例子。最后用其证明了点到直线的距离公式,更好的解释了柯西不等式。 【关键词】:柯西不等式 ;证明;应用 【引言】:本人通过老师在中教法课上学习柯西不等式时,老师给出 了一些有关的例题并讲解,由于柯西不等式是一个非常重要的不等式,如果巧妙利用它,在高考可以节省很多宝贵时间,而且得分率高。因此,本文介绍归纳了柯西不等式的典型应用,经过收集及整理资料,得到四类的典型题。 【正文】: 1.柯西不等式的一般形式为: 对任意的实数 n n b b b a a a ,,,,,,2121?????? ()( ) 222112 22212 222 1 )(n n n n b a b a b a b b b a a a ??????++≥+??????+++??????++

其中等号当且仅当λ=== n n b a b a b a 2211时成立,其中R ∈λ 变式:()()222112121)(n n n n y x y x y x y y y x x x ??????++≥+??????+++??????++ 2. 柯西不等式的证明: 证明柯西不等式的方法总共有6 种,下面我们将给出常用的2种证明柯西不等式的方法: 1)配方法: 作差:因为22211 1 ()()()n n n i j i i i j i a b a b ===-∑∑∑ 221 1 1 1 ()()()()n n n n i j i i j j i j i j a b a b a b =====-∑∑∑∑ 2211 11 n n n n i j i i j j i j i j a b a b a b =====-∑∑∑∑ 2222 111111 1(2)2n n n n n n i j j i i j j i i j i j i j a b a b a b a b =======+-∑∑∑∑∑∑ 2222 11 1(2)2n n i j i j j i j i i j a b a b a b a b ===-+∑∑ 211 1()02n n i j j i i j a b a b ===-≥∑∑ 所以222 1 1 1 ()()()n n n i j i i i j i a b a b ===-∑∑∑0≥,即2221 1 1 ()()()n n n i j i i i j i a b a b ===≥∑∑∑ 即222222*********()()()n n n n a b a b a b a a a b b b +++≤++++++……………… 当且仅当0(,1,2,,)i j j i a b a b i j n -==…… 即(1,2,,;1,2,,;0)j i j i j a a i n j n b b b ===≠…………时等号成立。 2)用数学归纳法证明 i )当1n =时,有2221112()a b a b =,不等式成立。

高数课本同济六版

高数课本同济六版 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

第一章函数与极限(考研必考章节,其中求极限是本章最重第二章要的内容,要掌握求极限的集中方法) 第三章 第四章第一节映射与函数(一般章节)第五章一、集合(不用看)二、映射(不用看)三、函数(了解)第六章注:P1--5集合部分只需简单了解第七章 P5--7不用看第八章 P7--17 重点看一下函数的四大性态:单调、奇偶、周期、有界第九章 P17--20不用看第十章 P21习题1. 1 第十一章 1、2、3大题均不用做第十二章 4大题只需做(3)(5)(7)(8)第十三章 5--9均做第十四章 10大题只需做(4)(5)(6)第十五章 11大题只需做(3)(4)(5)第十六章 12大题只需做(2)(4)(6)第十七章 13做14不用做15、16重点做第十八章17--20应用题均不用做第二节数列的极限(一般章节本章用极限定义证的题目考纲不作要求,可不看) 一、数列极限的定义(了解)二、收敛极限的性质(了解)

二、P26--28 例1、2、3均不用证 三、p28--29 定理1、2、3的证明不用自己证但要会理解 四、P30 定理4不用看 五、P30--31 习题1-2 六、1大题只需做(4)(6)(8) 七、2--6均不用做 第三节(一般章节)(标题不再写了对应同济六版教材标题) 一、(了解)二、(了解) 二、P33--34 例1、2、3、4、5只需大概了解即可 三、P35 例6 要会做例7 不用做 四、P36--37 定理2、3证明不用看定理3’ 4” 完全不用看五、 六、p37习题1--3 七、1--4 均做 5--12 均不用做 第四节(重要) 第五节 第六节一、无穷小(重要)二、无穷大(了解) 第七节 第八节 p40 例2不用做 p41 定理2不用证 第九节 p42习题1--4 第十节

相关主题
文本预览
相关文档 最新文档