当前位置:文档之家› 有机化合物的空间构型

有机化合物的空间构型

有机化合物的空间构型
有机化合物的空间构型

有机化合物的空间构型

一、典型有机化合物的空间构型

1.甲烷及烷烃的空间构型

(1)甲烷(CH4)结构模型如图1所示,分子中的碳原子采取杂化,价电子对空间构型为,分子空间构型为,碳原子居于,键角为,构成甲烷分子的五个原子(填“可能”、“不可能”)共面,分子中最多个原子共面,四个氢原子最多有个与碳原子共面。

(2)CH3CH2CH3的结构模型如图2所示,共面情况分析如下:

Ⅰ.若该结构中⑤H、①C、②C共面,则①C上的另外两个氢原子(填“一定”、“一定不”或“可能”)在该平面上。

Ⅱ.若该结构中①C、②C、③C共面,则②C上的另外两个氢原子(填“一定”、“一定不”或“可能”)在该平面上,④H和⑤H (填“一定”、“一定不”或“可能”)在该平面上。

Ⅲ.若②C,③C,④H共面,则③C上的另外两个氢原子(填“一定”、“一定不”或“可能”)在该平面上。

Ⅳ.丙烷分子中最多有个碳原子同时共面,最多有个原子同时共面。

图1、甲烷的分子结构模型图2、丙烷的分子结构模型

2.乙烯及烯烃的空间构型

(1)乙烯(CH2=CH2)结构模型如图3所示,分子中的碳原子采取杂化,价电子对空间构型为,分子空间构型为,键角为,个原子共面。

(2)当乙烯分子中某氢原子被其他原子或原子团取代时,代替该氢原子的原子(填“一定”、“一定不”或“可能”)在乙烯的平面内。

(2)CH3CH=CH2结构模型如图4所示,①②③④⑤⑥原子(填“一定”、“一定不”或“可能”)共面。

(3)若⑤C,⑥C,⑦H共面,则⑥C上的另外两个氢原子 (填“一定”、“一定不”或“可能”)在该平面上。综上所述,CH3CH=CH2分子中有个碳原子同时共面,最少有个原子同时共面,最多有个原子同时共面。

(4) (CH3)2C=C(CH3)2分子中有个碳原子同时共面,最少有个原子同时共面,最多有个原子同时共面( 个碳原子和个氢原子)。

3.乙炔及炔烃的空间构型

(1)乙炔(CH≡CH)结构模型如图5所示,分子中的碳原子采取杂化,价电子对空间构型为,分子空间构型为,键角为,个原子共直线,个原子共面。

(2)当乙炔分子中的氢原子被其他原子取代时,代替该氢原子的原子 (填“一定”、“一定不”或“可能”)在乙炔分子所在的直线上。

(3)丙炔(CH3CH≡CH)结构模型如图6所示,分子中①H、②C、③C、④C四个原子(填“一定”、“一定不”或“可能”)共线,④C的三个氢原子 (填“一定”、“一定不”或“可能”)在①H、②C、③C、④C构成的这条直线上,④C的三个氢原子最多有个氢原子与这条直线共平面。综上所述,HC≡C-CH3分子中有个碳原子同时共面,最多有个原子同时共面。

图5、乙炔的分子结构模型图6、丙炔的分子结构模型

(4) CH3-C≡C-CH3分子中有个碳原子同时共直线,有个碳原子同时共面,最多有个原子同时共面。

4.苯及其同系物的空间构型

(1)苯(C6H6,结构模型如图7所示) 分子中的碳原子采取杂化,价电子对空间构型为,分子空间构型为,键角为,个碳原子共平面,个原子共面,个碳原子共直线,个原子共直线。

(2)当苯分子中的氢原子被其他原子取代时,代替氢原子的原子(填“一定”、“一定不”或“可能”)在苯环所在的平面内。

(3)甲苯(C7H8)的结构模型如图8所示,②C (填“一定”、“一定不”或“可能”)在苯环所在的平面内;①H (填“一定”、“一定不”或“可能”) 在苯环所在的平面内;若①H,②C,③C共面,则②C的另外两个氢原子(填“一定”、“一定不”或“可能”) 在苯环所在的平面内;综上所述,甲苯分子中最少有个碳原子共面,最少有个原子共面,最多可能有个原子共面。

图7、苯分子的结构模型图6、甲苯分子的结构模型

(4)萘()分子有个碳原子同时共面,有个原子同时共面。

(5)蒽()分子有个碳原子同时共面,有个原子同时共面。

(6)分子有个碳原子同时共面,有个原子同时共面。

【强化练习】

1.判断正误:

(1)环己醇分子中所有的原子可能共平面()

(2)分子中至少有11个碳原子处于同一平面上()

2.(双选)大气污染物氟里昂—12的化学式是CF2Cl2,下列说法正确的是

A.氟里昂—12没有固定的熔沸点B.氟里昂—12分子中的碳原子是饱和的

C.氟里昂—12属于正四面体的空间结构D.氟里昂—12只有一种结构

3.盆烯是近年合成的一种有机物,它的分子结构可简化表示为(其中C、H原子已略去),下列关于盆烯的说法中错误的是

A.盆烯是苯的一种同分异构体

B.盆烯分子中所有的碳原子不可能在同一平面上

C.盆烯是乙烯的一种同系物

D.盆烯在一定条件下可以发生加成反应

4.(双选)甲烷分子中的4个氢原子全部被苯基取代,可得如图所示的分子,对该分子的描述不正确的是H20

A.分子式为C

B.分子中所有原子有可能处于同一平面

C.该化合物分子中所有原子不可能处于同一平面

D.分子中所有原子一定处于同一平面

5.“二恶英”是二苯基-1,4-二氧六环及其衍生物的通称,其中一种毒性最大的结构如下图:

,关于这种物质的叙述中不正确的是

A.该物质是一种芳香族化合物B.该物质是一种卤代烃

C.该物质是一种强烈致癌物D.该物质分子中所有原子可能处在同一平面上

6.对如图两种化合物的结构或性质描述正确的是

A.不是同分异构体B.分子中共平面的碳原子数相同

C.均能与溴水反应D.可用红外光谱区分,但不能用核磁共振氢谱区分

7.咖啡酸具有止血功效,存在于多种中药中,其结构简式如图:则下列有关说法正确的是A.该物质中苯环上一氯代物有2种

B.1mol该物质可以与1.5mol碳酸钠溶液反应生成1.5mol CO2

C.既能发生取代反应,也能发生加成反应

D.所有碳原子不可能都在同一个平面上

8.(双选)下列有机物分子中所有原子一定在同一平面内的是

9.(双选)下列分子中的14个碳原子不可能处在同一平面上的是

10.某有机物分子结构如图:,关于该分子结构的说法正确的是A.除苯环外的其余碳原子有可能都在一条直线上

B.除苯环外的其余碳原子不可能都在一条直线上

C.12个碳原子不可能都在同一平面上

D.12个碳原子一定都在同一平面上

11.(2015·新课标Ⅰ·38节选)(4)异戊二烯分子中最多有个原子共平面

12.请分析苯乙炔(C CH)分子中最多有个原子共平面。

13.

CH3

CH3分子中至少有个碳原子处在同一平面上,最多有个碳原子处在同一平面上,最多有个原子处在同一平面上。

14.C CH2

CHO

H

分子中至少有个碳原子处于同一平面上,最多有个原子处在同一平面上。

15.某种兴奋剂的结构如下图所示。试求它的分子中共平面的碳原子最多有个。

OH

OH

HO C5H11

C

CH2

H3C

16.(CH3)2C=C(CH3)C(CH3)=C(CH3)2分子中最少个碳原子共面,最多个碳原子共面,最多个原子共面。

17.CH3-CH=CH-C≡CH分子中至少有个原子在同一直线上,至少有个碳原子在同一平面上,最多有个原子同时共面。

有机化合物的空间构型答案

一、1.(1) sp3正四面体正四面体正四面体中心109°28′ 不可能 3 2

(2) Ⅰ. 一定不Ⅱ. 一定不可能Ⅲ. 一定不Ⅳ.3 5

2.(1) sp2平面正三角形120° 6 (2) 一定一定不 3 6 7 (4) 6 6 10 3.(1) sp1直线形直线形180° 4 4 (2) 一定(3) 一定一定不 1 3 4

(4) 4 4 6

4.(1) sp2平面三角形平面120° 6 12 2 4 (2) 一定

(3) 一定可能一定一定不7 12 13 (4)10 18 (5) 14 24 (6) 11 18

【强化练习】1.(1) ×(2)∨

2.BD 3.C 4.BD 5.B 6.C 7.C 8.AD 9.BD 10.B

11.11 12.14 13.9 14 24 14.8 18 15.20 16.6 10 16 17.4 5 9

二、有关规律

1.甲烷、乙烯、乙炔、苯等基本结构单元中,若氢原子被其他原子所代替, 其键角大体上不变。如1, 3-丁二烯分子,键角仍接近120°。

2.烃分子里,碳碳单键可以旋转,碳碳双键和叁键不能绕轴旋转。若两个平面型结构的基团之间以单键相连,单键可以旋转,则两平面可能共面,但不是“一定”。如分子中的苯平面与乙烯平面不一定重叠,所以共面的碳原子最少为4个(乙烯平面),最多为8个(乙烯平面与苯环平面重叠)。

3.共用碳碳键的两个或多个苯环(即稠环芳香烃)一定共面。如、分子结构中所有原子都在同一平面内。

4.若甲基与一个平面型结构相连,则甲基上的氢原子最多有一个氢原子在该平面内。如分子中,甲基中的3个氢原子最多有一个氢原子在苯环平面内。

5.若一个碳原子以四个单键与其他4个原子直接相连,则这4个原子构成四面体结构,这4个原子不可能共面(或者说含有饱和碳原子的分子不可能为平面型分子)。

如CH2=CH—CH3分子中的C—CH3为四面体结构,所以,CH2=CH—CH3分子中的所有原子不可能共面。

6.苯分子中苯环可以绕任一碳氢键为轴旋转, 每个苯分子有三个旋转轴,苯环对角上的2个碳原子及与之相连的2个原子,这4个原子共直线且都在苯环确定的平面内。如分子中处于苯环对角的两个碳原子和与之相连的两个甲基碳原子共线,两个甲基碳原子也在苯环确定的平面内。

7.直线形分子中有2个原子处于某一平面内时,则该直线上的所有原子也必落在此平面内。

如CH3—CH=CH—C≡C—CF3分子中共面的碳原子有6个。

8.含有苯环的有机物至少有12个原子共面。

《有机化合物的结构特点》教案

第二节有机化合物的结构特点 教学目标: 1.知识与技能:掌握有机化合物的结构特点 2.过程与方法:通过练习掌握有机化合物的结构。 3.情感态度和价值观:在学习过程中培养归纳能力和自学能力。教学重点:有机化合物的结构特点 教学难点:有机化合物的结构特点法 教学过程: 第一课时 一.有机物中碳原子的成键特点与简单有机分子的空间构型

第二课时 [思考回忆]同系物、同分异构体的定义?(学生思考回答,老师板书) [板书] 二、有机化合物的同分异构现象、同分异构体的含义 同分异构体现象:化合物具有相同的分子式,但具有不同的结构现象,叫做同分异构体现象。 同分异构体:分子式相同, 结构不同的化合物互称为同分异构体。 (同系物:结构相似,在分子组成上相差一个或若干个CH2原子团的物质互称为同系物。) [知识导航1] 引导学生再从同系物和同分异构体的定义出发小结上述2答案,从中得出对“同分异构”的理解: (1)“同分”——相同分子式(2)“异构”——结构不同 分子中原子的排列顺序或结合方式不同、性质不同。 (“异构”可以是象上述②与③是碳链异构,也可以是像⑥与⑦是官能团异构)“同系物”的理解:(1)结构相似———一定是属于同一类物质; (2)分子组成上相差一个或若干个CH2原子团——分子式不同[学生自主学习,完成《自我检测1》] 《自我检测1》 下列五种有机物中,互为同分异构体;互为同一

物质; 互为同系物。 ① ② ③ ④ CH 2=CH -CH 3 ⑤ CH 2=CH -CH=CH 2 [知识导航2] (1)由①和②是同分异构体,得出“异构”还可以是位置异构; (2)②和③互为同一物质,巩固烯烃的命名法; (3)由①和④是同系物,但与⑤不算同系物,深化对“同系物”概念中“结构相似”的含义理解。(不仅要含官能团相同,且官能团的数目也要相同。) (4)归纳有机物中同分异构体的类型;由此揭示出,有机物的同分异构现象产生的本质原因是什么?(同分异现象是由于组成有机化合物分子中的原子具有不同的结合顺序和结合方式产生的,这也是有机化合物数量庞大的原因之一。除此之外的其他同分异构现象,如顺反异构、对映异构将分别在后续章节中介绍。) [板书] 二、同分异构体的类型和判断方法 1.同分异构体的类型: a.碳链异构:指碳原子的连接次序不同引起的异构 b.官能团异构:官能团不同引起的异构 CH 3-CH -CH=CH 2 ︱ CH 3 CH 3︱ CH 3-C=CH -CH 3 CH 3-CH=C ︱ CH 3 CH 3 ︱

有机物结构表示方法

有机物结构的表示方法 1、结构简式书写:不能用碳干结构表示,碳原子连接的氢原子个数要正确,官能团不能略写,要注意官能团中各原子的结合顺序不能随意颠倒。 2、键线式:将碳、氢元素符号省略,只表示分子中键的连接情况,每个拐点或终点均表示有一个碳原子,称为键线式。每个交点、端点代表一个碳原子,每一条线段代表一个共价键,每个碳原子有四条线段,用四减去线段数既是氢原子个数。注意事项: (1)一般表示3个以上碳原子的有机物; (2)只忽略C-H键,其余的化学键不能忽略; (3)必须表示出C=C、C≡C键等官能团; (4)碳氢原子不标注,其余原子必须标注(含羟基、醛基和羧基中氢原子)。 (5)计算分子式时不能忘记顶端的碳原子。 3、碳原子的成键方式与分子空间构型的关系 (1)当一个碳原子与其它4个原子连接时,这个碳原子将采取sp3杂化取向与之成键;当碳原子之间或碳原子与其它原子之间形成双键时,形成该双键的原子以及与之直接相连的原子处于同一平面上;当碳原子之间或碳原子与其它原子之间形成叁键时,形成该叁键的原子以及与之直接相连的原子处于同一平面上。(2)有机物的代表物基本空间结构:甲烷是正四面体结构(5个原子不在一个平面上);乙烯是平面结构(6个原子位于一个平

面);乙炔是直线型结构(4个原子位于一条直线);苯环是平面结构(12个原子位于一个平面)。 (3)杂化轨道理论:C原子的sp、sp2、sp3杂化 4、有机分子空间构型解题规律 规律Ⅰ:以碳原子和化学键为立足点,若氢原子被其它原子所代替,其键角基本不变。 规律Ⅱ:若两个平面型结构的基团之间以单键相连,这个单键可以旋转,则两个平面可能共面,但不是“一定”。 规律Ⅲ:若两个苯环共边,则两个苯环一定共面。 规律Ⅳ:若甲基与一个平面型结构相连,则甲基上的氢原子最多有一个氢原子与其共面。若一个碳原子以四个单键与其它原子直接相连,则这四个原子为四面体结构,不可能共面。同时,苯环对位上的2个碳原子及其与之相连的两个氢原子,这四原子共直线。 【基础训练】 1、请写出下列有机化合物的结构式、结构简式和键线式。

判断分子的构型

二、判断分子构型——价层电子对互斥理论(VSEPR) 现代化学的重要基础之一是分子(包括带电荷的离子)的立体结构。实验测出,SO3分子是呈平面结构的,O—S—O的夹角等于120o,而SO32-离子却是呈三角锥体,硫是锥顶,三个氧原子是三个锥角,象一架撑开的照相用的三角架。又例如SO2的三个原子不在一条直线上,而CO2却是直线分子等等。价层电子对互斥理论用以预测简单分子或离子的立体结构,我们不难学会用这种理论来预测和理解分子或离子的立体结构,并用来进一步确定分子或离子的结构。 价层电子对互斥理论认为,在一个共价分子中,中心原子周围电子对排布的几何构型主要决定于中心原子的价电子层中电子对的数目。所谓价层电子对包括成键的σ电子对和孤电子对。价层电子对各自占据的位置倾向于彼此分离得尽可能地远些,这样电子对彼此之间的排斥力最小,整个分子最为稳定。这样也就决定了分子的空间结构。也正因此,我们才可以用价层电子对很方便地判断分子的空间结构。例如:甲烷分子(CH4),中心原子为碳原子,碳有4个价电子,4个氢原子各有一个电子,这样在中心原子周围有8个电子,4个电子对,所以这4个电子对互相排斥,为了使排斥力最小,分子最稳定,它们只能按正四面体的方式排布。这样就决定了CH4的正四面体结构。 利用VSEPR推断分子或离子的空间构型的具体步骤如下: ①确定中心原子A价层电子对数目。中心原子A的价电子数与配位体X提供共用的电子数之和的一半,就是中心原子A价层电子对的数目。例如BF3分子,B原子有3个价电子,三个F原子各提供一个电子,共6个电子,所以B 原子价层电子对数为3。计算时注意:(ⅰ)氧族元素(ⅥA族)原子作为配位原子时,可认为不提供电子(如氧原子有6个价电子,作为配位原子时,可认为它从中心原子接受一对电子达到8电子结构),但作为中心原子时,认为它提供所有的6个价电子。(ⅱ)如果讨论的是离子,则应加上或减去与离子电荷相应的电子数。如PO43-离子中P原子的价层电子数应加上3,而NH4+离子中N原子的价层电子数则应减去1。(ⅲ)如果价层电子数出现奇数电子,可把这个单电子当作电子对看待。如NO2分子中N原子有5个价电子,O原子不提供电子。因此中心原子N价层电子总数为5,当作3对电子看待。 ②确定价层电子对的空间构型。由于价层电子对之间的相互排斥作用,它们趋向于尽可能的相互远离。于是价层电子对的空间构型与价层电子对数目的关系如下表所示:

第9章 配位化合物习题

第9章配位化合物 一判断题 1 价键理论认为,配合物具有不同的空间构型是由于中心离子(或原子)采用不同杂化轨道与配体成键的结果。() 2 价键理论能够较好地说明配合物的配位数、空间构型、磁性和稳定性,也能解释配合物的颜色。() 3 价键理论认为,在配合物形成时由配体提供孤对电子进入中心离子(或原子)的空的价电子轨道而形成配位键。() 4 同一元素带有不同电荷的离子作为中心离子,与相同配体形成配合物时,中心离子的电荷越多,其配位数一般也越大。() 5 在多数配位化合物中,内界的中心原子与配体之间的结合力总是比内界与外界之间的结合力强。因此配合物溶于水时较容易解离为内界和外界,而较难解离为中心离子(或原子)和配体。() 6 所有八面体构型的配合物比平面四方形的稳定性强。() 7 所有金属离子的氨配合物在水中都能稳定存在。() 8 价键理论认为,所有中心离子(或原子)都既能形成内轨型配合物,又能形成外轨型配合物。() 9 所有内轨型配合物都呈反磁性,所有外轨型配合物都呈顺磁性。() 10 内轨型配合物往往比外轨型配合物稳定,螯合物比简单配合物稳定,则螯合物必定是内轨型配合物。() 11 内轨型配合物的稳定常数一定大于外轨型配合物的稳定常数。() 12 不论配合物的中心离子采取d2sp3或是sp3d2杂化轨道成键,其空间构型均为八面体形。 13 [Fe(CN)6]3-和[FeF6]3-的空间构型都为八面体形,但中心离子的轨道杂化方式不同。() 14 [Fe(CN)6]3-是内轨型配合物,呈反磁性,磁矩为0。() 15 K3[FeF6]和K3[Fe(CN)6]都呈顺磁性。() 16 Fe2+的六配位配合物都是反磁性的。() 17 在配离子[AlCl4]-和[Al(OH)4]-中,Al3+的杂化轨道不同,这两种配离子的空间构型也不同。() 18 已知E(Cu2+/Cu) = 0.337V,E([Cu(NH3)4]2+/Cu) = -0.048V,则E([Cu(CN)4]2-/Cu) < -0.048V。() 19 已知E(Ag+/Ag) = 0.771V,E([Ag(NH3)2]+/Ag) = 0.373V,则E([Ag(CN)2]-/Ag) > 0.373V。() 20 按照价键理论可推知,中心离子的电荷数低时,只能形成外轨型配合物,中心离子电荷数高时,才能形成内轨型配合物。() 21 以CN-为配体的配合物,往往较稳定。() 22 Ni2+的平面四方形构型的配合物,必定是反磁性的。() 23 Ni2+的四面体构型的配合物,必定是顺磁性的。() 24 磁矩大的配合物,其稳定性强。() 25 所有Ni2+的八面体配合物都属于外轨型配合物。() 26 所有Fe3+的八面体配合物都属于外轨型配合物。() 27 已知K2[Ni(CN)4]与Ni(CO)4均呈反磁性,所以这两种配合物的空间构型均为平面正方形。() 28 按照晶体场理论,对给定的任一中心离子而言,强场配体造成d轨道的分裂能大。()。 29 按照晶体场理论可知,强场配体易形成高自旋配合物。()。 30 晶体场理论认为配合物的中心离子与配体之间的作用力是静电引力。() 31 具有d0、d10结构的配离子都没颜色,因为不能产生d-d跃迁。()

苏教版高中化学选修3讲义分子的空间构型

第一单元分子构型与物质的性质 第1课时分子的空间构型目标与素养:1.能准确判断共价分子中中心原子的杂化轨道类型,能用杂化轨道理论和价层电子对理论判断分子的空间构型。(宏观辨识与微观辨析)2.利用“等电子原理”推测分子或离子中中心原子的杂化轨道类型及空间构型。(证据推理与模型认知) 一、杂化轨道理论与分子的空间构型 1.sp3杂化与CH4分子的空间构型 (1)杂化轨道的形成 碳原子2s轨道上的1个电子进入2p空轨道,1个2s轨道和3个2p轨道“混合”,形成能量相等、成分相同的4个sp3杂化轨道。 (2)sp3杂化轨道的空间指向 碳原子的4个sp3杂化轨道指向正四面体的4个顶点,每个轨道上都有一个未成对电子。 (3)共价键的形成 碳原子的4个sp3杂化轨道分别与4个H原子的1s轨道重叠形成4个相同的σ键。 (4)CH4分子的空间构型 CH4分子为空间正四面体结构,分子中C—H键之间的夹角都是109.5°。

(1)杂化轨道数与参与杂化的原子轨道数相同,但形状不同。 (2)杂化轨道为使相互间的排斥力最小,故在空间取最大夹角分布,不同的杂化轨道伸展方向不同。 (3)杂化轨道只用于形成σ键或者用来容纳未参与成键的孤电子对。 (4)未参与杂化的p轨道,可用于形成π键。 2.sp2杂化与BF3分子的空间构型 (1)sp2杂化轨道的形成 硼原子2s轨道上的1个电子进入2p轨道。1个2s轨道和2个2p轨道发生杂化,形成能量相等、成分相同的3个sp2杂化轨道。 (2)sp2杂化轨道的空间指向 硼原子的3个sp2杂化轨道指向平面三角形的三个顶点,3个sp2杂化轨道间的夹角为120°。 (3)共价键的形成 硼原子的3个sp2杂化轨道分别与3个氟原子的1个2p轨道重叠,形成3个相同的σ键。 (4)BF3分子的空间构型 BF3分子的空间构型为平面三角形,键角为120°。 3.sp杂化与BeCl2分子的空间构型 (1)杂化轨道的形成 Be原子2s轨道上的1个电子进入2p轨道,1个2s轨道和1个2p轨道发生杂化,形成能量相等、成分相同的2个sp杂化轨道。 (2)sp杂化轨道的空间指向 两个sp杂化轨道呈直线形,其夹角为180°。

单糖的结构→己醛糖和己酮糖的环状结构

单糖的结构 T 己醛糖和己酮糖的环状结构 经研究证明,单糖不仅以开链结构存在,还可以环状结构形式存在。因为虽然大多数单糖的特 性可用开链结构来说明,但当深入一步探讨单糖的性质时,又会发现新的矛盾。下面列举的两个事 实,是不能用开链结构来说明的。 (1)糖苷的生成。按照醛类的化学性质,一般的醛溶于无水甲醇中,通入干燥氯化氢,加热反 应,得到半缩醛, 然后再变成缩醛,需消耗两分子甲醇: 0E IL KI 0CK 3 半缩醛 醛糖含有醛基,理应和两分子醇形成缩醛类。但实验 的事实证明,醛糖只能和一分子醇形成一 个稳定的化合物。例如,葡萄糖在甲醇溶液内受氯化氢的作用,生成含有一个甲基的化合物,称为 甲基葡萄糖苷。糖苷的生成是不能用葡萄糖的开链结构来说明的。 (2)糖的变旋现象。某些旋光性化合物溶液的旋光度会逐渐改变而达到恒定,这种旋光度会改 变的现象叫做变旋 现象(mulamerism )。例如,将葡萄糖在不同条件下精制可得到 a -型及B -型两 种异构体,前者的比旋光度是+ 112°,后者是+ 18.7 °,把两者分别配成水溶液, 放置一定时间后, 比旋光度都各有改变,前者降低,后者升高,最后都变为+ 52.7 °。这种变旋现象也无法用葡萄糖 的开链结构来说明。 以上事实说明只用开链结构形式来代表葡萄糖结构, 是不足以表达它的理化性质和结构关系的。 自1893年制得a -和B -甲基葡萄糖苷后,就证明糖类还可以环状结构的形式存在。因为经实 验证明,醛糖只能和一分子醇形成一个稳定的化合物,是由于醛糖中的羟基可先与它自己分子中的 醛基生成一个半缩醛,然后再与一分子甲醇失水而生成缩醛,叫甲基葡萄糖苷。 甲基葡萄糖苷没有还原性,也无变旋现象,对碱性溶液较稳定,在稀酸作用下能水解变回原来 的葡萄糖。这些实验事实都说明甲基葡萄糖苷具有环状的结构。至于环的大小,根据近代 x 射线的 测定证明,在结晶的状态中是由六个原子构成的环。甲基葡萄糖苷的 C-1也是手性碳原子,它应有 a -和3-两种立体异构体,构型可用普通的氧环式表示如下: /0弛 ECH 缩醛 R —CHO

电子排布式杂化轨道理论判断分子空间构型练习题(附答案)

电子排布式杂化轨道理论判断分子空间构型练习题 一、单选题 1.下列不属于共价键成键因素的是( ) A.共用电子对在两原子核之间高概率出现 B.共用的电子必须配对 C.成键后体系能量降低,趋于稳定 D.两原子体积大小要适中 2.关于CS 2、SO 2、NH 3三种物质的说法中正确的是( ) A.CS 2在水中的溶解度很小,是由于其属于极性分子 B.SO 2和NH 3均易溶于水,原因之一是它们都是极性分子 C.CS 2为非极性分子,所以在三种物质中熔、沸点最低 D.NH 3在水中溶解度很大只是由于NH 3分子有极性 3.下列说法正确的是( ) A.若把H 2S 分子写成H 3S 分子,违背了共价键的饱和性 B.H 3O +的存在说明共价键不具有饱和性 C.所有共价键都有方向性 D.两个原子轨道发生重叠后,电子仅存在于两核之间 4.374℃、22.1MPa 以上的超临界水具有很强的溶解有机物的能力,并含有较多的H +和OH -,由此可知超临界水( ) A.显中性,pH 等于7 B.表现出非极性溶剂的特性 C.显酸性,pH 小于7 D.表现出极性溶剂的特性 5.某物质的实验式为43PtCl 2NH ?,其水溶液不导电,加入3AgNO 溶液也不产生沉淀,以强碱处理并没有3NH 放出,则关于此化合物的说法中正确的是( ) A. 配合物中中心原子的电荷数和配位数均为6 B. 该配合物可能是平面正方形结构 C. -Cl 和3NH 分子均与4+Pt 配位 D. 配合物中-Cl 与4+Pt 配位,而3NH 分子不配位 6.下列说法中正确的是( ) A.NO 2、SO 2、BF 3、NCl 3分子中没有一个分子中原子的最外层电子都满足了8电子稳定结构 B.P 4和CH 4都是正四面体形分子且键角都为109°28′ C.4NH +的电子式为 ,离子呈平面正方形结构 D.NH 3分子中有一对未成键的孤对电子,它对成键电子的排斥作用较强

高中化学专题4第2单元配合物的形成和应用第1课时配合物的形成与空间构型教案苏教版选修3

第1课时配合物的形成与空间构型 [学习目标定位] 1.了解配合物的概念,能从微观角度理解配合物的组成及形成条件。2.能利用轨道杂化理论判断及解释配合物的空间构型。 一、配合物的形成 1.按表中实验操作步骤完成实验,并填写下表: (1)写出上述反应的离子方程式。 答案Cu2++2NH3·H2O===Cu(OH)2↓+2NH+4, Cu(OH)2+4NH3·H2O===[Cu(NH3)4]2++2OH-+4H2O (2)[Cu(NH3)4]2+(配离子)的形成:氨分子中氮原子的孤电子对进入Cu2+的空轨道,Cu2+与NH3分子中的氮原子通过共用氮原子提供的孤电子对形成配位键。配离子[Cu(NH3)4]2+可表示为下

图所示结构。 2.配位化合物:由提供孤电子对的配位体与接受孤电子对的中心原子以配位键结合形成的化合物,简称配合物。如[Cu(NH3)4]SO4、[Ag(NH3)2]OH等均为配合物。 3.配合物[Cu(NH3)4]SO4的组成如下图所示: (1)中心原子是提供空轨道接受孤电子对的金属离子(或原子)。中心原子一般都是带正电荷的阳离子,过渡金属离子最常见的有Fe3+、Ag+、Cu2+、Zn2+等。 (2)配位体是提供孤电子对的阴离子或分子,如Cl-、NH3、H2O等。配位体中直接同中心原子配位的原子叫做配位原子。配位原子必须是含有孤电子对的原子,如NH3中的N原子,H2O分子中的O原子等。 (3)配位数是直接与中心原子形成的配位键的数目。如[Fe(CN)6]4-中Fe2+的配位数为6。 (4)内界和外界:配合物分为内界和外界,其中配离子称为内界,与内界发生电性匹配的阳离子或阴离子称为外界。

配合物结构习题解答

解:错 第10章(03368)所有金属离子的氨配合物在水中都能稳定存在。.() 解:错 第10章(03369)价键理论认为,所有中心离子(或原子)都既能形成内轨型配合物,又能形成外轨型配合物。() 解:错 第10章(03370)所有内轨型配合物都呈反磁性,所有外轨型配合物都呈顺磁性。.() 解:错 第10章(03371)内轨型配合物往往比外轨型配合物稳定,螯合物比简单配合物稳定,则螯合物必定是内轨型配合物。.() 解:错 第10章(03372)内轨型配合物的稳定常数一定大于外轨型配合物的稳定常数。.() 解:错 第10章(03373)不论配合物的中心离子采取d2sp3或是sp3d2杂化轨道成键,其空间构型均为八面体形。.() 解:对 第10章(03374)[Fe(CN)6]3-和[FeF6]3-的空间构型都为八面体形,但中心离子的轨 道杂化方式不同。() 解:对 第10章(03375)[Fe(CN)6]3-是内轨型配合物,呈反磁性,磁矩为0。() 解:错 第10章(03376)K3[FeF6]和K3[Fe(CN)6]都呈顺磁性。() 解:对 第10章(03377)Fe2+的六配位配合物都是反磁性的。.() 解:错 第10章(03378)在配离子[AlCl4]-和[Al(OH)4]-中,Al3+的杂化轨道不同,这两种配 离子的空间构型也不同。() 解:错 第10章(03379)已知E(Cu2+/Cu)=,E([Cu(NH3)4]2+/Cu)=,则E([Cu(CN)4]2-/Cu)<。 () 解:对 第10章(03384)Ni2+的四面体构型的配合物,必定是顺磁性的。() 解:对 第10章(03380)已知E(Ag+/Ag)=,E([Ag(NH3)2]+/Ag)=,则E([Ag(CN)2]-/Ag)>。( ) 解:错 第10章(03381)按照价键理论可推知,中心离子的电荷数低时,只能形成外轨型配

判断分子的构型上课讲义

学习资料 二、判断分子构型——价层电子对互斥理论(VSEPR) 现代化学的重要基础之一是分子(包括带电荷的离子)的立体结构。实验测出,SO3分子是呈平面结构的,O—S—O的夹角等于120o,而SO32-离子却是呈三角锥体,硫是锥顶,三个氧原子是三个锥角,象一架撑开的照相用的三角架。又例如SO2的三个原子不在一条直线上,而CO2却是直线分子等等。价层电子对互斥理论用以预测简单分子或离子的立体结构,我们不难学会用这种理论来预测和理解分子或离子的立体结构,并用来进一步确定分子或离子的结构。 价层电子对互斥理论认为,在一个共价分子中,中心原子周围电子对排布的几何构型主要决定于中心原子的价电子层中电子对的数目。所谓价层电子对包括成键的σ电子对和孤电子对。价层电子对各自占据的位置倾向于彼此分离得尽可能地远些,这样电子对彼此之间的排斥力最小,整个分子最为稳定。这样也就决定了分子的空间结构。也正因此,我们才可以用价层电子对很方便地判断分子的空间结构。例如:甲烷分子(CH4),中心原子为碳原子,碳有4个价电子,4个氢原子各有一个电子,这样在中心原子周围有8个电子,4个电子对,所以这4个电子对互相排斥,为了使排斥力最小,分子最稳定,它们只能按正四面体的方式排布。这样就决定了CH4的正四面体结构。 利用VSEPR推断分子或离子的空间构型的具体步骤如下: ①确定中心原子A价层电子对数目。中心原子A的价电子数与配位体X提供共用的电子数之和的一半,就是中心原子A价层电子对的数目。例如BF3分子,B原子有3个价电子,三个F原子各提供一个电子,共6个电子,所以B 原子价层电子对数为3。计算时注意:(ⅰ)氧族元素(ⅥA族)原子作为配位原子时,可认为不提供电子(如氧原子有6个价电子,作为配位原子时,可认为它从中心原子接受一对电子达到8电子结构),但作为中心原子时,认为它提供所有的6个价电子。(ⅱ)如果讨论的是离子,则应加上或减去与离子电荷相应的电子数。如PO43-离子中P原子的价层电子数应加上3,而NH4+离子中N原子的价层电子数则应减去1。(ⅲ)如果价层电子数出现奇数电子,可把这个单电子当作电子对看待。如NO2分子中N原子有5个价电子,O原子不提供电子。因此中心原子N价层电子总数为5,当作3对电子看待。 ②确定价层电子对的空间构型。由于价层电子对之间的相互排斥作用,它们趋向于尽可能的相互远离。于是价层电子对的空间构型与价层电子对数目的关系如下表所示: 仅供学习与参考

有机物的空间结构

1.烷、烷基 2.烯

3.醛、酮、羧酸 4.苯、苯的同系物,稠环芳烃 苯是一种平面型分子,当苯环上的H被其它某个原子取代后仍为平面型;当取代基为非平面型,整个分子也就变为非平面型.

5.炔 因为C 2H 2 为一种直线型分子:H-C ≡ C-H. 所以它的卤代物C 2 HX、C 2 X 2 均为 直线型分子:H-C ≡ C-X、X-C ≡ C-X. 丙炔CH 3 -C ≡ C-H分子中3个C 和乙炔基中H共直线整个分子非直线也非平面型(含-CH 3 ) ①两个平面型的有机“片断”组合成的分子一定为平面型吗? 如 (不一定) ②平面型“片断”和直线型“片断”组合成的分子一定为平面型吗? 例1 CH 3-CH=CH-C ≡ C-CF 3 分子中,位于同一条直线上最多碳数有_____个, 位于同一平面上的原子数最多可能是________个. 分析由于书写的方便和习惯,结构简式写成直链型.但并不反映原子的空间位置,故不能草率地根据书写的方式来判所有C共直线. 在上述分子内,有单键、双键和叁键.要联想甲烷分子的四面体结构、乙烯分子的平面结构、乙炔分子的直线结构、类此联想.可画出该分子的构型. 例2 下列关于HC≡C CH 2-CH=CHCH 3 的说法正确的是 ( ) A.所有C原子可能共平面 B.除苯环外的C原子共直线 C.最多只有4个C共平面 D.最多只有3个C共直线解析为方便说明,对分子中大部分C编号

联想乙炔和苯的结构,1C、2C、3C、4C、5C共直线,而5C与其它4个原子成键,具有四面体构型,故4C、5C、6C不共直线.6C、7C、8C也不共直线.故最多应有5个C原子共直线.B、D错误. 4C、5C、6C共平面,故平面Ⅰ、Ⅱ又可能共面,所有C可共面. A正确,C 错误. 本题正确答案: A 例3 化合物 中的碳原子不可能都在同一平面上,但有一个平面能包含的碳原子最多,请指出这个平面上的碳原子编号.

有机化合物的空间构型教学文稿

有机化合物的空间构 型

有机化合物的空间构型 一、典型有机化合物的空间构型 1.甲烷及烷烃的空间构型 (1)甲烷(CH4)结构模型如图1所示,分子中的碳原子采取杂化,价电子对空间构型 为,分子空间构型为,碳原子居于,键角为,构成甲烷分子的五个原子 (填“可能”、“不可能”)共面,分子中最多个原子共面,四个氢原子最多有个与碳原子共面。 (2)CH3CH2CH3的结构模型如图2所示,共面情况分析如下: Ⅰ.若该结构中⑤H、①C、②C共面,则①C上的另外两个氢原子 (填“一定”、“一定不”或“可能”)在该平面上。 Ⅱ.若该结构中①C、②C、③C共面,则②C上的另外两个氢原子 (填“一定”、“一定不”或“可能”)在该平面上,④H和⑤H (填“一定”、“一定不”或“可能”)在该平面上。 Ⅲ.若②C,③C,④H共面,则③C上的另外两个氢原子 (填“一定”、“一定不”或“可能”)在该平面上。 Ⅳ.丙烷分子中最多有个碳原子同时共面,最多有个原子同时共面。 图1、甲烷的分子结构模型图2、丙烷的分子结构模型 2.乙烯及烯烃的空间构型 (1)乙烯(CH2=CH2)结构模型如图3所示,分子中的碳原子采取杂化,价电子对空间构型为,分子空间构型为,键角为,个原子共面。 (2)当乙烯分子中某氢原子被其他原子或原子团取代时,代替该氢原子的原子 (填“一定”、“一定不”或“可能”)在乙烯的平面内。 (2)CH3CH=CH2结构模型如图4所示,①②③④⑤⑥原子 (填“一定”、“一定不”或“可能”)共面。 (3)若⑤C,⑥C,⑦H共面,则⑥C上的另外两个氢原子 (填“一定”、“一定不”或“可能”)在该平面上。综上所述,CH3CH=CH2分子中有个碳原子同时共面,最少有个原子同时共面,最多有个原子同时共面。

有机化合物的结构特点

第二节有机化合物的结构特点 第1课时 课题:一.有机物中碳原子的成键特点与简单有机分子的空间构型 教材分析 本节围绕有机物的核心原子――碳原子的成键特点和成键方式展开逐层剖析,通过系统介绍同分异构现象,使学生明白有机物为什么种类繁多。本章学习碳链异构、位置异构及官能团异构。从复习烷烃的碳链异构开始,延伸出烯烃的碳链异构和官能团(双键)的位置异构,并以乙醇和二甲醚为例说明官能团异构的涵义。由此揭示出:同分异构现象是由于组成有机化合物分子中的原子具有不同的结合顺序和结合方式产生的,这也是有机化合物数量庞大的原因之一。除此之外的其他同分异构现象,如顺反异构、对映异构将分别在后续章节中介绍。 学情分析 学生在前面的学习中已经具备了甲烷、乙烯和苯的结构,可以说学生已经具备了研究每类有机物的结构特点的基础,进而为学习研究有机化合物的一般步骤和方法奠定基础。对于同分异构体的确定问题是学生学习的难点和重点。学生在学习过程中由于学生水平的差异,部分学生学习过程中可能有困难。 三维目标: 知识与技能: 1、掌握有机物的成键特点,理解有机物种类繁多的原因; 2、掌握有机物组成和结构的表示方法。 过程与方法:培养学生主动参与意识。 情感态度与价值观: 激励学生勇于探索问题的本质特征,体验科学研究的过程。 教学重点与难点: 1.碳原子的成键特点 2.甲烷的空间构型 教学准备:多媒体、模型、导学案 教学方法: 1.学案导学:见后面的学案。 2.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习 授课班级:高二(7)、(8)、(9) 时间:2012年2月13、14日 教学设计: 教学内容教学 环节 教学活动 设计意图 教师活动学生活动 ——引入有机物种类繁多,有很多有机物的分 子组成相同,但性质却有很大差异, 为什么? 结构决定性质, 结构不同,性质 不同。 明确研究有机 物的思路:组成 —结构—性质。 有机分子的结构是三维 的设置 情景 多媒体播放化学史话:有机化合物的 三维结构。思考:为什么范特霍夫和 勒贝尔提出的立体化学理论能解决 困扰19世纪化学家的难题? 思考、回答激发学生兴趣, 同时让学生认 识到人们对事 物的认识是逐

判断分子空间几何构型的简单方法

判断分子空间几何构型的简单方法 电子对数目成键电子对 数目孤电子对数 目 分子的空间 构型 实例 2 2 0 直线型二氧化碳 3 3 0 三角形三氟化硼 2 1 V型二溴化锌4 4 0 四面体甲烷 3 1 三角锥氨气 2 2 V型水 5 5 0 三角双锥五氯化磷 4 1 变形四面体四氟化硫 3 2 T型三氟化溴 2 3 直线型二氟化氙6 6 0 八面体六氟化硫 5 1 四角锥五氟化碘 4 2 正方形四氟化氙以下用G表示电子对数目,V表示分子中所有原子最外层电子数的和,n表示配位原子中除了氢原子以外的其它原子的个数,m表示孤电子对数目,r表示配

位原子中氢原子的个数。 当配位原子中没有氢原子且V≥16时:V=8n+2m,G=m+n 例:CO2分子构型的判断 V=4+6×2=8n+2m,这里n=2,∴m=0, ∴G=m+n=0+2=2,所以CO2的分子构型为直线型 BF3分子构型的判断 V=3+7×3=8n+2m,这里n=3,∴m=0, ∴G=m+n=0+3=3,所以BF3的分子构型为三角形 PCl5分子构型的判断 V=5+7×5=8n+2m,这里n=5,∴m=0, ∴G=m+n=0+5=5,所以PCl5的分子构型为三角双锥 SF4分子构型的判断 V=6+7×4=8n+2m,这里n=4,∴m=1, ∴G=m+n=1+4=5,所以SF4的分子构型为变形四面体 BrF3分子构型的判断 V=7+7×3=8n+2m,这里n=3,∴m=2, ∴G=m+n=2+3=5,所以BrF3的分子构型为T型 SF6分子构型的判断 V=6+7×6=8n+2m,这里n=6,∴m=0, ∴G=m+n=0+6=6,所以SF6的分子构型为八面体 XeF4分子构型的判断

高中必读-有机物分子共线-共面问题大全

有机物分子共线、共面问题 分子内原子共线、共面的判定,仅为一维、二维想象,但存在线面、面面的交叉,所以有一定的难度。 一、几个特殊分子的空间构型 1?常见分子的空间构型: ①CH4分子为正四面体结构,其分子最多有3个原子共处同一平面。 甲烷型:正四面体结构,4个C —H健不在同一平面上凡是碳原子与4个原子形成4个共价键时,空间结构都是正四面体结构以及烷烃的空间构型5个原子中最多有3个原子共平面。 四乙烯基甲烷最多多少原子共面 最多有11个原子共面。见图,C-C单键旋转后,能使得中间的5个C原子共面,且使得6个H原子与这5个碳共面,共有11个原子共面。 ②乙烯分子中所有原子共平面 乙烯型:平面结构。六个原子均在同一平面上凡是位于乙烯结构上的六个原子共平面 ③乙炔分子中所有原子共直线。更共面

(1) 熟记四类空间构型 中学有机化学空间结构问题的基石是甲烷、乙烯、乙炔和苯的分子结构。 (2) 理解三键三角 三键:C — C 键可以旋转,而 C=C 键、gC 键不能旋转。 三角:甲烷中的C — H 键之间的夹角为109° 28'乙烯和苯环中的 C — H 键之间的夹角为120°,乙炔中的C — H 键 之间的夹角为180° 2?单键的转动思想 有机物分子中的单键,包括碳碳单键、碳氢单键、碳氧单键等可转动。 、结构不同的基团连接后原子共面分析 IE I 球盟櫃显 II 忧侧腔 型 乙映分子的模型 乙炔型:直线型结构。四个原子在同一条直线上 ④ 苯分子中所有原子共平面。 凡是位于乙炔结构上的四个原子共直线。 H H A % cue Hie CIH <总 CIC H H * 解 CIC 冬 ^ HIC CIH * 帕 cue 本型:平面正六边形结构。六个碳原子和六个氢原子共平面 ⑤H — CHO 分子中所有原子共平面。 凡是位于苯环上的12个原子共平面。

己醛糖和己酮糖的环状结构

单糖的结构→ 己醛糖和己酮糖的环状结构 经研究证明,单糖不仅以开链结构存在,还可以环状结构形式存在。因为虽然大多数单糖的特性可用开链结构来说明,但当深入一步探讨单糖的性质时,又会发现新的矛盾。下面列举的两个事实,是不能用开链结构来说明的。 (1)糖苷的生成。按照醛类的化学性质,一般的醛溶于无水甲醇中,通入干燥氯化氢,加热反应,得到半缩醛,然后再变成缩醛,需消耗两分子甲醇: 醛糖含有醛基,理应和两分子醇形成缩醛类。但实验的事实证明,醛糖只能和一分子醇形成一个稳定的化合物。例如,葡萄糖在甲醇溶液内受氯化氢的作用,生成含有一个甲基的化合物,称为甲基葡萄糖苷。糖苷的生成是不能用葡萄糖的开链结构来说明的。 (2)糖的变旋现象。某些旋光性化合物溶液的旋光度会逐渐改变而达到恒定,这种旋光度会改变的现象叫做变旋现象(mulamerism)。例如,将葡萄糖在不同条件下精制可得到α-型及β-型两种异构体,前者的比旋光度是+112°,后者是+18.7°,把两者分别配成水溶液,放置一定时间后,比旋光度都各有改变,前者降低,后者升高,最后都变为+52.7°。这种变旋现象也无法用葡萄糖的开链结构来说明。 以上事实说明只用开链结构形式来代表葡萄糖结构,是不足以表达它的理化性质和结构关系的。 自1893年制得α-和β-甲基葡萄糖苷后,就证明糖类还可以环状结构的形式存在。因为经实验证明,醛糖只能和一分子醇形成一个稳定的化合物,是由于醛糖中的羟基可先与它自己分子中的醛基生成一个半缩醛,然后再与一分子甲醇失水而生成缩醛,叫甲基葡萄糖苷。

甲基葡萄糖苷没有还原性,也无变旋现象,对碱性溶液较稳定,在稀酸作用下能水解变回原来的葡萄糖。这些实验事实都说明甲基葡萄糖苷具有环状的结构。至于环的大小,根据近代χ射线的测定证明,在结晶的状态中是由六个原子构成的环。甲基葡萄糖苷的C-1也是手性碳原子,它应有α-和β-两种立体异构体,构型可用普通的氧环式表示如下: 这两种立体异构体都已得到,后来又发现α-葡萄糖苷可用麦芽糖酶水解,β-葡萄糖苷可用苦杏仁酶水解。用麦芽糖酶水解α-型的甲基葡萄糖苷后,得到甲醇和旋光度较高的α-D-葡萄糖;β-型的甲基葡萄糖苷被苦杏仁酶水解后,产生旋光度较小的β-D-葡萄糖。 从上述甲基葡萄糖苷有环状结构的事实推论,葡萄糖本身应有环状结构,也应有α-和β-两种立体异构体,在溶液中,这两种环状结构可以通过开链结构形成互变异构体的平衡混合物。因此,当有一种异构体(α-或β-)在溶液中时,由于它能通过开链结构逐渐变成另一种异构体,所以表现出变旋现象,达到平衡后比旋光度就不再改变。这可用下式表示: 药典规定,测定葡萄糖的旋光度时,加入一点稀氨溶液,

配合物结构 习题解答

第10章习题解答第10章(03367)所有八面体构型的配合物比平面四方形的稳定性强。.() 解:错 第10章(03368)所有金属离子的氨配合物在水中都能稳定存在。.() 解:错 第10章(03369)价键理论认为,所有中心离子(或原子)都既能形成内轨型配合物,又能形成外轨型配合物。() 解:错 第10章(03370)所有内轨型配合物都呈反磁性,所有外轨型配合物都呈顺磁性。.() 解:错 第10章(03371)内轨型配合物往往比外轨型配合物稳定,螯合物比简单配合物稳定,则螯合物必定是内轨型配合物。.() 解:错 第10章(03372)内轨型配合物的稳定常数一定大于外轨型配合物的稳定常数。.() 解:错 第10章(03373)不论配合物的中心离子采取d2sp3或是sp3d2杂化轨道成键,其空间构型均为八面体形。.() 解:对 第10章(03374)[Fe(CN)6]3-和[FeF6]3-的空间构型都为八面体形,但中心离子的轨道杂化方式不同。() 解:对 第10章(03375)[Fe(CN)6]3-是内轨型配合物,呈反磁性,磁矩为0。() 解:错 第10章(03376)K3[FeF6]和K3[Fe(CN)6]都呈顺磁性。() 解:对 第10章(03377)Fe2+的六配位配合物都是反磁性的。.() 解:错 第10章(03378)在配离子[AlCl4]-和[Al(OH)4]-中,Al3+的杂化轨道不同,这两种配离子的空间构型也不同。() 解:错 第10章(03379)已知E(Cu2+/Cu)=,E([Cu(NH3)4]2+/Cu)=,则E([Cu(CN)4]2-/Cu)<。() 解:对 第10章(03384)Ni2+的四面体构型的配合物,必定是顺磁性的。() 解:对 第10章(03380)已知E(Ag+/Ag)=,E([Ag(NH3)2]+/Ag)=,则E([Ag(CN)2]-/Ag)>。() 解:错 第10章(03381)按照价键理论可推知,中心离子的电荷数低时,只能形成外轨型配合物,中心离子电荷数高时,才能形成内轨型配合物。.() 解:错 第10章(03382)以CN-为配体的配合物,往往较稳定。()

有机物键线式、命名、空间构型

有机化学基础复习 ——键线式 分类、命名 空间结构 一、 有机物结构的表示方法 1、结构简式书写:不能用碳干结构表示,碳原子连接的氢原子个数要正确,官能团不能略写,要注意官能团中各原子的结合顺序不能随意颠倒。 2、键线式:将碳、氢元素符号省略,只表示分子中键的连接情况,每个拐点或终点均表示有一个碳原子,称为键线式。每个交点、端点代表一个碳原子,每一条线段代表一个共价键,每个碳原子有四条线段,用四减去线段数既是氢原子个数。注意事项: (1)一般表示3个以上碳原子的有机物; (2)只忽略C-H 键,其余的化学键不能忽略; (3)必须表示出C=C 、C ≡C 键等官能团; (4)碳氢原子不标注,其余原子必须标注(含羟基、醛基和羧基中氢原子)。 (5)计算分子式时不能忘记顶端的碳原子。 【拓展视野】: 有机化合物结构的表示方法 电子式 结构式 结构简式 键线式 【基础训练】 1、请写出下列有机化合物的结构式、结构简式和键线式。 略去碳氢 元 素符号短线替换 省略短线 双键叁键保留

CH 3CH 2CH 2CH 3CH 3CHCH 2CH 3 3 CH 3CH CHCH 3 2、请写出下列有机化合物的结构简式和键线式。 C C C C H H H H 、 C C C C Br H Br H H H H 、 C O C C C H H H H H H 、 3、有机化合物的结构简式可进一步简化,如: 请写出下列有机物分子的分子式: ⑴ ; ⑵ ;⑶Cl ; ⑷ ;(5) O O ; (6) O OH 。 二、 有机物命名 1、系统命名法命名含官能团的简单有机物的基本步骤是: (1) __________________。

有机化合物空间结构

新人教高三化学专题复习8-4:有机化合物空间结构 新考纲测试目标和能力要求 1、认识有机分子中基团之间存在相互影响。 2、了解有机化合物存在同分异构现象,能判断简单有机物的同分异构体(不包括手性异构体)。 3、培养学生的空间想象能力。 知识体系和复习重点 一、“基”的空间结构 “基”的空间结构是构成有机化合物空间结构的基本要素,不同的“基”相互连接形成了空间各异的有机物。掌握这些“基”的结构,对了解有机化合物空间结构,培养学生空间想象能力具有指导意义。常见部分“基”的空间结构如下: 例1、描述分子结构的下列叙述中,正确的是 A.6个碳原子有可能都在一条直线上 B.6个碳原子不可能都在同一条直线上 C.6个碳原子有可能都在同一平面上 D.6个碳原子不可能都在同一平面上 解析:根据的空间结构可确定该分子结构为:

可知6个碳原子并非均在同一直线上。B正确。但该物质不是所有原子都在同一平面上(-CH3中的3个氢原子,-CF3中的3个氟原子),但6个碳原子都在同一平面上。C正确。 例2、某期刊封面上有如下一分子的球棍模型图,图中“棍”代表单键或双键或三键。不同颜色的球代表不同元素的原子,该模型图可代表一种 A.卤代羧酸B.酯C.氨基酸D.醇钠 解析:由“基”的空间结构,可分析出蓝球为氮原子,绿球为碳原子,红球为氧原子,白球为氢原子,其结构简式:。选C。 二、“基”的异构体 丙基有2种、丁基有4种同分异构体,-COOH若写为-OOCH则成为甲酸酯。掌握“基”的异构体可使我们快速确定有机物的同分异构体数目,并能准确写出异构体。 例3、化学式是C4H10O的醇可被氧化成醛的有 A 、二种 B 、三种 C 、四种 D 、五种 解析:醇可被氧化成醛,其羟基位置必须在端C 上,这是由于-CHO 的结构决定的。化学式为C4H10O 的醇的同分异构体取决于丁基异构体,丁基异构体由四种,相应的醇为: 其中羟基在端C上的只有①、③两种,而②只能被氧化成酮,④不能被氧化。 答案为A。

分子的空间构型(选修三)

电离能与电负性变化 同周期(左右)同主族(上下) 原子结构核电荷数逐渐增大增大 能层(电子层)数相同增多 原子半径逐渐减小逐渐增大 元素性质化合价最高正价由+1+7负价 数=(8—族序数) 最高正价和负价数均相同,最高 正价数=族序数 元素的金属性和非 金属性 金属性逐渐减弱,非金属性 逐渐增强 金属性逐渐增强,非金属性逐渐 减弱 第一电离能呈增大趋势(注意反常点: ⅡA族和ⅢA族、ⅤA族和 ⅥA族) 逐渐减小 电负性逐渐增大逐渐减小 3.元素电离能和元素电负性 第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的能量叫做第一电离能。常用符号I1表示,单位为kJ/mol。 (1).原子核外电子排布的周期性. 随着原子序数的增加,元素原子的外围电子排布呈现周期性的变化:每隔一定数目的元素,元素原子的外围电子排布重复出现从ns1到ns2np6的周期性变化. (2).元素第一电离能的周期性变化. 随着原子序数的递增,元素的第一电离能呈周期性变化: ★同周期从左到右,第一电离能有逐渐增大的趋势,稀有气体的第一电离能最大,碱金属的第一电离能最小; ★同主族从上到下,第一电离能有逐渐减小的趋势. 说明: ①同周期元素,从左往右第一电离能呈增大趋势。电子亚层结构为全满、半满时较相邻元素要大即第ⅡA 族、第ⅤA 族元素的第一电离能分别大于同周期相邻元素。Be、N、Mg、P ②.元素第一电离能的运用: a.电离能是原子核外电子分层排布的实验验证. b.用来比较元素的金属性的强弱. I1越小,金属性越强,表征原子失电子能力强弱. (3).元素电负性的周期性变化. 元素的电负性:元素的原子在分子中吸引电子对的能力叫做该元素的电负性。 随着原子序数的递增,元素的电负性呈周期性变化:同周期从左到右,主族元素电负性逐渐增大;同一主族从上到下,元素电负性呈现减小的趋势. 电负性的运用: a.确定元素类型(一般>1.8,非金属元素;<1.8,金属元素). b.确定化学键类型(两元素电负性差值>1.7,离子键;<1.7,共价键). c.判断元素价态正负(电负性大的为负价,小的为正价). d.电负性是判断金属性和非金属性强弱的重要参数(表征原子得电子能力强弱). 例8.下列各组元素,按原子半径依次减小,元素第一电离能逐渐升高的顺序排列的是A.K、Na、Li B.N、O、C C.Cl、S、P D.Al、Mg、Na

相关主题
文本预览
相关文档 最新文档