当前位置:文档之家› 第四章 气体动理论

第四章 气体动理论

第四章 气体动理论
第四章 气体动理论

第四章 气体动理论 总结

第四章 气体动理论 单个分子的运动具有无序性 布朗运动 大量分子的运动具有规律性 伽尔顿板 热平衡定律(热力学第零定律) 实验表明:若 A 与C 热平衡 B 与C 热平衡 则 A 与B 热平衡 意义:互为热平衡的物体必然存在一个相同的 特征--- 它们的温度相同 定义温度:处于同一热平衡态下的热力学系统所具有的共同的宏观性质,称为温度。 一切处于同一热平衡态的系统有相同的温度。 理想气体状态方程: 形式1: mol M PV =RT =νRT M 形式2: 2 2 2111T V p T V p =形式3: nkT P = n ----分子数密度(单位体积中的分子数) k = R/NA = 1.38*10 –23 J/K----玻耳兹曼常数 在通常的压强与温度下,各种实际气体都服从理想气体状态方程。 §4-2 气体动理论的压强公式 V N V N n ==d d 1)分子按位置的分布是均匀的 2)分子各方向运动概率均等、速度各种平均值相等 k j i iz iy ix i v v v v ++=分子运动速度 单个分子碰撞器壁的作用力是不连续的、偶然的、不均匀的。从总的效果上来看,一个持续的平均作用力。 2213 212()323 p nmv p n mv n ω === v----摩尔数 R--普适气体恒量 描述气体状态三个物理量: P,V T 压 强 公 式

12 2 ω=mv 理想气体的压强公式揭示了宏观量与微观量统计平均值之间的关系,说明压强具 有统计意义; 压强公式指出:有两个途径可以增加压强 1)增加分子数密度n 即增加碰壁的个数 2)增加分子运动的平均平动能 即增加每次碰壁的强度 思考题:对于一定量的气体来说,当温度不变时,气体的压强随体积的减小而增大(玻意耳定律);当体积不变时,压强随温度的升高而增大(查理定律)。从宏观来看,这两种变化同样使压强增大,从微观(分子运动)来看,它们有什么区 别? 对一定量的气体,在温度不变时,体积减小使单位体积内的分子数增多,则单位时间内与器壁碰撞的分子数增多,器壁所受的平均冲力增大,因而压强增大。而当体积不变时,单位体积内的分子数也不变,由于温度升高,使分子热运动加剧,热运动速度增大,一方面单位时间内,每个分子与器壁的平均碰撞次数增多; 另一方面,每一次碰撞时,施于器壁的冲力加大,结果压强增大。 §4-3 理想气体的温度公式 nkT p =23 p =n ω 1322 2 ω=mv =kT 1. 反映了宏观量 T 与微观量w 之间 的关系 ① T ∝ w 与气体性质无关;② 温度具有统计意义,是大量分子集 体行为 ,少数分子的温度无意义。2. 温度的实质:分子热运动剧烈程度的宏观表现。3. 温度平衡过程就是能量平衡过程。 二.气体分子运动的方均根速率 kT v m 2 32 1 2 = ?2 m ol 3kT 3R T v = =m M 在相同温度下,由两种不同分子组成的混合气体,它们的方均根速率与其质量的平方根成正比 当温度T=0时,气体的平均平动动能为零,这时气体分子的热运动将停止。然而事实上是绝对零度是不可到达的(热力学第三定律),因而分子的运动是永不停息 的。 μRT m kT v v x = ==22 31 分子平均平动动能 温度的微观本质:理想气体的温度是分子平均平动动能的量度 摩尔质量

第四章 气体动理论

4-1 20个质点的速率分布如下 解:⑴07 1 65.31 v N v N v i i i == ∑= ⑵01 2 2 99.31v N v N v i N i i == ∑= ⑶03v v p = 4-2 容积为10L 的容器中由1mol CO 2气体,其方均根速率为1440Km/h ,求CO 2气体的压强。 解:分子总数为A N ,摩尔质量为M ,则分子数密度为 A N V ,分子质量为A M N ,因此由 气体压强公式得222 111333A A N M M p nmv v v V N V = == 代入数字求得5 2.3510p =?Pa 4-3 体积为3 10-m 3 ,压强为5 1.01310?Pa 的气体,所有分子的平均平动动能的总和是多少? 解:分子的平均平动动能为 21322 mv kT = 容器中分子数N nV =,又由压强公式P nkT =,可得容器中所有分子的平均平动动能 总和为 2133 152222 N mv nV kT PV ===J 4-4 求压强为5 1.01310?Pa 、质量为3 210-?Kg 、容积为3 1.5410-?m 3 的氧气的分子平均平动动能。 解:由23p nw = 可得31 2p w n = 而A mol A mol M N M MN n V M V == 所以 213 6.22102mol A M V p w MN -= =?J 4-6 一篮球充气后,其中有氮气8.5g ,温度为17℃,在空气中以65km/h 做高速飞行。求:

(1) 一个氮分子(设为刚性分子)的热运动平均平动动能、平均转动动能和平均总动能; (2) 球内氮气的内能; (3) 球内氮气的轨道动能。 4—6解:⑴J kT k 211000.623-?== ε 转ε= J kT 211000.42 2 -?= J kT 201000.12 5-?==总ε. ⑵J kT i M M E mol 31083.12 ?=?= . ⑶J mv E k 39.12 12 == . 4-7 质量为50.0g ,温度为18.0℃的氦气装在容积为10.0L 的封闭容器内,容器以200v =m/s 的速率做匀速直线运动,若容器突然停止,定向运动的动能全部转化为分子热运动的动能,试问平衡后氦气的温度和压强将增大多少?(王彬第二版206页8题) 解:322223 23 11141020013.310222 6.0210 A E mv v N μ--?===??=??J 23 23 2213.310 6.4233 1.3810E T k --???===??K 32 53 50108.2110 6.420.66 1.0131041010 MR p T V μ---????=?=?=????Pa 4—8解:⑴ kT 21 在平衡态下分子运动的能量平均分配给每一个自由度的能量为kT 2 1. ⑵在平衡态下,分子平均动能为kT 2 3 . ⑶在平衡态下,自由度为i 的分子平均总能量为kT i 2 . ⑷自由质量为M ,摩尔质量为mol M ,自由度为i 的分子组成的系统的内能为RT i M M mol 2 ? ⑸1摩尔自由度为i 的分子组成的系统的内能为 RT i 2. ⑹1摩尔自由度为3的分子组成的系统的内能为2 3 RT,或者说热力学系统内1摩尔分子的平 均平动动能之和为2 3 RT. 4-9 假定太阳是由氢原子组成的理想气体恒星,且密度是均匀的,压强为 141.3510p =?Pa ,已知氢原子质量271.6710m -=?kg ,太阳质量301.9910M =?kg ,太阳 半径为8 6.9610R =?m ,试估算太阳内部的温度。

06气体动理论习题解答课件

第六章 气体动理论 一 选择题 1. 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子总数为( )。 A. pV /m B. pV /(kT ) C. pV /(RT ) D. pV /(mT ) 解 理想气体的物态方程可写成NkT kT N RT pV ===A νν,式中N =ν N A 为气体的分子总数,由此得到理想气体的分子总数kT pV N = 。 故本题答案为B 。 2. 在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态。A 种气体的分子数密度为n 1,它产生的压强为p 1,B 种气体的分子数密度为2n 1,C 种气体的分子数密度为3 n 1,则混合气体的压强p 为 ( ) A. 3p 1 B. 4p 1 C. 5p 1 D. 6p 1 解 根据nkT p =,321n n n n ++=,得到 1132166)(p kT n kT n n n p ==++= 故本题答案为D 。 3. 刚性三原子分子理想气体的压强为p ,体积为V ,则它的内能为 ( ) A. 2pV B. 2 5pV C. 3pV D.27pV 解 理想气体的内能RT i U ν2 =,物态方程RT pV ν=,刚性三原子分子自由度i =6, 因此pV pV RT i U 326 2===ν。 因此答案选C 。 4. 一小瓶氮气和一大瓶氦气,它们的压强、温度相同,则正确的说法为:( ) A. 单位体积内的原子数不同 B. 单位体积内的气体质量相同 C. 单位体积内的气体分子数不同 D. 气体的内能相同 解:单位体积内的气体质量即为密度,气体密度RT Mp V m ==ρ(式中m 是气体分子

大学物理第四章《气体动理论》

第四章 气体动理论 一、基本要求 1.理解平衡态的概念。 2.了解气体分子热运动图像和理想气体分子的微观模型,能从宏观和统计意义上理解压强、温度、内能等概念。 3.初步掌握气体动理论的研究方法,了解系统的宏观性质是微观运动的统计表现。 4.理解麦克斯韦速率分布律、速率分布函数和速率分布曲线的物理意义,理解气体分子运动的最概然速率、平均速率、方均根速率的意义,了解玻尔兹曼能量分布律。 5.理解能量按自由度均分定理及内能的概念,会用能量均分定理计算理想气体的内能。 6.了解气体分子平均碰撞频率及平均自由程的意义及其简单的计算。 二、基本内容 1. 平衡态 在不受外界影响的条件下,一个系统的宏观性质不随时间改变的状态。 2. 理想气体状态方程 在平衡态下,理想气体各参量之间满足关系式 pV vRT = 或 n k T p = 式中v 为气体摩尔数,R 为摩尔气体常量 118.31R J mol K --=??,k 为玻尔兹曼常量 2311.3810k J K --=?? 3. 理想气体压强的微观公式 212 33 t p nm n ε==v 4. 温度及其微观统计意义 温度是决定一个系统能否与其它系统处于热平衡的宏观性质,在微观统计上

32 t kT ε= 5. 能量均分定理 在平衡态下,分子热运动的每个自由度的平均动能都相等,且等于2 kT 。以 i 表示分子热运动的总自由度,则一个分子的总平均动能为 2 t i kT ε= 6. 速率分布函数 ()dN f Nd = v v 麦克斯韦速率分布函数 23 2/22()4()2m kT m f e kT ππ-=v v v 7. 三种速率 最概然速率 p = ≈v 平均速率 = =≈v 方均根速率 = =≈8. 玻尔兹曼分布律 平衡态下某状态区间(粒子能量为ε)的粒子数正比于kT e /ε-。重力场中粒子数密度按高度的分布(温度均匀): kT m gh e n n /0-= 9. 范德瓦尔斯方程 采用相互作用的刚性球分子模型,对于1mol 气体 RT b V V a p m m =-+ ))((2 10. 气体分子的平均自由程 λ= =

第四章气体动理论

第四章 气体动理论 2-4-1选择题: 1、处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,都处于平衡态。以下说法正确的是: (A )它们的温度、压强均不相同。 (B )它们的温度相同,但氦气压强大于氮气压强。 (C )它们的温度、压强都相同。 (D) 它们的温度相同,但氦气压强小于氮气压强。 2、三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,方均根速率之比 4:2:1::222=C B A v v v , 则其压强之比C B A p p p ::为: (A) 1 : 2 : 4 (B) 1 : 4 : 8 (C) 1 : 4 : 16 (D) 4 : 2 : 1 3、一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m . 根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值为: (A) 2 x v =m kT 3 (B) 2x v = m kT 331 (C) 2 x v = m kT 3 (D) 2x v = m kT 4、关于温度的意义,有下列几种说法: (1) 气体的温度是分子热运动平均平动动能的量度. (2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义. (3) 温度的高低反映物质内部分子热运动剧烈程度的不同. (4) 从微观上看,气体的温度表示每个气体分子的冷热程度. 上述说法中正确的是 (A ) (1)、(2)、(4) (B ) (1)、(2)、(3) (C ) (2)、(3)、(4) (D) (1)、(3)、(4) 5、两容器内分别盛有氢气和氦气,若它们的温度和质量分别相等,则: (A) 两种气体分子的平均平动动能相等. (B) 两种气体分子的平均动能相等. (C) 两种气体分子的方均根速率相等. (D) 两种气体的内能相等. 6、一容器内装有N 1个单原子理想气体分子和N 2个刚性双原子理想气体分子,当该系统处在温度为T 的平衡态时,其内能为 (A) ??? ??++kT kT N N 2523)(21 (B) ??? ??++kT kT N N 2523)(2121

第四章--气体动理论-总结

第四章 气体动理论 单个分子的运动具有无序性 布朗运动 大量分子的运动具有规律性 伽尔顿板 热平衡定律(热力学第零定律) 实验表明:若 A 与C 热平衡 B 与 C 热平衡 则 A 与B 热平衡 意义:互为热平衡的物体必然存在一个相同的 特征--- 它们的温度相同 定义温度:处于同一热平衡态下的热力学系统所具有的共同的宏观性质,称为温度。 一切处于同一热平衡态的系统有相同的温度。 理想气体状态方程: 形式形式 n ----分子数密度(单位体积中的分子数) k = R/NA = 1.38*10 –23 J/K----玻耳兹曼常数 在通常的压强与温度下,各种实际气体都服从理想气体状态方程。 §4-2 气体动理论的压强公式 1)分子按位置的分布是均匀的 2)分子各方向运动概率均等、速度各种平均值相等 k j i iz iy ix i v v v v ++=分子运动速度 单个分子碰撞器壁的作用力是不连续的、偶然的、不均匀的。从总的效果上来看,一个持续的平均作用力。 描述气体状态三个物理量: P,V T

12 2 ω=mv 有统计意义; 压强公式指出:有两个途径可以增加压强 1)增加分子数密度n 即增加碰壁的个数 2)增加分子运动的平均平动能 即增加每次碰壁的强度 思考题:对于一定量的气体来说,当温度不变时,气体的压强随体积的减小而增大(玻意耳定律);当体积不变时,压强随温度的升高而增大(查理定律)。从宏观来看,这两种变化同样使压强增大,从微观(分子运动)来看,它们有什么区 别? 对一定量的气体,在温度不变时,体积减小使单位体积内的分子数增多,则单位时间内与器壁碰撞的分子数增多,器壁所受的平均冲力增大,因而压强增大。而当体积不变时,单位体积内的分子数也不变,由于温度升高,使分子热运动加剧,热运动速度增大,一方面单位时间内,每个分子与器壁的平均碰撞次数增多; 另一方面,每一次碰撞时,施于器壁的冲力加大,结果压强增大。 §4-3 理想气体的温度公式 nkT p =23 p =n ω 1. 反映了宏观量 T 与微观量w 之间 的关系 ① T ∝ w 与气体性质无关;② 温度具有统计意义,是大量分子集 体行为 ,少数分子的温度无意义。2. 温度的实质:分子热运动剧烈程度的宏观表现。3. 温度平衡过程就是能量平衡过程。 二.气体分子运动的方均根速率 kT v m 2 32 1 2 =在相同温度下,由两种不同分子组成的混合气体,它们的方均根速率与其质量的平方根成正比 当温度T=0时,气体的平均平动动能为零,这时气体分子的热运动将停止。然而事实上是绝对零度是不可到达的(热力学第三定律),因而分子的运动是永不停息 的。 m k T v v x ===2231温度的微观本质:理想气体的温度是分子平均平动动能的量度

第6章气体动理论习题解答.doc

第6章习题解答 6-1若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,A为玻耳兹曼常 量,/?力摩尔气体常量,则该理想气体的分子数力[B ] A.pV / m. B. pV / kT . C. pV / RT. D. pV / mT . 6-2两容器内分别盛有氢气和氦气,若在平衡态时,它们的温度和质量分别相等,则[A ] A.两种气体分子的平均平动动能相等. B.两种气体分子的平均动能相等. C.两种气体分子的平均速率相等. D.两种气体的内能相等. 6-3两瓶不同类别的理想气体,设分子平均平动动能相等,但其分子数密度不相等,则 [B ] A.压强相等,温度相等. B.温度相等,压强不相等. C.压强相等,温度不相等. D.压强不相等,温度不相等. 6-4温度,压强相同的氦气和氧气,它们的分子平均动能f和平均平动动能巧有如下关系 [A ] A.巧相等,而f不相等. B. f相等,而巧不相等. C. f和巧都相等. D. f和巧都不相等. 6-5 一定量的理想气体贮于某一容器中,温度为7\气体分子的质量为m.根据理想气体的分子模型和统计假设,在%方14分子速度的分量平方的平均值为[D ] C. v2x = 3kT/m. D. v2x =kT/m. 6-6若/GO为气体分子速率分布函数,TV为气体分子总数,m为分子质量,则 A.速率处在速率间隔%?%之间的分子平动动能之和. B.速率处在速率间隔%?u2间的分子平均平动动能.

c.速率为%的各分子的总平动动能与速率%为的各分子的总平动动能之和. D.速率为%的各分子的总平动动能与速率q 力的各分子的总平动动能之差. 6-7在A 、B 、C 三个容器巾装有同种理想气体,其分子数密度7?相同, :y/v^ :yfv^ = 1:2:4,则其压强之比 A ::厂0为[C ] A. 1:2:4 B. 4:2:1 C. 1:4:16 D. 1:4:8 6-8题6-8图所示的两条曲线,分别表示在相同温度下氧气和氢气分子 的速率分布曲线;令和分别表示M 气和氢气的最概然速 率,则[B ] A. 图中a 表示氧气分子的速率分布曲线, B. 图中a 表示筑"气分子的速率分布曲线,(P ) /(v p )=丄. C. 图中b 表示氧3分子的速率分布曲线,(v p ) /(v )=丄. v /巧o 2 v /M H 2 4 D. 图中b 表示气分子的速率分布曲线,(?=4. 6-9题6-9阁是在一定的温度下,理想气体分子速率分布函数曲线 有 [C ]。 A. 、变小,而/(?)不变. B. 久和/(久)都变小? C. 、变小,而/(>,,)变大. D. 、不变,而变大. 6-10有两瓶不同的气体,一瓶是氢气,一瓶是氦气,它们的ffi 强、温度相同,但体积不同, 则 单位体积A 的分子数相等;单位体积内的气体的质不相等;两种气体分子的平 均平动动能_相等。 6-11 一容器盛有密度为p 的单原子分子理想气体,若压强为/?,则该气体分子的方均根 速率为竽;单位体积内气体的内能为竽。 6-12题6-12图是氢气和氧气在相同温度下的麦克斯韦速率 方均根速率之比为 题6-8图 题6-12图 v(m/s)

气体动理论(附答案)

气体动理论 一、填空题 1. (本题3分)某气体在温度为T = 273 K时,压强为p=1.0×10-2atm,密度ρ= 1.24×10-2 kg/m3,则该气体分子的方均根速率为____________。(1 atm = 1.013×105 Pa) 答案:495m/s 2. (本题5分)某容器内分子密度为1026m-3,每个分子的质量为3×10-27kg,设其中1/6分子数以速率v=200m/s垂直向容器的一壁运动,而其余5/6分子或者离开此壁、或者平行此壁方向运动,且分子与容器壁的碰撞为完全弹性的。则 (1)每个分子作用于器壁的冲量ΔP=_____________; (2)每秒碰在器壁单位面积上的分子数n0=___________; (3)作用在器壁上的压强p=_____________; 答案:1.2×10-24kgm/s ×1028m-2s-1 4×103Pa 3. (本题4分)储有氢气的容器以某速度v作定向运动,假设该容器突然停止,气体的全部定向运动动能都变为气体分子热运动的动能,此时容器中气体的温度上升0.7K,则容器作定向运动的速度v=____________m/s,容器中气体分子的平均动能增加了_____________J。

(普适气体常量R=8.31J·mol-1·K-1,波尔兹曼常k=1.38×10-23J·K-1,氢气分子可视为刚性分子。) 答案::121 2.4×10-23 4. (本题3分)体积和压强都相同的氦气和氢气(均视为刚性分子理想气体),在某一温度T下混合,所有氢分子所具有的热运动动能在系统总热运动动能中所占的百分比为________。 答案:62.5% 5. (本题4分)根据能量按自由度均分原理,设气体分子为刚性分子,分子自由度为i,则当温度为T时, (1)一个分子的平均动能为_______。 (2)一个摩尔氧气分子的转动动能总和为________。 答案:ikT RT 6. (本题5分)图示的两条曲线分别表示氦、氢两种气体在相同温度T时分子按速率的分布,其中

第4章气体动理论基础学习知识

第4章 气体动理论基础 4-1为什么说系统分子数太少时,不能谈论压强与温度? 答:对少数几个分子而言不能构成热力学系统,分子间确实频繁碰撞,分子速率不满足统计规律,无论是从压强和温度的定义上来讲,还是从压强与温度公式的推导来看,都不满足谈论压强和温度的条件。 4-2已知温度为27℃的气体作用于器壁上的压强为pa 105 ,求此气体内单位体积里的分子数。 解:由 nkT P =,有 2523 510415.2300 1038.1101?=???==-kT P n ]m [3 - 4-3一个温度为17℃、容积3 3m 102.11-?的真空系统已抽到其真空度为pa 1033.13 -?。 为了提高其真空度,将它放在300℃的烘箱内烘烤,使吸附于器壁的气体分子也释放出来。烘烤后容器内压强为pa 33.1,问器壁原来吸附了多少个分子? 解:(1)当17=t ℃K 290=: 1723 3 1032.3290 1038.11033.1?=???==--kT P n ]m [3- 143 17 1072.31052.111032.3?=???==-nV N (1)当300=t ℃K 573=: 2010682.1' ' '?== kT P n ]m [3- 18 10884.1''?==V n N 181088.1'?=-=?N N N 4-4 比较平衡态下分子的平均平动动能、平均动能、平均能量哪个最大?哪个最小? 答:平均动能=平均平动动能+平均转动动能>平均平动动能 平均能量=平均动能+平均势能>平均动能 4-5 指出下列各式的物理意义:(1)kT 23; (2) kT i 2;(3) RT 23;(4) RT i 2 。 答:(1) kT 2 3 :分子平均平动动能;

大学物理各章练习题:第六章 气体动理论

第六章 气体动理论 6-1 一束分子垂直射向真空室的一平板,设分子束的定向速度为v ,单位体积分子数为n ,分子的质量为m ,求分子与平板碰撞产生的压强. 分析 器壁单位面积所受的正压力称为气体的压强.由于压强是大量气体分子与器壁碰撞产生的平均效果,所以推导压强公式时,应计算器壁单位面积在单位时间内受到气体分子碰撞的平均冲力. 解 以面积为S 的平板面为底面,取长度等于分 子束定向速度v 的柱体如图6-1所示,单位时间内与平板碰撞的分子都在此柱体内.柱体内的分子数为nS v . 每个分子与平板碰撞时,作用在平板上的冲力为2m v ,单位时间内平板所受到的冲力为 v v nS m F ?=2 根据压强的定义,分子与平板碰撞产生的压强为 22v nm S F p == 6-2 一球形容器,直径为2R ,内盛理想气体,分子数密度为n ,每个分子的质量为m ,(1)若某分子速率为v i ,与器壁法向成θ角射向器壁进行完全弹性碰撞,问该分子在连续两次碰撞间运动了多长的距离?(2)该分子每秒钟撞击容器多少次?(3)每一次给予器壁的冲量是多大?(4)由上结果导出气体的压强公式. 分析 任一时刻容器中气体分子的速率各不相同,运动方向也不相同,由于压强是大量气体分子与器壁碰撞产生的平均效果,气体压强公式的推导过程为:首先任意选取某一速率和运动方向的分子,计算单位时间内它与器壁碰撞给予器壁的冲力,再对容器中所有分子统计求和. 解 (1)如图6-2所示,速率为v i 的分子以θ角与器壁碰撞,因入射角与反射角都相同,连续两次碰撞间运动的距离都是同样的弦长,为 θcos 2R AB = (2)该分子每秒钟撞击容器次数为 θ cos 2R AB i i v v = (3)每一次撞击给予器壁的冲量为 θcos 2i m v (4)该分子每秒钟给予器壁的冲力为 R m R m i i i 2 cos 2cos 2v v v =θθ 由于结果与该分子的运动方向无关,只与速率有关,因此可得容器中所有分子每 秒钟给予器壁的冲量为 21212222 221v v v v v v v R m N N N R m R m R m R m R m R m N i i N i i N i ===+++++∑∑== 图6-1 图6-2

第四章 气体动理论

习题精解 4-1 设想每秒有23 10个氧气分子,以1 500m s -?的速度沿着与器壁法线成45°角的方向撞在面积为4 2210m -?的器壁上,求这群分子作用在器壁上的压强。 解 如图4.1所示,每个分子的动量变化为 2cos 45x p p ?=?= 全部分子给予器壁的冲量为 x F t N p ??=? 压强为 ()23274 4 1032 1.6610500 1.88102101 x N p F p Pa S S t --????====???? 4-2 质量为3 210kg -?氢气贮于体积为 3 210m -?的容器中,当容器内气体的压强为 44.010Pa ?时,氢气分子的平均平动动能是多少?总平动动能是多少? 解 理想气体的平均平动动能为 3 2 kT ε= 根据理想气体的状态方程 M pV RT μ = 得 pV T R M μ = 代入3 2 kT ε= 式得 ()433 22233 0333 4.010210 2.010 1.9910222 6.02210210 pV pV k J R M N M μμε----????===??=??? 总平动动能为 ()323222 03 2.010 6.02210 1.9910 1.2010210 E N J M μ ε--?==????=??平动 4-3 体积为21.010m ?的容器中含有231.0310? 氢分子,如果其中的压强为5 1.01310Pa ?。 求气体的温度和分子的方均根速率。

解 氢气的摩尔数为23 1.0310N ?,根据理想气体的状态方程得 ()235 302323 6.02210 1.01310 1.010 71.271.0310 1.03108.31 N pV T K R -????==?=?? 氢分子的方均根速率为 ()219.4310m s -= = =?? 4-4 在300K 时,1mol 氢气分子的总平动动能、总转动动能和气体的热力学能各是多少? 解 对1mol 气体分子有 ()()()33333 8.31300 3.74102222 8.31300 2.491022 6.2310E RT J E RT J E E E J = =??=?==??=?=+=?平转总平转 4-5 (1)当氧气压强为5 2.02610Pa ?,体积为3 3 310m -?时,所有氧气分子的热力学能是多少?(2)当温度为300K 时,3410kg -?的氧气的热力学能时多少? 解 (1)质量为M 的理想气体的热力学能 2 M i E RT μ= 根据理想气体的状态方程 M pV RT μ = 故 22 M i i E RT pV μ== 对于氧气分子,5i =,所以 ()5335 2.02610310 1.521022 i E pV J -= =????=? (2)当温度为300K 时,3 410-?kg 的氧气的热力学能 ()245 8.313007.8102322 M i E RT J μ= =???=? 4-6 储有氧气的容器以速度1 100v m s -=?运动,假设该容器突然停止,全部定向运动的动能都变为气体分子热运动的动能,问容器中氧气的温度将会上升多少?

第6章气体动理论习题解答

第6章习题解答 6-1 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为[ B ] A. /pV m . B. /pV kT . C . /pV RT . D. /pV mT . 6-2 两容器内分别盛有氢气和氦气,若在平衡态时,它们的温度和质量分别相等,则[ A ] A. 两种气体分子的平均平动动能相等. B. 两种气体分子的平均动能相等. C . 两种气体分子的平均速率相等. D. 两种气体的内能相等. 6-3 两瓶不同类别的理想气体,设分子平均平动动能相等,但其分子数密度不相等,则[ B ] A .压强相等,温度相等. B .温度相等,压强不相等. C .压强相等,温度不相等. D .压强不相等,温度不相等. 6-4 温度,压强相同的氦气和氧气,它们的分子平均动能ε和平均平动动能k ε有如下关系 [ A ] A. k ε相等,而ε不相等. B. ε相等,而k ε不相等. C . ε和k ε都相等. D. ε和k ε都不相等. 6-5 一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m . 根据理想气体的分子模型和统计假设,在x 方向分子速度的分量平方的平均值为[ D ] A. 2 x =v . B. 2 x = v C . 2 3x kT m =v . D. 2x kT m =v . 6-6 若()f v 为气体分子速率分布函数,N 为气体分子总数,m 为分子质量,则 2 1 2 1()d 2 m Nf υυ ?v v v 的物理意义是[ A ] A. 速率处在速率间隔12~v v 之间的分子平动动能之和.

6第六章 气体动理论基础

第三篇热学 热学是研究物质的各种热现象的性质和变化规律的一门学科。与温度有关的现象称为热现 象。从微观看,热现象就是宏观物体内部大量分子或原子等微观粒子的永不停息的、无规则热运 动的平均效果。 18到19世纪,由于蒸汽机的广泛应用,有力推动了热现象及规律的研究。由迈耶)、焦耳、 亥姆霍兹等人建立了与热现象有关的能量转化和守恒定律,即热力学第一定律。 接着开尔文、克劳修斯等人建立了描述能量传递方向的热力学第二定律。这种以观察和实验 为基础,运用归纳和分析方法总结出热现象的宏观理论称为热力学。 另一种研究热现象规律的方法是从物质的微观结构和分子运动论出发,以每个微观粒子遵循 力学规律为基础,运用统计方法,导出热运动的宏观规律,再由实验确认。用这种方法所建立的 理论系统称为统计物理学。 19世纪由克劳修斯、麦克斯韦、玻尔兹曼、吉布斯等人在经典力学基础上建立起经典统计 物理。20世纪初,由于量子力学的建立,狄拉克、爱因斯坦、费米、玻色等人又创立了量子统 计物理。 热学包括统计物理和热力学两部分。热力学的结论来自实验,可靠性好,但对问题的本质缺 乏深入了解。统计物理的分析对热现象的本质给出了解释,但是只有当它与热力学结论相一致时, 统计物理才能得到确认,因此,两者相辅相成,缺一不可。 - 128 - 第六章气体动理论基础 教学时数:7学时 本章教学目标 了解热学的研究对象,理解平衡态、温度的物理意义,了解热力学第零定律、理 想气体分子模型;理解理想气体的压强公式,温度的统计解释,以及气体分子的方 均根速率、能量均分定理的物理意义;理解麦克斯韦分子速率分布定律、分子速率 的三个统计值和分子平均自由程的含义。 教学方法:讲授法、讨论法等 教学重点:理解理想气体的压强公式,温度的统计解释,以及气体分子的方均根速 率、能量均分定理的物理意义;

第四章 气体动理论 总结

第四章 气体动理论 单个分子的运动具有无序性 布朗运动 大量分子的运动具有规律性 伽尔顿板 热平衡定律(热力学第零定律) 实验表明:若 A 与C 热平衡 B 与C 热平衡 则 A 与B 热平衡 意义:互为热平衡的物体必然存在一个相同的 特征--- 它们的温度相同 定义温度:处于同一热平衡态下的热力学系统所具有的共同的宏观性质,称为温度。 一切处于同一热平衡态的系统有相同的温度。 理想气体状态方程: 形式1: 形式2: 3: n ----分子数密度(单位体积中的分子数) k = R/NA = 1.38*10 –23 J/K----玻耳兹曼常数 在通常的压强与温度下,各种实际气体都服从理想气体状态方程。 §4-2 气体动理论的压强公式 1)分子按位置的分布是均匀的 2)分子各方向运动概率均等、速度各种平均值相等 k j i iz iy ix i ???? v v v v ++=分子运动速度 单个分子碰撞器壁的作用力是不连续的、偶然的、不均匀的。从总的效果上来看, 一个持续的平均作用力。 描述气体状态三个物理量: P,V T

122 ω=mv 理想气体的压强公式揭示了宏观量与微观量统计平均值之间的关系,说明压强具 有统计意义; 压强公式指出:有两个途径可以增加压强 1)增加分子数密度n 即增加碰壁的个数 2)增加分子运动的平均平动能 即增加每次碰壁的强度 思考题:对于一定量的气体来说,当温度不变时,气体的压强随体积的减小而增大(玻意耳定律);当体积不变时,压强随温度的升高而增大(查理定律)。从宏观来看,这两种变化同样使压强增大,从微观(分子运动)来看,它们有什么区 别? 对一定量的气体,在温度不变时,体积减小使单位体积内的分子数增多,则 单位时间内与器壁碰撞的分子数增多,器壁所受的平均冲力增大,因而压强增大。而当体积不变时,单位体积内的分子数也不变,由于温度升高,使分子热运动加剧,热运动速度增大,一方面单位时间内,每个分子与器壁的平均碰撞次数增多; 另一方面,每一次碰撞时,施于器壁的冲力加大,结果压强增大。 §4-3 理想气体的温度公式

第6章 气体动理论习题解答

第6章习题解答 6-1 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为[ B ] A. /pV m . B. /p V k T . C . /pV RT . D. /pV mT . 6-2 两容器内分别盛有氢气和氦气,若在平衡态时,它们的温度和质量分别相等,则[ A ] A. 两种气体分子的平均平动动能相等. B. 两种气体分子的平均动能相等. C . 两种气体分子的平均速率相等. D. 两种气体的内能相等. 6-3 两瓶不同类别的理想气体,设分子平均平动动能相等,但其分子数密度不相等,则[ B ] A .压强相等,温度相等. B .温度相等,压强不相等. C .压强相等,温度不相等. D .压强不相等,温度不相等. 6-4 温度,压强相同的氦气和氧气,它们的分子平均动能ε和平均平动动能k ε有如下关系 [ A ] A. k ε相等,而ε不相等. B. ε相等,而k ε不相等. C . ε和k ε都相等. D. ε和k ε都不相等. 6-5 一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m . 根据理想气体的分子模型和统计假设,在x 方向分子速度的分量平方的平均值为[ D ] A. 2x =v B. 2 x = v C . 23x kT m =v . D. 2 x kT m =v . 6-6 若()f v 为气体分子速率分布函数,N 为气体分子总数,m 为分子质量,则 2 1 21 ()d 2 m Nf υυ ?v v v 的物理意义是[ A ] A. 速率处在速率间隔12~v v 之间的分子平动动能之和. B. 速率处在速率间隔12~v v 间的分子平均平动动能.

气体动理论习题解答

习题 8-1 设想太阳是由氢原子组成的理想气体,其密度可当成是均匀的。若此理想气体的压强为1.35×1014 Pa 。试估计太阳的温度。(已知氢原子的质量m = 1.67×10-27 kg ,太阳半径R = 6.96×108 m ,太阳质量M = 1.99×1030 kg ) 解:m R M Vm M m n 3π)3/4(== = ρ K 1015.1)3/4(73?===Mk m R nk p T π 8-2 目前已可获得1.013×10-10 Pa 的高真空,在此压强下温度为27℃的1cm 3体积内有多少个气体分子? 解:3 462310/cm 1045.210300 1038.110013.1?=????===---V kT p nV N 8-3 容积V =1 m 3的容器内混有N 1=1.0×1023个氢气分子和N 2=4.0×1023个氧气分子,混合气体的温度为 400 K ,求: (1) 气体分子的平动动能总和;(2)混合气体的压强。 解:(1) J 1014.41054001038.12 3)(233232321?=?????=+=-∑N N kT t ε (2)Pa kT n p i 32323 1076.210540010 38.1?=????== -∑ 8-4 储有1mol 氧气、容积为1 m 3的容器以v =10 m/s 的速率运动。设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能。问气体的温度及压强各升高多少?(将氧气分子视为刚性分子) 解:1mol 氧气的质量kg 10323 -?=M ,5=i 由题意得 T R Mv ?=?ν2 5 %80212K 102.62-?=??T T R V p RT pV ?=???=νν

第六章气体动理论答案zsh

第六章 气体动理论 6-1 处于平衡状态的一瓶氦气和一瓶氮气的分 子数密度相同,分子的平均平动动能也相 同,则它们( C ) (A)温度、压强均不相同. (B)温度相同,但氦气压强大于氮气压强. (C)温度、压强都相同. (D)温度相同,但氦气压强小于氮气压强. 6-2 三容器A 、B 、C 中装有同种理想气体,其分子数密度 n 相同,而方均根速率之比为 4:2:1) (:) (:) (2 1 22 1 22 1 2=C B A v v v ,则其压强之比C B A P P P :: 为( C ) (A) 4:2:1 (B) 8:4:1 (C) 16:4:1 (D) 1:2:4 6-3 在一个体积不变的容器中,储有一定量的某种理想气体,温度为0T 时,气体分子的平 均速率为0v ,分子平均碰撞次数为0Z ,平均自由程为0λ,当气体温度升高为04T 时,气体分子的平均速率为v ,分子平均碰撞次数为Z ,平均自由程为λ分别为( B ) (A) 04v v =,04Z Z =,04λλ= (B) 02v v =,02Z Z =,0λλ= (C) 02v v =,02Z Z =,04λλ= (D) 04v v =,02Z Z =,0λλ= 6-4 已知n 为单位体积的分子数,)(v f 为麦克斯韦速率分布函数,则dv v nf )(表示 ( ) (A) 速率v 附近,d v 区间内的分子数 (B) 单位体积内速率在v ~ v +d v 区间内的分子数 (C) 速率v 附近d v 区间内分子数占总分子数比率 (D) 单位时间内碰到单位器壁上速率在v ~ v +d v 区间内的分子数 6-5 温度为0℃和100℃时理想气体分子的平均平动动能各为多少?欲使分子的平均平动动能等于1eV,气体的温度需多高? 解:=1ε231 kT =5.65×2110-J =2ε2 32 kT =7.72×2110-J 由于1eV=1.6×1910-J , 所以理想气体对应的温度为:

第0章_气体动理论

第10章 气体动理论题目无答案 一、选择题 1. 一理想气体样品, 总质量为M , 体积为V , 压强为p , 绝对温度为T , 密度为ρ, 总分子数为N , k 为玻尔兹曼常数, R 为气体普适常数, 则其摩尔质量可表示为 [ ] (A) MRT pV (B) pV MkT (C) p kT ρ (D) p RT ρ 2. 如T10-1-2图所示,一个瓶内装有气体, 但有小孔与外界相通, 原来 瓶内温度为300K .现在把瓶内的气体加热到400K (不计容积膨胀), 此时瓶内气体的质量为原来质量的______倍. [ ] (A) 27/127 (B) 2/3 (C) 3/4 (D) 1/10 3. 相等质量的氢气和氧气被密封在一粗细均匀的细玻璃管内, 并由一水银滴隔开, 当玻璃管平放时, 氢气柱和氧气柱的长度之比为 [ ] (A) 16:1 (B) 1:1 (C) 1:16 (D) 32:1 4. 一容器中装有一定质量的某种气体, 下列所述中是平衡态的为 [ ] (A) 气体各部分压强相等 (B) 气体各部分温度相等 (C) 气体各部分密度相等 (D) 气体各部分温度和密度都相等 5. 一容器中装有一定质量的某种气体, 下面叙述中正确的是 [ ] (A) 容器中各处压强相等, 则各处温度也一定相等 (B) 容器中各处压强相等, 则各处密度也一定相等 (C) 容器中各处压强相等, 且各处密度相等, 则各处温度也一定相等 (D) 容器中各处压强相等, 则各处的分子平均平动动能一定相等 6. 理想气体能达到平衡态的原因是 [ ] (A) 各处温度相同 (B) 各处压强相同 (C) 分子永恒运动并不断相互碰撞 (D) 各处分子的碰撞次数相同 7. 理想气体的压强公式k 3 2 εn p = 可理解为 [ ] (A) 是一个力学规律 (B) 是一个统计规律 (C) 仅是计算压强的公式 (D) 仅由实验得出 8. 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p 1和p 2,则两者的大小关系是: [ ] (A) p 1> p 2 (B) p 1< p 2 (C) p 1=p 2 (D)不确定的 T10-1-2图 T 10-1-3图

第6章 气体动理论习题解答

1 第6章习题解答 6-1 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为[ B ] A. /pV m . B. /pV kT . C . /pV RT . D. /pV mT . 6-2 两容器内分别盛有氢气和氦气,若在平衡态时,它们的温度和质量分别相等,则[ A ] A. 两种气体分子的平均平动动能相等. B. 两种气体分子的平均动能相等. C . 两种气体分子的平均速率相等. D. 两种气体的内能相等. 6-3 两瓶不同类别的理想气体,设分子平均平动动能相等,但其分子数密度不相等,则[ B ] A .压强相等,温度相等. B .温度相等,压强不相等. C .压强相等,温度不相等. D .压强不相等,温度不相等. 6-4 温度,压强相同的氦气和氧气,它们的分子平均动能ε和平均平动动能k ε有如下关系 [ A ] A. k ε相等,而ε不相等. B. ε相等,而k ε不相等. C . ε和k ε都相等. D. ε和k ε都不相等. 6-5 一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m . 根据理想气体的分子模型和统计假设,在x 方向分子速度的分量平方的平均值为[ D ] A. 2 x =v B. 2 x = v C . 23x kT m =v . D. 2 x kT m =v . 6-6 若()f v 为气体分子速率分布函数,N 为气体分子总数,m 为分子质量,则 2 1 2 1()d 2 m Nf υυ ?v v v 的物理意义是[ A ] A. 速率处在速率间隔12~v v 之间的分子平动动能之和. B. 速率处在速率间隔12~v v 间的分子平均平动动能.

相关主题
文本预览
相关文档 最新文档