当前位置:文档之家› 湍流模化理论

湍流模化理论

湍流模化理论
湍流模化理论

3.1 湍流模化理论分析

流体力学中常用控制体的方法研究物理系统,则对一给定控制系统,其随流物理量(如动量)Φ满足雷诺输运方程,即:

()()

d A V dv t dt

cs cv ???+??

=Φn d βρβρ Φ取动量(mv )时的雷诺输运方程就变为动量方程。而针对微元控制体时,动量方程就转化为了微分形式的动量方程即N-S 方程,对X 方向有:

()

x

n V z y x x X ???+

??+??+??+??-=3)V V V (dt dV 2x 22x 22x 2x μμρρρ 当系统内的流动为湍流时,由于湍流流动的物理量随时间不断变化,遂采用雷诺时均方法进行研究,将瞬时变量表示成时均量和脉动量的和,即φφφ'+=。

将此式代入X 方向的N-S 方程,对于不可压湍流流动,化简得:

(

)(

)(

)

z V V y V V x V V z y x x X z x y x x x ??+??+??+??+??+??+??-='''

'''2x 22x 22x 2x ---)V V V (dt V d ρρρμρρρ由此可见,当采用雷诺时均方法研究时,方程中多了三项由于湍流脉动而引起的

附加应力,称为雷诺应力。因此必须对多出的雷诺应力进行模拟,即对j i u u ''-ρ进行模拟。而Boussinesq 基于涡粘系数各向同性假设认为雷诺应力与平均速度梯度成正比。即:

ij i

j j i t j i k x u x

u u u δρμρ32

-???? ????+

??=''-。

k-ε湍流模型即是在Boussinesq 假设的基础上发展出来的,有标准k-ε湍流模型、RNG k-ε湍流模型和Realizable k-ε湍流模型三种。 3.1.1 标准k-ε湍流模型

标准k-ε模型由湍动能k 方程及湍流耗散率ε方程组成。湍动能输运方程是通过精确的方程推导得到,但耗散率方程是由经验公式得到的。该模型假设流动为完全湍流,分子粘性的影响可以忽略。因此,标准k-ε模型只适合模拟完全湍流的流动过程。

标准k-ε模型的湍动能k 和耗散率ε方程为如下形式:

k M b k i k t i S Y G G x k x Dt Dk +--++??

?

????????? ??

+??=ρεσμμρ

εεεεεερεεσμμερS k C G C G k C x x Dt D b k i t i +-++??

??

???????? ??+??=2231)( 在上述方程中,

k

G 表示由于平均速度梯度引起的湍动能产生,b

G 是用于浮

力影响引起的湍动能产生;M Y 可压缩湍流脉动膨胀对总的耗散率的影响;k σ和

εσ是k 方程和e 方程的湍流Prandtl 数,k S 、εS 是用户定义的源项。湍流粘性系

ερμμ

2

k C t =,μC 是常数。方程中的常数ε1C 、ε2C 、μC 都是经验常数。

3.1.2 RNG k-ε湍流模型

RNG k-ε模型是用重整化群的数学方法推导出来的模型。其k 方程与标准k-ε模型相同,只是模型常数不同,ε方程与标准k-ε模型具有相同的形式,其ε方程如下:

εεεεεερεεσμμερS R k C G C G k C x x Dt D b k i i +--++??

??

???????? ?

?

+??=*

2231t )( 其中, +

=εε2*2C C 3

031)

/1(βη

ηηρημ+-C ,εη/Sk ≡

RNG k-ε模型通过修正湍流粘性系数来考虑了旋流影响。湍流粘性的修正形

式为:

)

,,(0εαμμk

f s t t Ω=,其中,0t μ是不考虑有旋计算出来的湍流粘性系数;Ω是FLUENT 计算出来的特征旋流数;

s α是旋流常数,不同值表示有旋流动的

强度不同。因而,RNG 模型相比于标准k-ε模型对瞬变流和流线弯曲的影响能作出更好的反应。

3.1.3 Realizable k-ε湍流模型

Realizable k-ε模型的k 方程也与标准k-ε模型相同,其ε方程如下:

εεεενεερερεσμμερS G C k C k C S C x x Dt D b j t t j

+++-+???

????

???????

??+??

=31221

其中,

???

???+=5,43.0max 1ηηC ,εη/Sk =。 湍流粘性系数计算公式为2

t k C μ

μρε

=,这和标准κ-ε模型相同。只是这里的

μC 不再是个常数,而是通过如下公式计算:

ε

μK

U A A C s

*01+=

,*U 是平均应变率和旋度的函数。该模型适合的流动类型比

较广泛,包括有旋均匀剪切流,自由流(射流和混合层),管道和边界层流动。

由以上方程可以看出,三个模型有相同的κ方程,相似的ε方程,它们的区别在于:1、计算湍流粘性的方法不同;2、控制湍流扩散的湍流Prandtl 数和模型常数不同。因此三个模型适用的流场不同。 3.1.4 标准k-w 湍流模型

标准k-w 模型是由k 方程和w 方程组成的两方程模型,与标准k-ε模型一样,也是一种经验模型,k 与标准k-ε模型中的k 一样都代表湍流动能,w 代表湍流耗散的比率。标准k-w 模型的模型方程如下:

()()k k k j

k t j

i i S Y G x k x ku x k t +-+???

?

???????? ?

?

+??=??+??

σμμρρ ()()w w w j w t j

i i S Y G x w x wu x w t +-+???? ????????

?

?+??=??+??

σμμρρ 其中G k 是层流速度梯度而产生的湍流动能,Y k 和Y w 是由于扩散产生的湍流,S k 和S w 是源项。 而湍流粘性w

k

t ραμ*

=,*α对湍流粘性进行低雷诺数修正。由方程可看出,标准

k-w 模型与标准k-e 模型形式相似,但标准k-w 模型方程中不包含浮力产生的湍流项,而对湍流粘性进行了低雷诺数修正。 3.1.5 SST k-w 湍流模型

SST k-w 模型是在标准k-ε模型和标准k-w 模型的基础上发展出来的,其k 方程与标准k-w 模型的模型方程相同,只是模型中各项具体表达式不完全一致,

w 方程如下:

()()w w w w j w t j

i i S D Y G x w x wu x w t ++-+???? ????????

?

?+??=??+??

σμμρρ 其中w D 代表正交发散项,w D 是在标准k-e 模型和标准k-w 模型的基础上综合考虑得到的,其方程式中包含k 、w 的变化梯度,其他与标准k-w 模型意义相同。 其湍流粘性系数?

?

????Ω=

w a F w k

t 12*,11

αρμ。SST k-w 模型更适合对流减压区的计算,由

于它也考虑了正交发散项,因而在近壁面及远壁面都适合。

由于防火试验中流场结构复杂,包含充分发展的管内流动、经过静子叶片后的旋流、包含逆压梯度的扩张流动和从扩张锥喷出后的自由射流,因此本文选择RNG k-ε湍流模型、Realizable k-ε湍流模型和SST k-w 湍流模型进行研究。

湍流模式在工程中的应用

食品工程原理论文 工程湍流模式的开发及 其应用 姓名:曹文梁 班级、年级: 10 级食品班 专业: 食品科学与工程

工程湍流模式的开发及其应用 引言:湍流运动的形态普通存在于大气、海洋、化学、生物、电学、声学等问题中.湍流是对空间不规则和对时间无秩序的一种非线性、多尺度的流体运动,这种运动与不规则的流动边界一起产生了非常复杂的流动状态.多年来国内外的许多研究者从不同角度对它们的机理进行了研究,诸如:混沌、分形、重整化群的方法;切变湍流的拟序结构、湍流大涡模拟、直接数值模拟等.这些湍流理论,概念及机理清晰,但由于所解的偏微分方程组过于庞大、复杂,所以距解决工程中实际问题为期甚远.所以,工程上最常用的方法仍然是各种湍流模型.故研究湍流对工业有不可忽视的作用。 摘要:湍流是空间上不规则和时间上无秩序的一种非线性的流体运动,这种运动表现出非常复杂的流动状态百余年来,世界上不少学者为了探索其中奥秘,化费了巨大精力,创造了一些实际可用的湍流模式理论和湍流统计理论为了对自然界中普遍存在的湍流运动的机理和规律进行研究,使之在工程实践中得到应用。工程湍流模式是非常实用而且有效的方法,本文总结了几种工程湍流模式,以及这些模式在冷却水工程、环境工程和铸件充型过程数值模拟中的应用。 关键词:工程湍流模式、应用、铸件充型、数值模拟 正文: 湍流模型名称繁多,一般可进行如下的分类:(1)按发展历史来分,有零方程模式(混合长度模式),主要用于模拟射流、边界层流动、管流

等简单流动;单方程模式(k方程模式),主要解决剪切层问题;双方程模式(k-模式),可用于平面射流、平壁边界层、管流、通道流、喷管内流动、无旋和弱旋的二维和三维回流流动;雷诺应力模式能准确地计算各向异性效应,如浮力效应、旋转效应等.(2)按湍流流动特征来分有:射流与羽流、分离流、回流、环流、旋流、温差异重流、泥沙异重流、两相及多相流等湍流模式.(3)根据流体运动的特点来分有:近区湍流模型、远区湍流模型、全场湍流模型等.(4)按所应用的工程领域有:生态、环境、化工、能源、水利水电、航空航天等湍流模型.本文首先介绍倪浩清等近年开发并经实际运用的几种工程湍流模型,最后着重介绍最新的深度平均的代数应力湍流全场新模式(DASM). 一、湍浮力回流模型在明渠温差异重流中的应用 1、在对浅水明渠温差异重流流动特点及界面掺混规律分析的基础上,对k-双方程模式中考虑了浮力及密度变化,在Reynolds动量方程中浮力项成 为方程中浮力项成为: 程中的浮力项成为: 经多次检验计算, 方程计及浮力项效果不甚显著,至于湍流的Prantal数则由 如下的经验公式加以修正: 作此修正后,计算的温度分布与实验资料符合良好.成功地模拟了温差异重流形成和消失过程.

湍流模型概述

大多数飞行器都是在高Re数下飞行,表面的流态是湍流。为了准确地确定湍流流态下的摩阻、热流,湍流成为一个重要而困难的研究课题。 (一)DNS 目前处理湍流数值计算问题有三种方法,第一种方法即所谓直接数值模拟方法(DNS方法),直接求解湍流运动的N-S方程,得到湍流的瞬时流场,即各种尺度的随机运动,可以获得湍流的全部信息。随着现代计算机的发展和先进的数值方法的研究,DNS方法已经成为解决湍流的一种实际的方法。但由于计算机条件的约束,目前只能限于一些低Re数的简单流动,不能用于工程应用。目前国际上正在做的湍流直接数值模拟还只限于较低的需诺数(Re~200)和非常简单的流动外形,如平板边界层、完全发展的槽道流,以及后台阶流动等。用直接数值模拟方法处理工程中的复杂流动问题,即使是当前最先进的计算机也还差三个量级。 (二)LES 另一种方法称做大涡模拟方法(LES方法)。这是一种折衷的方法,即对湍流脉动部分直接地模拟,将N-S方程在一个小空间域内进行平均(或称之为滤波),以使从流场中去掉小尺度涡,导出大涡所满足的方程。小涡对大涡的影响会出现在大涡方程中,再通过建立模型(亚格子尺度模型)来模拟小涡的影响。由于湍流的大涡结构强烈地依赖于流场的边界形状和边界条件,难以找出普遍的湍流模型来描述具有不同的边界特征的大涡结构,宜做直接模拟。相反地,小尺度涡对边界条件不存在直接依赖关系,而且一般具有各向同性性质。所以亚格子模型具有更大的普适性,比较容易构造,这是它比雷诺平均方法要优越的地方。自从1970年Deardorff第一次给出具有工程意义的LES计算以来,LES方法已经成为计算湍流的最强有力的工具之一,应用的方向也在逐步扩展,但是仍然受计算机条件等的限制,使之成为解决大量工程问题的成熟方法仍有很长的路要走。 (三)RANS 目前能够用于工程计算的方法就是模式理论。所谓湍流模式理论,就是依据湍流的理论知识、实验数据或直接数值模拟结果,对Reynolds应力做出各种假设,即假设各种经验的和半经验的本构关系,从而使湍流的平均Reynolds方程封闭。随着计算流体力学的发展,湍流模式理论也有了很大的进步,有了非常丰硕的成果。从对模式处理的出发点不同,可以将湍流模式理论分类成两大类:一类称为二阶矩封闭模式,另一类称涡粘性封闭模式。 (1)雷诺应力模式 所谓二阶矩封闭模式,是从Reynolds应力满足的方程出发,将方程右端未知的项(生成项,扩散项,耗散项等)用平均流动的物理量和湍流的特征尺度表示出来。典型的平均流动的变量是平均速度和平均温度的空间导数。这种模式理论,由于保留了Reynolds应力所满足的方程,如果模拟的好,可以较好地反映Reynolds应力随空间和时间的变化规律,因而可以较好地反映湍流运动规律。因此,二阶矩模式是一种较高级的模式,但是,由于保留了Reynolds应力的方程,加上平均运动的方程整个方程组总计15个方程,是一个庞大的方程组,应用这样一个庞大的方程组来解决实际工程问题,计算量很大,这就极大地限制了二阶矩模式在工程问题中的应用。 (2)涡粘性模式

湍流模型概述

大多数飞行器都是在高Re数下飞行,表面的流态是湍流.为了准确地确定湍流流态下的摩阻、热流,湍流成为一个重要而困难的研究课题。 (一)DNS 目前处理湍流数值计算问题有三种方法,第一种方法即所谓直接数值模拟方法(DNS方法),直接求解湍流运动的N-S方程,得到湍流的瞬时流场,即各种尺度的随机运动,可以获得湍流的全部信息。随着现代计算机的发展和先进的数值方法的研究,DNS方法已经成为解决湍流的一种实际的方法。但由于计算机条件的约束,目前只能限于一些低Re数的简单流动,不能用于工程应用.目前国际上正在做的湍流直接数值模拟还只限于较低的需诺数(Re~200)和非常简单的流动外形,如平板边界层、完全发展的槽道流,以及后台阶流动等。用直接数值模拟方法处理工程中的复杂流动问题,即使是当前最先进的计算机也还差三个量级.(二)LES 另一种方法称做大涡模拟方法(LES方法).这是一种折衷的方法,即对湍流脉动部分直接地模拟,将N—S方程在一个小空间域内进行平均(或称之为滤波),以使从流场中去掉小尺度涡,导出大涡所满足的方程.小涡对大涡的影响会出现在大涡方程中,再通过建立模型(亚格子尺度模型)来模拟小涡的影响。由于湍流的大涡结构强烈地依赖于流场的边界形状和边界条件,难以找出普遍的湍流模型来描述具有不同的边界特征的大涡结构,宜做直接模拟。相反地,小尺度涡对边界条件不存在直接依赖关系,而且一般具有各向同性性质。所以亚格子模型具有更大的普适性,比较容易构造,这是它比雷诺平均方法要优越的地方。自从1970年Deardorff第一次给出具有工程意义的LES计算以来,LES方法已经成为计算湍流的最强有力的工具之一,应用的方向也在逐步扩展,但是仍然受计算机条件等的限制,使之成为解决大量工程问题的成熟方法仍有很长的路要走。 (三)RANS 目前能够用于工程计算的方法就是模式理论。所谓湍流模式理论,就是依据湍流的理论知识、实验数据或直接数值模拟结果,对Reynolds应力做出各种假设,即假设各种经验的和半经验的本构关系,从而使湍流的平均Reynolds方程封闭.随着计算流体力学的发展,湍流模式理论也有了很大的进步,有了非常丰硕的成果。从对模式处理的出发点不同,可以将湍流模式理论分类成两大类:一类称为二阶矩封闭模式,另一类称涡粘性封闭模式。 (1)雷诺应力模式 所谓二阶矩封闭模式,是从Reynolds应力满足的方程出发,将方程右端未知的项(生成项,扩散项,耗散项等)用平均流动的物理量和湍流的特征尺度表示出来。典型的平均流动的变量是平均速度和平均温度的空间导数.这种模式理论,由于保留了Reynolds应力所满足的方程,如果模拟的好,可以较好地反映Reynolds应力随空间和时间的变化规律,因而可以较好地反映湍流运动规律。因此,二阶矩模式是一种较高级的模式,但是,由于保留了Reynolds应力的方程,加上平均运动的方程整个方程组总计15个方程,是一个庞大的方程组,应用这样一个庞大的方程组来解决实际工程问题,计算量很大,这就极大地限制了二阶矩模式在工程问题中的应用。 (2)涡粘性模式

湍流与层流_湍流研究概述

第一篇 大气的组成与物理特性 第一章 第二章 第三章 第四章 第五章 大气的气体成份 大气中的粒子群 大气的运动、能量与构造 大气的光学特性 大气的电学特性
1

第二篇 大气湍流
粘性流体的两种形态: 层流和湍流。 层流是流体运动中较简单的状态, 普遍的却是湍流。
2

湍流研究的意义
湍流的研究与国防建设和国民经济中 的航空、船运、环境保护、气象、化工、 冶金、水利、医学等学科密切相关,如果 能掌握它的运动规律,对它进行合理的应 用和有效的控制,那么对基础研究与实际 应用将有重大的意义。
3

湍流研究的成果
人们对湍流结构、湍流边界层、湍流 剪切流、湍流的传热传质、湍流扩散、湍 流统计模型、大气湍流、晴空湍流、等离 子湍流、湍流测量等问题进行了广泛的研 究,并取得了丰硕的成果。
4

本节的内容
湍流的一般定义和描述; 湍流与层流的区别; 湍流理论发展的历史; 湍流理论简介; 湍流的特点; 大气湍流的复杂性; 湍流研究技术的发展。
5

湍流的一般定义和描述
1. 湍流是随机的(Reynolds,Taylor,Von Karman ,Hinze等),又具有拟序结 构。 2. 流体的湍流运动是由各种大小和涡量 不同的涡旋叠加而成的,其中最大涡 尺度与流动环境密切相关,最小涡尺 度则由粘性确定;流体在运动过程中, 涡旋不断破碎、合并,流体质点轨迹 不断变化。
6

湍流的数值模拟

2012年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目高等流体力学 学生所在院(系)机电工程学院 学生所在学科机械制造及自动化学生姓名高强 学号12S008123 学生类别工学硕士 考核结果阅卷人

湍流的数值模拟 一、流体力学概述 流体力学是研究流体的力学运动规律及其应用的学科。主要研究在各种力的作用下,流体本身的状态,以及流体和固体壁面、流体和流体间、流体与其他运动形态之间的相互作用的力学分支。除水和空气之外,这里的流体还指作为汽轮机工作介质的水蒸气、润滑油、地下石油、含泥沙的江水、血液、超高压作用下的金属和燃烧后产生成分复杂的气体、高温条件下的等离子体等等。它的主要基础是牛顿运动定律和质量守恒定律,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程和高等数学、物理学、化学的基础知识。气象、水利的研究,船舶、飞行器、叶轮机械和核电站的设计及其运行,可燃气体或炸药的爆炸,汽车制造,以及天体物理的若干问题等等,都广泛地用到流体力学知识。许多现代科学技术所关心的问题既受流体力学的指导,同时也促进了它不断地发展。 二、数值计算在流体力学研究中的应用 数值计算是研究流体力学的重要方法。它是针对流体运动的特点,用数学语言将质量守恒、动量守恒、能量守恒等定律表达出来,从而得到连续性方程、动量方程和能量方程。此外,还要加上某些联系流动参量的关系式(例如状态方程),或者其他方程。这些方程合在一起称为流体力学基本方程组。 求出方程组的解后,结合具体流动,解释这些解的物理含义和流动机理。通常还要将这些理论结果同实验结果进行比较,以确定所得解的准确程度和力学模型的适用范围。 从基本概念到基本方程的一系列定量研究,都涉及到很深的数学问题,所以流体力学的发展是以数学的发展为前提。反过来,那些经过了实验和工程实践考验过的流体力学理论,又检验和丰富了数学理论,它所提出的一些未解决的难题,也是进行数学研究、发展数学理论的好课题。按目前数学发展的水平看,有不少题目将是在今后几十年以内难于从纯数学角度完善解决的。

湍流模型

我们知道,描述流体运动(层流)的流体力学基本方程组是封闭的,而描述湍流运动的方程组由于采用了某种平均(时间平均或网格平均等)而不封闭,须对方程组中出现的新未知量采用模型而使其封闭,这就是CF D中的湍流模型。湍流模型的主要作用是将新未知量和平均速度梯度联系起来。目前,工程应用中湍流的数值模拟主要分三大类:直接数值模拟(D NS);基于雷诺平均N-S方程组(RANS)的模型和大涡模拟(LES)。DNS是直接数值求解N-S方程组,不需要任何湍流模型,是目前最精确的方法。其优点在于可以得出流场内任何物理量(如速度和压力)的时间和空间演变过程,旋涡的运动学和动力学问题等。由于直接求解N-S方程,其应用也受到诸多方面的限制。第一:计算域形状比较简单,边界条件比较单一;第二:计算量大。影响计算量的因素有三个:网格数量、流场的时间积分长度(与计算时间长度有关)和最小旋涡的时间积分长度(与时间步长有关),其中网格数量是重要因素。为了得到湍流问题足够精确的解,要求能够数值求解所有旋涡的运动,因此要求网格的尺度和最小旋涡的尺度相当,即使采用子域技术,其网格规模也是巨大的。为了求解各个尺度旋涡的运动,要求每个方向上网格节点的数量与Re3/4成比例,考虑一个三维问题,网格节点的数量与Re9/4成比例。目前,DNS能够求解Re(104)的范围。 基于RANS的湍流模型采用雷诺平均的概念,将物理量区分为平均量和脉动量,将脉动量对平均量的影响用模型表示出来。目前,基于RANS方程已经发展了许多模型,几乎能对所有雷诺数范围的工程问题求解,并得出一些有用的结果。其缺点在于:第一:不同的模型解决不同类型的问题,

湍流理论若干问题研究进展

第15卷第4期水利水电科技进展1995年8月 湍流理论若干问题研究进展 刘兆存 金忠青 (河海大学 南京 210098) 摘要 本文对近年来湍流理论在某些方面的研究进展作了概要介绍,对拟序结构发现后人们对湍流内部结构的新认识和近年来发展很快的从微分方程分析角度出发对湍流机理新的探索进行了评价,说明引入混沌后在时、空演化方面对湍流机理的模拟,最后阐述了流动稳定性和层流向湍流的转捩。 关键词 湍流 N-S方程 流动结构 流动机理 封闭性 近年来,在围绕湍流结构和统计两条主线的研究工作中出现了新观点和新趋势,虽然从历史的观点来看有些可能是错的——在科学容忍的范围内,但在现阶段却是研究的主流。 1 简要回顾及发展 1.1 半经验理论和模式理论 湍流的控制方程是N-S方程,但和层流相比,方程不封闭。为满足工程需要,发展了一系列的以普朗特混合长理论为代表的湍流半经验理论或早期模式理论。这种理论虽然对于增进对湍流机理的了解没有提供更多的贡献,但对解决工程实际问题却起了重大的作用[1]。半经验理论是一种唯像理论,并不涉及湍流内部机理。以速度分布公式为例,半经验理论的速度分布公式大致有对数型和指数型。对数型速度分布得到的假定是充分发展的剪切湍流中主流区(不含边界层的)的流速梯度和分子粘性无关,指数型(或渐近指数型)则假定分子粘性不能忽略[2],两种类型的流速分布公式在工程实践中都获得了非常广泛的应用。半经验理论的一个发展方向是吸收统计理论的成果,用统计理论的精细成果丰富半经验理论不足并保留便于应用的优点,如文[3]所作的工作。 近代的模式理论在封闭湍流基本方程组时特别吸收了统计理论的成果,如二方程模型、应力通量代数模型、应力通量方程模型等。关于这方面的详细论述,将另文给出。 1.2 统计理论 湍流的统计理论的目标则是从最基本的物理守恒定律——N-S方程和连续性方程出发,探讨湍流的机理。理查逊-柯尔莫哥洛夫湍流图像部分被实验所证实。统计理论中湍流的能量传递关系被更符合实际的U. Fr isch等所提出的B-模型所代替。湍流统计理论历时半个多世纪的发展,经泰勒、陶森德等人的努力,取得丰硕的成果,但仍不能绕过封闭性的困难,所得成果都还是很不完善的。湍流统计理论的重要性目前已有所下降[1]。我国周培源等提出了均匀各向同性湍流的准相似性条件以及相应均匀各向同性湍流的涡旋结构统计理论并得到实验的验证[4],进一步将在均匀各向同性湍流中得到的准相似性条件推广到一般的剪切湍流中,然后对关联方程的耗散项作出假定,利用逐级近似方法发展了湍流的统计理论[5],所得结果部分经实验证实。文[6]采用逐级迭代法对湍流平均运动方程和脉动速度关联方程 · 12·

湍流的数值模拟方法进展

《高等计算流体力学》课程作业 湍流的数值模拟方法进展

1概述 自然环境和工程装置中的流动常常是湍流,模拟任何实际过程首先遇到的就是湍流问题,而湍流问题本身又是流体力学理论上的难题。对于某些简单的均匀时均流场,如果湍流脉动是各向均匀及各向同性的,可以用经典的统计理论来分析,但实际上的湍流往往是不均匀的,给理论分析带来了极大困难。 湍流是空间上不规则和时间上无秩序的一种非线性的流体运动,表现出非常复杂的流动状态,主要表现在湍流流动的随机性、有旋性、统计性。传统计算流体力学中描述湍流的基础是Navier-Stokes(N-S)方程,根据N-S方程中对湍流处理尺度的不同,湍流数值模拟方法主要分为:直接数值模拟(DNS)、雷诺平均方法(RANS)和大涡模拟(LES)。 直接数值模拟可以获得湍流场的精确信息,是研究湍流机理的有效手段,但现有的计算资源往往难以满足对高雷诺数流动模拟的需要,从而限制了它的应用范围。雷诺平均方法可以计算高雷诺数的复杂流动,但给出的是平均运动结果,不能反映流场脉动的细节信息。大涡模拟基于湍动能传输机制,直接计算大尺度涡的运动,小尺度涡运动对大尺度涡的影响则通过建立模型体现出来,既可以得到比雷诺平均方法更多的诸如大尺度涡结构和性质等的动态信息,又比直接数值模拟节省计算量,从而得到了越来越广泛的发展和应用。 2 雷诺平均方法(RANS) 雷诺平均模拟(RANS)即应用湍流统计理论,将非定常的N - S方程对时间作平均,求解工程中需要的时均量。利用湍流模式理论,对Reynolds应力做出各种假设,即假设各种经验的和半经验的本构关系,从而使湍流的平均Reynolds方程封闭。 2.1控制方程 对非定常的N - S 方程作时间演算,并采用Boussinesp 假设,得到Reynolds 方程

fluent湍流模型

第十章湍流模型 本章主要介绍Fluent所使用的各种湍流模型及使用方法。 各小节的具体内容是: 10.1 简介 10.2 选择湍流模型 10.3 Spalart-Allmaras 模型 10.4 标准、RNG和k-e相关模型 10.5 标准和SST k-ω模型 10.6 雷诺兹压力模型 10.7 大型艾迪仿真模型 10.8 边界层湍流的近壁处理 10.9 湍流仿真模型的网格划分 10.10 湍流模型的问题提出 10.11 湍流模型问题的解决方法 10.12 湍流模型的后处理 10.1 简介 湍流出现在速度变动的地方。这种波动使得流体介质之间相互交换动量、能量和浓度变化,而且引起了数量的波动。由于这种波动是小尺度且是高频率的,所以在实际工程计算中直接模拟的话对计算机的要求会很高。实际上瞬时控制方程可能在时间上、空间上是均匀的,或者可以人为的改变尺度,这样修改后的方程耗费较少的计算机。但是,修改后的方程可能包含有我们所不知的变量,湍流模型需要用已知变量来确定这些变量。 FLUENT 提供了以下湍流模型: ·Spalart-Allmaras 模型 ·k-e 模型 -标准k-e 模型 -Renormalization-group (RNG) k-e模型 -带旋流修正k-e模型 ·k-ω模型 -标准k-ω模型 -压力修正k-ω模型 -雷诺兹压力模型 -大漩涡模拟模型 10.2 选择一个湍流模型 不幸的是没有一个湍流模型对于所有的问题是通用的。选择模型时主要依靠以下几点:流体是否可压、建立特殊的可行的问题、精度的要求、计算机的能力、时间的限制。为了选择最好的模型,你需要了解不同条件的适用范围和限制 这一章的目的是给出在FLUENT中湍流模型的总的情况。我们将讨论单个模型对cpu 和内存的要求。同时陈述一下一种模型对那些特定问题最适用,给出一般的指导方针以便对于你需要的给出湍流模型。 10.2.1 雷诺平均逼近vs LES 在复杂形体的高雷诺数湍流中要求得精确的N-S方程的有关时间的解在近期内不太可能实现。两种可选择的方法用于把N-S方程不直接用于小尺度的模拟:雷诺平均和过滤。

湍流理论发展概述

湍流理论发展概述 一、湍流模型的研究背景 自然环境和工程装置中的流动常常是湍流流动,模拟任何实际过程首先遇到的就是湍流问题,而湍流问题本身又是流体力学理论上的难题。对于某些简单的均匀时均流场,如果湍流脉动是各向均匀及各向同性的,可以用经典的统计理论来分析,但实际上的湍流往往是不均匀的,这就给理论分析带来了极大地困难。这也就引发了对湍流过程进行模拟的想法。 对湍流最根本的模拟方法是在湍流尺度的网格尺寸内求解瞬态的三维N-S 方程的全模拟方法,此时无需引进任何模型。然而由于计算方法及计算机运算水平的限制,该种方法不易实现。另一种要求稍低的方法是亚网格尺寸度模拟即大涡模拟(LES),也是由N-S 方程出发,其网格尺寸比湍流尺度大,可以模拟湍流发展过程的一些细节,但由于计算量仍然很大,只能模拟一些简单的情况,直接应用于实际的工程问题也存在很多问题[1]。目前数值模拟主要有三种方法:1. 平均N-S方程的求解,2.大涡模拟(LES),3.直接数值模拟(DNS),而模拟的前提是建立合适的湍流模型。 所谓的湍流模型,就是以雷诺平均运动方程与脉动运动方程为基础,依靠理论与经验的结合,引进一系列模型假设,而建立起的一组描写湍流平均量的封闭方程组。目前常用的湍流模型可根据所采用的微分方程数进行分类为:零方程模型、一方程模型、两方程模型、四方程模型、七方程模型等。对于简单流动而言,一般随着方程数的增多,精度也越高,计算量也越大、收敛性也越差。但是,对于复杂的湍流运动,则不一定。湍流模型可根据微分方程的个数分为零方程模型、一方程模型、二方程模型和多方程模型。这里所说的微分方程是指除了时均N-S 方程外,还要增加其他方程才能是方程封闭,增加多少个方程,则该模型就被成为多少个模型。

湍流模型发展综述

湍流模型发展综述 摘要:在概述了湍流问题的基础上,本文简要介绍了湍流的四种模型,对湍流模型在不同情况下的模拟能力进行了对比,最后简述了湍流模型的发展方向。 关键词:湍流模型;Navier-Stokes方程组;J-K模型 Abstract:On the basis of introducing the problems of turbulence, this paper briefly analyzed four kinds of turbulence models and compared their ability of simulation in different situations. At last, the paper expounded the development direction of the turbulence model. Key words:Turbulence model; Navier-Stokes equations; J-K model 一、引言 湍流又称紊流,是自然界中常见的一种很不规则的流动现象。当粘性阻尼无法消除惯性的影响时,自然界中的绝大部分流动都是湍流。 湍流运动的实验研究表明,虽然湍流结构十分复杂,但它仍然遵循连续介质的一般动力学规律,湍流流动的各物理量的瞬时值也应该服从一般的N-S方程。对粘性流体服从的N-S方程进行时均化,就可以得到雷诺平均方程。与定常的N-S方程相比,不同之处是在该式右边多了九项与脉动量有关的项,这脉动量的乘积的平均值与密度的乘积是湍流流动中的一种应力,称为湍流应力或雷诺应力。其中,法向雷诺应力和切向雷诺应力各有三个。 湍流问题就是在给定的边界条件下解雷诺方程。由于雷诺平均方程中未知数个数远多于方程个数而出现了方程不封闭的问题,这就需要依据各种半经验理论提出相应的补充方程式,即各种湍流模型。一般按照所用湍流量偏微分方程的物理含义或者数量进行区分,分别称为梅罗尔—赫林方法和雷诺方法。而后者又将湍流模型分成四类。(1)零方程模型;(2)一方程模型;(3)二方程模型;(4)应力方程模型。下面就对这些模型进行简单的描述。 二、湍流模型简介 1、零方程模型 最初的湍流模型只考虑了一阶湍流计算统计量的动力学微分方程,即平均方程,没有引进高阶统计量的微分方程,因而称之为一阶封闭模式或零方程模型。零方程模型又称为代数模型,代数模型又可以分成以下几种模型:(1)Cebeci —Smith 模型,(2)Baldwin—Lomax 模型,(3)Johnson—King 模型。 其中,B-L与C-S模型的不同之处在于外层湍流粘性系数取法不同。后者适用于湍流边界层,而前者则可用于 N-S方程的计算。此两模型已在工程计算中

湍流模型介绍

湍流模型介绍 因为湍流现象是高度复杂的,所以至今还没有一种方法能够全面、准确地对所有流动问题中的湍流现象进行模拟。在涉及湍流的计算中,都要对湍流模型的模拟能力以及计算所需系统资源进行综合考虑后,再选择合适的湍流模型进行模拟。FLUENT 中采用的湍流模拟方法 包括Spalart-Allmaras模型、standard(标准)k ?ε模型、RNG(重整化群)k ?ε模型、Realizable(现实)k ?ε模型、v2 ?f 模型、RSM(Reynolds Stress Model,雷诺应力模型)模型和LES(Large Eddy Simulation,大涡模拟)方法。 7.2.1 雷诺平均与大涡模拟的对比 因为直接求解NS 方程非常困难,所以通常用两种办法对湍流进行模拟,即对NS 方程进行雷诺平均和滤波处理。这两种方法都会增加新的未知量,因此需要相应增加控制方程的数量,以便保证未知数的数量与方程数量相同,达到封闭方程组的目的。雷诺平均NS 方程是流场平均变量的控制方程,其相关的模拟理论被称为湍流模式理论。湍流模式理论假定湍流中的流场变量由一个时均量和一个脉动量组成,以此观点处理NS 方程可以得出雷诺平均NS 方程(简称RNS 方程)。在引入Boussinesq 假设,即认为湍流雷诺应力与应变成正比之后,湍流计算就归结为对雷诺应力与应变之间的比例系数(即湍流粘性系数)的计算。根据计算中使用的变量数目和方程数目的不同,湍流模式理论中所包含的湍流模型又被分为二方程模型、一方程模型和零方程模型(代数模型)等大类。 FLUENT 中使用的三种k ?ε模型、Spalart-Allmaras 模型、k ?ω模型及雷诺应力模型RSM)等都属于湍流模式理论。 大涡模拟(LES)方法是通过滤波处理计算湍流的,其主要思想是大涡结构(又称拟 序结构)受流场影响较大,小涡则可以认为是各向同性的,因而可以将大涡计算与小涡计算分开处理,并用统一的模型计算小涡。在这个思想下,大涡模拟通过滤波处理,首先将小于某个尺度的旋涡从流场中过滤掉,只计算大涡,然后通过求解附加方程得到小涡的解。过滤尺度一般就取为网格尺度。显然这种方法比直接求解NS 方程的DNS 方程效率更高,消耗系统资源更少,但却比湍流模式方法更精确。尤其应该注意的是,湍流模式理论无法准确模拟大涡结构,因此在需要模拟大涡结构时,只能采用LES 方法1。 尽管大涡模拟理论比湍流模式理论更精确,但是因为大涡模拟需要使用高精度的网格,对计算机资源的要求比较高,所以还不能在工程计算中被广泛使用。在绝大多数情况下,湍流计算还要采用湍流模式理论,大涡模拟则可以在计算资源足够丰富的时候尝试使用。 7.2.2 Spalart-Allmaras 模型 Spalart-Allmaras 模型是一方程模型里面最成功的一个模型,最早被用于有壁面限制情 况的流动计算中,特别在存在逆压梯度的流动区域内,对边界层的计算效果较好,因此经常被用于流动分离区附近的计算,后来在涡轮机械的计算中也得到广泛应用。 最早的Spalart-Allmaras 模型是用于低雷诺数流计算的,特别是在需要准确计算边界层 粘性影响的问题中效果较好。FLUENT 对Spalart-Allmaras 进行了改进,主要改进是可以在网格精度不高时使用壁面函数。在湍流对流场影响不大,同时网格较粗糙时,可以选用这个模型。 Spalart-Allmaras 模型是一种新出现的湍流模型,在工程应用问题中还没有出现多少成

湍流的研究进展

湍流的研究进展 XXX (XXX大学化工学院,青岛 266042) 摘要:本文对一百多年来湍流研究的进展作了简要回顾,并概述了湍流产生的原因及湍流对流体造成的影响,从不同的方向阐述了当今流体湍流的研究成果,展现了湍流研究的深入对于科学技术与社会发展产生的重要作用,展望了对于湍流研究的前景,并对湍流研究的发展提出了一些建议和设想。 关键词:湍流;湍流模式;流体湍流;湍流强度; The Turbulence of Research Progress XXXXX (Qingdao University of Science and Technology, Qingdao 266042) Abstract: Stupid hundred years Turbulence Research progress made brief review and an overview of the the turbulence causes and turbulent fluid caused today's fluid turbulence research, elaborated from a different direction, to show the turbulentdepth study of the important role of science and technology and social development, the future prospects for turbulence research, development and turbulence research has made some suggestions and ideas. Keywords: Turbulence; Turbulence models; Fluid turbulence; Turbulence intensity; 一、湍流研究的历史进程 人类很久前就已经观察到湍流运动了,但对它系统地进行研究则仅仅有一百多年的历史。经过一百多年的研究工作,人们的认识日益深化, 预测方法不断改进。回顾一下湍流研究取得进展的历程对于进一步揭示这一十分复杂流动现象是有益的。 涡团粘度概念首先是由波希尼斯克(Boussinesq)于1877年提出的,他的观点是湍流是一团杂乱无章的涡团。而现代湍流理论的创始人O.Reynolds则认为,湍流是由层流不稳定性发展起来的。这两位湍流研究的先驱者对湍流的认识有所不同。 本世纪二十年代湍流研究取得了巨大进展,有电子管补偿线路的热线风速计为湍流实验研究提供了有效的手段。 从四十年代到六十年代末湍流研究在理论和实验两方面都没有很大的突破。但是应用热线风速计测量各种湍流特性的资料大大充实了湍流的数据库。 六十年代末以后, 湍流研究又出现了一个新高潮,切变湍流中拟序结构的发现,复杂的湍流模式的建立和发展。湍流的直接数值模拟的尝试以及在方程中发现奇异吸引子或其它混沌现象的探索是近二十多年来湍流研究中的重大突破。

关于湍流理论研究进展

关于湍流理论研究进展 摘要本文对近年来湍流理论在某些方面的研究进展作了概要介绍,对具有代表性的理论假设的思想方法,进行了扼要阐述,指出了相应的实用价值和局限性。 关键词湍流湍流统计理论混沌理论湍流拟序结构湍流剪切流动 1 无处不在的湍流现象 湍流是自然界中流体的一种最普遍的运动现象,它广泛的存在于我们生活周围。在大风吹过地面障碍物的旁边,在湍急的河水流过桥墩的后面,在烟囱中冒出的浓烟随风渐渐扩散等地方,都能观察到湍流运动现象。简单地说,湍流运动就是流体的一种看起来很不规则的运动。由于湍流现象广泛存在于自然界和工程技术的各个领域,因此湍流基础理论研究取得的进展就可能为经济建设和国防建设的广泛领域带来巨大的效益。例如,提高各种运输工具的速度以大量节约能源,提高各种流体机械的效益;改善大气和水体的环境质量,降低流体动力噪声,防止流体相互作用引发的结构振动乃至破坏;加强反应器内部物质的热交换与化学反应的速度等等。 然而像湍流这样,虽经包括许多著名科学家在内长达一个世纪多的顽强努力,正确反映客观规律的系统的湍流理论至今还没有建立,在整个科学研究史上也是不多见的。因此,可以说湍流是力学中没有解决的最困难的难题之一。因此,世界上许多国家一直坚持把湍流研究列为需要最优先发展的若干重大基础研究课题之一。 2 湍流理论的发展历史 湍流理论从它的思路来说大体可分为两类[1]。一类是先把流体动力学方程组平均以后,然后再设法使方程组封闭,求解后再和实验结果比较,看封闭办法是否正确。湍流中绝大部分理论是属于这一类型。另一类是先求解,取特殊模型,再引进平均,得到要求的物理量,和相应的实验结果进行比较。 2.1 Reynolds方程和混合长度理论 十九世纪70年代是Maxwell-Boltzmann分子运动理论取得辉煌成果的时代。它成功地解释了气体状态方程、气体粘性、气体热传导和气体扩散等一系列现象。湍流理论开始发展的时候,就受着这种思想支配。1877年T.V.Bonssinesq[2]又开始

四种湍流模型介绍

由于航发燃烧室中的流动特性极其复杂,要想提高数值计算的预测能力,必须要慎重选择湍流模型。用四种不同的湍流模型对带双径向旋流杯的下游流场进行数值模拟,将计算结果与实验结果作对比,比较各湍流模型的原理和物理基础,优劣,并分析流场速度分布和回流区特性。 涉及的湍流模型: 标准k-ε湍流模型(SKE) 1标准k-ε湍流模型有较高的稳定性,经济性和计算精度,应用广泛,适合高雷诺数湍流,但不适合旋流等各向异性较强的流动。 2简单的湍流模型是两个方程的模型,需要解两个变量,即速度和长度。在fluent中,标准 k-ε湍流模型自从被Launderand Spalding 提出之后,就变成流场计算中的主要工具。其在工业上被普遍应用,其计算收敛性和准确性都非常符合工程计算的要求。 3但其也有某些限制,如ε方程包含不能在壁面计算的项,因此必须使用壁面函数。另外,其预测强分离流,包含大曲率的流动和强压力梯度流动的结果较弱。 它是个半经验的公式,是从实验现象中总结出来的。 动能输运方程是通过精确的方程推导得到,耗散率方程是通过物理推理,数学上模拟相似原型方程得到的。 应用范围:该模型假设流动为完全湍流,分子粘性的影响可以忽略,此标准κ-ε模型只适合完全湍流的流动过程模拟。 可实现的k-ε模型是才出现的,比起标准k-ε模型来有两个主要的不同点:·可实现的k-ε模型为湍流粘性增加了一个公式。 ·为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程。 术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。 应用范围: 可实现的k-ε模型直接的好处是对于平板和圆柱射流的发散比率的更精确的预测。而且它对于旋转流动、强逆压梯度的边界层流动、流动分离和二次流有很好的表现。 可实现的k-ε模型和RNG k-ε模型都显现出比标准k-ε模型在强流线弯曲、漩涡和旋转有更好的表现。由于带旋流修正的k-ε模型是新出现的模型,所以还没有确凿的证据表明它比RNGk-ε模型有更好的表现。但是最初的研究表明可实现的k-ε模型在所有k-ε模型中流动分离和复杂二次流有很好的作用。 该模型适合的流动类型比较广泛,包括有旋均匀剪切流,自由流(射流和混合层),腔道流动和边界层流动。对以上流动过程模拟结果都比标准k-ε模型的结果好,特别是可再现k-ε模型对圆口射流和平板射流模拟中,能给出较好的射流扩张。

湍流的研究进展论文

湍流的研究进展 丁立新 (青岛科技大学) 摘要本文重点就湍流的理论研究进展作一阐述,从湍流的相干结构、表征及发展由来,到上世纪末湍流研究进展的雷诺方程,本世纪湍流的统计理论和半经验理论发展,湍流的模式理论,湍流的高级数值模拟分别论述,并为主要的工程应用做简要的介绍。 关键词湍流理论研究工程应用 Research process of turbulence Dinglixin Qingdao University of Science & technology Abstract This article focuses on the turbulence of research process as elaborated. From coherent structure of turbulence, characterization and development of turbulence to Reynolds equation about research process of turbulence on the end of the century, the development of semi-empirical theory and statistical theory of turbulence of this century, mode theory of turbulence, advanced numerical simulation of turbulence. Finally, brief description of turbulence industrial applications is suggested. Keywords Turbulence, Theoretical research of turbulence, Engineering applications 湍流是自然界和工程中最常出现的流动形态,湍流的出现将使动量、质量、能量的输送速率极大地加快,一方面造成能量消耗加快,污染物加快扩散等严重消极

湍流模型理论DOC

湍流模型理论 §3.1 引言 自然界中的实际流动绝大部分是三维的湍流流动,如河流,血液流动等。湍流是流体粘性运动最复杂的形式,湍流流动的核心特征是其在物理上近乎于无穷多的尺度和数学上强烈的非线性,这使得人们无论是通过理论分析、实验研究还是计算机模拟来彻底认识湍流都非常困难。回顾计算流体力学的发展,特别是活跃的80年代,不仅提出和发展了一大批高精度、高分辨率的计算格式,从主控方程看相当成功地解决了Euler方程的数值模拟,可以说Euler方程数值模拟方法的精度已接近于它有效使用范围的极限;同时还发展了一大批有效的网格生成技术及相应的软件,具体实现了工程计算所需要的复杂外形的计算网格;且随着计算机的发展,无论从计算时间还是从计算费用考虑,Euler方程都已能适用于各种实践所需。在此基础上,80年代还进行了求解可压缩雷诺平均方程及其三维定态粘流流动的模拟。90年代又开始一个非定常粘流流场模拟的新局面,这里所说的粘流流场具有高雷诺数、非定常、不稳定、剧烈分离流动的特点,显然需要继续探求更高精度的计算方法和更实用可靠的网格生成技术。但更为重要的关键性的决策将是,研究湍流机理,建立相应的模式,并进行适当的模拟仍是解决湍流问题的重要途径。 要反映湍流流场的真实情况,目前数值模拟主要有三种方法:1.平均N-S 方程的求解,2.大涡模拟(LES),3.直接数值模拟(DNS)。但是由于叶轮机械内部结构的复杂性以及目前计算机运算速度较慢,大涡模拟和直接数值模拟还很少用于叶轮机械内部湍流场的计算,更多的是通过求解平均N-S方程来进行数值模拟。因为平均N-S方程的不封闭性,人们引入了湍流模型来封闭方程组,所以模拟结果的好坏很大程度上取决于湍流模型的准确度。自70年代以来,湍流模型的研究发展迅速,建立了一系列的零方程、一方程、两方程模型和二阶矩模型,已经能够十分成功的模拟边界层和剪切层流动。但是,对于复杂的工业流动,比如航空发动机中的压气机动静叶相互干扰问题,大曲率绕流,激波与边界层相互干扰,流动分离,高速旋转以及其他一些原因,常常会改变湍流的结构,使那些能够预测简单流动的湍流模型失效,所以完善现有湍流模型和寻找新的湍流模型在实际工作中显得尤为重要。 §3.2 湍流模型概述 §3.2.1 湍流模型的引入

湍流理论发展概述

湍流理论发展概述

一、湍流模型的研究背景 自然环境和工程装置中的流动常常是湍流流动,模拟任何实际过程首先遇到的就是湍流问题,而湍流问题本身又是流体力学理论上的难题。对于某些简单的均匀时均流场,如果湍流脉动是各向均匀及各向同性的,可以用经典的统计理论来分析,但实际上的湍流往往是不均匀的,这就给理论分析带来了极困难。这也就引发了对湍流过程进行模拟的想法。 对湍流最根本的模拟方法是在湍流尺度的网格尺寸求解瞬态的三维N-S方程的全模拟方法,此时无需引进任何模型。然而由于计算方法及计算机运算水平的限制,该种方法不易实现。另一种要求稍低的方法是亚网格尺寸度模拟即大涡模拟(LES),也是由N-S方程出发,其网格尺寸比湍流尺度大,可以模拟湍流发展过程的一些细节,但由于计算量仍然很大,只能模拟一些简单的情况,直接应用于实际的工程问题也存在很多问题[1]。目前数值模拟主要有三种方法:1.平均N-S方程的求解,2.大涡模拟(LES),3.直接数值模拟(DNS),而模拟的前提是建立合适的湍流模型。 所谓的湍流模型,就是以雷诺平均运动方程与脉动运动方程为基础,依靠理论与经验的结合,引进一系列模型假设,而建立起的一组描写湍流平均量的封闭方程组。目前常用的湍流模型可根据所采用的微分方程数进行分类为:零方程模型、一方程模型、两方程模型、四方程模型、七方程模型等。对于简单流动而言,一般随着方程数的增多,精度也越高,计算量也越大、收敛性也越差。但是,对于复杂的湍流运动,则不一定。湍流模型可根据微分方程的个数分为零方程模型、一方程模型、二方程模型和多方程模型。这里所说的微分方程是指除了时均N-S 方程外,还要增加其他方程才能是方程封闭,增加多少个方程,则该模型就被成为多少个模型。 二、基本湍流模型 常用的湍流模型有: 零方程模型:C-S模型,由Cebeci-Smith给出;B-L模型,由Baldwin-Lomax 给出。 一方程模型:来源由两种,一种从经验和量纲分析出发,针对简单流动逐步发展起来,如Spalart-Allmaras(S-A)模型;另一种由二方程模型简化而来,如Baldwin-Barth(B-B)模型。

相关主题
文本预览
相关文档 最新文档