当前位置:文档之家› 医疗器械加速老化试验验证资料模板

医疗器械加速老化试验验证资料模板

医疗器械加速老化试验验证资料模板
医疗器械加速老化试验验证资料模板

×××包装加速老化试验验证方案1.0目的:

通过加速老化试验来验证产品包装的储存期限为2年。

2.0适用范围:

本规程适用于一次性血液净化体外循环×××产品的加速老化试验。

3.0职责:

3.1研发部负责方案的制定和试验的最终报告。

3.2质量保证部人员负责验证过程的操作监控并记录。

3.3质量保证部负责验证产品的检测。

4.0工作程序:

4.1概况:由于我公司产品包装的有效期要求2年,进行实时老化及留样观察时间2年太长,对产品包装的有效期2年内不能做出客观科学的评价,患者和制造商均存在一定的风险。而ASTM F1980-02提供了一个科学的方法:加速老化试验,该试验能在较短的时间内对产品的包装在2年的有效期内做出客观科学的评价,从而将患者和制造商的风险降到最低。

4.2引用标准:

4.2.1无菌医疗器械包装加速老化标准指南ASTM F1980-02,YY/T 0681.1-2009无菌医疗器械包装试验方法第1部分:加速老化试验指南;

4.2.2 YZB/国—2013 《一次性使用血液净化体外循环×××》;

4.2.3 GB/T16886.1-2011 医疗器械生物学评价第1部分:风险管理过程中的评

价与试验;

4.2.4 ISO11607-1,-2:2006 最终灭菌医疗器械的包装;

4.2.5 YY/T 0681.1-2009 无菌医疗器械包装试验方法第1部分:加速老化试验指南;

4.3试验原理与要求:

4.3.1试验原理:加速老化技术以假设材料变质的化学反应遵循Arrhenius反应速率定律为基础。

4.3.2试验要求:

4.3.2.1仪器:恒温箱(±1℃),无菌检测系统,温湿度计,计时器。

注:计量器具均经过法定鉴定部门的校验并取得合格证书。

4.3.2.2试验条件:环境温度25℃,相对湿度62%(资料显示该条件较严谨科学)。

4.3.2.2抽样计划:从同一批次中灭菌后抽样63套做加速老化试验,每隔30天抽18套样品作全性能检测,最后剩余27套继续作加速老化试验,到期后做全性

能检测及包装完好性检测。

4.4试验步骤:

4.4.1从同一批次样品中抽样 63套做加速老化试验,无菌检测不合格说明包装不能阻菌或包装工艺或储存环境有问题,物理、化学性能不合格说明产品有效期内产品性能保障有问题。试验结束,需重新对包装材料,包装工艺,储存环境进行分析验证。全性能检测合格说明产品包装能阻菌,同时包装工艺、储存环境合理,产品在规定有效期内性能符合要求,加速老化试验继续进行。

4.4.2加速老化因数(AAF)的估算:

[(TAA–TRT)/10] (1)

AAF=Q

10

注:1.Q10=温度增加或减少10℃的一个老化因数,比较保守的取值为2

2.T AA=加速老化温度,按照ASTM F1980-02的要求,取值为60℃

3.T RT=环境温度,资料显示广泛接受的温度是25℃

故加速老化因数AAF=2[(60–25)/10]=23.5≈11.3

4.4.3加速老化时间(AAT)的计算:

AAT=RT/AAF (2) 注:RT=实时老化时间,即样品在周围环境的储存时间

故加速老化时间AAT=(365×2)/11.3≈64.6天

AAT=64.6天=2年(实时等量)

, 4.4.4将恒温箱温度设定为60℃,放入63套样品,记录老化试验开始时间t

0每24h记录一次温度,保证温度恒定。按照4.4.1进行。实验进行到65天时,取出18套样品做全性能检测,9套样品做包装完好性试验。全性能检测不合格说明包装不能阻菌或包装工艺或储存环境有问题或者产品在有效期内性能不能保证,试验结束,重新对包装材料,包装工艺,储存环境进行分析验证。全性能检测合格并通过包装完好性评价说明产品包装在2年的有效期内仍能阻菌,同时包装工艺、储存环境合理,产品性能在2年有效期内也能够得到保证,老化试验结束。

5.0相关记录

5.1恒温箱温度监控记录

5.2加速老化前全性能检测报告

5.3加速老化30天全性能检测报告

5.4加速老化60天全性能检测报告

5.5加速老化65天全性能检测报告

5.6加速老化65天包装完好性试验检测报告

5.7×××包装加速老化试验验证报告

6.0方案审批

×××包装加速老化试验验证报告1.0概述:

试验时间:2013.12.12 8:00-2014.02.15 8:00

试验地点:血液净化品质部

试验方案:×××包装加速老化试验验证方案

2.0试验项目各要素的名称、操作方法、判断标准

2.1恒温箱温度60±1℃,加速老化时间:30天,60天,65天。

以恒温箱的温度控制记录来判断是否符合。

2.2加速老化30天,60天,65天的全性能检测,加速老化65天后进行包装完

好性检测。

全性能检测的操作方法、判断标准按照YZB/国 -2013《一次性使用血液净化体外循环×××》进行;

3.0试验结果

3.1、2013.12.12-8:00设定恒温箱温度为60±1℃,63套做加速老化试验。过程中每24h监控1次温度,监控结果见恒温箱温度监控记录。

3.2、201

4.01.11-8:00从恒温箱中取出18套样品做全性能检测,同时其余45套做加速老化试验。样品全性能检测合格,检测结果见加速老化30天加速老化检测报告。

3.3、201

4.02.10-8:00从恒温箱中取出18套样品做全性能检测,同时其余27套做加速老化试验。样品全性能检测合格,检测结果见加速老化60天加速老化检测报告。

3.4、201

4.02.15-8:00从恒温箱中取出18套样品做全性能检测,该样品全性能检测合格,检测结果见加速老化65天加速老化检测报告;同时取另外9套样品做包装完好性试验,检测结果合格,报告见无菌包装完好性检测报告。

4.0试验结论

根据ASTMF1980-02,GB/T14233.2-2005,GB/T19633-2005, ISO11607.1-2006,ISO11607.2-2006,YY/T 0681.4-2010结合试验结果可知,我公司产品相关性能、包装材料、包装工艺、储存环境科学合理,包装的2年有效期能得到保证,产品的相关性能2年有效期能够得到保证。

5.0试验评价与建议

5.1整个包装加速老化试验方案按照ASTM F1980-02、YY/T 0681.1-2009

要求制定和执行,因此,试验结果是科学的、可靠的。

5.2任何试验总有一定的随机性,因此,建议实时老化依旧进行,同时对包装材

料的进货检验、包装工艺、灭菌工艺、储存环境应控制在可接受的范围内,以使包装的2年有效性得以保持。

6.0报告批准

加速老化试验预测橡胶使用寿命(自己翻译过来的)

加速试验预测橡胶组件的使用寿命(翻译的) 摘要:橡胶材料的性能及橡胶组件使用寿命的预测、估算在橡胶组件的设计过程中有着重要的作用。我们通过加速老化试验和模拟相结合的办法,对橡胶材料在氧气环境中的寿命预测做了很多年的研究。这篇论文研究了热老化对橡胶性能的影响,同时也对冷冻机用三元乙丙橡胶(EPDM),丁腈橡胶(NBR)橡胶组件的使用寿命进行了预测。实验结果表明橡胶组分影响着橡胶的交联密度;老化时间及活化能可以很好的用以描述老化行为;通过单轴拉伸试验得到应力应变曲线。为了预测EPDM,NBR的使用寿命,对这两种橡胶做了50℃到100℃,1天到180天的加速老化试验,并测试了一系列的物理性能试验。通过阿伦尼乌斯方程进行了计算,并通过压缩永久变形试验,本文提出了一系列方程用以预测橡胶材料使用寿命。 关键词:加速试验,丁腈橡胶,活化能,交联,三元乙丙橡胶,热老化,寿命预测,橡胶材料。 符号缩写:C.S 压缩永久变形;d0 样品的厚度;d1压缩状态下样品厚度;d2 卸载后厚度k 交联密度变化程度;(K)T 反应速率;A,B 常数;E 反应活化能;R 气体常数;T 绝对温度 I 前言 橡胶是一种最为通用的材料,有着广泛的用途,甚至很难说清它到底有多少用途。从普通的家用,商用,汽车制造等到高尖端的航天航空工业都有橡胶的身影。许多橡胶组件在使用中需要承受一定的机械力作用,为了保证橡胶组件的安全性和可靠性,使用寿命的预测估算是一项关键技术。如何防止橡胶组件在使用过程中损坏是一个关键问题。橡胶组件在使用过程中承受着一定的载荷,还受到温度,辐射以及一些其它的有害物质的影响。所有的影响因素结合在一起,导致了橡胶物理及化学结构的改变,最终表现为橡胶机械性能的降低。橡胶在使用了一段时间后,开始老化,通常表现为挺性增加,阻尼性能下降。老化不光光影响了性能,同时也影响了组件的使用寿命。橡胶组件所处环境的不同,使得它们的降解方式也不一样。橡胶组件的逐步老化降解,不仅与外部因素有关,同时与橡胶基体本身以及橡胶里面的添加剂有关。广义上讲,橡胶的老化是这些因素的一个加和。这些因素具体起到了多大的作用,很难计算出来。它们的分类可以见表1。 表1 橡胶老化因素表 中,直到这些橡胶组件被替换下来之前,它们必须保持足够的物理机械性能,但是受到温度、湿度、紫外光、臭氧、化学物质、载荷的影响,它们的使用寿命又很难估算。所以找到橡胶的统一属性和它处于的环境影响,并预计它的寿命显得非常重要。通过对橡胶材料降解老化的研究,可以为提高使用寿命,增加可靠性提供必要的条件。 橡胶硫磺硫化体系形成的交联网络,随着热老化的不断进行而发生着改变。受到热老化后,高硫磺含量硫化体系形成的交联网络的变化要大于低硫磺含量硫化体系所形成的交联网络。 为了解决工程实践中的一些问题,橡胶材料物理性能受老化影响的程度,橡胶组件使用

常用三种加速老化测试模型

在环境模拟试验中,常常会遇到这样一个问题:产品在可控的试验箱环境中测试若干小时相当于产品在实际使用条件下使用多长时间?这是一个亟待解决的问题,因为它的意义不仅仅在于极大地降低了成本,造成不必要的浪费,也让测试变得更具目的性和针对性,有利于测试人员对全局的掌控,合理进行资源配置。 在众多的环境模拟试验中,温度、湿度最为常见,同时也是使用频率最高的模拟环境因子。实际环境中温度、湿度也是不可忽略的影响产品使用寿命的因素。所以,迄今将温度、湿度纳入考量范围所推导出的加速模型在所有的老化测试加速模型中占有较大的比重。由于侧重点的不同,推导出的加速模型也不一样。下面,本文将解读三个极具代表性的加速模型。 模型一.只考虑热加速因子的阿伦纽斯模型(Arrhenius Mode) 某一环境下,温度成为影响产品老化及使用寿命的绝对主要因素时,采用单纯考虑热加速因子效应而推导出的阿伦纽斯模型来描述测试,其预估到的结果会更接近真实值,模拟试验的效果会更好。此时,阿伦纽斯模型的表达式为: AF=exp{(E a/k)·[(1/T u)-(1/T t)]} 式中: AF是加速因子; E a是析出故障的耗费能量,又称激活能。不同产品的激活能是不一样的。一般来说,激活能的值在0.3ev~1.2ev之间;

K是玻尔兹曼常数,其值为8.617385×10-5; T u是使用条件下(非加速状态下)的温度值。此处的温度值是绝对温度值,以K(开尔文)作单位; T t是测试条件下(加速状态下)的温度值。此处的温度值是绝对温度值,以K(开尔文)作单位。 案例:某一客户需要对产品做105℃的高温测试。据以往的测试经验,此种产品的激活能E a取0.68最佳。对产品的使用寿命要求是10年,现可供测试的样品有5个。若同时对5个样品进行测试,需测试多长时间才能满足客户要求? 已知的信息有T t、E a,使用的温度取25℃,则先算出加速因子AF:AF=exp{[0.68/(8.617385×10-5)]·【[1/(273+25)]- [1/(273+105)]】}最终: AF≈271.9518 又知其目标使用寿命: L目标=10years=10×365×24h=87600h 故即可算出: L测试= L目标/AF=87600/271.9518h=322.1159h≈323h 现在5个样品同时进行测试,则测试时长为:

NBR加速老化试验预测橡胶使用寿命

加速老化预测NBR橡胶的使用寿命 摘要:橡胶材料的性能及橡胶组件使用寿命的预测、估算在橡胶组件的设计过程中有着重要的作用。我们通过加速老化试验和模拟相结合的办法,对橡胶材料在氧气环境中的寿命预测做了很多年的研究。这篇论文研究了热老化对橡胶性能的影响,同时也对冷冻机用,丁腈橡胶(NBR)橡胶组件的使用寿命进行了预测。实验结果表明橡胶组分影响着橡胶的交联密度;老化时间及活化能可以很好的用以描述老化行为;通过单轴拉伸试验得到应力应变曲线。为了预测NBR的使用寿命,对NBR橡胶做了50℃到100℃,1天到180天的加速老化试验,并测试了一系列的物理性能试验。通过阿伦尼乌斯方程进行了计算,并通过压缩永久变形试验,本文提出了一系列方程用以预测橡胶材料使用寿命。 关键词:加速试验,丁腈橡胶,活化能,交联,三元乙丙橡胶,热老化,寿命预测,橡胶材料。 符号缩写:C.S 压缩永久变形;d0 样品的厚度;d1压缩状态下样品厚度;d2 卸载后厚度 k 交联密度变化程度;(K)T 反应速率;A,B 常数;E 反应活化能;R 气体常数;T 绝对温度 I 前言 橡胶是一种最为通用的材料,有着广泛的用途,甚至很难说清它到底有多少用途。从普通的家用,商用,汽车制造等到高尖端的航天航空工业都有橡胶的身影。许多橡胶组件在使用中需要承受一定的机械力作用,为了保证橡胶组件的安全性和可靠性,使用寿命的预测估算是一项关键技术。如何防止橡胶组件在使用过程中损坏是一个关键问题。橡胶组件在使用过程中承受着一定的载荷,还受到温度,辐射以及一些其它的有害物质的影响。所有的影响因素结合在一起,导致了橡胶物理及化学结构的改变,最终表现为橡胶机械性能的降低。橡胶在使用了一段时间后,开始老化,通常表现为挺性增加,阻尼性能下降。老化不光光影响了性能,同时也影响了组件的使用寿命。橡胶组件所处环境的不同,使得它们的降解方式也不一样。橡胶组件的逐步老化降解,不仅与外部因素有关,同时与橡胶基体本身以及橡胶里面的添加剂有关。广义上讲,橡胶的老化是这些因素的一个加和。这些因素具体起到了多大的作用,很难计算出来。它们的分类可以见表1。 表1 橡胶老化因素表 冷冻机中空压机部分所使用的橡胶组件的使用寿命是它的一项关键指标。在使用过程中,直到这些橡胶组件被替换下来之前,它们必须保持足够的物理机械性能,但是受到温度、湿度、紫外光、臭氧、化学物质、载荷的影响,它们的使用寿命又很难估算。所以找到橡胶的统一属性和它处于的环境影响,并预计它的寿命显得非常重要。通过对橡胶材料降解老化的研究,可以为提高使用寿命,增加可靠性提供必要的条件。 橡胶硫磺硫化体系形成的交联网络,随着热老化的不断进行而发生着改变。受到热老化后,高硫磺含量硫化体系形成的交联网络的变化要大于低硫磺含量硫化体系所形成的交联网络。

加速老化实验

山东华普医疗科技有限公司 加速老化试验 版本/修改状态:生效日期: 文件编号:发放号:控制状态:拟制:审核:批准:

加速老化实验计划 一、使用范围 本公司生产的一次性使用氧气面罩,一次性使用鼻氧管,医用雾化器及其外包装。 二、过程要求 1、微生物屏障 2、无毒性 3、物理特性的符合性 4、化学特性的符合性 5、生物特性的符合性 三、预计完成时间: 老化实验前 全能性实验:2012年5月20日前 包装验证实验:2012年5月22日前 阻菌实验:2012年5月24日前 老化实验时间:2012年5月26日前 加速第一年验证 无菌实验:2012年6月18日前 全能性实验:2012年6月25日前 包装验证实验:2012年6月25日前 阻菌实验:2012年6月27日前 加速第二年验证 无菌实验:2012年7月1日前 全能性实验:2012年7月8日前 包装验证实验:2012年7月8日前 阻菌实验:2012年7月10日前 加速第三年验证 无菌实验:2012年7月15日前 全能性实验:2012年7月22日前 包装验证实验:2012年7月22日前 阻菌实验:2012年7月24日前 加速第四年验证 无菌实验:2012年7月29日前 全能性实验:2012年8月6日前 包装验证实验:2012年8月6日前

阻菌实验:2012年8月8日前 加速第五年验证 无菌实验:2012年8月13日前 全能性实验:2012年8月20日前 包装验证实验:2012年8月20日前 阻菌实验:2012年8月22日前 目的:在有效期三年内和三年有效期外,通过对我公司产品检验实验,来验证我们的产品规定为三年的有效期是有科学依据的,可靠有效的。

人工加速老化试验条件的选择

人工加速老化试验条件的选择 这个问题实际上可以理解为应该模拟哪些老化因素,高分子材料在使用过程中,气候环境里许多因素都有可能对高分子材料的老化产生作用。如果事先知道产生老化的主要因素,就可以有针对性的选择试验方法。我们可以从该材料的运输、储存、使用环境以及其老化机理等方面考虑,确定试验方法。例如硬聚氯乙烯型材,使用聚氯乙烯为原料,添加稳定剂、颜料等助剂加工而成,主要用于室外。 从聚氯乙烯的老化机理考虑,聚氯乙烯受热易分解;从使用环境考虑;空气中的氧、紫外光、热、水分都是引起型材老化的原因。 因此,国标GB/T8814-2004《门、窗用未增塑聚氯乙烯(PVC-U)型材》中,既规定了光氧老化试验方法,采用GB/T 16422.2《塑料实验室光源曝露试验方法第二部分:氙弧灯》老化4000h或6000h,模拟了室外紫外光及可见光、温度、湿度、降雨等因素,同时又规定了热氧老化项目:加热后状态,150℃放置30min,目测观察是否出现气泡、裂纹、麻点或分离现象,以考察型材的耐热性能。 又如我国在国际市场上有竞争力的一个产品:外贸出口鞋。在使用过程中,阳光中的紫外线是引起鞋子变色、褪色的主要原因,因此,有必要用紫外线试验箱对其进行耐黄变测试。常用的鞋类耐黄变试验箱

采用30WUV灯,样品离光源20cm,照射3h后观察颜色变化。同时,在运输过程中,集装箱内闷热、潮湿的恶劣环境会引起鞋面、鞋底、胶水的变色、斑点,甚至是变质。因此,在装船运输之前,有必要考虑进行耐湿热老化试验,模拟集装箱内高热、高湿环境,在70℃、95%相对湿度的条件下,进行48h试验后观察外观、颜色变化。

产品加速老化测试方案

产品加速老化测试方案 1、试验前准备 1.1 试验产品信息 样品名称: 样品型号: 样品数量: 样品序号: 1.2 试验所需的设备信息 设备名称:恒温恒湿箱 设备编号: 设备参数:温度测试范围为: 湿度测试范围为: 1.3 测试人员: 复核人员: 批准人员: 1.4 测试环境:加速老化测试在75℃、90% RH的恒温恒湿箱中进行 1.5 测试时间: 2、试验原理和步骤 2.1 使用的物理模型--最弱链条模型 最弱链条模型是基于元器件的失效是发生在构成元器件的诸因素中最薄弱的部位这一事实而提出来的。 该模型对于研究电子产品在高温下发生的失效最为有效,因为这类失效正是由于元器件内部潜在的微观缺陷和污染,在经过制造和使用后而逐渐显露出来的。暴露最显著、最迅速的地方,就是最薄弱的地方,也是最先失效的地方。 2.2 加速因子的计算 加速环境试验是一种激发试验,它通过强化的应力环境来进行可靠性试验。加速环境试验的加速水平通常用加速因子来表示。加速因子的含义是指设备在正常工作应力下的寿命与在加速环境下的寿命之比,通俗来讲就是指一小时试验相当于正常使用的时间。因此,加速因子的

计算成为加速寿命试验的核心问题,也成为客户最为关心的问题。加速因子的计算也是基于一定的物理模型的,因此下面分别说明常用应力的加速因子的计算方法。 2.2.1温度加速因子 温度的加速因子计算: ?? ???????? ???==stress normal a stress normal AF T T k E L L T 1-1exp ……………… (1) 其中,normal L 为正常应力下的寿命; stress L 为高温下的寿命; a E 为失效反应的活化能(eV ); normal T 为室温绝对温度; stress T 为高温下的绝对温度; k 为Boltzmann 常数,8.62× 10-5eV/K ; 实践表明绝大多数电子元器件的失效符合Arrhenius 模型,下表给出了半导体元器件常见的失效反应的活化能。 2.2.2 湿度的加速因子 2.3 试验方案 本试验采用最弱链条的失效模型,通过提高试验温度和湿度来考核产品电路板和显示屏的使用寿命。在75℃、90% RH 下做加速寿命测试,故其加速因子应为温度加速因子和湿度加速因子的乘积,计算如下: n normal stress stress normal a AF AF RH RH T T k E H T AF ???? ????????????? ???=?=1-1ex p (3)

加速寿命试验公示计算汇总

加速寿命试验公示计算汇总 一、前言 新研究的医疗器械在上市前应确保在储存期( 通常 1 到5 年) 内产品的质量不应发生任何影响安全性和有效性变化,新产品一般没有实时和储存周围环境条件下确定有效期的技术资料。如果按实际储存时间和实际环境储存条件进行检测需要很长的时间才能获得结果,为了在实时有效期结果获得以前,有必要进行加速老化实验提供确定有效期的实验数据。 医疗器械设计人员能够准确地预计聚合物性能的变化对于医疗器械产业化是非常重要的。建立聚合物材料退行性变的动态模型是非常困难和复杂的,事实上材料短期产生的变化或变性的单速率表达形式可能不能充分反映研究的产品或材料在较长有效期的真实情况。为了设计试验方案能准确模拟医疗器械时间相关的退行性变,有必要对材料的组成、结构、成品用途、组装和灭菌过程的影响、失效模型机制和储存条件有深入的了解。 一个给定的聚合物具有以各种方式( 晶体、玻璃、不定形等) 组成的许多化学功能基团,并含有添加剂如抗氧化剂、无机充填剂、色素和加工助剂。所有这些变量的总和结合产品使用和储存条件变量决定了材料的化学性能的退行性变。得庆幸的是,生产医疗器械的大部分都是采用常用的几种高分子材料,这些材料已经广泛使用并且都进行了良好的表征。根据以碰撞理论为基础的阿列纽斯(Arrhenius) 模型建立的老化简化实验方案(Simplified Protocol for Accelerated Aging) ,也称“10 度原则”(10-degree rule) ,可在中度温度范围内适用于良好表征的聚合物,试验结果可以在要求的准确度范围内。 医疗器械或材料的老化是指随着时间的延长它们性能的变化,特别是与安全性和有效性有关的性能。加速老化是指将产品放置在比正常储存或使用环境更严格或恶劣的条件下,在较短的时间内测定器械或材料在正常使用条件下的发生变化的方法。 采用加速老化实验合格测试的主要原因是可以将医疗器械产品尽早上市。主要目标是可以给病人和企业带来利益,病人可以尽早使用这些最新的医疗器械,挽救病人的生命;企业可以增加销售获得效益,而又不会带来任何风险。尽管加速老化试验技术在学术领域已经比较成熟,但是这些技术在医疗器械产品的应用还是有限的。美国FDA 发布了一些关于接触眼镜、药物和生物制品等关于加速老化实验的指导性文件,还没有加速老化试验的标准。在我国尚无关于医疗器械有效期确定的加速老化的实验指导原则。国外许多医疗器械企业根据这些指导原则和文献建立自己的加速老化试验方法。(来源于:《中国医疗器械信息》2008年第14卷第5期《医疗器械加速老化实验确定有效期的基本原理和方法》) 二、实验条件和时间对比表

常用三种加速老化测试模型

常用三种加速老化测试模型 在环境模拟试验中,常常会遇到这样一个问题:产品在可控的试验箱环境中测试若干小时相当于产品在实际使用条件下使用多长时间?这是一个亟待解决 的问题,因为它的意义不仅仅在于极大地降低了成本,造成不必要的浪费,也让测试变得更具目的性和针对性,有利于测试人员对全局的掌控,合理进行资 源配置。 在众多的环境模拟试验中,温度、湿度最为常见,同时也是使用频率最高的模拟环境因子。实际环境中温度、湿度也是不可忽略的影响产品使用寿命的因素。所以,迄今将温度、湿度纳入考量范围所推导出的加速模型在所有的老化测试加速模型中占有较大的比重。由于侧重点的不同,推导出的加速模型也不一样。下面,本文将解读三个极具代表性的加速模型。 模型一.只考虑热加速因子的阿伦纽斯模型( Arrhenius Mode ) 某一环境下,温度成为影响产品老化及使用寿命的绝对主要因素时,采用单纯考虑热加速因子效应而推导出的阿伦纽斯模型来描述测试,其预估到的结果会更接近真实值,模拟试验的效果会更好。此时,阿伦纽斯模型的表达式为: AF=exp{(E a/k) ? [(1/T u)-(1/T t)]} 式中: AF是加速因子; E a是析出故障的耗费能量,又称激活能。不同产品的激活能是不一样的。一般来说,激活能的值在0.3ev~1.2ev之间;

K是玻尔兹曼常数,其值为8.617385 X 10-5; T u是使用条件下(非加速状态下)的温度值。此处的温度值是绝对温度值, 以K(开尔文)作单位; T t是测试条件下(加速状态下)的温度值。此处的温度值是绝对温度值,以K(开尔文)作单位。 案例:某一客户需要对产品做105C的高温测试。据以往的测试经验,此种产品的激活能E a取0.68最佳。对产品的使用寿命要求是10年,现可供测试的样品有5个。若同时对5个样品进行测试,需测试多长时间才能满足客户要求? 已知的信息有T t、E a,使用的温度取25C,贝U先算出加速因子AF: 5 AF=exp{[0.68/(8.617385 X 10-)] ?【[1/(273+25)]-[1/(273+105)] 】} 最 终: AF^ 271.9518 又知其目标使用寿命: L 目标=10years=10 X 365X 24h=87600h 故即可算出: L 测试=L 目标/AF=87600/271.9518h=322.1159h ?323h 现在5个样品同时进行测试,则测试时长为: L 最终=323/5h=65h 这即是说明,若客户用5个产品同时在105C高温下测试65h后产品未发生故障,则说明产品的使用寿命已达到要求。 通过这个案例可以看出,利用阿伦纽斯模型可以提前预估测试的相关信息,指导客户该怎样进行测试才既能达到目标值而又最大限度的降低成本。本案例中,若客户急需测试结果,那么可以投入10个或者更多的样品来缩短整个测试时长;或者在允许的情况下进一步提高温度,加快完成测试。根据需求灵活的调整测试方案,这才能更完美地达到目标,提高工作效率,省去一些不必要的费用。 模型二.综合温度及湿度因素的阿伦纽斯模型(Arrhenius ModeWith Humidity )

一次性口罩加速老化试验报告

口罩加速老化试验报告 设备型号: 文件版本: V1 受控文件:口罩加速老化试验报告 编制: 审核: 批准:

目录 1, 目的---------------------------------------------------------------------- 3 2, 范围---------------------------------------------------------------------- 3 3, 验证设备及材料----------------------------------------------------------- 3 4, 验证小组及人员责任------------------------------------------------------ 3 5, 验证前确认-------------------------------------------------------------- 4 6, 加速老化方法和计划的确定----------------------------------------------- 4 7, 验证结果----------------------------------------------------------------- 4 8, 结论---------------------------------------------------------------------- 5 9, 结论--------------------------------------------------------------------- 6

医疗器械加速老化实验方案及报告

华普医疗科技 加速老化试验 版本/修改状态:生效日期: 文件编号:发放号:控制状态:拟制:审核:批准:

加速老化实验计划 一、使用围 本公司生产的一次性使用氧气面罩,一次性使用鼻氧管,医用雾化器及其外包装。 二、过程要求 1、微生物屏障 2、无毒性 3、物理特性的符合性 4、化学特性的符合性 5、生物特性的符合性 三、预计完成时间: 老化实验前 全能性实验: 2012年5月20日前 包装验证实验: 2012年5月22日前 阻菌实验: 2012年5月24日前 老化实验时间: 2012年5月26日前 加速第一年验证 无菌实验: 2012年6月18日前 全能性实验: 2012年6月25日前 包装验证实验: 2012年6月25日前 阻菌实验: 2012年6月27日前 加速第二年验证 无菌实验: 2012年7月1日前 全能性实验: 2012年7月8日前 包装验证实验: 2012年7月8日前 阻菌实验: 2012年7月10日前 加速第三年验证 无菌实验: 2012年7月15日前 全能性实验: 2012年7月22日前 包装验证实验: 2012年7月22日前 阻菌实验: 2012年7月24日前 加速第四年验证 无菌实验: 2012年7月29日前 全能性实验: 2012年8月6日前 包装验证实验: 2012年8月6日前

阻菌实验: 2012年8月8日前 加速第五年验证 无菌实验: 2012年8月13日前 全能性实验: 2012年8月20日前 包装验证实验: 2012年8月20日前 阻菌实验: 2012年8月22日前 目的:在有效期三年和三年有效期外,通过对我公司产品检验实验,来验证我们的产品规定为三年的有效期是有科学依据的,可靠有效的。

无菌医疗器械包装的加速老化试验标准指南

ASTM F 1980:2002 无菌医疗器械包装的加速老化试验标准指南 Standard Guide for Accelertated Aging of Sterile Medical Device Package 1 范围 1.1 本指南提供了开发加速老化方案的信息,以便快速确定包装的无菌完好性和包装材料的物理特性受所经历的时间和环境的影响。 1.2 用本指南获得的信息可用以支持产品包装的有效日期。 1.3 加速老化指南涉及初包装整体,不涉及包装与产品间的相互作用或相容性,这在新产品的开发中可能涉及到。在包装设计之前的材料分析过程中宜涉及包装与产品的相容性和相互作用。 1.4本指南不涉及实际时间老化方案,但进行实际时间老化研究能证实用同样评价方法的加速老化试验的结果。 1.5 用于包装过程确认的方法,包括机械过程、灭菌过程、运输、贮存的影响也不在本指南的范围内。 1.6 本标准不打算涉及标准使用中的所有安全问题,本标准的使用者在使用前有责任建立相应的安全和卫生规范,并确定法规限制的适用性。 2 规范性引用文件 2.1 ASTM 标准 D 3078 用气泡发射法测定软性包装的试验方法 D 4169 运输容器和系统的性能试验规范 D 4332 容器、包装或包装组件的试验用状态调节的规范 E 337 用干湿球温度计(测量湿球温度和干球温度)测定湿度的试验方法 F 88 软质屏障材料密封强度的试验方法 F 1140医疗应用无约束包装抗内压破坏试验方法 F1327 医用包装屏障材料的相关术语 F 1585 医用包装多孔屏障材料完好性试验指南 F 1608 医用包装多孔屏障材料的微生物等级的试验方法 F 1929 用染色穿透的方法测定多孔材料医用包装中密封泄漏的试验方法 2.2 AAMI 标准 ANSI/AAMI/ISO 11607 最终灭菌医疗器械的包装 AAMI TIR 17-1997 辐射灭菌材料鉴定 3 术语 3.1 定义 医疗器械包装的一般定义见ISO 11607。有关医用包装屏障材料的术语见F1327 3.2 本标准规定术语的定义: 3.2.1 加速老化(AA) 样品贮存在严酷的温度(T AA),以一种缩短时间的方式来模拟实际时间老化 3.2.2 加速老化因子(AAF) 一个估计的或计算出的与实际时间(RT)条件贮存的包装达到同样水平的物理性能变化的时间比率

一次性使用医用口罩(非无菌)产品有效期(加速老化)验证报告

一次性使用医用口罩(非灭菌)产品有效期(加速老化)验证报告 有限公司

有限公司 一次性使用医用口罩有效期(加速老化)验证报告 1.研究目的 产品简介:一次性使用医用口罩由于产品是属于具有有效期的产品,依据《国家食品药品监督管理总局关于公布医疗器械注册申报资料要求和批准证明文件格式的公告》(2014年第43 弓)要求,应当提供产品有效期的验证报告。因此这次研究旨在研先本公司生产的一次性使用医用口罩产品的有效期。 2.范围 本报告适用于一次性使用医用口罩非无菌的产品加速老化试验。 3. 4.产品概述 4.1加速老化样品选型原理一次性使用医用口罩非无菌有耳挂型一种规格,测试结果可以代表该所有规格产品加速老化性能。 4.2加速老化样品信息 4.3加速老化样品材料清单以下是本次加速老化样品使用的材料信息,如果材料 4.4加速老化样品图片

4.试验设备 恒温恒湿培养箱、液晶显示电子万能试验机、电子数显卡尺、钢直尺?? 5.研究内容 5.1加速老化因子的确定 5. 1. 1用阿列纽斯公式,取Q10等于2,是计算老化因子的通用的和保守的方法。 5.1.2 按式(1)计算加速老化因子的估计值: AAF = Q 10[( TAA - TRT ) /10 ](1) 式中: AAF :加速老化因子; T AA :加速老化温度,单位为摄氏度(℃); T RT:环境温度,单位为摄氏度(℃)? 5.1.3用式(2)确定加速老化时冋: AAT= RT/AAF (2) 式中: AAT :加速老化时间; RT :期望或要求的实际时间: AAF :加速老化因子。 5. 2 相对湿度的确定 根据YY/T 0681. 1 附录C中表 C. 1来确定相对湿度。 5. 3 加速老化方案 5. 2. I 加速老化试验条件(示例) Q10:2

医械加速老化实验确定有效期的原理和方法

医疗器械加速老化实验确定有效期的基本原理和方法 1、内容提要 加速老化简化试验方案是医疗器械生产企业获得新产品的关键性能和有效期数据的重要手段。该方法获得的结果具有保守性,加速老化试验的有效期和实时老化获得的结果相比要短。这一方案是假设所有材料按照零级和一级反应速率关系确定的,在整个研究的时间框架内反应物质的提供是保持恒定的。为了获得更加可靠的结果,应充分了解降解反应化学,选择中等的老化温度可以使误差因素降到最小,要充分了解一些对升高温度敏感的反应物质。采用任何加速老化试验方法,在没有获得实时/大气环境试验结果前都是有风险的。如论如何,设计的试验方法提供的数据最终应满足产品的标准要求。 2、前言 医疗器械设计人员能够准确地预计聚合物性能的新研究的医疗器械在上市前应确保在储存期( 通常变化对于医疗器械产业化是非常重要的。建立聚合物1 到5 年) 内产品的质量不应发生任何影响安全性和有材料退行性变的动态模型是非常困难和复杂的,事实效性的变化,新产品一般没有实时和储存周围环境条上材料短期产生的变化或变性的单速率表达形式可能件下确定有效期的技术资料。如果按实际储存时间和不能充分反映研究的产品或材料在较长有效期的真实实际环境储存条件进行检测需要很长的时间才能获得情况。为了设计试验方案能准确模拟医疗器械时间相同结果,为了在实时有

效期结果获得以前,有必要进行关的退行性变,有必要对材料的组成、结构、成品加速老化实验提供确定有效期的实验数据。用途、组装和灭菌过程的影响、失效模型机制和储存条件有深入的了解。一个给定的聚合物具有以各种方式( 晶体、玻璃、r = dq/dt = C2[T2-T1]/10 不定形等) 组成的许多化学功能基团,并含有添加剂应该指出的是10 度原则提供了室温活化能小于如抗氧化剂、无机充填剂、色素和加工助剂。所有这0.7eV 时一个保守的加速因子,由于指数效应,在量级些变量的总和结合产品使用和储存条件变量决定了材上应该有一定的保守性。在某些情况下,通过采用其料的化学性能的退行性变。值得庆幸的是,生产医疗他5? 到20? 温度差改良的10 度原则可以使老化模型和器械的大部分都是采用常用的几种高分子材料,这些室温试验数据之间很好的吻合。 材料已经广泛使用并且都进行了良好的表征。根据以10 度原则在医疗器械有效期的确定时虽然具有碰撞理论为基础的阿列纽斯(Arrhenius) 模型建立的加一定的保守性,然而,加速老化试验确定的有效期必须通过产品正常储存和使用条件下实时试验结果进速老化简化实验方案(Simplified Protocol for Accelerated Aging) ,也称“10 度原则”(10-degree rule) ,可在中度一步验证。产品上市前在进行加速老化试验的同时应温度范围内适用于良好表征的聚合物,试验结果可以进行连续“室温”条件下的老化试验,并且室温老化在要求的准确度范围内。 试验时间要比产品实际使用时间要长,这一点是非常医疗器械或材料

(完整)医疗器械加速老化试验验证资料模板

(完整)医疗器械加速老化试验验证资料模板 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)医疗器械加速老化试验验证资料模板)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)医疗器械加速老化试验验证资料模板的全部内容。

×××包装加速老化试验验证方案 1.0目的: 通过加速老化试验来验证产品包装的储存期限为2年。 2.0适用范围: 本规程适用于一次性血液净化体外循环×××产品的加速老化试验. 3。0职责: 3.1研发部负责方案的制定和试验的最终报告. 3.2质量保证部人员负责验证过程的操作监控并记录。 3.3质量保证部负责验证产品的检测。 4.0工作程序: 4.1概况:由于我公司产品包装的有效期要求2年,进行实时老化及留样观察时间2年太长,对产品包装的有效期2年内不能做出客观科学的评价,患者和制造商均存在一定的风险。而ASTM F1980-02提供了一个科学的方法:加速老化试验,该试验能在较短的时间内对产品的包装在2年的有效期内做出客观科学的评价,从而将患者和制造商的风险降到最低. 4.2引用标准: 4.2.1无菌医疗器械包装加速老化标准指南ASTM F1980—02,YY/T 0681。1-2009无菌医疗器械包装试验方法第1部分:加速老化试验指南; 4.2。2 YZB/国—2013 《一次性使用血液净化体外循环×××》; 4。2.3 GB/T16886.1—2011 医疗器械生物学评价第1部分:风险管理过程中的评价与试验; 4.2.4 ISO11607-1,-2:2006 最终灭菌医疗器械的包装; 4.2.5 YY/T 0681。1—2009 无菌医疗器械包装试验方法第1部分:加速老化试验指南; 4。3试验原理与要求: 4。3。1试验原理:加速老化技术以假设材料变质的化学反应遵循Arrhenius反应速率定律为基础. 4.3。2试验要求: 4.3。2。1仪器:恒温箱(±1℃),无菌检测系统,温湿度计,计时器。 注:计量器具均经过法定鉴定部门的校验并取得合格证书。 4.3.2.2试验条件:环境温度25℃,相对湿度62%(资料显示该条件较严谨科学)。4.3。2。2抽样计划:从同一批次中灭菌后抽样63套做加速老化试验,每隔30天抽18套样品作全性能检测,最后剩余27套继续作加速老化试验,到期后做全性能检测及包装完好性检测. 4。4试验步骤:

胶体金试纸加速老化试验原理及方案设计

胶体金试纸加速老化试验原理及方案设计 点击次数:305 作者:Tombacon 发表于:2008-08-20 13:49转载请注明来自丁香园 来源:丁香园 你制作的胶体金试纸保质期有多长, 1年, 2年? 难道我要将试纸放置两年以后才知道质量是否过关? 为了解决保质期的问题,我们设计了将试纸放置于高温环境下烘烤的加速老化试验。然而这个实验到目前为止都没有明确的技术资料,大多数文献资料里面只有 "37度2个月=常温下2年", "45度一个月=常温下2年" 的一个概念描述,那么这个实验的原理是什么,是否真的如以上所说。实验应该如何设计。一系列的问题接踵而至。 一、原理 37度或45度老化试验的原理是什么? --------阿伦尼乌斯公式;Arrhenius equation 由瑞典的阿伦尼乌斯所创立,表示化学反应速率常数( k )对温度( T )的依赖关系的经验公式。公式的演算和背景分析,请大家自己GOOGLE. 公式如下: d(In k)/dT=Ea/RT2 (这个2, 是T的平方,论坛里不知道怎么搞上去) Ea为表观活化能,R为摩尔气体常量。变化趋势为T增大,一般k也增大。 Ea 约等于19.5 Kcal/mol. 于是计算出对应的温度与老化天数关系。全部数值以一年稳定性情况对比。 温度/天

85.2/1.2 80.2/1.8 74.9/2.7 70.1/4.0 65.0/6.0 60.1/9.3 55.1/14.6 50.1/23.0 45.0/37.5 40.1/64.4 37.0/91.0 30.1/193.0 25.1/343.7 22.1/494.8 20.1/616.7 15.1/1145.3 12.0/1688.4 提取我们经常用的数值温度/天 25.1/343.7 37.0/91.0

医疗器械加速老化试验方案及报告

. . . .. .. . 华普医疗科技 加速老化试验

版本/修改状态:生效日期: 文件编号:发放号:控制状态:拟制:审核:批准: ... .. .s. . . . . .. .. . 加速老化实验计划 一、使用围

本公司生产的一次性使用氧气面罩,一次性使用鼻氧管,医用雾化器及其外包装。 二、过程要求 1、微生物屏障 2、无毒性 3、物理特性的符合性 4、化学特性的符合性 5、生物特性的符合性 三、预计完成时间: 老化实验前 全能性实验:2012年5月20日前 包装验证实验:2012年5月22日前 阻菌实验:2012年5月24日前 老化实验时间:2012年5月26日前 加速第一年验证 无菌实验:2012年6月18日前 全能性实验:2012年6月25日前 包装验证实验:2012年6月25日前 阻菌实验:2012年6月27日前 加速第二年验证 无菌实验:2012年7月1日前 全能性实验:2012年7月8日前

包装验证实验:2012年7月8日前 阻菌实验:2012年7月10日前 加速第三年验证 无菌实验:2012年7月15日前 全能性实验:2012年7月22日前 包装验证实验:2012年7月22日前 阻菌实验:2012年7月24日前 加速第四年验证 无菌实验:2012年7月29日前 全能性实验:2012年8月6日前 包装验证实验:2012年8月6日前 ... .. .s. . . . . .. .. . 阻菌实验:2012年8月8日前 加速第五年验证 无菌实验:2012年8月13日前 全能性实验:2012年8月20日前 包装验证实验:2012年8月20日前 阻菌实验:2012年8月22日前 目的:在有效期三年和三年有效期外,通过对我公司产品检验实验,来验证我们的产品规定为三年的有效期是有科学依据的,可靠有效的。 ... .. .s. .

可靠性-LED加速老化寿命试验方法概论Word文档

一、可靠性理论基础 1.可靠度: 如果有N个LED产品从开始工作到t时刻的失效数为n(t),当N足够大时,产品在t时刻的可靠度可近似表示为: 随时间的不断增长,将不断下降。它是介于1与0之间的数,即。 2.累积失效概率: 表示发光二极管在规定条件下工作到t这段时间内的失效概率,用F(t)表示,又称为失效分布函数。 如果N个LED产品从开始工作到t时刻的失效数为n(t),则当N足够大时,产品在该时刻的累积失效概率可近 似表示为: 3.失效分布密度: 表示规定条件下工作的发光二极管在t时刻的失效概率。失效分布函数的导函数称为失效分布密度,其表达式如下: ?早期失效期; ?偶然失效期(或稳定使用期) ; ?耗损失效期。 二、寿命 老化:LED发光亮度随着长时间工作而出现光强或光亮度衰减现象。器件老化程度与外加恒流源的大小有关, 可描述为: B t为t时间后的亮度,B0为初始亮度。通常把亮度降到B t=0.5B0所经历的时间t称为二极管的寿命。 1. 平均寿命 如果已知总体的失效分布密度f(t),则可得到总体平均寿命的表达式如下: 2. 可靠寿命 可靠寿命T R是指一批LED产品的可靠度下降到r时,所经历的工作时间。T R可由R(T R)=r求解,假如该产品的失效分布属指数分布规律,则: 即可求得T R如下:

3. 中位寿命 中位寿命T0.5指产品的可靠度R(t)降为50%时的可靠寿命,即:对于指数分布情 况,可得: 二、LED寿命测试方法 LED寿命加速试验的目的概括起来有: ?在较短时间内用较少的LED估计高可靠LED的可靠性水平 ?运用外推的方法快速预测LED在正常条件下的可靠度; ?在较短时间内提供试验结果,检验工艺; ?在较短时间内暴露LED的失效类型及形式,便于对失效机理进行研究,找出失效原因; ?淘汰早期失效产品,测定元LED的极限使用条件 1. 温度加速寿命测试法 由于通常LED寿命达到10万小时左右,因此要测得其常温下的寿命时间太长,因此采用加速寿命的方法。 根据高温加速寿命得的结果外推其他温度下的寿命。LED温度加速老化寿命测试原理是基于Arrhenius 模型。 利用该模型可以发现由温度应力决定的反应速度的依赖关系,即 式中L为寿命,Ea为激活能,A为常数,k为玻尔兹曼常数,T为热力学温度。 因此测试温度应有两个,即还需测得另一个温度T2下器件寿命为L2。可以求得激活能Ea。样便可以求得温度 T1对某温度T3下的加速系数K3: 。有: 可见实验需要测得同一批器件在两个不同温度下的寿命,然后推得其他温度下的寿命。 这就要求被测器件的数量应足够多,才能避免个性影响,而得到共性,即得到统计寿命值才真实。 LED从正常状态进入劣化状态的过程中,存在能量势垒,跃过这个势垒所需要的能量必须由外部供给,这个能量势垒就称为激活能。

高低温与老化测试报告模板

高低温老化测试报告模板 产品型号及编号: XXX 测试日期: XXX 测试人: XXX 一、测试设备参数 表1:测试设备参数表 测试设备设备型号硬件版本软件版本 DUT XXX XXX XXX NuStream Smartbits 二、测试目的 ◆验证新开发产品在高温、低温条件下能否满功耗正常工作,不出现重启、死机等异常现象,且流 量稳定。 ◆验证新开发产品的主要发热器件,在高温环境下满功耗工作时的温度是否超出要求的温度。 ◆验证新开发的产品能否在高低温条件下正常启动。 三、测试要求和方法 3.1、测试要求 ◆所有新开发产品必需经过高温12小时、低温12小时的环境测试,且高低温下的设备性能必需与 常温时的一致。 ◆测试时必需使测试设备满功耗工作,并测量不同时刻下主要发热器件的温度。 ◆因尽量减小其它无线信号对被测设备的干扰。 ◆新开发产品必需能在高低温条件下正常启动 3.2、测试方法 3.2.1 IxChariot软件无线流量测试 ◆测试时要根据不同的产品选择合适的测试设备:1T1R的路由选择1T1R的网卡,2T2R的路由选择 2T2R的网卡。 ◆将待测设备的信号用馈线引出,固定好导温线后放入高低温箱内。 ◆榙建测试模型: 1、待测设备的信号用馈线引出,通过屏蔽箱与网卡连接。屏蔽箱内网卡可通过馈线或无线与无线 信号连接,无线信号需加适当的衰减(60dB)。 2、PC1连接2.4G无线信号,PC2连接有线信号。如果待测设备为双频设备,需新增一台PC3连接 5G信号。 3、其余端口可通过网线与NuStream或Smartbits连接。

图1:测试模型框图 ◆ 环境条件设置: 1、高温测试:湿度90%情况下先将温箱的温度调至25℃运行2小时,然后升高到45℃运行12小时,回到25℃运行2小时。 2、低温测试:湿度0%情况下先将温箱的温度调至25℃运行2小时,然后下降到-10℃运行12小时,回到25℃运行2小时。 ◆ 使用Chariot 软件无线向有线发包(测试要求:10Pair ,12小时以上),通常测试待测设备的发射能力(此时芯片的功耗大),可以根据情况跑双向。同时每隔一段时间记录下发热器件的温度。 3.2.2 高低温启动 ◆ 待测设备接上串口线,通过CRT 软件记录待测设备的启动信息。 ◆ 将待测设备放入温箱内,高温启动的环境温度为45℃,低温启动的环境温度为-10℃。 ◆ 控制供电设备定时上下电。 四、 测试步骤: 4.1、无线吞吐量测试 ◆ 准备好所要测试的网卡和路由,并验证其能正常工作。 ◆ 搭建好测试环境,PC 相互Ping 包确保连路是通的。 ◆ 运行Chariot Console 软件,新建一个测试档案,选择Add Pair ,配置好客户机和服务器的IP 地址,选择测试脚本程序,测试10个程线下的吞吐量(测试要求8小时以上)。 ◆ 测试时,待测设备应该加散热片(如果有机壳,加机壳测试),并使用相应的设备或工具使其满负载运行,同时每个时间段用点温计测量温度。 4.2、高低温启动 ◆ 准备好所要测试的网卡和路由,并验证其能正常启动。 ◆ 搭建好测试模型,启动供电设备。 ◆ 查看待测设备的启动信息是否有不正常启动的现象。 五、 测试数据: 5.1、 温度测试记录 待 测 设 备 2.4G 网 5G 网卡 衰减器 衰减器 屏蔽箱 PC1 PC3 PC2 2.4G 2.4G 2.4G 5G 5G 5G 以太网 NuStream

相关主题
文本预览
相关文档 最新文档