当前位置:文档之家› 能力设计方法在双层高架桥梁抗震设计中的应用

能力设计方法在双层高架桥梁抗震设计中的应用

能力设计方法在双层高架桥梁抗震设计中的应用
能力设计方法在双层高架桥梁抗震设计中的应用

能力设计方法在双层高架桥梁抗震设计中的应用

彭天波,李建中,范立础(同济大学桥梁工程系,上海200092)

摘 要:共和新路高架工程是国内首座结合了道路高架桥与地铁高架桥的一体化双层高架结构,具有形式特殊、抗震危险性高的特点。以其为背景,介绍采用能力设计方法的抗震设计思路和具体应用步骤。通过对此设计方案进行的非线性时程地震反应分析和大比例模型拟动力试验,证实能力设计方法的可行性和有效性。

关键词:双层高架桥梁;能力设计方法;抗震设计中图分类号:U 448.28;U 442.55

文献标志码:A

文章编号:1671-7767(2009)01-0012-04

收稿日期:2008-10-14

基金项目:国家自然科学基金资助项目(50708074)

作者简介:彭天波(1974-),男,讲师,1997年毕业于同济大学桥梁工程专业,工学学士,2000年毕业于同济大学桥梁与隧道工程专业,工学硕士,2003年毕业于同济大学桥梁与隧道工程专业,工学博士(E mail:ptb@https://www.doczj.com/doc/a7965900.html,)。

1 引 言

共和新路高架工程起自上海新客站,向北经中山北路,沿共和新路及蕴川路至泰和路,其中一段采用的是结合了道路高架桥与地铁高架桥一体化的双层高架结构。其主线标准段以30m 作为基本跨径,道路高架桥主梁采用T 梁;地铁高架桥采用整体简支箱梁。桥墩采用双层框架结构,其下立柱是竖直的,间距10m,上立柱采用向外倾斜18 的斜柱来支承上盖梁。上下立柱之间设置下横梁连接左右立柱,用于支承轨道交通梁。一体式双层高架桥典型横断面示意见图1

图1 一体式双层高架桥典型横断面示意

由于双层高架桥梁具有上部结构荷载大、结构建筑高度高的特点,其横向抗震危险性尤为突出,必

须充分重视[1]

。在1989年Loma Prieta 地震中赛普里斯(Cypress)双层高架桥的坍塌和1995年阪神地震中双层高架桥多处墩柱的弯曲和剪切破坏发生

之后,双层高架桥梁的抗震性能成为一个备受关注的研究热点。

本文结合形式特殊、抗震危险性高的双层高架桥梁,介绍采用能力设计方法的抗震设计思路和具体应用步骤。通过对此设计方案进行的非线性时程反应计算和大比例模型拟动力试验,证实了能力设计方法的可行性和有效性。2 能力设计方法简介

现行的公路工程抗震规范实际执行的是 一水准!的抗震设计方法,只对设计地震作用下的桥梁结构进行验算,要求结构所有构件的抗震能力大于地震作用下的结构响应。

新公路工程抗震设计规范(征求意见稿)要求:在多遇地震的作用下,一般采用反应谱法对桥墩进行强度抗震验算;设计地震作用下,按静力法验算桥梁上下部结构连接构造的安全;罕遇地震作用下,应采用非线性时程反应分析法进行延性验算,从而达到 小震不坏,中震可修,大震不倒!的设防目标。这一 三水准!抗震设计思想,对于不同的地震水平,采取不同的设防目标,允许结构处于不同的性能水平,这比现行的公路工程抗震规范有了较大进步。

实现这一抗震设计思想需要更复杂的设计过程和更大的工作量,尤其是如何保证形式多样、构件较多的桥梁结构 大震不倒!难度很大。仅凭经验进行设计很容易造成材料的浪费。甚至对于个别结构,由于受到很多实际情况的限制,使得其能力不能无限增加,从而无法通过抗震验算。

配合三水准!的抗震设计,在Caltrans Seismic Design Criteria等规范中采用的是能力设计方法![2,3]。其基本思想为:通过设计,使得结构体系中的延性构件和能力保护构件具有不同的强度等级,确保结构构件不发生脆性破坏。这样就可以保证在设计地震作用下只在个别构件(延性构件)出现程度很轻的损伤;在罕遇地震作用下延性构件出现延性损伤,但不发生破坏,且其它构件保持完好,整体结构不发生倒塌。另外,由于对结构的最终损伤模式进行了预先限定,因此地震波的随机性、桥址场地地质条件的不同,以及构件本构关系的不确定性不会增加结构的抗震危险性。通过协调各个构件的尺寸,可得到更为经济、合理的设计,同时实现了结构抗震设计优化。因此,采用能力设计方法不仅可以保证结构的抗震安全,同时也可保证很好的经济性。

3 能力设计方法在双层高架桥梁抗震设计中的

应用

本文采用能力设计方法对共和新路双层高架桥梁的框架桥墩进行抗震设计。

(1)确定整体结构的抗震性能目标及检算准则。结合新公路工程抗震设计规范(征求意见稿)和具体工程的实际情况,要求在多遇地震作用下,结构不出现损伤;在设计地震作用下,允许局部出现可修复的损伤;在罕遇地震作用下,局部可以出现一定程度的延性损伤,但不能发生破坏。

(2)根据能力设计原理的要求确定塑性铰区域的位置。由于该桥墩的结构形式比较复杂,有左右上下立柱、上下横梁等多个构件,如果桥墩的上下横梁和基础承台出现损伤很难维修、加固,所以通常是不允许出现塑性铰的,因此确定上下立柱为延性构件,上下横梁为能力保护构件。选取上下立柱的8个端部作为塑性铰区域,其位置示意见图2。

(3)根据塑性铰需要达到的延性,进行塑性铰区域的配筋设计,并计算得到塑性铰区域的转角与弯矩之间的关系,以及塑性铰区域的最大可能抗弯强度。根据以往的经验,对于这样的框架结构,

曲率

图2 塑性铰位置示意

延性通常需要大于10。设计的立柱截面形式为矩形(边长为1.8m?1.3m),配筋率为1.2%。表1给出了上下立柱的截面特性参数。由于塑性铰区域的轴压比较小,所以其抗弯强度随着轴压力的增加而增加,设计中假定最大轴压力为恒载轴压力的150%,计算得到了最大可能抗弯强度。

(4)根据塑性铰区域的最大可能抗弯强度对能力保护构件进行设计,以防出现损伤。同时为了防止出现其它的破坏形式,还需要对结构进行细部构造设计。其中,上下横梁的截面形式为矩形,边长分别为2.0m?1.8m和2.4m?1.8m,配筋率为1.2%,屈服弯矩分别为22731kN#m和33647 kN#m。

4 非线性时程反应分析结果的比较

为了验证方案的抗震能力,采用有限元程序SAP2000进行了非线性时程地震反应分析。计算中只对其框架桥墩进行了建模,分别采用集中质量模拟双层桥面的地震作用。由于本设计不允许在横梁发生破坏,因此假定这些区域都处于线弹性状态。在每个桥墩上下立柱的端部各设置了1个塑性铰区域,共用8个塑性铰区域。采用PM M塑性铰单元(即轴力-弯矩相互作用球面)模拟塑性铰区域。

非线性时程反应分析采用了地震危险性分析报告提供的人工加速度时程曲线???Gong2场地波(见图3)。计算中在横桥向和竖向输入了地震波,竖向地震作用取为水平地震作用的2/3。通过逐步

表1 上下立柱的截面抗弯特性参数

位置屈服弯矩/kN#m屈服曲率/m-1极限曲率/m-1曲率延性极限转角/rad 最大可能抗弯强度/kN#m

上立柱顶9642 2.53?10-39.35?10-237 6.07?10-210667上立柱底9918 2.57?10-39.75?10-238 6.34?10-211038下立柱顶11186 2.68?10-38.29?10-231 5.39?10-212740下立柱底11529 2.70?10-38.19?10-230 5.32?10-212974注:计算采用的等效塑性铰区域长度取为矩形截面高度的一半[5]。

加大Gong2场地波的加速度峰值,系统地研究了结构在地震中的行为。分析中共计算了5个工况,各个工况中Gong2场地波的加速度峰值分别为100,200,300,400,600cm/s 2,其中工况1对应于设计地震水平,工况2

对应于罕遇地震水平。

图3 作为地震动输入的人工加速度时程曲线

计算得到的各个塑性铰区域的塑性转角工作状态,以及上下横梁和基础的最大弯矩见表2、表3,从中可以得到以下几点结论:

(1)在设计地震(工况1)作用下,结构没有屈服;在罕遇地震(工况2)作用下出现塑性铰,但结构没有破坏。可见设计能够满足抗震要求。

(2)大部分塑性铰在工况3都进入屈服状态(除了塑性铰3);之后的工况中,塑性铰的变形都有所增加;工况5时共有3个塑性铰发生了破坏。

(3)表3中给出的能力保护构件,在相邻的塑性铰区域发生屈服后,地震反应都几乎不增加。能力保护构件的地震反应小于构件抗弯能力(即其屈服弯矩),所以能力保护构件得到了很好的保护。

由此可见,采用了能力设计方法的方案能够满足抗震设计的要求,同时又具有很好的经济性和可靠性。

表2 计算得到的各个塑性铰区域的塑性转角

rad

位置

工况1

工况2

工况3工况4工况5

塑性铰1未屈服 2.58?10-48.82?10-4 1.96?10-3 3.74?10-3塑性铰2未屈服 3.47?10-4

1.56?10-3

3.11?10-3

4.89?10-3塑性铰3未屈服未屈服未屈服7.86?10-4 2.75?10-3塑性铰4未屈服

未屈服

4.03?10-4 1.73?10-3

3.80?10-3

塑性铰5未屈服 1.47?10-3 2.68?10-3 3.72?10-3破坏塑性铰6未屈服7.53?10-4

2.65?

10-3

4.96?

10-3

破坏塑性铰7未屈服 2.90?10

-4

1.20?10-3 1.99?10

-3 5.01?10-3

塑性铰8未屈服

未屈服7.62?10-4

2.12?10-

3

破坏

表3 计算得到的上下横梁最大弯矩

kN #m

位置工况1工况2工况3工况4工况5上横梁1407517762184891903819729下横梁

13408

20154

24787

28378

28433

5 大比例模型拟动力试验

为了了解该双层高架桥的抗震安全性,并验证在抗震设计中采用的能力设计方法的正确性,同济

大学土木工程防灾国家重点实验室对该桥结构进行了拟动力试验研究

[4,5]

。根据实验室的试验能力,

采用1/5的大比例模型进行试验。本次拟动力试验选用了Gong2场地波进行研究,通过逐步加大该场地波的加速度峰值,系统地研究了原型结构在地震中的行为。试验中发现:

(1)在多遇地震作用下,结构处于弹性状态;在设计地震作用下(对应于计算中的工况1),结构刚度出现了轻微的下降;在罕遇地震作用下(对应于计算中的工况2),结构只有个别位置发生了屈服,而结构没有发生破坏。

(2)试验中结构的损伤集中于上下立柱两端的塑性铰区域,柱底比柱顶先屈服。

(3)上下层结构和总体结构的位移延性能力都满足要求。

(4)按能力保护构件设计的横梁和节点等实际上保持弹性。

由于条件限制,拟动力试验中没有考虑竖向地震动的作用,也无法消除累计损伤的影响,但是就其主要结论来看,试验与计算结果基本一致。研究表明,结构具有较好的延性能力,完全能够满足抗震设计的要求;能力保护方法通过对各个构件设置不同的强度等级,可以保证结构形成适当的塑性耗能机制,对于双层高架桥的抗震设计是可行且有效的。6 总 结

本文介绍了能力设计方法的抗震设计思路和在双层高架桥梁抗震设计中的具体应用步骤,并对此双层高架桥设计方案进行了非线性时程地震反应分析和大比例模型拟动力试验,研究发现:

(1)结构在设计地震作用下没有屈服,在罕遇地震作用下出现塑性铰,但没有破坏,设计能够满足抗震要求。

(2)试验中结构的损伤集中于上下立柱两端的塑性铰区域,塑性铰区域的延性变形能力满足要求。

(3)按能力保护构件设计的构件在地震作用下保持弹性,得到了很好的保护。

研究证实了能力设计原理的可行性和有效性。参 考 文 献:

[1]Zay ati F,M ahin S A.Ex perimental and ana lyt ical evalu

atio n of a r et rof it double deck viaduct structure [R ].Berkeley:U niver sity o f Califo rnia,1996.

[2]CA L T RA N S,Caltr ans Seismic Design Criter ia,V er sion

1.3[M].Califo rnia Depart ment of T ranspo rtation,

Sacrament o,U SA.2004.

[3]Pr iest ley M J N,Seible F,Calv i G M.Seismic design

and ret rofit o f br idg es[M].New Y or k:Jo hn Wiley and So ns,1996.[4]彭天波.双层高架桥的拟动力试验研究[D].上海:同济

大学桥梁工程系,2003.

[5]彭天波,李建中,胡世德,等.双层高架桥的抗震性能研

究[J].同济大学学报(自然科学版),2004,32(10): 1355-1359.

Application of Capacity Design Method to

Seismic Design of Double Deck Viaduct

PENG Tian bo,LI Jian zhong,FAN Li chu

(Depar tment o f Br idge Engineering,T ongji U niver sity,Shang hai200092,China)

Abstract:T he Gonghexin Ro ad Viaduct is the first do mestic double deck v iaduct structure integrating both roadw ay and subw ay utilization and is characteristic of special structural form and high level seismic vulnerability.By w ay of ex ample o f the Viaduct,the seismic design consid erations based on the capacity design method and the specific application procedures of the method ar e introduced and the feasibility and effectiveness of the m ethod are verified as w ell thro ug h the analysis o f nonlinear tim e histo ry seismic response and the pseudo dynamic lar ge scale mo del test of the design of such ty pe o f the v iaduct.

Key words:do uble deck viaduct;capacity design m ethod;seism ic design

(上接第11页)

4 结果及讨论

玻璃这样一种高抗压强度的脆性材料在本文以受压为主的拱桥设计中得到了应用。该桥简洁轻盈,景观独特。玻璃本身是一种高脆性材料,本文通过将玻璃砌块!和环氧树脂砂浆!接缝组合成一种新型玻璃砌体,使玻璃材料获得了可以满足结构安全使用要求的足够延性。在该砌体中这种延性是依靠环氧树脂砂浆!的塑性变形实现的。在该砌体试件上进行的单轴抗压试验结果表明,其应力-应变曲线在后临界(塑性)阶段存在明显改善。与干连接试件试验结果相比较,玻璃砌体的抗压强度约为干连接试件相应值的一半,但其延性却提高了一个数量级,这一点可从其应力-应变曲线中存在一明显的应变软化段得以证实。值得注意的是,在玻璃砌体试件抗压试验中1块玻璃砌块完全破裂并不意味着整个试件也即将完全破坏,这是由于已破裂玻璃砌块的碎片被环氧树脂接缝层粘合在一起,并未离散开,从而使得试件抗压承载力在一定阶段内仍保持不变。在这一过程中环氧树脂接缝层提供的侧向应力起到了有利作用。

玻璃砌体在保持着可观抗压强度(约80~90 M Pa)的同时还具有足够的延性。当然,这种结构材料的大规模安全应用还有待进一步的试验研究,但本文目前所做的工作至少证明了其在中小跨径人行拱桥上应用的可能性。

参 考 文 献:

[1]Gianni Ro yer Carfag ni,M irko Silv est ri.A pr oposal for

an arch foot br idge in V enice made of st ructur al g lass maso nr y[J].Eng ineer ing Structures,2007,(29): 3015-3025.

公路桥梁抗震设计的设防标准研究

【摘要】本文通过对国内外桥梁的抗震规范进行了细致的比较分析,以及对抗震桥梁的使用功能分类与重要性等因素的研究,提出了公路桥梁的抗震设防的标准,为中国公路桥梁的抗震设计规范的修订及完善提供了重要的依据。 【关键词】公路桥梁;抗震;设防标准 公路桥梁的抗震设防是指在地震作用下能够按照设计要求,实现预期功能的桥梁工程的预防措施。桥梁按照设定的可靠性要求以及抗震技术要求,一般是由设计地震动参数和建筑其使用功能的重要性决定的,这就是桥梁抗震设防的标准。当前,我国的《公路工程抗震设计规范》中,明确提出直接以基本烈度作为设防烈度,而且考虑到结构重要性系数,实际上没有明确的规定公路桥梁的结构抗震设防标准。而抗震设防标准是对结构抗震设防要求高低尺度的衡量,它直接关系到公路桥梁结构的安全度与工程造价的多少,是在抗震设计中不可回避的问题。 1.公路桥梁抗震的三水准设防与二阶段设计 多级抗震设防是被国内外的建筑物抗震规范中广泛运用的手段,其三水准设防设想,是通过二阶段设计实现的。 1.1三水准设防 若桥梁结构其设计的基准期是y,那么公路桥梁“小震不坏,中震可修,大震不倒”的抗震设计目标中,小震、中震、大震则分别约为y年63%、y年10%、y年3%。 在地震的作用下,桥梁的结构性能目标可分为三类,即桥梁构件没有任何损坏,结构保持在弹性范围内;桥梁构件出现可以修复的损坏,修复后可以正常使用;桥梁构件损坏严重,但整个结构其非弹性变形依然受到控制,同结构倒塌的临界变形还有一定的距离,震后能够修复,震时紧急救援车还可以通过。为实现公路桥梁的抗震设计目标,一般可以采用三水准的方法进行抗震设防。设防水准以及相应的性能目标如下表: 1.2二阶段设计 公路桥梁的抗震规范征求意见的稿拟中,所采用的二级设防,二阶段设计是满足“小震不坏,大震不倒”这一目标的,认为“中震可修”是自动满足的。所以,我国当前实际上应用的同公路桥梁抗震规范拟稿中的提议是一致的,即:在公路桥梁的抗震设计中,均采用二级设防,二阶段设计的方法,但是二者的二级设防,二阶段设计的内容是不完全相同的,在实际的应用过程中,为了能够保证结构的抗震安全性,所采取的二级设防、二阶段设计,实际上满足了“中震不坏、大震不倒”的目标,而“小震不坏”这一目标会自动满足。 2.公路桥梁抗震设防的重要性以及使用功能分类 2.1建筑抗震设防重要性的分类 根据建筑对社会、政治、经济以及文化的影响程度,将建筑抗震设防类别的重要性划分为以下几类。甲类:重大建筑工程和地震时可能发生严重次生灾害的建筑,如:大型桥梁,危险品等;抗震设防标准应高于本地区抗震设计基本地震加速度值a的要求,其值应按批准的地震安全性评价结果确定,当0.05g≤a≤0.3g时,应该按照0.1g≤a≤0.4g的要求;当a=0.4g时,应该按照a>0.4g的要求。乙类:地震时使用功能不能中断或需尽快恢复的建筑,如:医院,发电厂等;抗震设防标准应符合本地区抗震设计基本地震加速度值a的要求,当0.05g≤a≤0.3g时,应该按照0.1g≤a≤0.4g的要求。丙类:一般的建筑,如:一般的民用或工业建筑;抗震设防标准符合本地区抗震设计基本地震加速度值a的要求。丁类:抗震次要建筑,如:一般仓库;抗震设防标准符合本地区抗震设计基本地震加速度值a的要求,设计基本地震加速度值a减半,但最小值不得小于0.05g。 依据建筑物重要性来确定的抗震设防类别,决定了建筑抗震设计所采用的地震带来的损坏的大小以及应该采取的抗震措施的等级,而且地震的作用随着抗震设防类别的差异,可以

桥梁抗震构造措施

桥梁抗震构造措施 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

桥梁抗震的构造要求有哪些 1.对简支梁,连续梁等梁式体系,必须设置阻止梁墩横桥向相对位移的构造,阻止梁的横向位移。 ??? 2.对悬臂梁和T型刚构除采取上述措施外,还应采取阻止上部结构与上部结构之间出现横向相对位移的构造措施。 ??? 3.对活动支座,均应采取限制其位移、防止其歪斜的措施。 ??? 4.对简支梁应采取措施防止地震中落梁,如采用螺栓连接,钢夹板连接,以及将基础置于可液化层一定深度等措施。 ??? 5.对于桩式墩和柱式墩,桩(柱)与盖梁,承台联接处的配筋不应少于桩或柱身的最大配筋。 ??? 6.对于砖石混凝土墩台,应考虑提高墩台帽与墩台本身以及基础连接处,截面突变处的抗剪强度。 ??? 7.桥台胸墙应予加强。在胸墙与梁端部之间,宜填充缓冲材料,如沥青、油毛毡等。 ??? 8.砖石、混凝土墩台和拱圈的最低砂浆强度等级应按现行《公路桥涵设计规范》的要求提高一级使用。 ??? 9.不论为梁式桥、拱桥尽量避免在不稳定的河岸修建,并应合理布置桥孔,避免将墩台布设于在地震时可能滑动的岸坡上的突变处。 ??? 10.大跨径拱桥的主拱圈,宜采用抗扭刚度较大整体性较好的断面型式,如箱形拱,板拱等。当主拱圈采用组合断面时,应加强组合截面的连接 强度,对双曲拱桥应加强肋波间的连接。 ??? 11.大跨径拱桥不宜采用二铰和三铰拱。当小跨径拱桥采用二铰板拱时,应采取防止落拱构造措施。 ??? 12.砖石、混凝土腹拱的拱上建筑,除靠近墩台的腹拱采用三铰或二铰外,其余铰拱宜采用连续结构。 ??? 13.拱桥宜尽量减轻拱上建筑的重量。 ??? 14.刚性地基烈度为9度时,或非刚性地基烈度为7度时的单孔及连拱桥与端腹孔,均应采取防止落拱构造,包括加长拱座斜面,设置防落牛腿以 及将主拱钢筋伸入墩台帽内。 桥梁结构抗震措施 【提要:措施,抗震,结构,桥梁,】 桥梁结构抗震措施 为防止或减轻震害,提高结构抗震能力,对结构构造所作的改善和加强处理,通常称为抗震措施。各国的工程结构抗震规范对此都有明确的规定。对于桥梁结构,这些措施可归纳为:①对结构抗震的薄弱环节在构造上予以加强;②对结构各部加强整体联结;③对梁式桥,要在墩台上设置防止落梁的纵、横向挡块,以及上部结构之间的连接件;④加强桥梁支座的锚固;⑤加强墩台及基础结构的整体性,增强配筋,提高结构的延性;⑥对桥位处的不良土质应采取必要的

桥梁工程课程设计

辽宁工业大学 《桥梁工程》课程设计计算书 开课单位:土木建筑工程学院 2014年12月

目录 第一章设计基本资料 (1) 1.1跨度和桥面宽度 (1) 1.2主要材料 (1) 1.3箱型梁构造形式及相关参数 (1) 1.4设计依据与设计规范 (3) 第二章主梁的几何特性计算 (4) 2.1计算截面几何特性 (4) 2.2检验截面效率指标ρ (6) 第三章桥面板计算 (7) 3.1横隔梁设置 (7) 3.2 每延米恒载计算 (7) 3.3恒载内力计算 (7) 3.4车辆荷载产生的内力 (7) 第四章主梁内力计算 (9) 第五章荷载横向分布计算 (11) 5.1 支点截面横向分布系数计算 (11) 5.2跨中截面横向分布系数计算 (13) 第六章活载影响下主梁内力计算 (15) 6.1活载内力计算 (15) 6.2荷载内力组合 (16) 第七章横隔梁内力计算 (18) 7.1作用在横梁上的计算荷载 (18) 7.2绘制横隔梁的内力影响线 (18) 第八章主梁挠度计算 (20) 8.1验算主梁变形 (20) 8.2判断是否设置预拱度 (20) 8.3 计算预拱度最大值 (20) 第九章支座计算 (21) 9.1板式橡胶支座的选择 (21) 9.2确定支座的厚度 (21) 9.3确定橡胶片总厚度 (21)

9.3支座偏移验算 (22) 9.4验算支座滑移稳定性 (22)

第一章 设计基本资料 1.1跨度和桥面宽度 1) 标准跨径:30m (墩中心距) 2) 计算跨径:29.55m 3) 主梁全长:29.96m 4) 桥面宽度:净9+2×1.0m 人行道 5) 人群荷载:23.5/m KN 6) 每侧栏杆及人行道的重量:4.5/m KN 1.2主要材料 1) 混凝土:箱梁为50C 号,铰缝采用40C SCM 灌浆料以加强铰缝;桥面铺装为12cm 厚40 C 防水砼(S6)+10cm 沥青砼;栏杆采用25C 号混凝土。 2) 预应力钢绞线:符合国际通用标准ASTMA416-92规定。单根钢绞线直径为φ 15.24mm ,面积A=140mm 2,标准强度1860b y R MPa =,弹性模量51.9510E MPa =?。 3) 选用R235及HRB335钢筋,其技术标准应符合国家标准(GB1499-1998)及 (GB13013-1991)的规定。 4) 锚具:采用《公路桥梁预应力钢绞线用锚具、连接器规格系列》产品,管道成孔采 用金属波纹管。 5) 支座:采用板式橡胶支座。 6) 其他材料:砂、石、水的质量要求均按《公路桥梁施工技术规范》有关条文办理。 1.3箱型梁构造形式及相关参数 ⑴ 本箱型梁按全预应力混凝土构件设计,施工工艺为后张法。 ⑵ 主梁尺寸拟定: 梁高:根据设计经验,梁高跨比通常为1/14-1/25,本设计初步尺寸定为1.3m , 跨中:预制箱型梁顶板厚0.2m ,底板厚0.2m 腹板厚0.2m. 端部:预制箱型梁顶板厚0.2m ,底板厚0.30m 横隔梁:横向共计五片箱型梁,中间设四个横隔梁。高1.1m,上部宽0.5m,下部宽 0.5m 。 ⑶ 预应力管道采用金属波纹管成形,波纹管内径为60mm ,外径为67mm ,管道摩擦系数μ=0.2,管道偏差系数k=0.0015,锚具变形和钢束回缩量为6mm(单端)。 ⑷ 沥青混凝土重度按23KN/m 3计,预应力混凝土结构重度按26 KN/m 3计,混凝土重度按25 KN/m 3计,单侧防撞栏线荷载为4.5KN/m 。

日本桥梁抗震设计规范

摘要:本文对世界主要的桥梁结构抗震设计规范基础部分的现状进行了概略的比较,着重介绍日本桥梁抗震设计规范中基础的设计方法,并指出了中国现行《公路工程抗震设计规范》基础部分中存在的一些不足。 关键词:桥梁基础抗震设计日本规范 一、引言 近十年来,世界相继发生了多次重大地震,1989年美国 loma prieta地震(m7.0)、1994年美国northridge地震(m6.7)、1995年日本阪神地震(m7.2)、1999年土耳其伊比米特地震(m7.4)、1999年台湾集集地震(m7.6)等等。因此,专家们预测全球已进入一个新的地震活跃期。随着现代化城市人口的大量聚集和经济的高速发展,地震造成的损失越来越大。地震灾害不仅是大量地面构筑物和各种设施的破坏和倒塌,而且次生灾害中因交通及其他设施的毁坏造成的间接经济损失也十分巨大。以1995年日本版神地震为例,地震造成大量高速公路及高速铁路桥隧的毁坏,经济总损失高达1000亿美元。 中国现行《公路工程抗震设计规范》(jtj004-89)在80年代中期开始修订,于1989年正式发行。随着中国如年代经济起飞,交通事业迅猛发展,特别是高速公路兴建、跨越大江,大河的大跨桥梁、大型立交工程以及城市中大量高架桥的兴建,规范已大大不能适应。但是目前所有国内的桥梁设计,对抗震设计均在设计书上标明的参照规范即是《公路工程抗震设计规范》和《铁道工程抗震设计规范》。与国外如日本、美国的同类规范相比,中国现行《公路工程抗震设计规范》水准远落后于国外同类规范。若不进行改进,则必将给中国不少桥梁工程留下地震隐患。 本文主要介绍了各国桥梁抗震设计规范中基础部分的抗震设计。基础部分对全桥的地震响应以及墩柱力的分布均有非常重要的影响。基础设计不当会导致桥梁墩柱在地震中发生剪断、变形过大不能使用等等,有时甚至是桩在根部直接剪断破坏。基础设计需要考虑的方面除了基础形式的选择以外还包括抗弯强度、抗剪强度桩基础连接部分的细部构造、锚固构造等方面。本文首先对中、美、日、欧洲、新西兰五国或地区抗震设计规范中有关基础的部分进行了一般性的比较。笔者认为,相对而言中国的规范在基础抗震设计方面较为粗糙、可操作性不强。而日本规范在这方面作的最为细致,技术也较为先进。因此,在随后的部分中详细介绍了日本抗震规范的基础设计方法。 二、主要国家桥梁抗震规范基础抗震设计的概况 本文将中国桥梁抗震规范与世界上的几种主要抗震规范(美国的aashto规范、cal-tans规范、atc32美国应用技术协会建议规范,新西兰规范nz,欧洲规范ec8,日本规范japan)进行基础抗震设计方面的比较。 中国桥梁抗震设计规范有关基础设计的部分十分笼统,只以若干定性的条款,从工程选址方面加以考虑,而对基础本身的抗震设计,特别是对于桩基础等轻型基础抗震设计重视不够。这方面,日本的桥梁抗震设计规范和准则规定得比较详细,是我们应当学乱之处。基于阪神地震的经验,地震后桥梁上部结构的修复和重建都比下部基础经济和省时、省力,因此桥梁基础的抗震能力的要求应比桥墩高。

桥梁抗震设计及加固技术

桥梁抗震设计及加固技术浅析 杨立国 (山东科技大学,山东青岛266590) 摘要:地震是我国多发的地质灾害现象,我国地震灾害分布的范围比较大,地震具有强度大、频率高的特点,公路桥梁往往在地震中出现损坏,给救灾工作带来了困难。针对我国汶川地震等近年来地震的情况,我国公路桥梁的抗震加固工作需要进一步加强,文章对我国公路桥梁抗震加固工作的现状进行了分析,探讨了抗震加固技术的应用,为我国公路桥梁提高到足够的抗震强度提供一些思路。 关键词:地震灾害抗震设计;加固技术 引言:随着我国城市化进程加快,作为城市基础设施之一的公路交通其重要性越来越突出。同时,我国处于地震多发地带,尤其是近几年不断发生各种等级的地震。在地震发生时,不仅会有大量的地面建筑物及各种设施遭到破坏或倒塌,大量人员伤亡,而且还会严重造成交通中断。若作为抗震救灾生命线工程之一的公路交通(尤其是铁路桥梁、城市高架、公路桥梁等公路工程的咽喉要道)受到较大损坏,将会给后续救助工作造成极大的困难。此外,目前我国公路行业现采用的抗震设防标准是《公路桥梁抗震设计细则》(JTJ/TB02-01-2008),公路桥梁抗震设计细则》(JTJ/TB02-01-2008)较《公路工程抗震设计规范》(JTJ004-89)在设计思想、安全设防标准、设计方法、设计程序和构造细节等诸多方面均有很大的变化和深入。 1 桥梁与抗震 我国处于世界两大地震带——环太平洋地震带和亚欧地震带之间,是一个强震多发国家,汶川、玉树地震表明强烈地震将引发长期的社会政治、经济问题,并带来难以慰籍的感情创伤。在抗震救灾中,公路交通运输网更是抢救人民生命财产和尽快恢复生产、重建家园、减轻次生灾害的重要环节,所以公路桥梁是生命系统工程中的重要组成部分,公路桥梁抵抗震害的能力是桥梁设计中重点关注的问题之一。桥梁震害中获得的经验和知识是推动桥梁抗震设计的原动力,1971年美国san fernand地震(6.6级)、1989年美国北加州的lonm pfieta地震(7.1级)、1995年日本阪神大地震(7.2级)、2008年汶川大地震(8.0级)等影响巨大的地震引起了工程界的重视和广泛探讨。随着建筑物与地震反应关系的研究深入,桥梁抗震设计理论得到了提高与拓展,2008年我国公路桥梁设计规范由《公路桥梁抗震设计细则》(JTJ/TB02-01-2008)替代原来的《公路工程抗震设计规范)(JTJ004-89),是我国桥梁设计的一大进步,根据历次大地震的调查研究,公路桥梁的地震破坏主要形式总结归纳如下:(1)桥梁上部结构受水平力作用滑落(汶川百花大桥落梁);(2)桥墩塑性铰的抗弯、抗剪强度不足,导致桥墩破坏(日本阪神大量墩柱破坏);(3)桥墩、桩基础钢筋的连接及锚固性能不足,导致桥墩破坏(最为常见); (4)桥梁支座等连接部位破坏(最为常见)。常规桥梁抗震设计首先应是抗震构造措施,根据汶川地震相关调查表明干线公路桥梁由于采用了合理的抗震构造措施,结构安全富裕较多,震后其破坏远小于地方道路桥梁。抗震构造措施是总结桥梁震害经验的基础上提出的设计原则,事实表明抗震构造措施可以起到有效减轻震害作用,而所耗费的工程代价往往较低。 2 桥梁设计与抗震措施 2.1 防止落梁的措施 《公路桥梁抗震设计细则》指出上部结构主梁的支承长度a≥70+0.5L(L为梁的计算跨径,L 单位为m,a单位为cm),该取值沿用自日本抗震设计规范,多数设计者认为规范取值较为保守,比上一代规范《公路工程抗震设计规范(JTJ004-89))有较大提高(a≥50+l)。这里需指出该种认识属于误区,当“长桥高墩”时应在规范基础上给予更多的安全富余。例如:都汶高速公路庙子坪岷江大桥第10跨(跨径50m、墩高70m)。虽然盖梁宽度高达3.0m(根据《桥梁

桥梁工程课程设计计算书

桥梁工程课程设计计算书 The pony was revised in January 2021

《桥梁工程》课程设计 专 业:土木工程(道桥方向) 班 级: 2011班 学生姓名: 周欣树 学 号: 27 指导教师: 一、确定纵断面、横断面形式,选择截面尺寸以及基本设计资料 1. 桥面净宽:净—72 1.0+? 荷载: 公路—Ⅱ级 人群—23.0kN m 人行道和栏杆自重线密度-5.0kN m 2. 跨径及梁长:标准跨径13b L m = 计算跨径12.40L m = 主梁全长 '12.96L m = 3. 材料 钢筋:主筋用HRB400级钢筋,其他用HPB335级钢筋 混凝土:C40,容重325kN m ;

桥面铺装采用沥青混凝土;容重323kN m 4.构造形式及截面尺寸 梁高: 1.0h m = 梁间距:采用5片主梁,间距。 采用三片横隔梁,间距为 梁肋:厚度为18cm 桥面铺装:分为上下两层,下层为C25砼,路缘石边处厚 ;上层为沥青砼,。桥面采用%横坡。 桥梁横断面及具体尺寸:(见作图) 二、确定主梁的计算内力 (一)计算结构自重集度(如下表) (二)计算自重集度产生的内力(如下表) 注:括号()内值为中主梁内力值 根据计算经验,边梁荷载横向分布系数大于中梁,故取边梁进行计算分析。 (三)支点处(杠杆原理法) 由图可求得荷载横向分布系数: 汽车荷载:1 0.3332oq m η==∑ 人群荷载: 1.222or r m η==

(四)跨中处(修正刚醒横梁法) 1、主梁的抗弯惯性矩I x 平均板厚:()1 1012112H cm =+= 22 3344 1111100162111621127.86181001810027.861221223291237.580.03291x I cm m ????=??+??-+??+??- ? ????? == 2、主梁的抗扭惯性矩Ti I 对于T 形梁截面,抗扭惯性矩计算如下:见下表. 3.计算抗扭修正系数 主梁的间距相等,将主梁近似看成等截面,则得 221 1 12Ti i i Gl I E a I β=+∑∑ 其中:∑It ---全截面抗扭惯距 Ii---主梁抗弯惯距 L---计算跨径 G---剪切模量 G= i a --主梁I 至桥轴线的距离 计算得0.9461β=< 满足 4.采用修正后的刚醒横梁法计算跨中荷载横向分布系数 此桥有刚度强大的横隔梁,且承重结构的跨宽比为:

公路桥梁抗震设防要求 -工程.

公路桥梁抗震设防要求 -工程 2019-01-01 1 将公路工程划分为五个档次: 第一档次为高速公路和一级公路上的抗震重点工程(系指特大桥、大桥、隧道和破坏后修复或抢修困难的路基、中桥和挡土墙等工程), 。此类工程地震破坏后会引起严重后果,上造成重大损失,国防上有特别重要的影响。其抗震等级定为一级,设计基准期为80年。 第二档次为高速公路、一级公路的一般工程(系指非重点的路基、中小桥和挡土墙等工程)和二级公路的抗震重点工程以及二三级公路路工程抗震设防目标 公路工程对政治、经济、国防和抗震救灾具有特别重要的意义,地震时一旦发生破坏,将造成交通中断,后果非常严重。进行公路工程抗震设计时,应根据不同等级公路的重要性程度,考虑重要性系数来计算水平地震作用。重要性系数的取值与工程类别有关,《公路抗震规范》根据工程的重要性和修复(抢修)难易程度上桥梁的支座。此类工程抗震设防要求高,具有特别重要的政治、经济意义。其抗震等级定为二级,设计基准期为60年。 第三档次为二级公路上的一般工程和三级工路上的抗震重点工程以及四级公路上的梁端支座、梁端连接、支挡措施。此类工程具有比较重要的政治、经济意义。其抗震等级定为三级,设计基准期为40年。 第四档次为三级公路上的一般工程和四级公路上的抗震重点工程。此类工程的抗震等级定为四级,设计基准期为20年。 第五档次为四级公路上的一般工程。此类工程的年平均昼夜交通量在200辆以下,一般可以不进行抗震强度和稳定性验算。 我国根据地震的不确定性、现有的技术条件和国家的经济条件及公路工程的特点和用途,在考虑国家经济力量可以承受并保障人民生命财产的安全和公路工程设施基本完好的前提下,提出了公路工程抗震设计总目标:按规范要求进行抗震设计的公路工程在发生与之相当的基本烈度地震影响时,位于一般地段的高速公路、一级公路工程,经一般整修即可正常使用;位于一般地段的二级公路及位于软弱粘性土层或液化土层上的高速公路、二级公路工程,经短期抢修即可恢复使用;三四级公路工程和位于地震危险地段(指发震断层及其邻近地段;地震时可能发生大规模滑坡、崩塌、岸坡滑移等地段)、软弱粘土层或液化土层上的二级公路以及位于抗震危险地段的高速公路、一级公路工程,保证桥梁、隧道及重要的构造物不发生严重破坏。

桥梁抗震设计要点及减隔震技术的应用

桥梁抗震设计要点及减隔震技术的应用 桥梁是现代人类生活中极为重要的生命线之一,也是不可或缺的重要设施,作为生命线工程,其抗震安全的重要性不言而喻,因此,桥梁抗震设计、减隔震技术是桥梁抗震研究的重要内容。本文在总结了以往地震中橋梁震害,提出了桥梁抗震设计要点,阐明了减隔震原理、分类及适用情况,为桥梁工程师提供一个有利的依据。 标签:桥梁震害;抗震设计;减隔震 引言 目前中国新建和在建的桥梁工程,大都没有经历过强震的考验,震害资料缺乏,其抗震设计理论和方法研究存在不足,我国现阶段的抗震思想是“小震不坏,中震可修,大震不倒”,这一抗震思想要求结构遭遇设防烈度的地震后主体结构不应有大的破坏并可以修复,遭遇罕遇地震后允许结构有大的破坏,但不能倒塌造成人员伤亡。但由于地震作用的不确定性和复杂性,结构有可能遭受比设防烈度更大的地震作用,这样会使结构构件严重受损。综上,在地震来临时,如何保证桥梁结构的安全性以及震后修复工作,给桥梁建造者带来了巨大的挑战,桥梁抗震设计显得尤为突出,桥梁的减震措施的应用显得尤为迫切。 一、桥梁震害及分析 调查与分析桥梁的震害及其产生的原因是建立正确的抗震设计方法、采取有效的抗震措施的科学依据[1-2]。桥梁主要由上部结构、下部结构、支座及附属结构组成,纵观历史上发生的大地震,由地震引起的损害也多集中正在上部结构、下部结构及支座,主要有以下现象: 1)上部结构的震害 上部结构的震害分为自身震害、位移震害和碰撞震害。在历次的地震中,混凝土梁体自身在地震中的破坏并不多,主要是钢结构的局部屈曲破坏。桥梁上部结构的移位震害在主要表现为桥梁上部结构的纵向移位、横向移位以及扭转移位,如伸缩缝的移位震害,落梁震害。上部结构的碰撞震害多为相邻梁体粱端之间的碰撞、梁端部与桥台胸墙之间的碰撞。地震中,如果相邻结构之间的间距过小,可能会发生碰撞,产生极大的撞击力,从而使结构受到破坏。 2)支座的震害 桥梁支座是连接上部结构与下部结构的重要部分,是桥梁结构体系中抗震性能较薄弱的一个环节,在强地震作用下,支座非常容易发生破坏。支座的破坏形式主要有支座移位、锚固螺栓被剪断、拔出,支座脱空等。

《桥梁工程》的教案-桥梁工程课程设计

二〇一〇级土木工程(交通土建)专业 《桥梁工程》(Ⅰ) 教案 教师:文国华 班级: 1003307、308班 课时: 64 学时 湖南城市学院土木工程学院 二〇一三年二月

课程名称桥梁工程(Ⅰ) 使用教材桥梁工程 主编邵旭东出版社人民交通出版(修订)时间2007 专业班级 1003307、3308 授课时数总64课时;理论:64课时;实践:0课时;其他:0课时 授课教师文国华 授课时间2013 年上学期 成绩的考核为考试科,成绩按:作业(含平时)30分,考试70分计 主要参考文献: 1、高等院校土木工程专业系列教材《桥梁工程》主编王丽荣,2005年9月; 2、高等学校教材《桥梁工程》主编范立础,1993年7月; 3、高等学校教材《桥梁工程》主编姚玲森,1999年4月; 4、国标《公路桥涵设计通用规范》2004年10月; 5、国标《公路钢筋混凝土及预应力混凝土桥涵设计规范》2004年10月; 6、国标《公路圬工桥涵设计规范》2005年11月; 7、自编教学讲议《桥梁工程习题集》2012年1月等。

第一篇总论第一章概述 目的要求:了解桥梁在交通中的地位、桥梁的发展概况;掌握桥梁的组成和分类 教学重点:桥梁的组成和分类 教学难点:各类桥梁的受力特点 教学课时:4课时 教学方法:课堂教学 教学内容与步骤: 先导概念 1、桥梁 是连续道路中断空间、跨越道路受阻障碍、传递交通流的道路工程结构物。包括“桥”与“涵洞”两类工程建筑。 2、桥梁建设的意义 适应经济发展,满足交通运输需要,促进地区交流,加强民族团结,巩固国防等。 3、桥梁在道路工程中的地位 ⑴数量上一般公路为3~5座桥涵/km;山区公路为7~9座桥涵/km。 ⑵造价上一般公路的桥涵占其公路总造价10~20%;高等级公路的可达30%以上。 ⑶工期上是全线施工工期的关键。 ⑷重要程度上是交通运输的咽喉,是道路正常运输的关节。 ⑸社会性上立交桥、城市桥成为当地经济、文化、政治的标志。 第一节桥梁的组成与分类 一、桥梁的基本组成与常用术语 ㈠桥梁的基本组成 1、上部结构(或桥跨结构、或桥孔结构) ⑴定义桥梁结构中跨越障碍的主要承载结构,如梁桥的主梁,拱桥的主拱。 ⑵作用连续中断的路线、承受交通荷载并将荷载产生的作用反力传递给墩台上的支座。 2、支座 ⑴定义桥跨结构中墩台上支承主要承载结构的传力装置。 ⑵作用传递上部结构的荷载作用,适应桥跨设计变位,联结上下部结构。 3、下部结构 ⑴定义为桥跨中支承上部结构的桥墩、桥台。

桥梁抗震构造措施

桥梁抗震的构造要求有哪些? 1.对简支梁,连续梁等梁式体系,必须设置阻止梁墩横桥向相对位移的构造,阻止梁的横向位移。 2.对悬臂梁和T型刚构除采取上述措施外,还应采取阻止上部结构与上部结构之间出现横向相对位移的构造措施。 3.对活动支座,均应采取限制其位移、防止其歪斜的措施。 4.对简支梁应采取措施防止地震中落梁,如采用螺栓连接,钢夹板连接,以及将基础置于可液化层一定深度等措施。 5.对于桩式墩和柱式墩,桩(柱)与盖梁,承台联接处的配筋不应少于桩或柱身的最大配筋。 6.对于砖石混凝土墩台,应考虑提高墩台帽与墩台本身以及基础连接处,截面突变处的抗剪强度。 7.桥台胸墙应予加强。在胸墙与梁端部之间,宜填充缓冲材料,如沥青、油毛毡等。 8.砖石、混凝土墩台和拱圈的最低砂浆强度等级应按现行《公路桥涵设计规范》的要求提高一级使用。 9.不论为梁式桥、拱桥尽量避免在不稳定的河岸修建,并应合理布置桥孔,避免将墩台布设于在地震时可能滑动的岸坡上的突变处。 10.大跨径拱桥的主拱圈,宜采用抗扭刚度较大整体性较好的断面型式,如箱形拱,板拱等。当主拱圈采用组合断面时,应加强组合截面的连接强度,对双曲拱桥应加强肋波间的连接。 11.大跨径拱桥不宜采用二铰和三铰拱。当小跨径拱桥采用二铰板拱时,应采取防止落拱构造措施。 12.砖石、混凝土腹拱的拱上建筑,除靠近墩台的腹拱采用三铰或二铰外,其余铰拱宜采用连续结构。 13.拱桥宜尽量减轻拱上建筑的重量。 14.刚性地基烈度为9度时,或非刚性地基烈度为7度时的单孔及连拱桥与端腹孔,均应采取防止落拱构造,包括加长拱座斜面,设置防落牛腿以及将主拱钢筋伸入墩台帽内。 桥梁结构抗震措施 【提要:措施,抗震,结构,桥梁,】 桥梁结构抗震措施 为防止或减轻震害,提高结构抗震能力,对结构构造所作的改善和加强处理,通常称为抗震措施。各国的工程结构抗震规范对此都有明确的规定。对于桥梁结构,这些措施可归纳为:①对结构抗震的薄弱环节在构造上予以加强;②对结构各部加强整体联结;③对梁式桥,要在墩台上设置防止落梁的纵、横向挡块,以及上部结构之间的连接件;④加强桥梁支座的锚固;⑤加强墩台及基础结构的整体性,增强配筋,提高结构的延性;⑥对桥位处的不良土质应采取必要的土层加固措施;⑦须特别重视施工质量,如施工接缝处的强度保证等;⑧在重要的大桥上,必要时需采用减震消能装置,如橡胶垫块,特制的消能支座等。

简支T形桥梁工程课程设计说明

桥梁工程课程设计(本科) 专业道路桥梁与渡河工程班级15春 姓名王炜灵

学号9 理工大学网络教育学院 2016年12月 一、课程设计目的 本课程的任务和目的:学生通过本课程的设计练习,使学生掌握钢筋混凝土简支T梁设计计算的步骤和方法,学会对T梁进行结构自重力计算、汽车荷载和人群荷载力计算、作用效应组合;在汽车和人群荷载力计算时,学会用偏心受压法和杆杠原理法求解荷载横向分布系数。 二、课程设计题目 装配式钢筋混凝土简支T形梁桥设计 三、课程设计任务与指导书(附后) 四、课程设计成果要求 设计文本要求文图整洁,设计图表装订成册,所有图表格式应符合一般工程设计文件的格式要求。

五、课程设计成绩评定 课程设计文本质量及平时成绩,采用五级制评定:优、良、中、及、不及。 装配式钢筋混凝土简支T形梁桥 课程设计任务与指导书 一、设计容 根据结构图所示的一孔标准跨径为L b=25m的T形梁的截面尺寸,要求对作用效应组合后的最不利的主梁(一根)进行下列设计与计算: 1、行车道板的力计算; 2、主梁力计算; 二、设计资料 1、桥面净宽:净-7(车行道)+2×1.0(人行道)+2×0.25(栏杆)。 2、设计荷载:公路-II级,人群3.5kN/m2。

4、 结构尺寸图: 主梁:标准跨径Lb=25m (墩中心距离)。 计算跨径L=24.50m (支座中心距离)。 预制长度L ’=24.95m (主梁预制长度) 。 横隔梁5根,肋宽15cm 。 桥梁纵向布置图(单位:cm ) 桥梁横断面图(单位:cm ) T 型梁尺寸图(单位:cm )

三、知识点(计算容提示) 1、 行车道板计算 1) 采用铰接板计算恒载、活载在T 梁悬臂根部每延米最大力(M 和Q )。 2) 确定行车道板正截面设计控制力。 2、 主梁肋设计计算 1) 结构重力引起力计算(跨中弯矩和支点剪力),剪力按直线变化,弯矩按二次抛物线变化。 2) 计算活载(车道荷载)和人群荷载引起截面力(跨中弯矩、支点剪力和跨中剪力)。 荷载横向分布系数计算:跨中m 0.5按偏心受压法计算, 支点m 0按杆杠原理法计算。 计算跨中弯矩和支点剪力时荷载横向分布系数按《桥规》规定变化。 3) 计算控制截面的跨中弯矩、支点剪力和跨中剪力。 4) 对计算出的控制截面力进行荷载组合,并按《桥规》进行系数提高。 5) 根据组合后的力,取最大力(M 和Q )作为设计力值。 3、 变形验算和预拱度设置。 结构的变形计算和验算,根据《桥规》规定设置预拱度。 设计方案: 一、主梁力计算 (一)、恒载力计算: 1、恒载集度计算: 主梁截面面积:[(0.08+0.14)×0.8]/2×2+0.2×1.4=0.456 m 2 主梁自重:g 1边=g 1中=0.456×25=11.4 KN/m 横隔梁折算荷载: kN/m 335.150.24251015.08.0208.014.02.1g 中2=÷????????????? ??+-= 7kN/m 66.050.2425515.08.0208.014.02.1g 2边=÷??? ?????????? ??+-= 桥面铺装:()kN/m 50.352525.308.012.021g 3=÷?? ? ??????+=

《公路桥梁抗震设计规范JTG T 2231-01—2020》解读

《公路桥梁抗震设计规范JTG/T 2231-01—2020》解读 近日,交通运输部发布了《公路桥梁抗震设计规范》(JTG/T 2231-01—2020,以下简称《规范》),作为公路工程行业标准,自2020年9月1日起施行。原《公路桥梁抗震设计细则》(JTG/T B02-01—2008,以下简称原《细则》)同时废止。为便于理解本次修订的主要内容,切实做好贯彻实施工作,现将有关修订情况解读如下: 一、修订背景 原《细则》自2008年实施以来,在公路桥梁抗震设计方面发挥了重要的规范和指导作用。近年来,我国公路桥梁建设技术发展迅速,桥梁抗震设计技术也取得了重要进展,积累了大量设计经验和成熟的研究成果。原《细则》已不能全面反映我国目前公路桥梁抗震设计的技术水平,为适应公路桥梁建设技术和抗震设计技术的发展,交通运输部组织完成了《规范》的修订工作。 二、《规范》的定位 《规范》适用于单跨跨径不超过150m的圬工或混凝土拱桥、下部结构为混凝土结构的梁桥的抗震设计。斜拉桥、悬索桥、单跨跨径超过150m的梁桥和拱桥的抗震设计,除满足本规范要求外,还应进行专项研究。《规范》既考虑了当前我国桥梁抗震设计的技术需求及国内外桥梁抗震设计技术的新进展,也重点考虑了与《公路桥涵通用设计规范》《公路工程抗震规范》《钢筋混凝土及预应力混凝土桥涵设计规范》《中国地震动参数区划图》等相关标准的衔接。《规范》的体系更为完善、适用性和可操作性更强,对进一步提升我国公路桥梁抗震设计水平具有指导作用。 三、特点及主要修订内容 《规范》保持两水准设防、两阶段设计,抗震设防标准(地震作用重现期)和性能目标与原《细则》一致。根据现行《中国地震动参数区划图》(GB18306-2015)的规定将计算地震作用常数调整为2.5,对抗震设计提出了更高的要求。E1地震作用下,采用弹性抗震设计,要求墩、梁、基础等桥梁主体结构保持弹性状态,主要验算结构和构件的强度以及支座的抗震能力;E2地震作用下,对采用延性抗震设计的桥梁,主要验算结构变形(位移)和能力保护构件的强度以及支座的抗震能力,对采用减隔震设计的桥梁,主要验算结构强度以及减隔震装置的能力。 《规范》主要吸收了近年来国内外在桥梁抗震概念设计、延性抗震设计、减隔震设计以及构造措施等方面的成熟研究成果,修订和完善了相关设计规定和计算方法,增强了《规范》体系的完整性以及设计和计算方法的适用性和可操作性。 具体来讲,《规范》的主要修订内容包括: (一)在基本要求方面:增加了桥梁结构抗震体系的内容,明确了B类和C类梁桥可采用的抗震体系包括延性抗震体系和减隔震体系两类。细化了抗震概念设计的内容,增加了梁式桥一联内桥墩的刚度比要求和多联梁式桥相邻联的基本周期比要求。

道路桥梁设计规范

与梁肋整体连接的板,在计算支点截面和跨中截面弯矩时,其计算跨径取梁肋之间的距离。 由于板厚与肋高之比小于1/4,支点弯矩取-0.7M,跨中弯矩取0.5M(当大于1/4,支点弯矩取-0.7M,跨中弯矩取0.7M)M 为简支梁求得的跨中弯矩。 公路桥涵设计通用规范 一、总则 1、安全等级; 2、特大、大、中、小桥及涵洞分类; 标准跨径:梁式桥、板式桥以两桥墩中线之间桥中线长度或桥墩中线与桥台台背前缘线之间桥中线长度为准;拱式桥和涵洞以净跨为准。重要是指高速公路和一级公路上、国防公路上及城市附近交通繁忙公路上的桥梁。 二、术语 1、作用短期效应组合:正常使用极限状态设计时,永久作用标准值效应与可变作用频遇值效应的组合; 2、作用长期效应组合:正常使用极限状态设计时,永久作用标准值效应与可变作用准永久值效应的组合; 三、设计要求 1、桥涵布置:公路桥涵的设计洪水频率; 2、桥涵孔径 3、桥涵净空:净空高度,高速公路和一级,二级公路上的

桥梁应为5米,三、四级公路上的桥梁应为4.5米。 4、立体交叉跨线桥桥下净空应符合下列规定; 5、车行或人行天桥的宽度; 6、桥上线形及桥头引道; 7、桥面铺装、排水和防水层; 8、养护及其他附属设施。 四、作用 1.1可变作用应根据不同的极限状态分别采用标准值,频遇值或准永久值作为其代表值; 可变荷载不同时组合表:汽车制动力,流水压力,冰压力,支座摩阻力; 多个偶然作用不同时参与组合。 4.1.6永久作用效应的分项系数表;汽车荷载效应(含汽车冲击力、离心力)的分项系数,取 1.4;当某个可变作用在效应组合中其值超过汽车荷载的分项系数应采用汽车荷载的分项系数,对专为承受某作用而设置的结构或装置,设计时该作用的分项系数取与汽车荷载同值;计算人行道板和人行道栏杆的局部荷载,其分项系数取与汽车荷载同值。在作用组合中除汽车荷载效应(含汽车冲击力、离心力)、风荷载外的其他的可变作用效应的分项系数,取 1.4,但风荷载的分项系数取 1.1;在作用效应组合中除汽车荷载效应(含汽车冲击力、离心力)外的其他可变作用效应的组合系数,当

桥梁抗震基本要求、场地和地基

桥梁抗震基本要求、场地和地基 与地震作用
李建中
同济大学

地震桥梁震害分析 89规范存在的问题新规范编写要点 基本要求 场地和地基 地震作用

1 桥梁地震桥梁震害与抗震设计
1.1典型桥梁震害 落梁破坏
庙子坪大桥 桥梁结构特点:采用板式橡胶支座,梁体直接搁置在支座上
汶川 23 21
百花大桥 G213 庙子坪大桥
17×50
125
220
125 2×50 1 3
都江堰
19 17 15 13
11 9
7 6
5
4

1 桥梁地震桥梁震害与抗震设计
(a)第5孔落梁

1 桥梁地震桥梁震害与抗震设计
百华大桥
百华大桥位于岷江右岸,桥长495.55m,最大墩高30.87m。上部采用 4×25(钢筋砼连续梁)+5×25(钢筋砼连续梁)+50(简支T梁)+3×25 (钢筋砼连续梁)+5×20(钢筋砼连续梁)+2×20(钢筋砼连续梁)平 面位于R=150的圆曲线(左偏)、L=192.601的直线以及R=66的圆曲(右 偏)上。第5联桥跨,即5-20米连续梁整体倾覆,完全破坏

1 桥梁地震桥梁震害与抗震设计
联 墩编号 墩高(m) 13 30.3 14 29.9 15 29.7
第 5 联 16(固定) 26.9 17 22.2 18 18.1
第 6 联 19(固定) 7.1 20 桥台

公路桥梁抗震设计

公路桥梁抗震设计 一、基本要求 1、地震作用:作用在结构上的地震动,包括水平地震作用和竖向地震作用。 E1地震作用:工程场地重现期较短的地震作用,对应于第一级设防水准。 E2地震作用:工程场地重现期较长的地震作用,对应于第二级设防水准。 2、各抗震设防类别桥梁的抗震设防目标符合下表 3、一般情况下,桥梁抗震设防分类应根据各桥梁抗震设防类别的适用范围按下表的规定确定。但对抗震救灾以及在经济、国防上具有重要意义的桥梁或破坏后修复(抢修)困难的桥梁,可按国家批准权限,报请批准后,提高设防类别。 4、A类、B类和C类桥梁必须进行E1地震作用和E2地震作用下的抗震设计。D类桥梁只须进行E1地震作用下的抗震设计。抗震设防烈度为6度区的B类、C类、D类桥梁,可只进行抗震措施设计。 5、各类桥梁的抗震设防标准,应符合下列规定: (1)各类桥梁在不同抗震设防烈度下的抗震设防措施等级按下表

表3 各类公路桥梁抗震设防措施等级 注:g—重力加速度 (2)立体交叉的跨线桥梁,抗震设计不应低于下线桥梁的要求。 6、公路桥梁抗震设防烈度和设计基本地震动加速度取值的对应关系见下表 表4 各类公路桥梁抗震设防措施等级 注:g—重力加速度 二、抗震措施 1、各类桥梁抗震措施等级的选择,按照表3确定。 2、6度区 简支梁梁端至墩、台帽或盖梁边缘应有一定的距离。其最小值a(厘米) 按下式计算:a≥70+0.5L 式中:L—梁的计算跨径(米)。 3、7度区 (1)7度区的抗震措施,除应符合6度区的规定外,尚应符合本节的规定。 (2)拱桥基础宜置于地质条件一致、两岸地形相似的坚硬土层或岩石上。实腹式拱桥宜减小拱上填料厚度,并宜采用轻质填料,填料必须逐层夯实。 (3)桥台胸墙应适当加强,并在梁与梁之间和桥台胸墙之间加装橡胶垫或其他弹性衬垫,以缓和冲击作用和限制梁的位移。 (4)桥面不连续的简支梁(板)桥,宜采用挡块、螺栓连接和钢夹板连接等防止纵横向落梁的措施。连续梁桥和桥面连续的简支梁(板)桥,应采取防止横向产生较大位移的措施。 (5)在软弱黏性土层、液化土层和不稳定的河岸处建桥时,对于大、中桥,可适当增加桥长,合理布置桥孔,使墩、台避开地震时可能发生滑动的岸坡或地形突变的不稳定地段。否则,应采取措施增强基础抗侧移的刚度和加大基础埋置深度;对于小桥可在两桥台基础之间设置支撑梁或采用浆砌片(块)石满铺河床。

桥梁工程课程设计

广东工业大学课程设计任务书 一、课程设计的内容 1、教学目的: 学生通过桥梁工程设计的训练,可以进一步掌握在桥梁工程课本中所学到理论知识,并经过亲自做桥梁工程设计来熟悉设计方法、计算理论、计算公式,熟悉在桥梁设计中如何运用桥梁规范,为今后的毕业设计及走上工作岗位打下一个良好的专业基础。 2、设计基本资料: 说明:学生共分为四个小组,每个小组基本资料不同,简支梁主梁高H 分别取为:130CM、133CM、135CM、139CM,见图1。 1)桥面净宽:净7+2×0.75M 2)设计荷载:汽车“公路—Ⅰ级,人群荷载:3KN/M2 3)材料:主筋:Ⅱ级,构造筋:Ⅰ级 混凝土:桥面铺装:C25,主梁:C30 4)结构尺寸:详见图1、图2 主梁:计算跨径:L=1950cm 全长:L=1996cm 人行道、栏杆每延米(两侧)重2.0KN/m(为每片主梁分到的值)。 沥青混凝土厚2cm

3、设计计算内容: 1)计算行车道板内力,并据此计算和配置翼板主筋。 行车道板按铰接板计算; 汽车荷载:按车辆荷载计算。 2)主梁设计计算: ①、计算主梁1#、2#、3#在汽车、人群荷载作用下的横向分布系数。 支点用杠杆法,跨中用G —M 法。 ②、桥梁沿跨长纵向按IL(影响线)布载求活载内力。 ③、计算活载跨中弯矩时,不考虑横向分布系数沿桥长方向的变化,计 算支点活载剪力时,要计入横向分布系数沿跨长方向的变化的影响。 ④、主梁控制截面:M 中 、M 1/4 、Q 支点 ⑤、主梁跨中截面受拉主筋计算(其余钢筋不算)。 ⑥、计算活载挠度及预拱度。参见教材第172页公式。 3)横隔梁内力计算,并据此计算配置主筋(按T 形截面配置下缘受拉主筋)。 说明:①、横隔梁内力计算采用“偏心法”,取中横隔梁计算。 ②、控制截面:M 3、M 2-3、Q 1右、Q 1-2右 4、绘图内容: 1)上部构造纵、横剖面图(纵断面只画主梁,参见教材第152页,图2-5-55,但尺寸要改变)。 2)主梁配筋图(参考教材第81页,图2-4-15绘制,但主筋按自己计算值配制,梁高按各组的H 值计)。 二、课程设计的要求与数据 1、 必须严格执行各桥梁设计规范,每一设计步骤都必须按规范的要求进行,要训练会查规范、会用规范。 2、 设计中多参阅有关资料,特别是对于没有设计经验的初学者来讲, 更应多借鉴前人的设计经验和实例。 3、 绘制桥梁设计图时必须按桥梁设计图纸的规定进行绘制,从线形、 布置、到标注方式都力求准确无误,不得自行、随意设定图中的各项参 图 2

相关主题
文本预览
相关文档 最新文档