当前位置:文档之家› 陶板物理性能

陶板物理性能

陶板物理性能

材料物理性能课后习题_北航出版社_田莳主编

材料物理习题集 第一章 固体中电子能量结构和状态(量子力学基础) 1. 一电子通过5400V 电位差的电场,(1)计算它的德布罗意波长;(2)计算它的波数;(3) 计算它对Ni 晶体(111)面(面间距d =2.04×10-10m )的布拉格衍射角。(P5) 12 34 131 192 1111 o ' (2) 6.610 = (29.110 5400 1.610 ) =1.67102K 3.7610sin sin 2182h h p mE m d d λπ λ θλ λ θθ----=???????=?==?=解:(1)= (2)波数= (3)2 2. 有两种原子,基态电子壳层是这样填充的 3. ; ; s s s s s s s 226232 2 6 2 6 10 2 6 10 (1)1、22p 、33p (2)1、22p 、33p 3d 、44p 4d ,请分别写出n=3的所有电子的四个量 子数的可能组态。(非书上内容) 4.

5. 6. 如电子占据某一能级的几率是1/4,另一能级被占据的几率为3/4,分别计算两个能级 的能量比费米能级高出多少k T ?(P15) 7. 8. 1()exp[]1 1ln[1] () ()1/4ln 3()3/4ln 3F F F F f E E E kT E E kT f E f E E E kT f E E E kT = -+?-=-=-=?=-=-?解:由将代入得将代入得 9. 已知Cu 的密度为8.5×103kg/m 3,计算其E 0 F 。(P16) 10. 2 2 03 23426 23 3 31 18(3/8)2(6.6310)8.510 =(3 6.0210/8)291063.5 =1.0910 6.83F h E n m J eV ππ---=????????=解: 由 11. 计算Na 在0K 时自由电子的平均动能。(Na 的摩尔质量M=22.99, .0ρ?33 =11310kg/m )(P16)

陶瓷的力学性能

陶瓷的力学性能 陶瓷材料的化学健大都为离子键和共价健,健合牢固并有明显的方向性,同一般的金属相比,其晶体结构复杂而表面能小。因此,它的强度、硬度、弹性模量、耐磨性、耐蚀性和耐热性比金属优越,但塑性、韧性、可加工性、抗热震性及使用可靠性却不如金属。因此搞清陶瓷的性能特点及其控制因素,不论是对研究开发还是使用设计都具有十分重要的意义。本节主要讨论弹性、硬度、强度、韧性及其组织结构因素、环境因素的影响。 一.弹性性能 1.弹性和弹性模量 陶瓷材料为脆性材料,在室温下承载时几乎不能产生塑性变形,而在弹性变形范围内就产生断裂破坏。因此,其弹性性质就显得尤为重要。与其他固体材料一样。陶瓷的弹性变形可用虎克定律来描述。 陶瓷的弹性变形实际上是在外力的作用下原子间里由平衡位置产生了很小位移的结果。弹性模量反映的是原子间距的微小变化所需外力的大小。表11.3给出一些陶瓷在室温下的弹性模量。 2.温度对弹性模量的影响 由于原子间距和结合力随温度的变化而变化,所以弹性核量对温度变化很敏感、当温度升高时。原子间距增大,由成j变为d,(见图11.2)而该处曲线的斜率变缓,即弹性模量降低。因此,固体的弹性模量一般均随温度的升高而降低。图11.3给出一些陶瓷的弹性模量随温度的变化情况。一般来说,热膨胀系数小的物质,往往具有较高的弹性模量。

3.弹性模量与熔点的关系 物质熔点的高低反映其原子间结合力的大小。一般来说,弹性模量与熔点成正比例关系。不同种类的陶瓷材料样性模量之间大体上有如下关系氧化物<氯化物<硼化挪<碳化物。 泊松比也是描述陶瓷材料弹性变形的重要参数。表11.4给出一些陶瓷材料和金属的泊松比。可以看出除BeO与MgO外大多数陶瓷材料的泊松比都小于金属材制的泊松比。

材料物理性能

第一章 1、应力:单位面积上所受的内力ζ=F/A 2、应变:描述物体内部质点之间的相对运动ε=△L/Lo 3、晶格滑移:晶体受力时,晶体的一部分相对另一部分发生平移滑动。条件:①移动较小 的距离即可恢复、②静电作用上移动中无大的斥力 4、塑性形变过程:①理论上剪切强度:克服化学键所产生的强度。当η>ηo时,发生滑移 (临界剪切应力),η=ηm sin(2πx/λ),x<<λ时,η=ηm(2πx/λ)。由虎克定律η0=Gx/λ.则Gx/λ=ηm(2πx/λ)→ηm=G/2π;②位错运动理论:实际晶体中存在错位缺陷,当受剪应力作用时,并不是晶体内两部分整体相互错动,而是位错在滑移面上沿滑移方向运动,使位错运动所需的力比是晶体两部分整体相互华东所需的力小的多,故实际晶体的滑移是位错运动的结果。位错是一种缺陷,位错的运动是接力式的;③位错增值理论:在时间t内不但比N个位错通过试样边界,而且还会引起位错增值,使通过便捷的位错数量增加到NS个,其中S位位错增值系数。过程机理画图 5、高温蠕变:在高温、恒定应力的作用下,随着时间的延长,应变不断增加。⑴起始阶段 0-a:在外力作用下瞬时发生弹性形变,与时间无关。⑵蠕变减速阶段a-b:应变速率随时间递减,即a-b段的斜率dε/dt随时间的增加而愈小,曲线愈来愈平缓。原因:受阻碍较小,容易运动的位错解放出来后,蠕变速率就会降低;⑶稳态蠕变阶段b-c:入编速率几乎保持不变,即dε/dt=K(常数)原因:容易运动的位错解放后,而受阻较大的位错未被解放。⑷加速入编阶段c-d:应变绿随时间增加而增加,曲线变陡。原因:继续增加温度或延长时间,受阻碍较大的位错也能进一步解放出来。影响入编的因素:⒈温度,温度升高,入编增加。⒉应力,拉应力增加,蠕变增加,压应力增加,蠕变减小⒊气孔率增加,蠕变增加,晶粒愈小,蠕变率愈小。⒋组成。⒌晶体结构。 6、弹性形变:外力移去后可以恢复的形变。塑性形变:外力移去后不可恢复的形变 第二章 7、突发性断裂(快速扩展):在临界状态下,断裂源处的裂纹尖端所受的横向拉应力正好 等于结合强度时,裂纹产生突发性扩展。(一旦扩展,引起周围盈利的再分配,导致裂纹的加速扩展,出现突出性断裂) 8、裂纹缓慢生长:当裂纹尖端处的横向拉应力尚不足以引起扩展,但在长期受应力的情况 下,特别是同时处于高温环境中时,还会出现裂纹的缓慢生长。 9、理论结合强度:无机材料的抗压强度大约是抗拉强度的10倍。δth=(EΥ/a)0.5→(Υ=aE/100) →δth=E/10(a:晶格常数,Υ:断裂表面能断裂表面能Υ比自由表面能大。这是因为储存的弹性应变能除消耗于形成新表面外,还有一部分要消耗在塑性形变、声能、热能等方面。 10、Griffith微裂纹理论:⑴Inglis尖端分析:孔洞两个端部的应力取决于孔洞的长度和 端部的曲率半径而与孔洞的形状无关。应用:修玻璃通过打孔增加曲率来减慢裂纹扩展。 ⑵Griffith能量分析:物体内储存的弹性应变能的降低大于等于开裂形成两个新表面所需 的表面能。(产生一条长度2C的裂纹,应变能降低为We,形成两个新断面所需表面能为Ws)。裂纹进一步扩展(2dc,单位面积所释放的能量为dWe/2dc,形成新的单位表面积所需的表面能为dWs/2dc。)当dWe/2dcdWs/2dc时,裂纹失稳,迅速扩展;当dWe/2dc=dWs/2dc时,为临界状态。 应用:尽数剪裁上通过反复折导致剪断。 11、选择材料的标准:δ<δc,即使用应力小于断裂应力;Ki

材料物理性能课后习题答案

材料物理性能习题与解答

目录 1 材料的力学性能 (2) 2 材料的热学性能 (12) 3 材料的光学性能 (17) 4 材料的电导性能 (20) 5 材料的磁学性能 (29) 6 材料的功能转换性能 (37)

1材料的力学性能 1-1一圆杆的直径为2.5 mm、长度为25cm并受到4500N的轴向拉力,若直径拉细至 2.4mm,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解:根据题意可得下表 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-2一试样长40cm,宽10cm,厚1cm,受到应力为1000N拉力,其氏模量为3.5×109 N/m2,能伸长多少厘米? 解: 拉伸前后圆杆相关参数表 ) ( 0114 .0 10 5.3 10 10 1 40 1000 9 4 0cm E A l F l E l l= ? ? ? ? ? = ? ? = ? = ? = ? - σ ε 10 909 .4 0? 0851 .0 1 = - = ? = A A l l ε 名义应变

1-3一材料在室温时的氏模量为3.5×108 N/m 2,泊松比为0.35,计算其剪切模量和体积模量。 解:根据 可知: 1-4试证明应力-应变曲线下的面积正比于拉伸试样所做的功。 证: 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: Voigt 模型可以较好地模拟应变蠕变过程: )21(3)1(2μμ-=+=B G E ) (130)(103.1)35.01(2105.3)1(288MPa Pa E G ≈?=+?=+=μ剪切模量) (390)(109.3) 7.01(3105.3)21(388 MPa Pa E B ≈?=-?=-=μ体积模量. ,.,1 1 2 1 212 12 1 2 1 21 S W VS d V ld A Fdl W W S W V Fdl V l dl A F d S l l l l l l ∝====∝= ===???? ? ?亦即做功或者: 亦即面积εεεεεεεσεσεσ)(2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量). 1()()(0)0() 1)(()1()(10 //0 ----= = ∞=-∞=-=e e e E t t t στεσεεεσεττ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为

《材料物理性能》课后习题答案

1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: V oigt 模型可以较好地模拟应变蠕变过程: ) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量 ) (1.323)84 05.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量 ). 1()()(0)0() 1)(()1()(1 //0 ----= = ∞=-∞=-=e E E e e E t t t στεσεεεσετ τ ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ ==∞==则有::其应力松弛曲线方程为1.0 1.0 0816.04.25 .2ln ln ln 2 2 001====A A l l T ε真应变)(91710 909.44500 60MPa A F =?==-σ名义应力0851 .0100 =-=?=A A l l ε名义应变)(99510 524.445006MPa A F T =?==-σ真应力

《材料物理性能》课后习题答案

《材料物理性能》 第一章材料的力学性能 1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2) 可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和 0816 .04.25.2ln ln ln 22 001====A A l l T ε真应变) (91710909.44500 60MPa A F =?==-σ名义应力0851 .010 0=-=?=A A l l ε名义应变) (99510524.445006MPa A F T =?== -σ真应力) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量

材料物理性能作业及课堂测试

热学作业(一) 1. 请简述关于固体热容的经典理论. 爱因斯坦热容模型解决了热容经典理论存在的什么问题?其本身又存在什么问题?为什么会出现这样的问题?德拜模型怎样解决了爱因斯坦模型的问题? 答:固体热容的经典理论包括关于元素热容的杜隆-珀替定律,以及关于化合物热容的柯普定律。前者内容为:恒压下元素的原子热容约为25 J/(K·mol)。后者内容为:化合物分子热容等于构成该化合物的各元素原子热容之和。 爱因斯坦热容模型解决了热容经典理论中C m 不随T 变化的问题。在高温下爱因斯坦模型与经典理论一致,与实际情况相符,在0K 时C m 为0,但该模型得出的结论是C m 按指数规律随T 变化,这与实际观察到的C m 按T 3变化的规律不一致。 之所以出现这样的问题是因为爱因斯坦热容模型对原子热振动频率的处理过于简化——原子并不是彼此独立地以同样的频率振动的,而是相互间有耦合作用。 德拜模型主要考虑声频支振动的贡献,把晶体看作连续介质,振动频率可视为从0到ωmax 连续分布的谱带,从而较为准确地处理了热振动频率的问题。 2. 金属Al 在30K 下的C v,m =0.81J/K·mol ,其θD 为428K. 试估算Al 在50K 及500K 时的热容C v,m . 解:50K 远低于德拜温度428K ,在此温度下,C v 与T 3成正比,即3T A C v ?= 则 53310330 81 .0-?=== T C A v J/mol·K 4 故50K 时的恒容热容75.3501033 53=??=?=-T A C v J/mol·K 500K 高于德拜温度,故此温度下的恒容摩尔热容约为定值3R ,即: 9.2431.833=?=?=R C v J/mol·K 热学作业(二) 1、晶体加热时,晶格膨胀会使得其理论密度减小. 例如,Cu 在室温(20℃)下密度为8.94g/cm 3,待加热至1000℃时,其理论密度值为多少?(不考虑热缺陷影响,Cu 晶体从室温~1000℃的线膨胀系数为17.0×10-6/℃) 解:因为3202020a m V m D == ,31000 10001000a m V m D ==

材料物理性能测试思考题答案

有效电子数:不是所有的自由电子都能参与导电,在外电场的作用下,只有能量接近费密能的少部分电子,方有可能被激发到空能级上去而参与导电。这种真正参加导电的自由电子数被称为有效电子数。 K状态:一般与纯金属一样,冷加工使固溶体电阻升高,退火则降低。但对某些成分中含有过渡族金属的合金,尽管金相分析和X射线分析的结果认为其组织仍是单相的,但在回火中发现合金电阻有反常升高,而在冷加工时发现合金的电阻明显降低,这种合金组织出现的反常状态称为K状态。X射线分析发现,组元原子在晶体中不均匀分布,使原子间距的大小显著波动,所以也把K状态称为“不均匀固溶体”。 能带:晶体中大量的原子集合在一起,而且原子之间距离很近,致使离原子核较远的壳层发生交叠,壳层交叠使电子不再局限于某个原子上,有可能转移到相邻原子的相似壳层上去,也可能从相邻原子运动到更远的原子壳层上去,从而使本来处于同一能量状态的电子产生微小的能量差异,与此相对应的能级扩展为能带。 禁带:允许被电子占据的能带称为允许带,允许带之间的范围是不允许电子占据的,此范围称为禁带。 价带:原子中最外层的电子称为价电子,与价电子能级相对应的能带称为价带。 导带:价带以上能量最低的允许带称为导带。 金属材料的基本电阻:理想金属的电阻只与电子散射和声子散射两种机制有关,可以看成为基本电阻,基本电阻在绝对零度时为零。 残余电阻(剩余电阻):电子在杂质和缺陷上的散射发生在有缺陷的晶体中,绝对零度下金属呈现剩余电阻。这个电阻反映了金属纯度和不完整性。 相对电阻率:ρ (300K)/ρ (4.2K)是衡量金属纯度的重要指标。 剩余电阻率ρ’:金属在绝对零度时的电阻率。实用中常把液氦温度(4.2K)下的电阻率视为剩余电阻率。 相对电导率:工程中用相对电导率( IACS%) 表征导体材料的导电性能。把国际标准软纯铜(在室温20 ℃下电阻率ρ= 0 .017 24Ω·mm2/ m)的电导率作为100% , 其他导体材料的电导率与之相比的百分数即为该导体材料的相对电导率。 马基申定则(马西森定则):ρ=ρ’+ρ(T)在一级近似下,不同散射机制对电阻率的贡献可以加法求和。ρ’:决定于化学缺陷和物理缺陷而与温度无关的剩余电阻率。ρ(T):取决于晶格热振动的电阻率(声子电阻率),反映了电子对热振动原子的碰撞。 晶格热振动:点阵中的质点(原子、离子)围绕其平衡位置附近的微小振动。 格波:晶格振动以弹性波的形式在晶格中传播,这种波称为格波,它是多频率振动的组合波。 热容:物体温度升高1K时所需要的热量(J/K)表征物体在变温过程中与外界热量交换特性的物理量,直接与物质内部原子和电子无规则热运动相联系。 比定压热容:压力不变时求出的比热容。 比定容热容:体积不变时求出的比热容。 热导率:表征物质热传导能力的物理量为热导率。 热阻率:定义热导率的倒数为热阻率ω,它可以分解为两部分,晶格热振动形成的热阻(ωp)和杂质缺陷形成的热阻(ω0)。导温系数或热扩散率:它表示在单位温度梯度下、单位时间内通过单位横截面积的热量。热导率的单位:W/(m·K) 热分析:通过热效应来研究物质内部物理和化学过程的实验技术。原理是金属材料发生相变时,伴随热函的突变。 反常膨胀:对于铁磁性金属和合金如铁、钴、镍及其某些合金,在正常的膨胀曲线上出现附加的膨胀峰,这些变化称为反常膨胀。其中镍和钴的热膨胀峰向上为正,称为正反常;而铁和铁镍合金具有负反常的膨胀特性。 交换能:交换能E ex=-2Aσ1σ2cosφA—交换积分常数。当A>0,φ=0时,E ex最小,自旋磁矩自发排列同一方向,即产生自发磁化。当A<0,φ=180°时,E ex也最小,自旋磁矩呈反向平行排列,即产生反铁磁性。交换能是近邻原子间静电相互作用能,各向同性,比其它各项磁自由能大102~104数量级。它使强磁性物质相邻原子磁矩有序排列,即自发磁化。 磁滞损耗:铁磁体在交变磁场作用下,磁场交变一周,B-H曲线所描绘的曲线称磁滞回线。磁滞回线所围成的面积为铁 =? 磁体所消耗的能量,称为磁滞损耗,通常以热的形式而释放。磁滞损耗Q HdB 技术磁化:技术磁化的本质是外加磁场对磁畴的作用过程即外加磁场把各个磁畴的磁矩方向转到外磁场方向(和)或近似外磁场方向的过程。技术磁化的两种实现方式是的磁畴壁迁移和磁矩的转动。 请画出纯金属无相变时电阻率—温度关系曲线,它们分为几个阶段,各阶段电阻产生的机制是什么?为什么高温下电阻率与温度成正比? 1—ρ电-声∝T( T > 2/ 3ΘD ) ; 2—ρ电-声∝T5 ( T< <ΘD );

常见矿物物理性质及鉴定特征

常见矿物物理性质及鉴定特征 自然金:物理性质:颜色和条痕均为金黄色,金属光泽、无解理;硬度2 -3,比重15.6-18.3,纯金为19.3,具有延展性。鉴定特征:金黄色、强金属光泽、比重大、富延展性;在空气中不氧化、化学性质稳定,只溶于王水。 自然硫:物理性质:硫黄色,条痕白色至淡黄色,晶面呈金刚光泽,断口 油脂光泽,透明至半透明。鉴定特征:黄色、油脂光泽、硬度小、性脆,有硫臭味,易溶于CS2,易燃、火焰呈蓝紫色。 石墨:物理性质:铁黑至钢灰色,条痕光亮黑色,金属光泽,隐晶集合体 呈土状者光泽暗淡,不透明。性软,有滑腻感,易污染手指。鉴定特征:铁黑色、条痕亮黑色,一组极完全解理,硬度小、染手。与辉钼矿相似,但辉钼矿具更强的金属光泽、比重稍大,在涂釉瓷板上辉钼矿的条痕色黑中带绿,而石墨的条痕不带绿色。 辉铜矿(Cu2S):物理性质:新鲜面铅灰色,风化表面黑色,常带锖色;条 痕暗灰色;金属光泽,不透明。解理{110}不完全,硬度2.5-3,比重5.5-5.8,略具延展性。鉴定特征:铅灰色,硬度小、弱延展性,小刀刻划可留下光亮沟痕。 方铅矿(PbS):物理性质:铅灰色、条痕黑色,金属光泽。有平行{100} 三组完全解理解理面互相垂直。鉴定特征:铅灰色,黑色条痕,强金属光泽,立方体完全解理,硬度小、比重大。有Pb的被膜反应,溶于HNO ,并 3白色沉淀。 有PbSO 4 闪锌矿(ZnS):物理性质:颜色变化大,从无色到浅黄、棕褐至黑色,随 成分中铁含量的增加而变深,亦有绿、红黄等色、系由微量元素引起;条痕由白色至褐色,松脂光泽至半金属光泽,透明至半透明,具平行{110}的六组完全解理,硬度3.5-4、比重3.9-4.2,不导电。鉴定特征:颜色变化大,可据晶形、多组解理、硬度小鉴别。 辰砂(HgS):物理性质:鲜红色,表面呈铅灰色之锖色;鲜红色条痕;金 刚光泽,半透明。鉴定特征:鲜红色的颜色和条痕,比重大。 黄铜矿(CuFeS2):物理性质:黄铜黄色,表面常有蓝、紫褐色的斑状锖 色;绿黑色条痕;金属光泽,不透明,硬度3-4,比重4.1-4.3,性脆。鉴定特征:黄铜矿与黄铁矿相似,可以其较深的黄铜黄色及较低的硬度区别;以其脆性与自然金区别。 斑铜矿(Cu5FeS4):物理性质:新鲜面呈暗铜红色,风化面常呈暗紫或蓝

材料物理性能

材料物理性能 一、折射1. 概念当光线依次通过不同的介质时,光的行进方向会发生改变,称为“折射”。 折射现象的实质:介质的密度不同,光通过时,传播速度也不同。 2. 折射率介质对光的折射性质用材料的“折射率”n 表示 (1)绝对折射率光从真空进入介质材料时,速度降低。光在真空和材料中的速度之比即为 材料的绝对折射率。 介质的折射率永远为大于1的正数。空气:n=1.003 固体氧化物: n= 1.3~2.7 硅酸盐玻璃: n= 1.5~1.9 (2)相对折射率 光从材料1通过界面传入材料2时,与界面法向所形成的入射角φ1 、折射角φ2与两种材料的折射率n1和n2之间的关系为: 折射定律: n1sin φ1= n2sin φ2 材料2相对于材料1的相对折射率为: 分别表示光在材料1和材料2种的传播速度。 2. 影响因素 (1)构成材料元素的离子半径 根据Maxwell 电磁理论,光在介质中的传播速度为: c :真空中的光速; ε:介质的介电常数; μ:介质的导磁率。 对于无机材料: 介质的折射率随其介电常数的增大而增大。 介电常数ε 折射率与介质的极化现象有关。 外加电场作用下,介质中的正电荷沿着电场方向移动,负电荷沿着反电场方向移动,这样正负电荷的中心发生相对位移,这种现象就是介质的极化。外加电场越强,正负电荷中心的距离越大。 介质的离子半径增大时,其ε增大,因而n 也随之增大。 大离子得到高折射率材料:PbS n=3.912 小离子得到低折射率材料: SiCl4 n=1.412 (2)材料的结构、晶型和非晶态(离子的排列) 晶体中沿密堆积方向上具有最高的折射率。 光学均质介质:非晶态(无定型体)、等轴系晶体(各向同性) 光学非均质介质:等轴系晶体外的其它晶体材料 光通过时,一般都要分为振动方向相互垂直、传播速度不等的两个波,构成两条折射线,这种现象称为双折射。 是非均质晶体的特性,是材料各向异性的表现。 例:玻璃的折射率n=1.5光的反射损失:透过部分为??透射光从另一界面射入空气,透过两个界面,透过部分为:?连续透过x 块平板玻璃,透过部分为:(1-m)2x 透过部分为:1-m=1-0.04=0. 9透射光从另一界面射入空气,透过两个界面,透过部分为: (1-m)2=0.962=0.921连续透过x 块平板玻璃,透过部分为:(1-m)2x 材料 νc n =2 1211221sin sin v v n n n ===??εμc v =εμ=n ,1≠=εμ

材料物理性能王振廷课后答案106页

1、试说明下列磁学参量的定义和概念:磁化强度、矫顽力、饱和磁化强度、磁导率、磁化率、剩余磁感应强度、磁各向异性常数、饱和磁致伸缩系数。 a、磁化强度:一个物体在外磁场中被磁化的程度,用单位体积内磁矩的多少来衡量,成为磁化强度M b、矫顽力Hc:一个试样磁化至饱和,如果要μ=0或B=0,则必须加上一个反向磁场Hc,成为矫顽力。 c、饱和磁化强度:磁化曲线中随着磁化场的增加,磁化强度M或磁感强度B开始增加较缓慢,然后迅速增加,再转而缓慢地增加,最后磁化至饱和。Ms成为饱和磁化强度,Bs成为饱和磁感应强度。 d、磁导率:μ=B/H,表征磁性介质的物理量,μ称为磁导率。 e、磁化率:从宏观上来看,物体在磁场中被磁化的程度与磁化场的磁场强度有关。 M=χ·H,χ称为单位体积磁化率。 f、剩余磁感应强度:将一个试样磁化至饱和,然后慢慢地减少H,则M也将减少,但M并不按照磁化曲线反方向进行,而是按另一条曲线改变,当H减少到零时,M=Mr或Br=4πMr。(Mr、Br分别为剩余磁化强度和剩余磁感应强度) g、磁滞消耗:磁滞回线所包围的面积表征磁化一周时所消耗的功,称为磁滞损耗Q( J/m3) h、磁晶各向异性常数:磁化强度矢量沿不同晶轴方向的能量差代表磁晶各向异性能,用Ek表示。磁晶各向异性能是磁化矢量方向的函数。 i、饱和磁致伸缩系数:随着外磁场的增强,致磁体的磁化强度增强,这时|λ|也随之增大。当H=Hs时,磁化强度M达到饱和值,此时λ=λs,称为饱和磁致伸缩所致。 2、计算Gd3+和Cr3+的自由离子磁矩Gd3+的离子磁矩比Cr3+离子磁矩高的原因是什么 Gd3+有7个未成对电子,Cr3+ 3个未成对电子. 所以, Gd3+的离子磁矩为7μB, Cr3+的离子磁矩为3μB. 3、过渡族金属晶体中的原子(或离子)磁矩比它们各自的自由离子 磁矩低的原因是什么 4、试绘图说明抗磁性、顺磁性、铁磁性物质在外场B=0的磁行为。

材料物理性能

一、填空20*1 1.控制或改造材料性能的路线是工艺→结构→性能,即工艺决定结构,结构改变性能。 2.材料在外力作用下发生形状和尺寸的变化,称为形变。 3.弹性模量影响的因素:原子结构、温度、相变。 4.材料的各种热学性能均与晶格热振动有关。 5.可见光的波长390-770nm。 6.光的频率、波长和辐射能都是由光子源决定的。 7.欧姆定律的两种表达形式:均匀导体,I=V/R,非均匀导J=óE。 8.物质的磁性是电流产生的。 9.磁性材料的磁化曲线和磁滞回线是材料在外加磁场时表现出来的宏观特性。 10.影响材料的击穿强度的因素:介质结构的不均匀性、材料中气泡的作用、材料表面状态和边缘电场。 8.智能材料的功能和生命特征:传感功能、反馈功能、学习能力和预见性功能、响应功能、自诊断能力、自修复能力、自调节能力。 二、名词解释5*3 1.塑性形变和弹性形变 塑性形变:在超过材料的屈服应力作用下产生形变,外力移去后不能恢复的形变。 弹性形变:在超过材料的屈服应力作用下产生形变,外力移去后不能恢复的形变。 2.声频支振动和光频支振动 声频支振动:振动着的质点中包含中包含频率甚低的格波,质点间的位相差不大,则格波类似于弹性体中的应变波,称为声频支振动。 光频支振动:可以看成是相邻原子振动方向相反,形成一个范围很小、频率很高的振动。 3.反射、折射、双折射 反射:光线入射到界面时,一部分光从界面上反射,形成反射线。 折射:光线入射到界面时,其余部分进入第二种介质,形成折射线。 双折射:由一束折射光入射后分成两束光的现象。 4.压电效应、压敏效应、光电效应、热释电效应、电热效应、西贝尔效应 压电效应:在晶体的特定方向上施加压力或拉力,晶体的一些对应的表面上分别出现正负束缚电荷,其电荷密度与外施力的大小成正比例,也即正压电效应具有对称中心的点群晶体不会具有压电性。 压敏效应:对电压变化敏感的非线性电阻效应,即在某一临界电压下,电阻值非常之高,几乎无电流通过,超过该临界电压,电阻迅速降低,让电流通过。 光电效应:某些物质受到光照后,引起物质电性发生变化,这种光致电变的现象称为光电效应。 热释电效应:由于温度的变化而引起的晶体表面荷电现象。 电热效应:热电体在绝热条件下,当外加电场引起永久极化强度改变是时,其温度将发生变化的现象。 西贝尔效应:半导体材料的两端如果有温差,那么在较高的温度区有更多的电子被激发到导带中去,但热电子趋向于扩散到较冷的区域。当这两种效应引起的化学势梯度和电场梯度相等且方向相反时,就达到稳定状态。多数载流子扩散到冷端,结果在半导体两端就产生温差电动势,这种现象被称为温差电动势效应,也被称为西贝尔效应。 5.居里点 居里点:是指材料可以在铁磁体和顺磁体之间改变的温度,即铁电体从铁电相转变成顺电相引的相变温度。

陶瓷力学性能

陶瓷的力学性能 newmaker 化学健大都为离子键和共价健,健合牢固并有明显的方向性,同一般的金属相比,其 杂而表面能小。因此,它的强度、硬度、弹性模量、耐磨性、耐蚀性和耐热性比金属优越,但塑性、韧性、可加工性、抗热震性及使。因此搞清陶瓷的性能特点及其控制因素,不论是对研究开发还是使用设计都具有十分重要的意义。本节主要讨论弹性、硬度、强度因素、环境因素的影响。 能 性模量 脆性材料,在室温下承载时几乎不能产生塑性变形,而在弹性变形范围内就产生断裂破坏。因此,其弹性性质就显得尤为重要。与其瓷的弹性变形可用虎克定律来描述。 变形实际上是在外力的作用下原子间里由平衡位置产生了很小位移的结果。弹性模量反映的是原子间距的微小变化所需外力的大小。在室温下的弹性模量。 性模量的影响 距和结合力随温度的变化而变化,所以弹性核量对温度变化很敏感、当温度升高时。原子间距增大,由成j变为d,(见图11.2)而该处弹性模量降低。因此,固体的弹性模量一般均随温度的升高而降低。图11.3给出一些陶瓷的弹性模量随温度的变化情况。一般来说,往往具有较高的弹性模量。

与熔点的关系 高低反映其原子间结合力的大小。一般来说,弹性模量与熔点成正比例关系。不同种类的陶瓷材料样性模量之间大体上有如下关系氧

挪<碳化物。 描述陶瓷材料弹性变形的重要参数。表11.4给出一些陶瓷材料和金属的泊松比。可以看出除BeO与MgO外大多数陶瓷材料的泊松泊松比。 与材料致密度的关系 致密度对其弹性模量影响很大。图11.5给出AL2O3陶瓷的弹性模量随气孔率的变化及某些理论计算值的比较。Fros指出弹性模量与关系 P) 。 气孔率的增加,陶瓷的弹性模量量急剧下降。

材料物理性能答案

)(E k → 第一章:材料电学性能 1 如何评价材料的导电能力?如何界定超导、导体、半导体和绝缘体材料? 用电阻率ρ或电阻率σ评价材料的导电能力。 按材料的导电能力(电阻率),人们通常将材料划分为: 2、经典导电理论的主要内容是什么?它如何解释欧姆定律?它有哪些局限性? 金属导体中,其原子的所有价电子均脱离原子核的束缚成为自由电子,而原子核及内层束缚电子作为一个整体形成离子实。所有离子实的库仑场构成一个平均值的等势电场,自由电子就像理想气体一样在这个等势电场中运动。如果没有外部电场或磁场的影响,一定温度下其中的离子实只能在定域作热振动,形成格波,自由电子则可以在较大范围内作随机运动,并不时与离子实发生碰撞或散射,此时定域的离子实不能定向运动,方向随机的自由电子也不能形成电流。施加外电场后,自由电子的运动就会在随机热运动基础上叠加一个与电场反方向的平均分量,形成定向漂移,形成电流。自由电子在定向漂移的过程中不断与离子实或其它缺陷碰撞或散射,从而产生电阻。 E J →→=σ,电导率σ= (其中μ= ,为电子的漂移迁移率,表示单位场强下电子的漂移速度),它将外加电场强度和导体内的电流密度联系起来,表示了欧姆定律的微观形式。 缺陷:该理论高估了自由电子对金属导电能力的贡献值,实际上并不是所有价电子都参与了导电。(?把适用于宏观物体的牛顿定律应用到微观的电子运动中,并且承认能量的连续性) 3、自由电子近似下的量子导电理论如何看待自由电子的能量和运动行为? 自由电子近似下,电子的本证波函数是一种等幅平面行波,即振幅保持为常数;电子本证能量E 随波矢量的变化曲线 是一条连续的抛物线。 4、根据自由电子近似下的量子导电理论解释:准连续能级、能级的简并状态、简并度、能态密度、k 空间、等幅平面波和能级密度函数。 n 决定,并且其能量值也是不连续的,能级差与材料线度 L 2成反比,材料的尺寸越大,其能级差越小,作为宏观尺度的材料,其能级差几乎趋于零,电子能量可以看成是准连续的。 k 空间内单位体积内能态的数量或倒易节点数称为波矢能态密度。ρ =V/(2π)3,含自旋的能态密度应为2ρ 3,2,1k k k k → →→→的三个分量为单位矢量构筑坐标系,则每个能态在该坐标中都是一个整数点,对于准连续的能级,此坐标系中的每个整数点都代表一个能态。人们把此坐标系常数称为k 空间或状态空间。

材料物理性能重点

《材料物理性能》思考题 第一章热学性能 1.1 概述 1、材料的热学性能包括热容、热膨胀、热传导和热稳定性等。 2、什么是格波? 答:由于晶体中的原子间存在着很强的相互作用,原子的微振动不是孤立的,原子的运动状态(或晶格振动)会在晶体中以波的形式传播,形成“格波”。 3、若三维晶体由N个晶胞组成,每个晶胞中含有S个原子,则晶体中格波数为3NS 个,格波支数为3S 个。 4、受热晶体的温度升高,实质是晶体中热激发出的声子数目的增加。 5、举例说明某一材料热学性能的具体应用。 1.2 热容 1、什么是比热容和摩尔热容(区分:定压摩尔热容和定容摩尔热容)? 答:比热容(c):质量为1kg的物质在没有相变和化学反应条件下温度升高1K所需要的热量答:摩尔热容(C m):1mol物质在没有相变和化学反应条件下温度升高1K所需要的热量 3、固体热容的经验定律和经典理论只适用于高温,对低温不适用! 4、由德拜模型可知,温度很低时,固体的定容摩尔热容与温度的三次方成正比(德拜T3定律)。 5、金属热容由晶格振动和自由电子两部分贡献组成 6、自由电子对热容的贡献在极高温和极低温度下不可忽视,在常温时与晶格振动热容相比微不足道! 7、一级相变对热容的影响特征是什么? 答:在相变温度下,热焓发生突变,热容不连续变化。 8、影响无机材料热容的因素有哪些? 答:温度,键强,弹性模量,熔点 9、对于隔热材料,需使用低热容(如轻质多孔)隔热砖,便于炉体迅速升温,同时降低热量损耗。 10、什么是热分析法?DTA、DSA和TG分别是哪三种热分析方法的简称?举例说明热分析

法的应用。 答:热分析法:在程序控制温度下,测量物质的物理性质与温度关系的一种技术。 DTA:差热分析(1.测量系统(示差热电偶)2. 加热炉3. 温度程序控制器4. 记录仪)1.3 热膨胀 1、什么是线或体膨胀系数?答:温度升高1 K时,物体的长度(体积)的相对增加量。 2、固体材料的热膨胀本质,归结为点阵结构中质点间平均距离随温度升高而增大。 3、材料的热膨胀来自原子的非简谐振动。 4、材料热膨胀的物理本质可用原子间的作用力曲线或势能曲线曲线来解释。 5、熔点较高的金属具有较低的膨胀系数。 6、结构对称性较低的单晶体,其膨胀系数具有各向异性,不同的晶向有不同的线膨胀系数。一般来说,弹性模量高的方向将有较小的膨胀系数,反之亦然。(如石墨:平行于C轴方向的热膨胀系数大于垂直于C轴方向的热膨胀系数。) 7、举例说明一级相变对材料膨胀性能的影响。 8、钢的不同组织比容从大到小的顺序为:马氏体、渗碳体、铁素体、珠光体、奥氏体。 9、通常陶瓷制品表面釉层与坯体热膨胀系数的大小关系如何?为什么? 1.4 热传导 1、什么是热导率? 2、固体材料热传导主要有、和三种微观机制,不同材料导热机制有何区别? 3、对于声子热导而言,热阻来源于声子扩散过程中的各种(如声子的碰撞、点缺陷的散射、晶界的散射和位错的散射等)。 4、对于同一种物质,多晶体、单晶体和非晶体的热导率的大小关系如何? 5、请综合分析非晶体的热导率与温度的关系。 6、综合分析影响无机材料热导率的因素。 1.5 热稳定性 1、什么是材料的热稳定性?。 2、材料抗热冲击损坏的两大类型为和。 3、什么是热应力?材料的热应力主要来源于哪三个方面? 4、抗热应力损伤性正比于断裂表面能,反比于应变能的释放率。

材料物理性能试题及其答案

西 安 科 技 大 学 2011—2012学 年 第 2 学 期 考 试 试 题(卷) 学院:材料科学与工程学院 班级: 姓名: 学号:

—2012 学 年 第 2 学 期 考 试 试 题(卷) 学院:材料科学与工程学院 班级: 姓名: 学号:

材料物理性能 A卷答案 一、填空题(每空1分,共25分): 1、电子运动服从量子力学原理周期性势场 2、导电性能介电性能 3、电子极化原子(离子)极化取向极化 4、完全导电性(零电阻)完全抗磁性 5、电子轨道磁矩电子自旋磁矩原子核自旋磁矩 6、越大越小 7、电子导热声子导热声子导热 8、示差热分析仪(DTA)、示差扫描热分析(DSC)、热重分析(TG) 9、弹性后效降低(减小) 10、机械能频率静滞后型内耗 二、是非题(每题2分,共20分): 1、√ 2、× 3、× 4、√ 5、× 6、√ 7、× 8、× 9、× 10、√ 三、名词解释(每题3分,共15分): 1、费米能:按自由电子近似,电子的等能面在k空间是关于原点对称的球面。特别有意义的是E=E F的等能面,它被称为费米面,相应的能量成为费米能。 2、顺磁体:原子内部存在永久磁矩,无外磁场,材料无规则的热运动使得材料没有磁性,当外磁场作用,每个原子的磁矩比较规则取向,物质显示弱磁场,这样的磁体称顺磁体。 3、魏得曼-弗兰兹定律:在室温下许多金属的热导率与电导率之比几乎相同,而不随金属的不同而改变。 4、因瓦效应:材料在一定温度范围内所产生的膨胀系数值低于正常规律的膨胀系数值的现象。

5、弛豫模量:教材P200 四、简答题(每题6分,共30分): 1、阐述导体、半导体和绝缘体的能带结构特点。 答:①导体中含有未满带,在外场的作用下,未满带上的电子分布发生偏移,从而改变了原来的中心堆成状态,占据不同状态的电子所形成的运动电流不能完全抵消,未抵消的部分就形成了宏观电流;②绝缘体不含未满带,满带中的电子不会受外场的作用而产生偏离平衡态的分布,而一些含有空带的绝缘体,也因为禁带间隙过大,下层满带的电子无法跃迁到空带上来形成可以导电的未满带,所以绝缘体不能导电;③本征半导体的情况和绝缘体类似,区别是其禁带能隙比较小,当受到热激发或外场作用时,满带中的电子比较容易越过能隙,进入上方空的允带,从而使材料具有一定的导电能力;④掺杂半导体则是通过掺入异质元素,从而提供额外的自由电子或者额外的空穴以供下层电子向上跨越,使得跨越禁带的能量变低,电子更加容易进入上层的空带中,从而具有导电能力。 2、简述温度对金属电阻影响的一般规律及原因。 答:无缺陷理想晶体的电阻是温度的单值函数,如果在晶体中存在少量杂质和结构缺陷,那么电阻与温度的关系曲线将要变化。 在低温下,电子-电子散射对电阻的贡献显著,其他温度电阻取决于电子-声子散射。 3、何谓材料的热膨胀?其物理本质是什么? 答:①热膨胀:材料在加热和冷却过程中,其宏观尺寸随温度发生变化的现象。 ②物理本质:在非简谐近似下,随温度增加,原子热振动不仅振幅和频率增加,其平衡位置距平均尺寸也增加,即导致振动中心右移,原子间距增大,宏观上变现为热膨胀。 4、物质的铁磁性产生的充要条件是什么? 答:(1) 原子中必须有未填满电子的内层,因而存在未被抵消的自旋磁矩。 (2) 相邻原子间距a与未填满的内电子层半径r之比大于3,即a/r>3。 5、内耗法测定α-Fe中碳的扩散(迁移)激活能H的方法和原理。 答:参考教材P-211 五、论述题(每题10分,共10分):

01材料物理性能

《材料物理性能》课程教学大纲 一、课程基本信息 课程编号:13106103 课程类别:专业核心课程 适应专业:材料科学与工程 课程总的教学时数:54学时 课程总学分:3 学分 课程简介: 本课程研究的内容是材料的物理性能。集中介绍了材料的电、介电、光、热、磁、弹性和内耗(阻尼)性能及其发展,阐述了各种性能的重要物理及微观机制、各种材料成分、组织结构与性能关系及主要制约规律。介绍了表征物理性能主要参量的重要测试方法及其在材料科学与工程中的应用。列举了与各种物理性能相关的重要功能材料。其特色是把金属材料、陶瓷材料与高聚物材料的物理性能做了扼要的对比,以利于读者掌握材料物理性能的一般规律和特殊性。课程最后以附录形式概述了核技术中的材料原子环境的三种研究方法。 授课教材:《材料物理性能》田莳编著,北京航天航空大学出版社,2004年。 参考书目: [1]《材料物理性能》,刘强、黄新友主编,化学工业出版社,2009年。 [2]《材料物理性能》,王振廷、李长青著,哈尔滨工业大学出版社,2011年。 [3]《材料物理性能》,吴其胜编,哈尔滨工业大学出版社,2006年。 [4]《材料物理性能》,龙毅编著,中南大学出版社,2009年。 [5]《材料物理性能》,邱成军、王元化等编著,哈尔滨工业大学出版社,2003年。 [6]《无机材料物理性能》、郑振铎编著,清华大学出版社,1992年。 二、课程教育目标 材料物理性能是材料科学与工程专业的一门重要的基础课程,通过这门课程的教学,达到以下目标: (1)要求学生能够掌握表征材料物理性能的各类本征参数的物理意义和单位;以及这些参数在解决实际问题中所处的地位 (2)要求学生能够明确各类材料的性能与组成和结构的关系,掌握这些性能参数的规律。 三、教学内容与要求 第零章绪言 1学时 第一章固体中电子能量结构和状态 教学重点:能带理论的应用 教学难点:禁带起因、能带结构 教学时数:5学时

相关主题
文本预览
相关文档 最新文档