当前位置:文档之家› 俄罗斯科学家:转基因玉米滋生植物病毒致2百万美国人死亡!

俄罗斯科学家:转基因玉米滋生植物病毒致2百万美国人死亡!

俄罗斯科学家:转基因玉米滋生植物病毒致2百万美国人死亡!
俄罗斯科学家:转基因玉米滋生植物病毒致2百万美国人死亡!

俄罗斯科学家:转基因玉米滋生植物病毒致2百万美国人死亡!

译作者:半解一知半解时间:2012年11月23~25日

序:释意---转毒基因。顾名思义,"转毒基因"就是把有毒有害的基因或抗生素基因转入到农作物的种子里,以便让农作物达到抗病、抗虫、抗除草剂等目的。这类转基因已被最新的科研成果和事实证明对环境、动物和人类危害巨大,是一种慢性巨毒品,是典型的食品投毒!而全球转基因作物中,这类转基因占绝大多数,所以,将其称为"转毒基因"或"毒基因"是恰如其分、名副其实的。转毒基因食品化推手们一直在用10年前、20年前甚至更早的最落后的转毒基因错误假说和弥天大谎来否定最近几年有关转毒基因毒害与毒杀的重大事实和科研成果,不择手段、肆无忌惮地欺骗党和政府、全国人民和世界人民,以便掩盖转毒基因全方位危害人类健康、必然导致断子绝孙、亡国灭种的超严重后果以及他们自己和转毒基因利益集团的滔天大罪,所以,说转毒基因食品化推手们是伪科学骗子、食品恐怖分子、刑事犯罪分子和种族灭绝犯罪分子也是恰如其分、名副其实的。

------------------------------

俄罗斯报告称:随着神秘死亡加快,已有超过2百万美国人死亡

欧盟时报2010年4月17日

Russia Reports Over 2 Million Dead In US As Mysterious Die-Off Accelerates

EU Times on Apr 17th, 2010

今天,由俄罗斯医学科学院为普金总理编写的一个令人不寒而栗的报告正在克里姆林宫传阅,该报告称:自2008年以来,美国一种"神秘死亡"已经夺去了超过2000000人的生命,这很可能与转基因谷物和粮食滋生的一种"跨物种"植物疾病有关。

A most chilling report circulating in the Kremlin today prepared by the Russian Academy of Medical Science for Prime Minister Putin states that a "mysterious die-off" in the United States has claimed over 2,000,000 lives since 2008 and is "more than likely" linked to a "crossover" plant disease linked to genetically modified grains and foods.

报告说,这种造成大规模死亡、尚不明原因的神秘肺部疾病于2008年春天在美国农业大州艾奥华爆发,很讽刺的是,在州长府参加肺协会会议的人中有36人被感染了。

According to these reports this mysterious, and as yet unidentified, lung disease responsible for this mass die-off began during the spring of 2008 in the US agricultural State of Iowa where (very ironically) at least 36 people attending a Lung Association event at the Governors mansion were stricken.

关于艾奥华州重要的一点是,它是世界上最大的玉米产区之一,在近3200万英亩农田上收获20亿蒲式耳这种经济作物,其中99%是美国农业巨头孟山都研发的转基因品种:商标名称分别为Mon 863、产生杀虫剂的Mon 810和吸收农达除草剂的NK 603。

Important to note about Iowa is that it is one of the largest corn producing regions in the World harvesting over 2 billon bushels of this valuable grain farmed on nearly 32 million acres of its farmland, over 99% of which are genetically modified varieties made by the US agricultural giant Monsanto and identified by their trade names of Mon 863, insecticide-producing Mon 810,

and Roundup(r) herbicide-absorbing NK 603.

国际生物学期刊发表的研究警告说,孟山都的转基因玉米导致器官损害,没有人把这个研究告诉给美国民众。孟山都则迅速回应说这项研究"基于错误的分析方法和推理,没有考虑到转基因玉米安全的结论。"

Not reported to the American people about these genetically modified corn varieties made by Monsanto was the study released by the International Journal of Biological Sciences warning that they were linked to organ damage. Monsanto quickly responded to this study, stating that the research was "based on faulty analytical methods and reasoning and do not call into question the safety findings for these products."

然而,俄罗斯科学家在报告中说,孟山都声称转基因玉米Mon 863可供动物和人类安全食用"纯属无稽之谈",此结论得到法国分子生物工程委员会(CGB)的佐证,他们在报告中说:"根据目前的数据,不能得出转基因玉米Mon 863安全的结论。"

Russian scientists in these reports, however, call Monsanto's claim of their genetically modified Mon 863 corn as being safe for human or animal consumption "totally without validation", a finding supported by the French biomolecular engineering commission, the Commission du Génie Biomoléculaire (CGB) who stated in their report, "with the present data it cannot be concluded that GM corn MON 863 is a safe product."

国际绿色和平组织进一步佐证了俄罗斯科学家的结论,他们在名为《MON 863:系统性欺骗年鉴》的报告里警告说,经过对这种转基因作物中最危险品种的数据的大量搜集和评估,毫无疑问,MON 863不适合食用。

Further supporting the findings of Russian scientists was Greenpeace International, who in their report titled "MON 863: A chronicle of systematic deception" warned that the campaign to unearth and evaluate data about this most dangerous of genetically modified grains demonstrates, beyond all doubt, that MON863 is unfit for consumption.

不过,美国民众最不幸的是所有这些警告都被他们的政府大员们忽视了,这些大员们允许转基因作物大面积种植到了如此程度:现在,美国80%的玉米和93%的大豆都是这些危险品种,这导致一个俄罗斯科学家在报告中警告说现在世界正处于"圣经预言"的环境大灾难边缘。Most unfortunately for the American people though, all of these warnings have been ignored by their government masters who have allowed the mass planting of these genetically modified crops to such an extent that in the United States today fully 80% of their corn and 93% of their soybeans are of these dangerous varieties and leading one Russian scientist in these reports to warn that our World is now on the verge of experiencing an ecological disaster of "Biblical proportions".

而且报告说,这个环境灾难在美国已经发生了,美国死亡数据显示每年死亡人数约为250万,而从2008年早期到2010年3月,"突然死亡"人数增加了40%,刚好等于200万"神秘、不明原因"死亡人数。

And according to these reports this ecological disaster is well underway in the United States and supported by American death statistics showing that of the nearly 2.5 million deaths reported by

them each year the number of "sudden deaths" has increased to 40% equaling out to over 2 million "mysterious and unexplained" deaths from early 2008 to March, 2010.

报告接着说,"神秘、不明原因"死亡的美国人几乎都与肺部有关,且一直被错误地记录为感冒和肺炎类型疾病造成以免引起人们的恐慌,但实际上是由一种成功跨越物种障碍并危害人类的植物病毒造成的。

Now of these "mysterious and unexplained" American deaths, these reports continue, nearly all of them are lung related and being erroneously documented as being caused by influenza and pneumonia type diseases so as not to panic these peoples, but have, instead, been caused by as an yet unidentified plant virus that has successfully jumped the species barrier to human beings.

法国马赛地中海大学的Didier Raoult 进行的研究佐证了俄罗斯科学家的结论,在人类历史上他们首次发现一种植物病毒让一些人生病。

Supporting Russian scientists in these conclusions is new research being conducted by Didier Raoult of the University of the Mediterranean in Marseilles, France, where for the first time in human history a plant virus has been found to cause problems in people.

在报告中俄罗斯科学家进一步声称,美国去年给全国人口大规模接种所谓的H1N1猪流感疫情是一个"非常拙劣的表演",它们给人们注射的是一种转基因玉米DNA"修复剂" 以期阻止这种神秘的肺部疾病,他们说,从能得到的所有证据来看,修复失败了。

Russian scientists further claim in these reports that the United States mass vaccination of their population this past year for the supposed H1N1 Swine Flu epidemic was instead a "very clumsy attempt" to stop the spreading of this mysterious lung disease by injecting into these peoples a DNA "fix" to this genetically modified corn, and which by all the evidence available, they state, appears to have failed.

那些不明白美国政府为什么会对自己的公民做出如此人神共愤的恐怖行为的人们只要知道在过去的10年里,孟山都对负责食品安全的官员行贿达5亿美元就够了,而同时,孟山都加入了通用电气、埃克森石油等不交税的美国巨头公司行列,尽管它们赚取了几十亿美元的利润。

For those wondering how the United States government could ever allow such a monstrous outrage to be committed on their citizens one only need know that over the past 10 years Monsanto has paid over $500 million in bribing those American officials responsible for food safety while at the same time has joined US corporate giants General Electric and Exxon Mobil in not paying any taxes despite the billions in profits they have reaped.

那些相信奥巴马总统会保护他们免受这些恐怖行为之害的人们大错特错了,我们在《哈弗顿邮报新闻栏目》版面可以读到题为"你在任命谁?奥巴马,请说这不是真的!"的文章,其中一部分写道:

And for those Americans believing that President Obama will protect them from these outrages they couldn't be more mistaken, and as we can read as reported by the Huffington Post News Service in their article titled "You're Appointing Who? Please Obama, Say It's Not So!" and which, in part, says:

"那个比历史上任何人都带来更多与食品有关的疾病和死亡的人刚刚被任命为美国食品安全沙皇。这不是开玩笑。"

"The person who may be responsible for more food-related illness and death than anyone in history has just been made the US food safety czar. This is no joke.

因与主题关系不紧密,以下"幕后的秘密"(Here's the back story)部分省略。

以下是发现植物病毒感染人类的文章:

人类感染辣椒病毒

《新科学家》2010年4月14日

People pick up pepper virus

New Scientist 14 April 2010

植物病毒已经感染人类了吗?

Could a plant virus have found a way to infect humans?

人们一直认为植物病毒不会感染动物,反之亦然。但我们知道,人类粪便中存在大量植物病毒。

It has always been assumed that plant viruses cannot infect animals, and vice versa, but plant viruses are known to be abundant in human faeces.

现在,法国马赛地中海大学的Didier Raoult及其研究小组认为辣椒病毒也能让人生病。Now Didier Raoult at the University of the Mediterranean in Marseille, France, and his team think a pepper virus is making people sick, too.

在检测的304名成人中,他们从7%的受检者粪便中发现了辣椒小斑病毒。他的研究小组发现,感染该病毒的人比未感染者更容易患上发热、腹痛及瘙痒等症状。

They have found RNA from the pepper mild mottle virus in the faeces of 7 per cent of the 304 adults they tested. Those with the virus were more likely to report fever, abdominal pain and itching than those without it, his team found.

不过并非所有的人都相信此说法。美国路易斯安那州新奥尔良市土伦大学的病毒学家Robert Garry说,因为Raoult观察的是许多可能的症状,我想他在病毒阳性的人身上随便都可以找到几种更常见的症状。

Not everyone is convinced, however. Because Raoult looked at many possible symptoms, he would be expected to find a few that randomly appear more common in virus-positive people, says Robert Garry, a virologist at Tulane University in New Orleans, Louisiana.

Garry说,此外,为了进入细胞并复制,病毒必须与受体表面结合,而植物病毒很可能无法识别人类细胞上的受体。

Moreover, in order to enter a cell and replicate, a virus must bind to a receptor on its surface, and a plant virus would be highly unlikely to recognise a receptor on a human cell, says Garry.

Raoult说,一种可能是植物病毒并不直接感染人类细胞,而是采用类似RNA干扰的机制,裸露的病毒RNA可能改变了细胞功能,RNA干扰表现为:一旦存在,某些RNA序列可以打开或关闭基因。

One possibility, Raoult says, is that the virus does not infect human cells directly. Instead, the naked viral RNA may alter the function of the cells through a mechanism similar to RNA interference, in which the presence of certain RNA sequences can turn genes on and off.

Raoult的研究小组目前正在收集更加直接的证据以证明植物病毒确实能感染人类。

Raoult's team is now working to gather more direct evidence that the virus does infect humans.

约2年时间200万人死亡?看似不可能,但如果我们看看记忆里的"非典"恐怖事件,至少我们可以充分认识到生物武器轻而易举地造成的巨大危害与人人自危的恐怖状况。另外,有证据显示,中国2002年的"非典"疫情就是美国转基因病毒造成的,详情请网搜《院士惊人揭秘:中国"非典"来自转基因》。

以上转毒基因玉米滋生的跨物种病毒导致对人类的巨大毒害与毒杀事实充分说明:

转毒基因技术完全可以被用作生物武器制造出类似非典病毒这类大规模灭绝病毒!

实际上,除了传统意义上的"大规模杀伤性武器"外,转毒基因这类悄声无息的生物武器也应该被列为大规模杀伤性武器,搞转毒基因食品化就是在进行种族灭绝大屠杀!中国的转毒基因食品化骗子及其大本营农业部理应依法受到审判与严惩!

诺禾致源高分文章集锦-植物基因组

陆地棉基因组测序揭示四倍体棉进化与纤维发育机制Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement 研究对象:陆地棉遗传标准系TM-1 期刊:Nature Biotechnology 影响因子:41.514 合作单位:南京农业大学 发表时间:2015年4月 摘 要 Upland cotton is a model for polyploid crop domestication and transgenic improvement. Here we sequenced the allotetraploid Gossypium hirsutum L. acc. TM-1 genome by integrating whole-genome shotgun reads, bacterial artificial chromosome (BAC)-end sequences and genotype-by-sequencing genetic maps. We assembled and annotated 32,032 A-subgenome genes and 34,402 D-subgenome genes. Structural rearrangements, gene loss, disrupted genes and sequence divergence were more common in the A subgenome than in the D subgenome, suggesting asymmetric evolution. However, no genome-wide expression dominance was found between the subgenomes. Genomic signatures of selection and domestication are associated with positively selected genes (PSGs) for fiber improvement in the A subgenome and for stress tolerance in the D subgenome. This draft genome sequence provides a resource for engineering superior cotton lines.关键词 陆地棉;de novo;四倍体 研究背景 陆地棉(Gossypium hirsutum L.)隶属锦葵目(Malvales),锦葵科(Malvaceae),棉属(Gossypium),因最早在美洲大陆种植而得名,是世界上最重要的棉花栽培品种,占全球棉花种植面积的90%以上。尽管陆地棉在棉花产业中占据核心地位,但由于其为异源四倍体,相关的全基因组测序工作一直难以开展。来自南京农业大学、北京诺禾致源、美国德克斯大学的国际团队,利用最新测序技术,成功构建了高质量的陆地棉全基因组图谱,为进一步改良棉花的农艺性状提供了基础,同时也为多倍体植物的形成和演化机制提供了新的启示。

植物病毒病的有效防治方法

植物病毒病的有效防治方法 现在病毒病的危害有日益严重的趋势,发病病毒种类越来越多,常见到的有厥叶病毒,花叶病毒,条斑病毒,银叶病毒,黄化病毒,等几十种,而且混发的现象日趋严重。当前如何解决植物病毒病,是目前农业生产中非常紧迫的问题。植物病毒病的解决也是农民增产增收的保证。 一、病毒病的发病原因 (1)传染源 (2)传媒 (3)高温 (4)干旱 (5)光照过强 (6)品种本身的原因 二、预防措施 (1)切断传染源,措施:种子消毒,接种抗毒免疫剂。选择无毒种苗。利用茎尖脱毒克隆方法繁育种苗。 (2)消灭传媒,做好蚜虫,白粉虱等害虫的防治工作。 (3)尽量控制好温度,最高温度应控制在32度以下,如温度过高,就要采取措施,地面要经常浇小水,叶面多喷喷抗毒免疫剂或灌根。 (4)避免干旱,小水勤浇。要控制合适的湿度。 (5)夏天光照强时要进行适当遮光。 (6)增喷抗毒免疫剂,中药及生物的为最好。 (7)选育抗病毒品种 (8)改进栽培措施,选择先进的有机栽培模式。增强本身抗病毒能力。 三、治疗措施

(1)种子用脱毒剂进行处理,磷酸三钠10倍浸泡10分钟,或高猛酸钾100倍浸泡,或抗毒免疫剂100倍浸种10分钟,冲洗干净后播种或催芽。 (2)用无毒无菌无虫卵基质育苗。 (3)要尽量用有机栽培模式,利于根系发育,提高本身抗病毒能力 (4)出苗后接种抗病毒疫苗三次以上。 (5)移栽后定期喷洒抗病毒疫苗或制剂。 (6)冲施肥要以天然有机肥为主,用生物发酵好的肥料,厌氧菌或放线菌类有益防腐微生物为最好,养根壮根,提高产量的同时提高其抗病毒能力。 关于植物病毒病 植物病毒对寄主的危害,素有“植物癌症”之称,防治上十分困难。病毒在侵染寄主后,不仅与寄主争夺生长所必需的营养成分,而且破坏植物的养分输导,改变寄主植物的某些代谢平衡,使植物的光合作用受到抑制,致使植物生长困难,产生畸形、黄化等症状,严重的造成寄主植物死亡。为了有效地控制植物病毒病,人们采用了各种措施,包括轮作、种子脱毒、病毒间的弱毒株系交叉保护、抗病品种的选用、传毒介体的控制及化学农药的使用等,近年来转基因植物抗病研究也有了新的进展。但这些措施还不能有效克服病毒的危害,且化学农药的使用对环境造成了很大危害,在当前大力提倡绿色食品和环境保护的前提下,加强植物病害的综合防治和减少化学农药的使用已成为植保工作者工作的重点内容之一。为了能开发出有效控制病毒且不会造成环境污染的抗病毒药剂,研究人员不断寻找和筛选天然的生物源抗病毒物质。目前,国内外已报道的天然抗病毒活性物质种类很多,有的已形成产品,在农业生产中发挥着重要作用。 一、改变耕作制度,加强栽培管理,预防植物病毒病的发生和流行 1.轮作套种采用不同作物和品种的轮作和套种,可以减少病原积累,防止病害严重发生。 2.选择适宜播种期播种期的选择对病毒病的发生也有很大影响。 3.加强苗期管理苗床和苗期的管理对预防和控制病毒病的发生十分重要,因为苗床上的病株,可能成为大田发病的重要毒源。因此,要尽力保证幼苗不生病或少生病,加强田间栽培管理,提高植物抗病毒病的能力,铲除田间地头杂草,拔除病株以除掉毒源,及时治虫防病,也能减轻病害。 二、种植抗、耐病品种 采用抗病和耐病品种可以经济有效地防治和减轻病毒病的发生。多数抗病品种可以抵抗病毒复制和扩散,有些蔬菜可以抗传毒介体。

中国科学院在各地的分院研究所

中国科学院在各地的分院、研究所 中国科学院作为中国自然科学最高学术机构,在我国工学理学等自然科学领域做出了杰出贡献,化学物理、材料科学、数学、环境生态学已步入世界先进行列。中国科学院成立于建国初期,响应国家号召,在全国范围内,设立研究分院,截止2016年已有分院12所,分别为北京分院、沈阳分院、长春分院、上海分院、南京分院、武汉分院、广州分院、成都分院、昆明分院、西安分院、兰州分院、新疆分院;下设包括微生物研究所、近代物理研究所、武汉岩土力学研究、物理研究所、生物物理研究所、兰州物化所在内的研究单位114个,涉及理工、基础化学物理、数学、微生物、生态等各个学科领域。中国科学院拥有2所直属高校(中国科学院大学、中国科学技术大学)、1所共建高校(与上海市人民政府共建上海科技大学)、130多个国家级重点实验室和工程中心、210多个野外观测台站。 中国科学院的组织架构图中国科学院院士数据据2016年1月中科院官网显示,中国科学院有院士777人,其中数学物理学部148人,化学部131人,生命科学和医学学部143人,地学部127人,信息技术科学部90人,技术科学部138人;此外中国科学院还拥有外籍院士82人。截至2016,中国科学院院士工作地分布在全国25个省、直辖市、自治

区,其中,北京市380人,上海市92人,江苏省42人,辽宁省21人,湖北省21人,陕西省18人,香港特别行政区18人,安徽省16人,以上8个省、直辖市、自治区共有院士608人,占全体院士的83%;院士性别比例男性占94%,女性占6%。中科院2017度的科研项目2017年,中国科学院下属植物研究所、地理科学与资源研究所、昆明植物研究所、合肥物质科学研究院、深圳先进技术研究院等多个研究单位的“大气辐射特性自动检测仪”、“地表反射自动观测高精度辐射计”、“多角度地表光学反射特性自动观测仪”、“高精度太阳辐射计”、“太阳直射自校准辐照度仪”、“光学遥感卫星智能化高精度地面定标系统”数十个科研项目,通过了我国第一家第三方科技成果评价机构——中科合创(北京)科技成果评价中心组织专家召开的评价会。

植物功能基因组学及其研究技术_崔兴国

第9卷 第1期2007年3月 衡水学院学报 J o u r n a l o f H e n g s h u i U n i v e r s i t y V o l.9,N o.1 Ma r.2007植物功能基因组学及其研究技术 崔兴国 (衡水学院 生命科学系,河北 衡水053000) 摘 要:植物基因组的研究已经由以全基因组测序为目标的结构基因组学转向以基因功能鉴定为目标的功能基因组学研究.植物功能基因组学研究是利用结构基因组学积累的数据,从中得到有价值的信息,阐述D N A序列的功能,从而对所有基因如何行使其职能并控制各种生命现象的问题作出回答.近年来植物功能基因组学的研究技术主要包括表达序列标签、基因表达的系列分析、D N A微阵列和反向遗传学等.对植物功能基因组学的研究将有利于我们对基因功能的理解和对植物形状的定性改造和利用. 关键词:植物;功能基因组学;研究技术 中图分类号:Q3-3 文献标识码:A 文章编号:1673-2065(2007)01-0023-04 基因是细胞的遗传物质,决定细胞的生物学形状,细胞的生物学功能最终是由大量的基因表达完成的.随着人类基因组“工作框架图”的完成,生命科学研究的重点已经从结构基因组学转移到了功能基因组学的研究,特别是模式植物拟南芥(A r a b i d o p-s i s t h a l i a n a)和水稻(O r y z a s a t i v a)基因组测序的完成,公共数据库中已经积累了大量基因序列信息,获得了许多与植物发育相关的功能基因,在此基础上应用实验分析方法并结合统计和计算机分析来研究基因的表达、调控与功能,并相应诞生和发展了一批新的研究技术,为功能基因组学的研究提供了必要而有效的技术支撑.功能基因组学研究的最终目标是解析所有基因的功能,即从基因水平上大规模批量鉴定基因的功能,进而全面研究控制植物生长发育及响应环境变化的遗传机制,在基因组序列与细胞学行为之间起到桥梁作用,共同承担起从整体水平上解析生命现象的重任. 1 植物功能基因组学研究 植物的生长和发育是一个有机体或有机体的一部分形态建成和功能按一定次序而进行的一系列生化代谢反应的总合,反应在分子水平上,它要求相应的遗传代谢途径必须按照特定的时空次序严格进行以保证正常发育.植物功能基因组研究就是要利用植物全基因组序列的信息,通过发展和应用系统基因组水平的实验方法来研究和鉴别基因组序列的作用;研究基因组的结构、组织与植物功能在细胞、有机体和进化上的关系以及基因与基因间的调控关系;从表达时间、表达部位和表达水平3个方面对目的基因在植物中的精细调控进行系统研究.当前植物功能基因组学研究主要集中于一年生的拟南芥与水稻两个物种上,这主要是由于它们的遗传背景清楚,基因组较小,基因结构简单而且易于进行分子生物学操作.拟南芥研究组“2010计划”的宏伟目标是充分利用拟南芥基因组计划获得的序列信息并结合功能基因组研究技术来获知其25000个基因的全部功能,例如开花的诱导过程是植物生活周期中最奇妙的过程,目前从拟南芥中鉴定了提早开花和延迟开花的多种突变体,显示植物开花受多个遗传基因的控制,如延迟开花的两个突变体是由等位基因 C O(C O N S T A N S)和L D(C O L D L U M I N I D E P E N- D E N S)突变引起,这两个基因均已被克隆,并使其在转基因植物的叶片中进行表达,将C O基因转移到拟南芥中,高效表达C O蛋白的转基因植株即使处于短日照条件下也会开花,这说明C O基因具有激活开花基因的作用.对模式植物功能基因组的研究将有助于整个植物基因组学的研究. 目前的功能基因组研究主要包括以下几个方面:(1)c D N A全长克隆与测序;(2)获得D N A芯片 ①收稿日期:2006-10-12 作者简介:崔兴国(1963-),女,河北冀州市人,衡水学院生命科学系副教授.

转基因植物的安全性评价.

1转基因植物安全评价的意义 转基因植物育种,是利用遗传工程的手段,有目的地将外源基因或DNA构建导 入植物基因组,通过外源基因的直接表达,或通过对内源基因表达的调控,甚至通过直接调控植物相关生物如病毒的表达使植物获得新的性状的一种品种改良技术,可最大限度地满足人类的需要[1]。 与此同时,转基因技术使物种的进化速度远远超过生物自然变异与选择的速度,对于这种急剧的生物物种变化,自然界能否容纳和承受?自然界的其他组成部分是否会因此受到伤害或破坏?转基因植物及其产品被人们食用时,是否会向人体肠道微生物发生基因转移?是否会出现由于某种新物质的形成对人体健康产生危害或潜在影响?要消除这些疑虑就要进行转基因植物的安全性评价。要经过合理的实验设计和严密科学的实验程序,积累足够的数据,根据这些数据判断转基因植物的大田释放和大规模商业化生产是否安全,对实验证明安全的转基因植物正式用于农业生产,对存在安全隐患的加以限制,避免危及人类生存及破坏生态环境[2]。因此,制定科学完善的安全性评价的原则与方法,对确保人类健康和环境安全及转基因技术的健康发展具有十分重要的意义。 2转基因农产品安全评价的内容 2.1转基因植物的环境安全性 转基因植物的环境安全性评价要解决的核心问题是转基因植物释放到田间后是否会将基因转移到野生植物中;是否会破坏自然生态环境,打破原有生物种群的动态平衡[2]。 转基因植物演变为农田杂草的可能性:转基因植物可通过传粉进行基因转移,可能将一些抗虫、抗病、抗除草剂或对环境胁迫具有耐性的基因转移给近缘种或杂草,如果杂草获得了这些抗性,就会变成超级杂草,使农田杂草难以控制。 基因漂移到近缘野生种的可能性:在自然生态条件下,有些栽培植物会和周围生长的近缘野生种发生天然杂交,从而将栽培植物中的基因转入野生种中。在进行转

为什么转入病毒外壳蛋白基因或病毒复制酶基因就具备抗病毒的能力

为什么植物转入病毒外壳蛋白基因或病毒复制酶基因就具备抗病毒的能力(1)病毒外壳蛋白(coat protein, CP)基因:在植物中表达病毒外壳蛋白基因可以阻止病毒的侵染或症状的产生。 病毒外壳蛋白的抗性机理:一种假说认为,当入侵病毒的裸露核酸进入植物细胞后,它们立即被细胞中的自由CP所重新包裹,从而阻止了入侵病毒核酸的翻译和复制。在离体条件下,附加自由CP能够抑制末装配病毒的翻译的实验结果支持了上述假说;另一假说认为,抗性机制是在CP水平上抑制病毒脱壳,此说法最有力的证据是转基因植株可抗完整病毒的侵染.但不能抵御裸露病毒RNA的入侵;还有一种观点认为病毒外壳蛋白的抗性机制不是外壳蛋白在起作用,而可能是它的RNA转录物与入侵病毒RNA之间的相互作用 (2)病毒复制酶基因:RNA病毒(如烟草花叶病毒)的复制酶是依赖于RNA的RNA聚合酶。病毒复制酶一般是在病毒核酸进入寄主细胞并结合到寄主核糖体之后形成的。在植物中表达不完整的病毒复制酶基因可以显著提高植物对病毒的抗性,作用机制还不十分清楚,可能与基因转录后沉默有关。 植物抗病毒基因工程 植物病毒病难以防治已成为植物界的“癌症”,给全球农业生产造成巨大的损失。有效地防治植物病毒病,减少经济损失,满足日益增长的世界人口需求。是农业生产当务之急。病毒分子生物学,植物基因工程的迅速发展,为筛选培育抗病、优质、丰产的新植物开辟了广阔的前景。自1986年,全球范围内兴起了多种利用分子生物学及基因工程研究成果防治植物病毒病害的策略,并成功地培育筛选出多种抗病毒的工程植物。 1.病毒外壳蛋白介导的基因工程抗病性 外壳蛋白是形成病毒颗粒的结构蛋白,它的功能是将病毒基因组核酸包被起来,保护核酸;与宿主互相识别,决定宿主范围;参与病毒的长距离运输等。1986年,美国的Beachy 实验室的Powell-Abel等第一次将烟草花叶病毒外壳蛋白(TMV-Cp)基因插入修饰过的农杆菌质粒中,并置于花椰菜花叶病毒(CaMV)35S启动子下,经农杆菌侵染而将TMV -Cp基因转入烟草,并在烟草中表达TMV-Cp,分子生物学检测表明TMV-Cp基因已整合到烟草的基因组中,并能稳定地遗传给子代,在转基因烟草中TMV-Cp表达量占叶蛋白0.1%左右。攻毒试验表明:转基因烟草能够抑制TMV的复制,在一定程度上降低或阻止TMV的系统侵染;并延迟发病12~30天。这一突破性的研究成果标志着植物抗病毒基因工程的诞生。自此科学家继续用黄瓜花叶病毒(CMV),马铃薯病毒X和Y,大豆花叶病毒(SMV),苜蓿花叶病毒(AiMV)等病毒的外壳蛋白基因导入植物体后,均得到类似的实验结果,使转基因植物获得对该病毒的抗性。至今世界各地科学家已在15个病毒组中的30多种病毒中,证实了由病毒外壳蛋白介导的抗病性,许多抗性工程植物相继进入大田试验。目前认为外壳蛋白介导的抗病性是比较成熟的植物抗病毒基因工程策略,有人认为其机制是外壳蛋白在转基因植物中的积累干扰了病毒脱衣壳,从而抑制了病毒在植物体中的复制,转运与积累,但许多实验结果预示其机制的复杂性。 2.复制酶介导的抗病性 复制酶即特异性依赖于病毒RNA的RNA多聚酶。是病毒基因组编码的自身复制不可缺少的部分,特异地合成病毒的正负链RNA。1990年Golemboski等报道他们将TMVU1株编码的复制酶的一部分基因序列,即54kD蛋白基因转入烟草中得到的工程植株用很高浓度的TMVU1(500μg/mL)及TMV RNA(300μg/mL)接种时,均表现出很高的抗性,比一般转外壳蛋白基因的植物介导的植物抗病性高得多。后来豌豆早枯病毒54kD的蛋白基因和CMVFny RNA2编码的切去活性中心部位GDD(Gly-Asp-Asp)的复制酶部分基因片段转入烟草,均获得了高抗的工程植物。此外在马铃薯病毒X和Y中也报道了同样成功的研

已完成基因组测序的生物(植物部分)分析解析

水稻、玉米、大豆、甘蓝、白菜、高粱、黄瓜、西瓜、马铃薯、番茄、拟南芥、杨树、麻风树、苹果、桃、葡萄、花生 拟南芥籼稻粳稻葡萄番木瓜高粱黄瓜玉米栽培大豆苹果蓖麻野草莓马铃薯白菜野生番茄番茄梨甜瓜香蕉亚麻大麦普通小麦西瓜甜橙陆地棉梅毛竹桃芝麻杨树麻风树卷柏狗尾草属花生甘蓝 物种基因组大小和开放阅读框文献 Sesamum indicum L. Sesame 芝麻(2n = 26)293.7 Mb, 10,656 orfs 1 Oryza brachyantha短药野生稻261 Mb, 32,038 orfs 2 Chondrus crispus Red seaweed爱尔兰海藻105 Mb, 9,606 orfs 3 Pyropia yezoensis susabi-nori海苔43 Mb, 10,327 orfs 4 Prunus persica Peach 桃226.6 of 265 Mb 27,852 orfs 5 Aegilops tauschii 山羊草(DD)4.23 Gb (97% of the 4.36), 43,150 orfs 6 Triticum urartu 乌拉尔图小麦(AA)4.66 Gb (94.3 % of 4.94 Gb, 34,879 orfs 7 moso bamboo (Phyllostachys heterocycla) 毛竹2.05 Gb (95%) 31,987 orfs 8 Cicer arietinum Chickpea鹰嘴豆~738-Mb,28,269 orfs 9 520 Mb (70% of 740 Mb), 27,571 orfs 10 Prunus mume 梅280 Mb, 31,390 orfs 11 Gossypium hirsutum L.陆地棉2.425 Gb 12 Gossypium hirsutum L. 雷蒙德氏棉761.8?Mb 13 Citrus sinensis甜橙87.3% of ~367 Mb, 29,445 orfs 14 甜橙367 Mb 15 Citrullus lanatus watermelon 西瓜353.5 of ~425 Mb (83.2%) 23,440 orfs 16 Betula nana dwarf birch,矮桦450 Mb 17

植物基因组测序

千年基因将应邀参加第十六届全国植物基因组学大会 第十六届全国植物基因组学大会将于2015年8月19日-22日在陕西杨凌召开,千年基因应邀参加此次会议,并将在会场学术交流区设立展台。届时千年基因的技术团队会向大家展示我们最全面的测序平台、一站式的基因组学解决方案以及近年来在植物基因组学领域取得的科研成果,欢迎广大科研人员莅临指导交流! 在测序平台方面,千年基因目前拥有国内最全面的测序平台,能够为科研人员提供一站式解决方案。以PacBio RS II三代平台为例,千年基因自去年提供PacBio RS II测序以来,通过项目经验的积累及严格的质量控制,目前各项数据指标已达国内最高水平。数据产出已稳步升级至1.4Gb/ SMRT cell,读长最长可达42 Kb,reads N50高达18Kb,远超PacBio官方提供的数据标准!在植物基因组de novo测序的研究中,千年基因提供的超长读长测序可更好地跨越基因组高重复序列、转座子区域以及大的拷贝数变异区域和结构变异区,从而实现对高杂合及高重复基因组的完美组装。在植物转录组测序的研究中,千年基因提供的超长读长测序无需拼接即可获得全长转录组序列信息,同时可获得全面的可变剪切、融合基因以及Isoform信息。另外,千年基因提供的HiSeq 4000及HiSeq 2000/2500测序可解决研究人员在植物基因组重测序、转录组测序、小RNA测序等方面的科研需求。 在项目经验方面,千年基因与来自全球的科研人员合作开展了大量植物基因组项目,相关成果已发表于Nature、Nature Genetics、Science等杂志。例如,油棕榈基因组项目在Nature 杂志同时发表两篇文章,辣椒基因组项目的成果发表于Nature Genetics,玉米基因组项目的成果发表于Science。在国外合作方面,千年基因与美国爱荷华州立大学Patrick Schnable教授领导的国际玉米基因组团队合作开展的上万份玉米样本重测序项目也正在进行中;千年基因与国际半干旱热带作物研究所建立长期战略合作关系,正在开展上千份木豆、鹰嘴豆及高粱样本的群体遗传学研究;同时千年基因与华盛顿大学的Evan Eugene Eichler院士及佐治亚大学的Jeffrey Lynn Bennetzen院士也有大量基因组项目合作。在国内合作方面,千年基因与广东省农科院、山东省农科院共同启动的花生基因组项目已全部完成de novo测序及数据挖掘,同时与中国科学院、北京大学、中国农业大学、中国科学技术大学、上海交通大学、

植物功能组研究进展

程论文(作业)封面(2011 至2012 学年度第 2 学期)课程名称:_ ___ 课程编号:___________ 学生姓名:__ ________ 学号:_______ 年级:__ ___________ 任课教师: _ ____________ 提交日期:年月日成绩:__________________ 教师签字:__________________ 开课---结课:第周---第周评阅日期:年月日

植物的功能基因组学研究进展 摘要:基因组研究计划包括以全基因组测序为目标的结构基因组学和以基因功能鉴定为 目标的功能基因组学两方面的内容。目前基因功能鉴定的方法主要有:基因表达的系统分析(SAGE) 、cDNA 微阵列、DNA(基因) 芯片、蛋白组技术以及基于转座子标签和T-DNA 标签的反求遗传学技术等。本文对上述各种技术的优缺点以及它们在植物基因功能鉴定中的应用进行了综述。 关键词:功能基因组学; 基因表达的系统分析;cDNA 微阵列;DNA 芯片;蛋白组 以拟南芥和水稻为代表的植物基因组研究已取得了迅速的进展,到目前为止,占拟南芥基因组(100Mb) 近三分之一的DNA 序列已被测定并在GenBank 数据库中登记注册,预期到2001 年通过全球合作将完成拟南芥全基因组的序列测定工作。随着植物基因组计划的实施和进展,GenBank 中累积了大量的未知功能的DNA 序列,如何鉴定出这些基因的功能将成为基因组研究的重点课题, 因此, 基因组研究应该包括两方面的内容: 以全基因组测序为目标的结构基因组学(structural genomics) 和以基因功能鉴定为目标的功能基因组研究, 后者往往又被称为后基因组研究。功能基因组研究的内容是利用结构基因组所提供的信息, 发展和应用新的实验手段系统地分析基因的功能〔1 〕。目前人类和酵母的功能基因组研究已经全面展开, 尤其是对已完成全基因组测序的酵母来说, 其功能基因组研究任务更加紧迫。植物的基因组研究虽然起步较晚, 但由于吸取了人类基因组研究中积累的一些经验, 所以进展也相当迅速, 对植物功能基因组学的研究目前也已经受到重视, 在1998 年12月出版的最新一期Plant Cell (10 :1771) 和Plant Physiol . (118 :713) 上均编发了关于植物功能基因组学研究的编者按, 并由Bouchez 和Hofte (1998) 〔2 〕综述了植物尤其是拟南芥功能基因组学研究的现状, 本文在此基础上综述了目前植物功能基因组学研究中使用的主要技术手段以及最新的研究进展。 1 基因功能的含义 基因的功能主要包括: 生物化学功能, 如作为蛋白质激酶对特异的蛋白质进行磷酸化修饰; 细胞学功能, 如参与细胞间和细胞内的信号传递途径; 发育上的功能, 如参与形态建成等。目前,获得一段DNA 序列的功能信息的最简单的方法是将该DNA 序列与GenBank 中公布的基因序列进行同源性比较,如利用BLASTn 和BLASTx 两种软件分别进行核苷酸和氨基酸序列同源性比较等。同源性比较的结果大体可以分为如下类型: 与生化和生理功能均已知的基因具同源性; 与生化功能已知的基因具同源性, 但该基因的生理功能未知;与其它物种中生化和生理功能均未知的基因具同源性; 虽与生化和生理功能均已知的基因具同源性, 但对该基因功能的了解尚不深入, 仍停留在表观现象上。上述同源性检索分析方法仅仅为该DNA 片段的功能提供了间接的证据,对基因功能的直接证据还需要实验上的数据。Bouchez 和Hofte (1998)〔2 〕将所需要的实验证据归纳如下: (1) 通过研究基因的时空表达模式确定其在细胞学或发育上的功能, 如在不同细胞类型、不同发育阶段、不同环境条件下以及病原菌侵染过程中mRNA 和/ 或蛋白质的表达的差异等。(2) 研究基因在亚细胞内的定位和蛋白质的翻译后调控等。(3) 利用基因敲除(knock - out) 技术进行功能丧分析或通过基因的过量表达(转基因) 进行功能获(gain2of2function) 分析,进而研究目的基因与表型性状间的关系。(4) 通过比较研究自发或诱发突变体与其野生型植株在特定环境条件下基因表达的差异来获取基因功能的可能信息。 2 植物的表达序列标记(EST) 与基因组大规模测序 通过从cDNA 文库中随机挑取的克隆进行测序所获得的部分cDNA 的5′或3′端序列称为表达序列标记( EST) ,一般长300~500bp 左右, 利用EST作为标记所构建的分子遗传图

中科院所有研究所

北京市 数学与系统科学研究院 力学研究所 物理研究所 高能物理研究所 声学研究所 理论物理研究所 国家天文台 渗流流体力学研究所 自然科学史研究所 理化技术研究所 化学研究所 过程工程研究所 生态环境研究中心 古脊椎动物与古人类研究所大气物理研究所 地理科学与资源研究所 遥感应用研究所 空间科学与应用研究中心 对地观测与数字地球科学中心地质与地球物理研究所 数学科学学院 物理学院 化学与化工学院 地球科学学院 资源与环境学院 生命科学学院 计算机与控制学院 管理学院 人文学院

外语系 工程管理与信息技术学院 材料科学与光电技术学院 电子电气与通信工程学院 华大教育中心 动物研究所 植物研究所 生物物理研究所 微生物研究所 遗传与发育生物学研究所 心理研究所 计算技术研究所 工程热物理研究所 半导体研究所 电子学研究所 自动化研究所 电工研究所 软件研究所 国家科学图书馆 微电子研究所 计算机网络信息中心 科技政策与管理科学研究所 北京基因组研究所 青藏高原研究所 光电研究院 国家纳米科学中心 信息工程研究所 空间应用工程与技术中心(筹)天津市 天津工业生物技术研究所

河北省 渗流流体力学研究所 遗传与发育生物学研究所农业资源研究中心山西省 山西煤炭化学研究所 辽宁省 大连化学物理研究所 沈阳应用生态研究所 沈阳计算技术研究所 金属研究所 沈阳自动化研究所 吉林省 长春人造卫星观测站 长春应用化学研究所 东北地理与农业生态研究所 长春光学精密机械与物理研究所 上海市 上海应用物理研究所 上海天文台 声学研究所东海研究站 上海有机化学研究所 上海硅酸盐研究所 上海生命科学研究院 上海药物研究所 上海微系统与信息技术研究所 上海光学精密机械研究所 上海技术物理研究所 上海巴斯德研究所

植物功能基因组学概述

植物功能基因组学概述 XXX* (XXXXX) 摘要:植物功能基因组学是从整体水平研究基因的功能及表达规律的科学。对植物功能基因组学的研究将助于我们对基因功能的理解和对植物性状的定性改造和利用。本文简要介绍了植物功能基因组学的概念、研究内容和研究方法。 关键词:植物;功能基因组学;ESTs;SAGE Summarize of Plant Functional Genomics XXX (XXXXX) Abstract:Plant functional genomics studies provide a novel approach to the identification of genome-wide gene expression. It is currently being widely focused on the gene expression by transcript profiling and takes us rapidly forward in our understanding of plant biological traits. In this review, comprehensive of concepts, research contents and methodologies regarding plant functional genomics and transcript profiling are described. Key words: Plant; functional genomics; ESTs; SAGE 1 植物功能基因组学 基因组学(Genomics)是20世纪最后10年研究最活跃的领域之一。基因组学是指对所有基因的结构和功能进行分析的一门学科, 1986年由美国科学家Thomas Roderick提出, 兴起于20世纪90年代[1]。基因组学研究分为结构基因组学( structural genomics) 和功能基因组学( functional genomics)。结构基因组学代表基因组分析的早期阶段, 以建立生物体高分辨率遗传、物理和转录图谱为主, 以研究基因序列为目标。功能基因组学(Functional genomics)的研究又被称为后基因组学(Post genomics)研究,它是利用结构基因组学提供的信息和产物,通过在基因组或系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质的研究转向对多个基因或蛋白质同时进行系统研究。 植物功能基因组学是植物后基因时代研究的核心内容,它强调发展和应用整体的(基因 组水平或系统水平)实验方法分析基因组序列信息、阐明基因功能,其特点是采用高通量的实验方法结合大规模的数据统计计算方法进行研究。基本策略是从研究单一基因或蛋白质上升到从系统角度研究所有基因或蛋白质。在植物功能基因组学的研究中,拟南芥和水稻是两种最常用的模式植物。目前, 功能基因组学在水稻、拟南芥等模式植物中取得了较快进展, 主要原因在于这两种植物已完成全基因组测序工作[2], 获得了结构基因组数据, 且遗传背景清楚, 易于开展分子生物学研究, 已率先步入后基因组时代。 2 植物功能基因组学研究内容 2、1基因组多样性研究[1] *联系人Tel:XXXXX;E-mail:XXXXX

实验报告 植物基因组的提取和检测

四川大学实验报告 题目:的提取与检测植物基因组DNA一、实验目的 1.了解真核生物基因组DNA提取的一般原理; 2.掌握基因组DNA提取的方法和步骤。 二、实验原理 1.在液氮中对植物组织进行研磨,破碎细胞; 2.SDS等离子型表面活性剂能溶解膜蛋白而破坏细胞膜,使核蛋白解聚,从而使DNA游离出来; 3.苯酚和氯仿等有机溶剂能使蛋白质变性,并使抽提液分相,因核酸水溶性很强,经离心后即可从抽提液中除去细胞碎片和大部分蛋白质; 4.上清液中加入异丙醇使DNA沉淀,沉淀DNA溶于TE缓冲液中,即得植物基因组DNA溶; 5.DNA的琼脂糖凝胶电泳鉴定:带电荷的物质,在电场中的趋向运动称为电泳。DNA的琼脂糖凝胶电泳可以分离长度为200bp至近50kb的DNA分子。DNA的迁移率(U)的对数与凝胶浓度(T)之间存在反平行线性关系。因此,要有效地分离不同大小的DNA片段,选用适当的琼脂糖凝胶浓度是非常重要的。 三、实验材料 1.设备 移液器,台式高速离心机,水浴锅,陶瓷研钵,1.5ml离心管 2.材料 植物幼嫩叶片 3.试剂 (1)细胞提取液:100mmol/L Tris-HCl, pH8.0, 5mmol/L EDTA, 500mmol/L NaCl, 1.25% SDS,1%β-巯基乙醇(去除酚类) (2)氯仿:异戊醇(24:1) (3)其它试剂:液氮、无水乙醇、 TE缓冲液、异丙醇、洗涤缓冲液 四、方法和步骤 0C水浴(金属浴)中加热备用;μ500L细胞提取液于651、取2、研钵用液氮预冷,新鲜植物叶片(自来水清洗,蒸馏水冲洗干),去除叶脉,剪成细条状,置于研钵中研磨成粉末状(越细越好); 0C预热的细胞提取液中,迅速摇匀,65500、取0.1g粉末(大约两勺半)转移至

转基因植物的安全性评价

1转基因植物安全评价的意义 转基因植物育种,是利用遗传工程的手段,有目的地将外源基因或DNA构建导入植物基因组,通过外源基因的直接表达,或通过对内源基因表达的调控,甚至通过直接调控植物相关生物如病毒的表达使植物获得新的性状的一种品种改良技术,可最大限度地满足人类的需要[1]。 与此同时,转基因技术使物种的进化速度远远超过生物自然变异与选择的速度,对于这种急剧的生物物种变化,自然界能否容纳和承受?自然界的其他组成部分是否会因此受到伤害或破坏?转基因植物及其产品被人们食用时,是否会向人体肠道微生物发生基因转移?是否会出现由于某种新物质的形成对人体健康产生危害或潜在影响?要消除这些疑虑就要进行转基因植物的安全性评价。要经过合理的实验设计和严密科学的实验程序,积累足够的数据,根据这些数据判断转基因植物的大田释放和大规模商业化生产是否安全,对实验证明安全的转基因植物正式用于农业生产,对存在安全隐患的加以限制,避免危及人类生存及破坏生态环境[2]。因此,制定科学完善的安全性评价的原则与方法,对确保人类健康和环境安全及转基因技术的健康发展具有十分重要的意义。 2转基因农产品安全评价的内容 2.1转基因植物的环境安全性 转基因植物的环境安全性评价要解决的核心问题是转基因植物释放到田间后是否会将基因转移到野生植物中;是否会破坏自然生态环境,打破原有生物种群的动态平衡[2]。 转基因植物演变为农田杂草的可能性:转基因植物可通过传粉进行基因转移,可能将一些抗虫、抗病、抗除草剂或对环境胁迫具有耐性的基因转移给近缘种或杂草,如果杂草获得了这些抗性,就会变成超级杂草,使农田杂草难以控制。 基因漂移到近缘野生种的可能性:在自然生态条件下,有些栽培植物会和周围生长的近缘野生种发生天然杂交,从而将栽培植物中的基因转入野生种中。在进行转基因植物安全评价时应从两个方面考虑,一是转基因植物释放区是否存在近缘野生种,若没有,则基因漂移就不会发生。另一个可能是存在近缘野生种,基因可以从栽培植物转移到野生种中,这就要分析考虑基因转移后会有什么效果。 对自然生物类群的影响:在植物基因工程中所用的许多基因是与抗虫或抗病有关的,其直接作用的对象是生物。如转入BT杀虫基因的抗虫棉,其目标昆虫是棉铃虫和红铃虫等植物害虫,如大面积和长期种植抗虫棉,昆虫有可能对抗虫棉产生适应性或抗性,这会影响抗虫棉的应用和BT农药制剂的防虫效果。因此,在抗虫棉推广时一般要求种植一定比例的非抗虫棉,以延缓昆虫产生抗性。 2.2转基因植物的食品安全性 转基因食品又称基因修饰食品(Geneticallymodifiedfood,GMF),即用转基因生物制造或产生的食品。进行转基因食品安全评价时,应从宿主、载体、插入基因、重组DNA、基因表达产物及其对食品营养成分的影响等方面来考虑[3]。主要内容有:转基因食品基因修饰导致的新基因产物的营养学评价、毒理学评价以及过敏效应。 3转基因植物的安全评价方法 3.1转基因植物安全性评价等级与原则 中国农业部在2002年1月5日发布的《农业转基因生物安全评价管理办法》中,按照对人类、动植物、微生物和生态环境的潜在危险程度,由高到低的顺序将农业转基因生物分为4个安全等级(表1)[4]。 表1农业转基因生物安全等级的划分标准 在对农业转基因生物进行安全性评价时一般遵从以下几条原则:(1)促进而不是限制农业转基因生物的发 转基因植物的安全性评价 李茜 (南京农业大学,国家生命科学与技术人才培养基地,南京210095) 摘要:简要论述了转基因植物安全性评价的意义、内容和方法。 关键词:转基因植物;安全性;评价。 安全等级潜在危险程度 Ⅰ尚不存在危险 Ⅱ具有低度危险 Ⅲ具有中度危险 Ⅳ具有高度危险 农业生物技术 62 -- 中国农村小康科技2008年第1期E-mail:chinaxiaokang@126.com地址:100026北京市朝阳区麦子店街20号农业部北办公区中国农学会

中科院植物学考研经验分享[张学长]

一、本文适用 1.普本考研 2.考研科研院所 二、学长简介 初试成绩:

聚英奖学金申请表: 三、经验分享 考研心得

本人学校是二本学校——东华理工大学,学的是二本专业——生物技术,最后却考上了中国最好的科研单位——中国科学院!这是为什么?我觉得最重要的两个字,就是坚持! 无论你的出身如何,无论你在本科期间成绩有多么不理想,只要打好了考研备考这一战,你就成功了80%!而其中最重要的,就是坚持! 考研复习计划因人而异,需要结合个人情况。但是对于考研必须要有的就是自信和毅力。据我所知,每个坚持认真复习,觉得自己肯定能考上的同学,最后都考上了。 一下是我结合网上的一些备考总结:

1.开始复习时间:个人感觉,这个并不是越早越好,太早,战线拉得太长。 在中后期会感到疲惫,坚持不住,会有一拨人在暑假前后放弃考研。当然如果你觉得你会非常有毅力,一年如一日,那也可以。再就是要结合自己考研的难易程度,如果报录比很高(比如十几个里面才录取一个),自己想报的学校很好,也可以适当的开始的早一些。 2.日程安排:我的初试科目科目是,政治,英语一,业务课一(植物学),业务课二(遗传学)。 1)对于政治,大可不必太早去看,从来没听说过有人会因为政治分低,被拒之门外的。我觉得,政治

到最后冲刺的两个月开始背就可以了(每个人都有一些政治基础的,大学里面的毛概,中特,马哲,形势与政策等都是政治考试的范畴),政治想低分(50以下)很难,想高分(80以上)也很难,在政治上面也比较难和别人拉开差距。 (北上广地区的政治分数会比其他地区低一些,存在压分成分) 2)对于英语,这个是个长期活,没开始系统准备考研,你也可以每天坚持学习英语,背背单词,读读外文的文章培养语感等,英语学习需要从一而终,尽量一天也不要断。三个阶段:背单词,研究真题,做透真题。对于真题,一定要倍加珍惜,不要太早把真

已基因组测序物种

已完成植物基因组测序情况(更新至2014年11月) 中文名拉丁名发表时间刊物科、属基因组大小拟南芥Arabidopsis thaliana 2000.12 Nature 十字花科、鼠耳芥属125M 水稻Oryza sativa. ssp. indica 2002.04 Science 禾本科、稻属466M 水稻Oryza sativa. ssp. japonica 2002.04 Science 禾本科、稻属466M 杨树Populus trichocarpa 2006.09 Science 杨柳科、杨属480M 葡萄Vitis vinifera 2007.09 Nature 葡萄科、葡萄属490M 衣藻Chlamydomonas reinhardtii 2007.01 Science 衣藻科、衣藻属130 M 小立碗藓Physcomitrella pattens 2008.01 Science 葫芦藓科、小立碗藓属480M 番木瓜Carica papaya 2008.04 Nature 番木瓜科、番木瓜属370M 百脉根Lotus japonicus 2008.05 DNA Res. 豆科472 Mb 三角褐指藻Phaeodactylum tricornutum 2008.11 Nature 褐指藻属27.4M 高粱Sorghum bicolor 2009.01 Nature 禾本科、高粱属730M 玉米Zea mays ssp. mays 2009.11 Science 禾本科、玉米属2300M 黄瓜Cucumis sativus 2009.11 Nature Genetics 葫芦科、黄瓜属350M 大豆Glycine max 2010.01 Nature 豆科、大豆属1100M 二穗短柄草Brachypodium distachyon 2010.02 Nature 禾本科、短柄草属260M 褐藻Ectocarpus 2010.06 Nature 水云属196M 团藻Volvox carteri 2010.07 Science 团藻属138M 蓖麻Ricinus communis 2010.08 Nature Biotechnology 大戟科、蓖麻属350M 小球藻Chlorella variabilis 2010.09 Plant Cell 小球藻科46M 苹果Malus × domestica 2010.09 Nature Genetics 蔷薇科、苹果属742M 森林草莓Fragaria vesca 2010.12 Nature Genetics 蔷薇科、草莓属240M 可可树Theobroma cacao 2010.12 Nature Genetics 梧桐科、可可属430-Mb 野生大豆Glycine soja 2010.12 PNAS 豆科、大豆属915.4 Mb 褐潮藻类Aureococcus anophagefferens 2011.02 PNAS 57M 麻风树Jatropha curcas 2010.12 DNA Res. 大戟科、麻风树属410M 卷柏Selaginella moellendorffii 2011.05 Science 卷柏属212M 枣椰树Phoenix dactylifera 2011.05 Nature biotechnology 棕榈科685M 琴叶拟南 芥 Arabidopsis lyrata 2011.05 Nature Genetics 十字花科、鼠耳芥属206.7 Mb 马铃薯Solanum tuberosum 2011.07 Nature 茄目、茄科、茄属844M 条叶蓝芥Thellugiella parvula 2011.08 Nature Genetics 盐芥属140M

相关主题
文本预览
相关文档 最新文档