当前位置:文档之家› 配位化学讲义 第六章 溶液中配合物的稳定性

配位化学讲义 第六章 溶液中配合物的稳定性

配位化学讲义 第六章 溶液中配合物的稳定性
配位化学讲义 第六章 溶液中配合物的稳定性

配位化学讲义第六章溶液中配合物的稳定性

第六章 配合物在溶液中的稳定性

第一节 影响配合物稳定性的因素

一、概述

逐级稳定常数和积累稳定常数: M

+

L

=

ML

[M][L]

[ML]K 1=

[M][L][ML]

K β11=

=

ML

+

L

=

ML 2

[ML][L]][ML K 22=

22212[M][L]]

[ML K K β=

=

ML 2

+

L

=

ML

][L][ML ][ML K 233=

333213[M][L]]

[ML K K K β=

=

…………… ……………… …………

二、金属离子对配合物稳定性的影响

1、具有惰性气体电子结构的金属离子

碱金属:Li+、Na+、K+、Rb+、Cs+

碱土金属:Be2+、Mg2+、Ca2+、Sr2+、Ba2+

及:Al3+、Sc3+、Y3+、La3+

一般认为它们与配体间的作用主要是静电作用,金属离子z/r越大,配合物越稳定。

例:二苯甲酰甲烷[phC(O)CH2C(O)ph]配合物的lgK1值(30℃,75%二氧六环)

M2+ lgK1

Be2+13.62

Mg2+8.54

Ca2+7.17

Sr2+ 6.40

Ba2+ 6.10

2、Irving-Williams顺序

研究发现:第四周期过渡金属

离子与含O、N配位原子的配体

的高自旋八面体配合物,其稳

定性顺序如下:

Mn2+ < Fe2+ < Co2+ < Ni2+ < Cu2+ > Zn2+

CFSE(Dq) 0 -4 -8 -12 -6 0

这称为Irving-Williams顺序,可用CFSE解释。Ni2+<

Cu2+,可用Jahn-Teller效应解

释。

三、配体性质对配合物稳定性的影响

1、碱性

配位原子相同,结构类似的配体

与同种金属离子形成配合物

时,配体碱性越强,配合物越

稳定。

例:Cu2+的配合物:

配体lgK H lgK1

BrCH2CO2H 2.86

1.59

ICH2CO2H 4.05

1.91

phCH2CO2H 4.31

1.98

2、螯合效应

1)螯合效应:螯合环的形成使配合物稳定性与组成和结构相似的

非螯合配合物相比大大提高,

称为螯合效应。

例:[Ni(NH3)6]2+lgβ6 = 8.61;

[Ni(en)3]2+lgβ3=

18.26

稳定常数增加近1010倍。

2)螯合环的大小

5员及6员饱和环稳定性较好,且5员饱和环更为稳定。

如:乙二胺与1,3—丙二胺相比,

形成的配合物更为稳定。

3)螯合环的数目

螯合环数目越多,螯合物越稳定。例:

lgβ1=10.72 lgβ1=15.9

lgβ1=20.5

3、空间位阻与配体构型

1) Cu2+倾向于与下列配体形成平面

正方形配合物。

8-羟基喹啉2-甲基-8-羟基喹啉

lgβ2(Cu2+) =13.11 lg

β2(Cu2+) =12.31

2) 构型

三亚乙基四胺三(氨乙基)胺

(适于平面正方形)(适于四面体构型)

lgK(Cu2+) =20.8

lgK(Cu2+) =18.8

lgK(Zn2+) =12.1

lgK(Zn2+) =14.7

四、软硬酸碱规则—配位原子与中心原子的关系

1、软硬酸、碱概念(指Lewis酸碱)

硬酸:其接受电子对的原子(离子)正电荷高,变形性低。

如:Li+、Mg2+、Al3+。

软酸:其接受电子对的原子(离

子)正电荷低,变形性高。

如:Cu+、Ag+、Au+。

硬碱:其给出电子对的原子变形

性小,电负性大。

如: F-、OH-。

软碱:其给出电子对的原子变形性大,电负性小。

如: I-、S2-。

2、软硬酸碱规则在配合物稳定性中

的应用

1)硬酸倾向于与硬碱结合;

2)软酸倾向于与软碱结合;

配位化学中,作为中心离子的硬酸与配位原子各不相同的配体形成配合物倾向为:

F>Cl>Br>I (1)

O>>S>Se>Te (2)

N>>P>As>Sb (3)

而与软酸中心离子形成配合物的倾向的顺序为:

F < Cl < Br < I (4)

O << S ~ Se ~ Te (5)

N << P > As > Sb (6) 对(6)的解释:

σ键增强

N << P > As > Sb

空d轨道:无3d 4d 5d

反馈π键减弱

π键作用大于σ键。

对于O << S ~ Se ~ Te (5),可作类似解释。

3、软硬酸碱规则应用实例

Mg2+ + NH3·H2O Mg(OH)2↓

Ag++ NH3·H2O [Ag(NH3)2]+

五、其他因素对配合物稳定性的影响

1、温度的影响

对于放热的配位反应,T上

升,K减小;

而对于吸热的配位反应,T上

升,K增大。

2、压力的影响

压力变化很大时,不可忽略。

如:Fe3+ + Cl- == [FeCl]2+

压力由0.1atm增至2000atm时,K 减小约20倍。

*研究海洋中配合物的平衡时要考虑压力的影响。

3、溶剂的影响

1)当溶剂有配位能力时,有如下竞争反应:

ML + S == MS + L

S配位能力越强,ML稳定性越差。

如[CoCl4]2-在下列溶剂中的稳定性顺序:

CH2Cl2 > CH3NO2 > (CH3O)3P=O >

HC(O)N(CH3)2 > (CH3)2 SO

2)配体与溶剂的缔合作用

在质子溶剂(H2O、EtOH)中,有如下竞争反应

ML + S == M + L(S)

L与S通过氢键结合。

如:

Cd2+、Cu2+与Cl-的配合物稳定性:DMSO > H2O

但Hg2+、Cu2+、Ag+与I-的配合物稳

定性:DMSO < H 2O 。

第二节 配合物的基本函数 1、概述

M + L = ML [M][L]

[ML]

K 1=

[M][L][ML]

K β11=

=

ML + L = ML 2

[ML][L]

][ML K 22=

2

2212[M][L]

]

[ML K K β==

稳定常数 各组分的平衡浓度

基本函数 可观测物理量

2、生成函数(Bjerrum 函数)

定义:

M

L C [L]C n -=

C L — 配体总浓度,C M — 金属总浓

度,[L]为配体平衡浓度。

其物理意义:每个M 离子结合L 的

平均数目。

C M = [M] + [ML] + [ML 2] + ……+

[MLn]

= [M] + β1[M][L] + β2[M][L]2

+ ……+ βn [M][L]n

∑=+=n

1j j

j }

[L]β[M]{1

C L = [L] + [ML] + 2[ML 2] + ……+

n[ML n ]

= [L] + β1[M][L] + 2β2[M][L]

2

+……+ nβn [M][L]n

∑=+=n

1

j j

j }[L]j β[M]{[L]

将C M 、C L 代入定义式中

由此实现了可观测浓度[L]与βj 的关

联。

3、Leden 函数 定义:

[M][L][M]C Y M 1-=

已知:

配合物讲义-超好-经典-全面

7配位化合物 7.1 配位化合物的基本概念 7.1.1 配合物的定义 配位单元:由中心原子( 或离子) 和几个配体分子(或离子)以配位键相结合而形成的复杂离子(亦称配离子)或分子。例:[Co(NH3)6]3+,[Cr(CN)6]3-,Ni(CO)4分别称作配阳离子、配阴离子、配位分子(即中性配位分子)。 配位化合物:凡是含有配位单元的化合物,简称配合物,也叫络合物。如[Co(NH3)6]Cl3,K3[Cr(CN)6],Ni(CO)4 注意:配合物和配离子通常不作严格区分,有时配离子也叫做配合物,故判断配合物的关键在于是否含有配位单元。 7.1.2 配合物的组成 7.1.2.1 内界和外界 (1)内界:配合物中配体和中心离子通过配位键结合,成为配合物的特征部分(在配合物化学式中以方括号表明),称为配合物的内界。内界可以是配阳离子,也可以是配阴离子,还可以是中性分子。 (2)外界:与配离子带有异种电荷的方括号外的那部分称为外界,外界是简单离子。如K3[Cr(CN)6] 之中,内界是[Cr(CN)6]3-,外界是K+。 注意:配合物可以无外界(如Ni(CO)4),但不能没有内界。内界和外界之间以离子键结合,在水溶液中是完全电离的。 7.1.2.2 中心离子(或原子) 中心离子(或原子)是配合物的核心部分,又称为配合物的形成体。 形成体可以是①金属离子(尤其是过渡金属离子),如[Cu(NH3)4]2+中的Cu2+; ②中性原子,如Ni(CO)4,Fe(CO)5,Cr(CO)6中的Ni,Fe和Cr; ③少数高氧化态的非金属元素,如[BF4]-,[SiF6]2-,[PF6]-中的B(Ⅲ)、Si(Ⅳ) 、P(Ⅴ)等。 7.1.2.3 配体、配位原子和配位数 (1)配位体 定义:在配合物中与中心离子结合的阴离子或中性分子,简称配体。 特征:①能提供孤对电子或不定域(或∏键)电子。如[Cu(NH3)4]2+中的NH3;②能够提供∏键电子的配体如有机分子C2H4,乙二胺等。 (2)配位原子 定义:配体中给出孤对电子与中心离子(或原子)直接形成配位键的原子。常见的配位原子是N、C、O、S、F、Cl、Br、I等。如果在一个配体中有两个原子都有孤对电子,其中电负性较小者

配位化学讲义 第十一章 无机小分子配合物

配位化学讲义第十一章无机小分子配合物

第十一章无机小分子配体配合物 小分子配体的过渡金属配合物,已成为配位化学中发展最快的领域之一。现已证实,小分子通过与过渡金属离子的配位而活化,进而可引起许多重要的反应。 第一节金属羰基(CO)配合物 一、概述 金属羰基配合物是过渡金属元素与CO所形成的一类配合物。 1890年,Mond和Langer发现Ni(CO)4,这是第一个金属羰基配合物。 常温、常压 Ni(粉) + CO Ni(CO)4 (无色液体,m .p.= -25℃) 150℃ Ni(CO)4Ni + 4CO 这成为一种提纯Ni的工艺。 现已知道,所有过渡金属至少能生成一种羰基配合物,其中金属原子处于低价(包括零价)状态。 二、类型 1、单核羰基配合物 这类化合物都是疏水液体或易挥发的固体,能不同程度地溶于非极性溶剂。M-C-O键是直线型的。例: V(CO)6 黑色结晶,真空升华V-C, 2.008(3) ? Cr(CO)6Cr-C, 1.94(4) ? Mo(CO)6无色晶体,真空升华,Mo-C, 2.06(2)? 八面体 W(CO)6W-C, 2.06(4)? Fe(CO)5黄色液体,m.p.=20℃,Fe-C,1.810(3)?(轴向)三角 b.p.=103℃ 1.833(2)?(赤道)双锥 Ni(CO)4无色液体,m.p.= -25℃,Ni-C,1.84(4)?四面体 2、双核和多核金属羰基配合物 多核羰基配合物可以是均核的,如:Fe3(CO)12;也可以是异核的,如

MnRe(CO)10。 M 在这类化合物中,不仅有M-C-O 基团, 而且还有O —C 和M-M 键,且 M μ2-CO 常与M-M 键同时存在。即: O —C 例:(1)Mn 2(CO)10为黄色固体,m.p.151℃,Mn-Mn=2.93? OC CO OC CO OC M M CO M=Mn 、Tc 、Re OC CO OC CO (2) Fe 2(CO)9 金色固体,m.p.100℃(分解),难挥发 OC CO CO OC Fe Fe CO Fe 2(CO)9 OC CO OC CO (3)Fe 3(CO)12 绿黑色固体,m.p.140-150℃(分解) OC CO Fe O C OC C O OC Fe C C Fe O CO CO CO CO CO Fe 3(CO)12 (4)M 3(CO)12 M=Ru 、Os OC CO O C OC C O OC C C O CO CO CO CO CO M M M

配位化学第一组第三章作业

第三章配合物在溶液中的稳定性作业 1.下列各组中,哪种配体与同一种中心离子形成的配合物稳定性较高,为什么? (1)Cl- , F-和Al3+(2)Br-,I-和Hg2+ (3)2CH3NH2,en和Cu2+(4)Br-,F- 和Ag+ (5)RSH,ROH和Pt2+(6)Cl-,OH-和Si4+ (7)RSH,ROH和Mg2+ 解(1)F-与Al3+形成配合物更稳定,因为F-电负性大,离子半径更小(2)I-与Hg2+更稳定,因为碘离子的电负性较大,离子半径更小(3 )2CH3NH2与Cu2+形成的配合物更稳定,因为它的碱性比en更强与形成的配合物更稳定 (4)Br-与Ag+形成的配合物更稳定,因为与Ag+形成配合物Br-变形性比F-强 (5)RSH与Pt2+形成配合物更稳定,因为在与Mg2+形成配合物时S 的半径小于O的半径 (6)OH-与Si4+形成的配合物更稳定,因为在与Si4+形成配合物时OH-的电荷比更多 (7)RSH与Mg2+形成配合物更稳定,因为在与Mg2+形成配合物时S 的半径小于O的半径 2.写出下列,配体与中心离子形成的配合物的稳定次序。 解(1)CH3NH2,en,NH2-NH2,NH2-OH和Cu2+ en > CH3NH2 > NH2-NH2 > NH2OH

(2)R3CCOOH,CH3COOH,Cl3CCOOH,I3CCOOH和Fe3+ R3CCOOH > CH3COOH > I3CCOOH > Cl3CCOOH (3)NH3,NH2-NH2,NH2-OH,R-OH和Ag+ NH3 > NH2-NH2 > NH2-OH > R-OH (4)N, NH2 与Zn2+ N> NH2 (5)NH2 O2N, NH2 C H3, NH2 NO2与Cu2+ NH2 C H3> NH2 NO2> NH2 O2N (6) N OH, N OH CH3 与Ni2+ N OH CH3 > N OH CH3 3.下列二组试剂与同一种金属离子形成螯合物时,估计lg k的大小次序:

配位化学基础

配位化学基础 配位化学就是在无机化学基础上发展起来得一门具有很强交叉性得学科,配位化学旧称络合物化学,其研究对象就是配合物得合成、结构、性质与应用。配位化学得研究范围,除最初得简单无机加与物外,已包括含有金属-碳键得有机金属配位化合物,含有金属-金属键得多核蔟状配位化合物即金属簇合物,还包括有机配体与金属形成得大环配位化合物,以及生物体内得金属酶等生物大分子配位化合物。 一、配合物得基本概念 1、配合物得定义及构成 依据1980年中国化学会无机化学命名原则,配合物可以定义为:由可以给出孤对电子或多个不定域电子得一定数目得离子或分子(统称为配体)与具有接受孤对电子或多个不定域电子得空位得原子或离子(统称为中心原子),按一定得组成与空间构型所形成得化合物。结合以上规定,可以将定义简化为:由中心原子或离子与几个配体分子或离子以配位键相结合而形成得复杂分子或离子,统称为配体单元。含配体单元(又称配位个体)得化合物称为配位化合物。 配体单元可以就是配阳离子,配阴离子与中性配分子,配位阳离子与阴离子统称配离子。配离子与与之平衡电荷得抗衡阳离子或阴离子结合形成配位化合物,而中性得配位单元即时配位化合物。但水分子做配体得水合离子也经常不瞧成配离子。 配位化合物一般分为内界与外界两部分,配体单元为内界,抗衡阳离子或阴离子为外界,而含中性配位单元得配位化合物则无外界。配合物得内界由中心与配体构成,中心又称为配位化合物得形成体,多为金属,也可以就是原子或离子,配体可以就是分子、阴离子、阳离子。 2、配位原子与配位数 配位原子:配体中给出孤对电子与中心直接形成配位键得原子 配位数:配位单元中与中心直接成键得配位原子得个数配位数一般为偶数,以4、6居多,奇数较少 配位数得多少与中心得电荷、半径及配体得电荷、半径有关: 一般来说,中心得电荷高、半径大有利于形成高配位数得配位单元,如氧化数为+1得中心易形成2配位,氧化数为+2得中心易形成4配位或6配位,氧化数为+3得易形成6配位。配体得半径大,负电荷高,易形成低配位得配位单元。 配位数得大小与温度、配体浓度等因素有关: 温度升高,由于热震动得原因,使配位数减少;配体浓度增大,利于形成高配位。

配位化学讲义 第五章 配合物的电子光谱

配位化学讲义第五章配合物的电子光谱

第五章过渡金属配合物的电子光谱第一节概论 一、什么是电子光谱? 定义:当连续辐射通过配合物时,配合物选择性地吸收某些频率的光,会使电子在不同能级间发生 跃迁,形成的光谱称为电子吸收光谱(简称电 子光谱)。 二、配合物电子光谱所包含的成份 1、电荷迁移光谱(荷移光谱) 由于电子在金属与配体间迁移产生的光谱。 2、d—d跃迁光谱 电子在金属离子d轨道间跃迁产生的光谱。 3、异号离子光谱 外界抗衡离子的吸收光谱。如[Cu(NH3)4](NO3)2中

NO3-的吸收。 4、配体光谱 配体本身的吸收光谱。如[Ti(H2O)6]3+中H2O的吸收。 第二节电荷迁移光谱、异号离子光谱及配体光谱 一、电荷迁移光谱 1、L→M的跃迁 以[MCl6]n-为例,分子轨道能级图: e g* e g* Δo t2g* t2gν1 ν2 ν4 ν3 低能充满配体 t2g t2gπ群轨道 e g e g、t2g主要成份为配体轨道;而t2g*、e g*主要成份为 金属离子轨道。 四种跃迁:ν1 = t2g t2g*

ν2 = t2g e g* ν3 = e g t2g* ν4 = e g e g* 2、M→L的跃迁 ν1 e g* e g* Δo ν2 t2g配体高能空轨道 t2g t2g、e g*主要为金属离子轨道成份,而t2g*主要为配体轨道。 例:[Co(CN)6]3-, M→L跃迁, ν1=49500cm-1 二、异号离子光谱 可分为三种情况: 1、在紫外区有吸收,如NO3—,NO2—;

2、在可见区有吸收,如CrO42—、MnO4—; 3、无吸收,如Cl—、SO42—、ClO4—。 由于ClO4—既无吸收,配位能力又差。因此测定 水合离子的光谱时,为防止水解现象,常加入 HClO4。如测定[Ti(H2O)6]3+的光谱时,若在 HCl中进行,则吸收峰移向长波方向。 三、配体光谱 配体如水、有机分子通常在紫外区有吸收。形成配合物后,这些谱带仍保留在配合物的光谱中,吸收峰位置有可能发生移动。 第三节d—d跃迁光谱 一、概论 不考虑d电子间相互作用时,d2组态的能态分析:基态激发态1 激发态2

配位化学基础

配位化学基础 配位化学是在无机化学基础上发展起来的一门具有很强交叉性的学科,配位化学旧称络合物化学,其研究对象是配合物的合成、结构、性质和应用。配位化学的研究范围,除最初的简单无机加和物外,已包括含有金属-碳键的有机金属配位化合物,含有金属-金属键的多核蔟状配位化合物即金属簇合物,还包括有机配体与金属形成的大环配位化合物,以及生物体内的金属酶等生物大分子配位化合物。 一、配合物的基本概念 1.配合物的定义及构成 依据1980年中国化学会无机化学命名原则,配合物可以定义为:由可以给出孤对电子或多个不定域电子的一定数目的离子或分子(统称为配体)和具有接受孤对电子或多个不定域电子的空位的原子或离子(统称为中心原子),按一定的组成和空间构型所形成的化合物。结合以上规定,可以将定义简化为:由中心原子或离子和几个配体分子或离子以配位键相结合而形成的复杂分子或离子,统称为配体单元。含配体单元(又称配位个体)的化合物称为配位化合物。 配体单元可以是配阳离子,配阴离子和中性配分子,配位阳离子和阴离子统称配离子。配离子与与之平衡电荷的抗衡阳离子或阴离子结合形成配位化合物,而中性的配位单元即时配位化合物。但水分子做配体的水合离子也经常不看成配离子。 配位化合物一般分为内界和外界两部分,配体单元为内界,抗衡阳离子或阴离子为外界,而含中性配位单元的配位化合物则无外界。配合物的内界由中心和配体构成,中心又称为配位化合物的形成体,多为金属,也可以是原子或离子,配体可以是分子、阴离子、阳离子。 2.配位原子和配位数 配位原子:配体中给出孤对电子与中心直接形成配位键的原子 配位数:配位单元中与中心直接成键的配位原子的个数配位数一般为偶数,以4、6居多,奇数较少 配位数的多少和中心的电荷、半径及配体的电荷、半径有关: 一般来说,中心的电荷高、半径大有利于形成高配位数的配位单元,如氧化数为+1的中心易形成2配位,氧化数为+2的中心易形成4配位或6配位,氧化数为+3的易形成6配位。配体的半径大,负电荷高,易形成低配位的配位单元。 配位数的大小与温度、配体浓度等因素有关: 温度升高,由于热震动的原因,使配位数减少;配体浓度增大,利于形成高配位。 配位数的大小与中心原子价电子层结构有关: 价电子层空轨道越多一般配位数较高 配位数的大小与配体位阻和刚性有关: 配体的位阻一般都会使中心原子的配位数降低,位阻越大、离中心原子越近,配位数的降低程度也就越大。配体的刚性不利于配体在空间中的取向,长回事中心原子的配位数降低。 3.配体的类型

配位化学讲义 第八章 配合物的制备

配位化学讲义第八章配合物的制备

第八章配合物的制备 第一节利用配体取代反应合成配合物 1、水溶液中的取代反应 1)用金属盐水溶液直 接与配体反应 [Cu(H2O)4]SO4+ 4NH3 [Cu(NH3)4]SO4 向反应混合物中加入乙醇,就可得到深蓝 色的结晶。

不适合与Fe3+、Al3+、Ti4+ 2) 煮沸 K3[RhCl6] +3K2C2O4 K3[Rh(C2O4)3] + 6KCl 2、非水溶剂中的取代反应 使用非水溶剂的原因: A、防止水解(如 Fe3+、Al3+、Ti4+); B、使不溶于水的配

体可溶解; C、配体的配位能力 不及水。 1)[Cr(en)3]Cl3的合成 在水中反应时 CrCl3.6H2O + en Cr(OH)3↓ 可在乙醚中,按如 下方法合成: en KI AgCl 无水Cr2(SO4)3溶液 [Cr(en)3]I3 [Cr(en)3]Cl3 2)[Ni(phen)3]Cl2(phen为邻菲咯啉)

NiCl2·6H2O + phen [Ni(phen)3]Cl2 3)[Ni(EtOH)6](ClO4)2的合成 NaClO4 无水NiCl2 + EtOH [Ni(EtOH)6]Cl2 [Ni(EtOH)6](ClO4)2 在水溶液中: [Ni(EtOH)6]2++ H2O [Ni(H2O)6]2+ + EtOH 3、固体配合物热分解(固态 取代反应) 1)[Cu(H2O)4]SO4.H2O =

[CuSO4]+5H2O (加热) 2)2[Co(H 2O)6]Cl2 = Co[CoCl4] +12H2O (加热) 变色硅胶的原理(粉红、蓝色) 第二节利用氧化还原反应合成配合物 1、金属的氧化 最好的氧化剂是O2或H2O2,不会引入杂质。

第三章 第四节 配合物与超分子

第四节配合物与超分子 [核心素养发展目标] 1.能从微观角度理解配位键的形成条件和表示方法,能判断常见的配合物。2.能利用配合物的性质去推测配合物的组成,从而形成“结构决定性质”的认知模型。 3.了解超分子的结构特点与性质。 一、配合物 1.配位键 (1)概念:由一个原子单方面提供孤电子对,而另一个原子提供空轨道而形成的化学键,即“电子对给予—接受”键。 (2)表示方法:配位键常用A—B表示,其中A是提供孤电子对的原子,叫给予体,B是接受孤电子对的原子,叫接受体。 如:H3O+的结构式为;NH+4的结构式为。 (3)形成条件 形成配位键的一方(如A)是能够提供孤电子对的原子,另一方(如B)是具有能够接受孤电子对的空轨道的原子。 ①孤电子对:分子或离子中,没有跟其他原子共用的电子对就是孤电子对。如、 、分子中中心原子分别有1、2、3对孤电子对。含有孤电子对的微粒:分子如CO、NH3、H2O等,离子如Cl-、CN-、NO-2等。 ②含有空轨道的微粒:过渡金属的原子或离子。一般来说,多数过渡金属的原子或离子形成配位键的数目基本上是固定的,如Ag+形成2个配位键,Cu2+形成4个配位键等。 2.配合物 (1)概念 通常把金属离子或原子(称为中心离子或原子)与某些分子或离子(称为配体或配位体)以配位键结合形成的化合物称为配位化合物,简称配合物。如[Cu(NH3)4]SO4、[Ag(NH3)2]OH等均为配合物。 (2)组成 配合物[Cu(NH3)4]SO4的组成如下图所示:

①中心原子:提供空轨道接受孤电子对的原子。中心原子一般都是带正电荷的阳离子(此时又叫中心离子),最常见的有过渡金属离子:Fe3+、Ag+、Cu2+、Zn2+等。 ②配体:提供孤电子对的阴离子或分子,如Cl-、NH3、H2O等。配体中直接同中心原子配位的原子叫做配位原子。配位原子必须是含有孤电子对的原子,如NH3中的N原子,H2O中的O原子等。 ③配位数:直接与中心原子形成的配位键的数目。如[Fe(CN)6]4-中Fe2+的配位数为6。 (3)常见配合物的形成实验 实验操作实验现象有关离子方程式 滴加氨水后,试管中首先出现蓝色沉淀,氨水过量后沉淀逐渐溶解,得到深蓝色的透明溶液,滴加乙醇后析出深蓝色晶体Cu2++2NH3·H2O===Cu(OH)2↓+2NH+4、Cu(OH)2+4NH3=== [Cu(NH3)4]2++2OH-、 [Cu(NH3)4]2++SO2-4+H2O===== 乙醇[Cu(NH3)4]SO4·H2O↓ 溶液变为红色Fe3++3SCN-Fe(SCN)3滴加AgNO3溶液后,试管 中出现白色沉淀,再滴加氨水后沉淀溶解,溶液呈无色Ag++Cl-===AgCl↓、AgCl+2NH3===[Ag(NH3)2]++Cl- (4)配合物的形成对性质的影响 ①对溶解性的影响 一些难溶于水的金属氢氧化物、氯化物、溴化物、碘化物、氰化物,可以溶解于氨水中,或依次溶解于含过量的OH-、Cl-、Br-、I-、CN-的溶液中,形成可溶性的配合物。如Cu(OH)2+4NH3===[Cu(NH3)4]2++2OH-。 ②颜色的改变 当简单离子形成配离子时,其性质往往有很大差异。颜色发生变化就是一种常见的现象,根据颜色的变化就可以判断是否有配离子生成。如Fe3+与SCN-形成硫氰化铁配离子,其溶液显红色。

第一章 配位化学 绪论

第一章配位化学的早期历史及Werner配位理论 第一节早期研究及链式理论 一、早期研究 1、配合物的发现 最早有记录的配合物:1704年,德国Diesbach 得到的普鲁士蓝 KCN.Fe(CN)2.Fe(CN)3。 真正标志研究开始:1793年Tassaert发现CoCl3.6NH3 当时无法解释稳定的CoCl3和NH3为何要进一步结合,形成新化合物。 2、配合物性质研究 1)Cl-沉淀实验(用AgNO3) 配合物可沉淀Cl-数目现在化学式 CoCl3.6NH3 3 [Co(NH3)6]Cl3 CoCl3.5NH3 2 [Co(NH3)5Cl]Cl2 CoCl3.4NH3 1

[Co(NH3)4Cl2]Cl IrCl3.3NH3 0 [Ir(NH3)3Cl3] 2)电导率测定 配合物摩尔电导(Ω-1) 离子数目现在化学式 PtCl4.6NH3 523 5 [Pt(NH3)6]Cl4 PtCl4.5NH3 404 4 [Pt(NH3)5Cl]Cl3 PtCl4.4NH3 229 3 [Pt(NH3)4Cl2]Cl2 PtCl4.3NH3 97 2 [Pt(NH3)3Cl3]Cl PtCl4.2NH3 0 0 [Pt(NH3)2Cl4] 二.链式理论(Chain theory) 为解释这些实验结果,1869年瑞典Lund大学Blomstrand教授及其学生Jorgensen(后任丹麦Copenhagen大学教授)提出链式理论。

当时认为元素只有一种类型的价——氧化态,N为5价,Co为3价,Cl为1价。 NH3—Cl CoCl3.6NH3 Co—NH3—NH3—NH3—NH3—Cl NH3—Cl Cl CoCl3.5NH3 Co—NH3—NH3—NH3—NH3—Cl NH3—Cl Cl CoCl3.4NH3 Co—NH3—NH3—NH3—NH3—Cl Cl Cl

第一章 配位化学基础要点

绪论 导课:配位化学一般是指金属和金属离子同其他分子或离子相互反应的化学。它是在无机化学的基础上发展起来的一门独立的、同时也与化学各分支学科以及物理学、生物学等相互渗透的具有综合性的学科。配位化学所涉及的化合物类型及数量之多、应用之广,使之成为许多化学分支的汇合口。现代配位化学几乎渗透到化学及相关学科的各个领域,例如分析化学、有机金属化学、生物无机化学、结构化学、催化活性、物质的分离与提取、原子能工业、医药、电镀、燃料等等。因此,配位化学的学习和研究不但对发展化学基础理论有着重要的意义,同时也具有非常重要的实际意义。 一、配位化学的任务 配位化学是研究各类配合物的合成、结构、性质和应用的一门新型学科。 配合物的合成是重点,结构与性质研究是难点,研究方法是关键。应用是落脚点。二、配位化学的学科基础 配位化学的学科基础是无机化学,分析化学、有机化学、物理化学和结构化学。配位化学已成为许多化学分支的汇合口。 配位化学是许多新兴化学学科的基础。如:超分子化学,酶化学,蛋白质化学,生物无机化学,材料化学,化学生物学,药物化学,高分子化学等。 三、配位化学的研究方法 1、合成方法:要求掌握有机和无机化学的合成技术,特别是现今发展起来的水热技术、微波技术、微乳技术、超临界技术等。 2、结构研究:元素分析、紫外光谱、红外光谱、质谱、核磁共振、荧光光谱、X-衍射等。 3、性质研究:电位滴定、循环伏安、磁天平、变温磁化率、交流磁化率、电子顺磁共振、光电子能谱、E-扫描、催化性质、凝胶电泳、园二色谱、核磁共振研究与细胞及DNA 的作用。 4、应用:催化反应用于有机合成、金属酶的模拟、分子识别、金属药物、非线性光学材料、分子磁体、介孔材料、分子机器等。 四、配位化学的学习方法 1、课前预习:在上课以前,把下一次课的内容先粗略的看一次,把自己看不懂的内容做上记号,有时间再认真的看一次,如果仍看不懂,做好记录,等待课堂解决。 2、上课:根据课前预习的难度,对较难理解的部分认真听讲,理解教师的分析思路,学习思考问题和解决问题的方法。在教材上作好批注。 3、复习:对在课堂上没有弄懂的问题在课间问主讲教师,下课后对整个课堂内容复习一次并作好复习笔记。 五、课程的内容安排:

配位化学讲义 第九章 配位催化

配位化学讲义第九章配位催化

第九章配位催化 在催化反应中,催化剂与反应物分子配位,使反应分子在其上处于有利于进一步反应的活泼状态,从而加速反应的进行,最后产物自催化剂的中心金属上释放,此即为配位催化作用。 R C + M C……M* C……M—R C + M—R 特点:反应过程中催化剂活性中心与反应物配位,因而可通过电子效应(如反位效应),空间阻碍效应等因素对反应的历程、速率以及选择性起着控制作用。配位催化的许多过程已广泛用于工业生产。 第一节配位催化中的几个关键反应 1、插入反应 所谓插入反应是指:与中心金属配位的烯、炔、CO、CO2等分子插入到M —C、M—H键中去的过程。 例:Ln—M—R Ln—M—C —C—R O ║ Ln—M—R Ln—M—C—R CO 要使上述反应易于进行,要求M—R键有适当的强度。若过于不稳定,则难以配位上去;过于稳定又使插入反应难以进行。 一般认为上述反应是经过极化的环状过渡态进行的。 C R δ—R……Cδ+ C Ln—M……║Ln—M……C Ln—M—C—C—R C δ+δ— C 2、氧化加成和还原消去反应 氧化加成是指:配位不饱和的过渡金属配合物中的中心原子被中性分子XY 氧化,X和Y分别加到空的配位位置上的反应。 特点:中心金属原子的氧化数和配位数均增加。

Cl Ph3P CO 氧化加成Ph3P CO Ir + HCl Ir Cl PPh3还原消去Cl PPh3 H Ir氧化数由+1变为+3,配位数由4变为6;还原消去反应为氧化加成反应的逆反应。还原消去反应中,失去配体的同时,中心原子的氧化数下降。 3、β—H转移反应 在β碳上连接有H,并以σ键键合的有机金属配合物,其β碳位上的C-H 键易断裂形成金属氢化物,有机配体则在端基形成双键而离开配合物,这个过程称为β—H转移。 δ—H……CHRδ+ M—CH2CH2—R M……CH2M—H + RCH=CH2 δ+δ— 这个过程是聚合反应的一个关键步骤,聚合反应产物的分子量与β—H转移难易有关。β—H转移要求中心金属原子有空的配位位置,否则β—H转移难以进行。 4、重排 金属-烯丙基配位有两种不同的方式: Ln-M-CH2-CH=CH2Ln-M- σ键合π键合 这两种形式可相互转化(重排)。 第二节催化剂的配位活化机理 1、通过σ-π配位使含有重键或孤对电子的分子活化 M C O M C C (Ⅰ)端基(Ⅱ)側基 第一种情况,反应分子作为端基配位,相当于非键的孤对电子部分激发到分子的π*反键轨道,使分子处于激发状态,为进一步反应创造了条件。

中级无机化学[第三章配位化学] 山东大学期末考试知识点复习

第三章配位化学 1.配合物 配合物:由提供孤对电子或多个不定域电子的一定数目的离子或分子(配体)和接受孤对电子或多个不定域电子的原子或离子(统称中心原子)按一定组成和空间构型所形成的化合物。其中,与中心原子直接相连的原子称为配位原子,与同一中心原子连接的配位原子数目称为配位数;由中心金属离子和配体构成的络合型体称为内界,通常用“[]”标出。 配合物的命名:配体名称在先,中心原子名称在后。阴离子名称在先,阳离子名称在后,两者间用“化”或“酸”相连。不同配体名称的顺序与化学式的书写顺序相同,相互间以圆点隔开,最后一种配体名称之后加“合”字。配体个数在配体名称前用中文数字表示。中心原子的氧化态在元素名称之后用括号内的罗马数字表示。 2.配合物的异构 立体异构:包括几何异构和旋光异构。配合物内界中两种或两种以上配体在空间的排布方式不同所产生的异构现象称为几何异构。若由配体在空间的排布方式不同所产生的异构体之间互为对映体,则这种异构现象称为旋光异构。 电离异构:配合物在溶液中电离时,由于内界和外界配体发生交换而生成不同配离子的异构现象称为电离异构。 键合异构:含有多种配位原子的单齿配体用不同的配位原子参与配位而产生的异构现象称为键合异构。 配位异构:在配阴离子与配阳离子形成的配合物盐中,配阴离子与配阳离子中配体与中心离子出现不同组合的现象称为配位异构。 3.配合物的常用制备方法 加成反应:路易斯酸碱之间直接反应,得到酸碱加合型配合物。加成后配位

数增大。 取代反应:用一种适当的配体(通常是位于光谱化学序列右边的配体)取代配合物中的某些配体(通常是位于光谱化学序列左边的配体)。取代后配位数通常不变。 氧化还原反应:伴随有中心金属氧化态变化的制备反应,在许多情况下同时伴随有配体的取代反应。 热解反应:在升高温度时,配合物中易挥发的配体失去,外界阴离子占据失去配体的配位位置,相当于固相取代反应。 4.配合物的化学键理论 (1)晶体场理论理论要点: (a)中心金属离子具有电子结构,配体视为无电子结构的阴离子或偶极子,二者之间存在的静电吸引作用产生配位键。 (b)中心金属离子的电子与配体电子之间存在排斥作用。由于配体在中心离子周围的分布具有方向性,配体的静电场作用使中心离子的d轨道发生能级分裂。分裂的方式与分裂的程度取决于配位场的类型及配体、中心离子的性质。 (c)中心离子的电子在配位场能级中的占据结果,使配合物获得一个晶体场稳定化能(CFSE)。 晶体场理论可以定性解释配合物的吸收光谱、稳定性、磁性、结构畸变等,但无法解释金属与配体间的轨道重叠作用,不能很好地解释光谱化学序列。 (2)配位场理论理论要点:配体的存在使中心金属离子与配体之间存在的化学键作用既包括静电作用也包括共价作用(既有σ成键作用也有π成键作用)。金属离子的d电子局限在金属原子核附近运动,不进入配体范围,但是配位场负电荷的影响使中心金属离子的d轨道能级分裂。在配位场中,分裂能既决定于静电作用,又决定于共价作用(其中首先包括σ成键作用,其次包括π成键作用)。

江西理工大学配位化学第一章作业

1.写出下列配合物或配离子的化学式 ⑴六氟合铝酸钠(III) ⑵二氯化一氰?四氨?水合钴(III) ⑶二氯化异硫氰酸跟?五氨合钴(III) ⑷五氨?亚硝酸根合钴 (III) 离子 ⑸二(乙酰丙酮根)合铜(III) ⑹二氰化 (u氯)?二 (氨基合铂 (II)) 答:⑴ Na3[AlF6] ⑵ [Co(CN)(NH3)4(H2O)] ⑶ [Co(NCS)(NH3)5]Cl2 ⑷ [Co(NH3)5NO2]2+ ⑸[Cu(acac)2] ⑹[Pt2(NH2)2Cl2](CN)2 2.指出下列配体中的配位原子,并说明它是单齿还是多吃配体?(1)CH3-C=NO*H (2)CH2-N*HCH2CH2-N*H2 CH3-C=NO*H CH2-N*HCH2CH2-N*H2 (3) CH2COO*- -*00CH2C-*NHCH2N* CH2COO*- (4)ONO- (5)SCN-(6)RNC- (7)*NH(CH2COO*-)2 答:(1) 配位原子为O,多齿配体; (2)配位原子为N,多齿配体; (3)配位原子为O和N,多齿配体;(4)配位原子为O,单齿配体; (5)配位原子为S,单齿配体; (6)配位原子为N,单齿配体; (7)配位原子为N和O,多齿配体;

3.命名下列配合物或配离子 (1) K[Au(OH)4] (2)[Ce(en)3]Cl3 (3) [Co(H2O)4Cl2]Cl (4) [Cr(NH3)2(H2O)2(Py)2]Cl3 (5)[Co(NCS)(NH3)5]2+ (6) [Fe(CN)5(CO)]3- (7) Cl Cl Cl Al Al Cl Cl Cl (8) NH [(H3N)4Co Cr(NH3)2Cl2]Cl2 ONO 答:(1)四羟基合金(Ⅲ)酸钾 (2)三氯化三(乙二胺)合铈(Ⅲ) (3)氯化二氯?四水合钴(Ⅲ) (4)三氯化二氨?二水?二吡啶合铬(Ⅲ) (5)异硫氰根?五氨合钴(Ⅲ)离子 (6)五氰?羰基合铁(Ⅲ)离子 (7)二μ—氯双(二氯合铝(Ⅲ)) (8)二氯化μ—亚氨基—μ—亚硝酸根—二氯二氨合铬(Ⅲ)—四氨合钴(Ⅱ) 答:(1)一氯.硝基.二氨合铂(Ⅱ) 平面四边形 (2)二氯.二羟基.二氨.合铂(Ⅳ) 三角双锥

无机化学 第12章 配位化学基础习题及全解答

第12章 配位化学基础 1 M 为中心原子,a, b, d 为单齿配体。下列各配合物中有顺反异构体的是 (A ) (A ) Ma 2bd (平面四方)(B ) Ma 3b (C ) Ma 2bd (四面体)(D ) Ma 2b (平面三角形) 2 在下列配合物中,其中分裂能最大的是 (A ) (A ) Rh(NH 3)36+ (B )Ni(NH 3) 36+ (C ) Co(NH 3)36+ (D ) Fe(NH 3)36+ 3 在八面体强场中,晶体场稳定化能最大的中心离子d 电子数为 (B ) (A ) 9 , (B ) 6 , (C )5 , (D )3 4 化合物[Co(NH 3)4Cl 2]Br 的名称是 溴化二氯?四氨合钴(III ) ; 化合物[Cr(NH 3)(CN)(en)2]SO 4的名称是 硫酸氰?氨?二乙二胺合铬(III )。 5 四硫氰·二氨合铬(Ⅲ)酸铵的化学式是 NH 4[Cr (SCN )4(NH 3)2] ; 二氯·草酸根·乙二胺合铁(Ⅲ)离子的化学式是[Fe Cl 2(C 2O 4)en]- 4 。 6. 下列物质的有什么几何异构体,画出几何图形 (1)[Co(NH 3)4Cl 2]+ (2)[Co(NO 2)3(NH 3)3] 答:(1)顺、反异构(图略),(2)经式、面式异构(图略)。 7.根据磁矩,判断下列配合物中心离子的杂化方式,几何构型,并指出它们属于何类配合物(内/外轨型。 (1)[Cd (NH 3)4]2+ μm =0 ; (2)[Ni(CN)4]2- μm =0 ; (3)[Co(NH 3)6]3+ μm =0 ; (4)[FeF 6]3- μm =μB ; 答:

配位化学基础57659

第9章配位化学基础 9.1 配位化合物的基本特征 9.1.1 配位化合物及其命名 配位化学是研究中心原子或离子(通常是金属)与其周围的作为配位体的其它离子或分子构成的较复杂的化合物及其性质的学科,它是化学的一个分支。它所研究的对象称为配位化合物,简称配合物。早期称为络合物,原词complex compounds是复杂化合物的意思。 配合物及配离子一般表示为: 配合物: [M(L)l],[M(L)l]X n,或K n[M(L)l] 配离子: [M(L)l]m+,[M(L)l]m- 其中M为中心原子,通常是金属元素。它可为带电荷的离子,也可为中性原子(一般应标注其氧化值)。它们具有空的价轨道,是配合物的形成体。L是配位体,可为离子(通常是负离子)或中性分子,配位体中的配位原子具有孤对电子对,可提供给M的空价轨道,形成配价键。l表示配位体的个数或配位数。[]若带m个电荷者为配离子,它与n个异电荷离子X或K形成中性化合物为配合物;若m=0,即不带电荷者为配合物。如化学组成为CoCl3·6NH3的配合物表示为: 中心离子为Co(Ⅲ),它的价电子构型为3d6 4s0 4p0,具有未充满的空的价轨道,是配离子形成体。NH3是配位体简称配体,其中氮能向中心离子的空轨道提供孤对电子,形成配价键L:→M,钴-氮共享电子对,直接较紧密地结合,这种结合称为配位。钴离子周围的六个氨分子皆通过配位原子氮向它配位,形成六个配价键,构成具有一定组成和一定空间构型的配离子。该配离子带有三个正电荷。Co(Ⅲ)的配位数为6。 Cl-在外围以静电引力与配离子结合成电中性的配合物,称为氯化六氨合钴(Ⅲ)。由于配体与金属离子结合得相当牢固而呈现新的物理、化学性质,因此用方括号将其限定起来,常称为配合物的内界。带异电荷的离子称为外界。由于内界与外界靠静电结合,因此在极性溶剂中容易解离。 1文档来源为:从网络收集整理.word版本可编辑.

第三章配位场理论和络合物结构

第三章配位场理论和络合物结构 一、选择题 1.中央金属固定,下列离子或化合物作为配体时,场强最强的是:() A. CN- B. NH3 C. H 2 O D. SCN- 2.具有理想正八面体的电子组态(高自旋时)是:() A. (t 2g )3 B. (t 2g )1 C. (t 2g )4(e g )2 D. 以上都 不对 3.平面正方形场中,d轨道的最高简并度是:() A. 2 B. 3 C. 4 D. 1 4.导致Ni2+水合能在第一系列过渡金属元素中最大的主要原因是:( ) A. CFSE最大 B. 电子成对能最大 C. 原子序数最大 D. H 2 O是弱 场 5.下列原子作为电子给予体时,哪个原子引起的分裂能最大:() A. C B. F C. O D. N 6.决定成对能P的主要因素是:( ) A. 分裂能 B. 库仑能 C. 交换能 D. 配位场强度 7.下列配位化合物高自旋的是:() A. [Co(NH 3) 6 ]3+ B. [Co(NH 3 ) 6 ]2+ C. [Co(NO 2 ) 6 ]3- D. [Co(CN) 6 ]4- 8.下列配位化合物磁矩最大的是:() A. [FeF 6]3- B. [Mn(CN) 6 ]3- C. [Ni(H2O) 6 ]2+ D. [Co(NH3) 6 ]3+ 9.判断下列配位化合物的稳定化能大小的次序是: () (1) [CoF 6]4-(2)[NiF 6 ]4-(3)[FeF 6 ]3- A.(1)> (2)>(3) B.(1)=(2)<(3) C.(1)<(2)<(3) D.(2)>(1)>(3) 10.Ni和CO可形成羰基配合物N i (CO)n,其中n是:( ) A. 6 B. 3 C. 4 D.5 11.[Cu(H 2O) 4 ·2H 2 O]2+溶液出现蓝色的原因是:() A. 自旋相关效应 B. d-d跃迁 C. σ-π跃迁 D. 姜-泰勒效应12.配位化合物d-d跃迁光谱一般出现在什么区域:() A. 红外 B. 微波 C. 远紫外 D. 可见—紫外 13.关于[FeF 6 ]3-络离子,下列哪个叙述是错误的:() A.是高自旋络离子 B. CFSE为0 C. 中心离子的电子排斥与Fe3+相同 D. CFSE不为0 14.下列哪个轨道上的电子在XY平面上出现的几率密度为零:()A.3Pz B. 3dx2-y2 C. 3s D. 3dz2 15.下列分子中,呈反磁性的是:( ) A. B 2 B. NO C. CO D. O 2 16.晶体场稳定化能正确的大小顺序是:( ) A.[Mn(H 2O)6]2+ <[Fe(CN)6]3-<[Fe(H 2 O)6]3+<[Ru(CN)6]3- B.[Fe(H 2O)6]3+<[Mn(H 2 O)6]2+<[Ru(CN)6]3-<[Fe(CN)6]3- C.[Fe(CN)6]3-<[Fe(H 2O)6]3+

第三章第三节络合物的分子轨道理论

第三节 络合物的分子轨道理论 一、理论要点 络合物的分子轨道理论主要认为在络合物中,中心离子或原子与配位体之间不仅以静电作用相互作用着,而且往往有量子力学效应在其中起重要作用,即往往在中心离子或原子与配位体之间有共价键的生成。 二、类型 共价键:常见的有σ、π键 ①n (满)?→? σ d (空轨道)接受电子 σ键 ②n 、π(满)?→? π d (空)接受电子 正常π配键 ③*π(空)??← π d (满)授予电子 反馈π键 ①、③同时存在,称为电子授受键,即为σ键+反馈π键,同一配位体中,①、②不同时存在。 三、络合物的成键情况 1、M -L 间的σ键成键情况 2、M -L 间的π键 分裂能值大小与配体和中心原子之间σ键及π键的成键效应有关。 若配体为强的π电子给予体,形成L →M π配键,则分裂能减小,故卤素离子等是弱场; 若配体为强的π电子接受体,形成M →L π配键,则分裂能增大,故CN - ,CO,NO 2等是强场;而NH 3、H 2O 等分子与中心离子只能形成σ键,不能与M 形成π键,所以是中间场 即 中场:NH 3 、H 2O 只有σ键Fig3.1 强场:CN - 有π* 高能Fig3.3 弱场:卤素、 有π成键 Fig3.2 3、M-L 间σ-π键 (1)、羰基配合物中的σ-π键 a.M 与L 之间的σ键和反馈π键,合称为σ-π键,也称为电子授受键。 中心金属与配体之间σ键和反馈π键的形成是同时进行的,σ键的形成,使中心原子

的电负性增加,有利于反馈π键的形成;而反馈π键的形成(LM ),使中心原子的负电荷减少 ,由利于中心原子接受电子,形成σ键。 b.协同效应:σ键形成(M ←L ),中心金属M 电负性增加,有利于反馈π键的形成 反馈π键(M →L ),中心M 电负性降低,有利于σ键形成 σ-π键产生的效应: 一、加强了中心金属和配位体之间的结合。σ键反馈π键双重成键,解释零价或低价过渡金属络合物稳定性事实; 二、削弱了配位体内部的结合。由于反馈键的形成,使电子从中心金属的t2g 轨道返回到CO 的反键轨道中,这就削弱了C 和O 键的强度。 c、18电子规则 每个金属原子的价电子数和它周围配体提供的价电子数(每个CO 提供一对孤对电子)加在一起满足18电子层的惰气结构。这是将惰气都很稳定的事实应用于金属络合物而提出的。 四、有机金属络合物 1、不饱和烃络合物——络合物的结构 (1)、金属-乙烯络合物 以铂的乙烯络合物为代表:[PtCl 3(C 2H 4)]H 2O 蔡赛盐 正方形结构,乙烯以侧基与中心金属结合,C-C 键与PtCl 3-所组成的平面垂直,而且两个C 原子与的Pt 2+距离相等,如图示: Cl Cl Pt 2+C C H H H Cl 蔡塞盐 (2)金属-乙炔络合物

配位化学讲义 第六章 溶液中配合物的稳定性

配位化学讲义第六章溶液中配合物的稳定性

第六章 配合物在溶液中的稳定性 第一节 影响配合物稳定性的因素 一、概述 逐级稳定常数和积累稳定常数: M + L = ML [M][L] [ML]K 1= [M][L][ML] K β11= = ML + L = ML 2 [ML][L]][ML K 22= 22212[M][L]] [ML K K β= = ML 2 + L = ML ][L][ML ][ML K 233= 333213[M][L]] [ML K K K β= =

…………… ……………… ………… 二、金属离子对配合物稳定性的影响 1、具有惰性气体电子结构的金属离子 碱金属:Li+、Na+、K+、Rb+、Cs+ 碱土金属:Be2+、Mg2+、Ca2+、Sr2+、Ba2+ 及:Al3+、Sc3+、Y3+、La3+ 一般认为它们与配体间的作用主要是静电作用,金属离子z/r越大,配合物越稳定。 例:二苯甲酰甲烷[phC(O)CH2C(O)ph]配合物的lgK1值(30℃,75%二氧六环) M2+ lgK1 Be2+13.62 Mg2+8.54 Ca2+7.17 Sr2+ 6.40 Ba2+ 6.10

2、Irving-Williams顺序 研究发现:第四周期过渡金属 离子与含O、N配位原子的配体 的高自旋八面体配合物,其稳 定性顺序如下: Mn2+ < Fe2+ < Co2+ < Ni2+ < Cu2+ > Zn2+ CFSE(Dq) 0 -4 -8 -12 -6 0 这称为Irving-Williams顺序,可用CFSE解释。Ni2+< Cu2+,可用Jahn-Teller效应解 释。

配位化学第一章作业

1.写出下列配合物或配离子的化学式 ?六氟合铝酸钠(III) ?二氯化一氰?四氨?水合钴(III) ?二氯化异硫氰酸跟?五氨合钴(III) ?五氨?亚硝酸根合钴(III) 离子 ?二(乙酰丙酮根)合铜(III) ?二氰化(u-氯)?二(氨基合铂(II)) 答:? Na3[AlF6] ? [Co(CN)(NH3)4(H2O)] ? [Co(NCS)(NH3)5]Cl2 ? [Co(NH3)5NO2]2+ ?[Cu(acac)2] ?[Pt2(NH2)2Cl2](CN)2 2.指出下列配体中的配位原子,并说明它是单齿还是多吃配体? (1)CH3-C=NO*H (2)CH2-N*HCH2CH2-N*H2 CH3-C=NO*H CH2-N*HCH2CH2-N*H2 (3) CH2COO*- -*00CH2C-*NHCH2N* CH2COO*- (4)ONO- (5)SCN-(6)RNC- (7)*NH(CH2COO*-)2 答:(1)配位原子为O,多齿配体;(2)配位原子为N,多齿配体;(3)配位原子为O和N,多齿配体;(4)配位原子为O,单齿配体;

(5)配位原子为S,单齿配体;(6)配位原子为N,单齿配体; (7)配位原子为N和O,多齿配体; 3.命名下列配合物或配离子 (1) K[Au(OH)4] (2)[Ce(en)3]Cl3 (3)[Co(H2O)4Cl2]Cl (4) [Cr(NH3)2(H2O)2(Py)2]Cl3 (5)[Co(NCS)(NH3)5]2+ (6) [Fe(CN)5(CO)]3- (7) Cl Cl Cl Al Al Cl Cl Cl (8) NH [(H3N)4Co Cr(NH3)2Cl2]Cl2 ONO 答:(1)四羟基合金(Ⅲ)酸钾 (2)三氯化三(乙二胺)合铈(Ⅲ) (3)氯化二氯?四水合钴(Ⅲ) (4)三氯化二氨?二水?二吡啶合铬(Ⅲ) (5)异硫氰根?五氨合钴(Ⅲ)离子 (6)五氰?羰基合铁(Ⅲ)离子 (7)二μ—氯双(二氯合铝(Ⅲ)) (8)二氯化μ—亚氨基—μ—亚硝酸根—二氯二氨合铬(Ⅲ)—四氨合钴 (Ⅱ)

相关主题
文本预览
相关文档 最新文档