当前位置:文档之家› 最短路数学建模

最短路数学建模

最短路数学建模
最短路数学建模

目:最短路问题

摘要:

1 引言:

图论是应用数学的一个分支,它的概念和结果来源都非常广泛,最早起源于一些数学游戏的难题研究,如欧拉所解决的格尼斯堡七桥问题,以及在民间广泛流传的一些游戏的难题,如迷宫问题,博弈问题等。这些古老的难题,吸引了很多学者的注意。

1847年,图论应用于分析电路网络,这是它最早应用于工程科学,以后随着科学的发展,图论在解决运筹学,网络理论,信息论,控制论,博弈论以及计算机科学等各个领域的问题时,发挥出很大的作用。在实践中,图论已成为解决自然科学,工程技术,社会科学,军事等领域中许多问题的有力工具之一。

最短路问题是图论理论中的经典问题,寻找最短路径就是在指定网络中两节点间找一条距离最小的路。

(1) 基 本 概 念:

定义1 在无向图G=(V,E,ψ)中:

(1)顶点与边相互交错且i i i v v e 1)(-=ψ (i=1,2,…k)的有限非空序列

)(12110k k k v e v e v e v w -= 称为一条从0v 到k v 的通路,记为k v v W 0

(2)边不重复但顶点可重复的通路称为道路,记为k

v v T 0

(3)边与顶点均不重复的通路称为路径,记为k

v v P 0

A=4

3

21

432105375083802720v v v v v v v v ???????

?

?∞∞

定义2 (1)任意两点均有路径的图称为连通图. (2)起点与终点重合的路径称为圈. (3)连通而无圈的图称为树.

定义3 (1)设P(u,v)是赋权图G 中从u 到v 的路径, 则称∑∈=

)

()()(P E e e w P w 为路径P 的权.

(2) 在赋权图G 中,从顶点u 到顶点v 的具有最小权的路

),(*v u P ,称为u 到v 的最短路.

1.实验的目的和要求

了解最短路的算法及应用,会用Matlab 软件求最短路。

2.实验内容和原理

内容:最短路求法,求下图从顶点1u 到其余顶点的最短路。

最短路应用:某城市要建一个消防站,为该市所属的七个区服务,如图所示,问应设在哪个区才能使它至最远的路径最短?

原理:在图的带权邻接矩阵中用插入顶点的方法依次构造出v个矩阵使得最后得到的矩阵成为图的距离矩阵,同时也求出插入点矩阵以便得到两点间的最短路径

3.主要仪器设备

计算机与Windows 2000/XP;Matla等软件。

4.常用术语:

(1)端点相同的边称为环.

(2)若一对顶点之间有两条以上的边联结,则这些边称为重边.(3)有边联结的两个顶点称为相邻的顶点,有一个公共端点的边

称为相邻的边.

(4)边和它的端点称为互相关联的.

(5)既没有环也没有平行边的图,称为简单图.

(6)任意两顶点都相邻的简单图,称为完备图,记为K n,其中n

为顶点的数目.

( 7)若V=X?Y,X?Y=Φ,X中任两顶点不相邻,Y中任两顶

点不相邻,称G 为二元图;若X 中每一顶点皆与Y 中一切顶点 相邻,称为完备二元图,记为K m,n ,其中m,n 分别为X 与Y 的顶

点数目.

5.操作方法与实验步骤

例一:

先写出带权邻接矩阵: ?????????

?

?

?∞∞∞∞∞∞∞∞∞∞∞∞∞=0306409302

1509701608120W 因G 是无向图,故W 是对称阵.

Dijkstra算法的MATLAB实现:

w=[0 2 1 8 inf inf inf inf;2 0 inf 6 1 inf inf inf;1 inf 0 7 inf inf 9 inf;...

8 6 7 0 5 1 2 inf;inf 1 inf 5 0 3 inf 9;inf inf inf 1 3 0 4 6;...

inf inf 9 2 inf 4 0 3;inf inf inf inf 9 6 3 0]

n=size(w,1);

w1=w(1,:);

%赋初值

for i=1:n

l(i)=w1(i);

end

s=[];

s(1)=1;

u=s(1);

k=1;

while k

% 更新l(v) 和z(v)

for i=1:n

for j=1:k

if i~=s(j)

if l(i)>l(u)+w(u,i)

l(i)=l(u)+w(u,i);

z(i)=u;

end

end

end

end

l,z

%求v*

ll=l;

for i=1:n

if i~=s(j)

ll(i)=ll(i);

else

ll(i)=inf;

end

end

end

for i=1:n

if ll(i)

lv=ll(i);

v=i;

end

end

lv, v

s(k+1)=v

k=k+1

u=s(k)

end

l,z

例二:

Folyd 算法的MATLAB 实现: function[D,R]=floyd(a)

n=size(a,1); D=a for i=1:n

???

?

??

?

?

?

?=???????? ?

?=5333434331

54324

3332344441

,064696024342025

6420793570R D

for j=1:n

R(i,j)=j;

end

end

for k=1:n

for i=1:n

for j=1:n

if D(i,k)+D(k,j)

D(i,j)=D(i,k)+D(k,j);

R(i,j)=R(i,k);

end

end

end

k, D, R

end

在命令窗口中输入:

a=[0 9 inf 3 inf;9 0 2 inf 7;inf 2 0 2 4;3 inf 2 0 inf;inf 7 4 inf 0];

floyd(a)

例三:

1.1 提出问题

设6个城市v1,v2,......,v6之间的一个公路网(图1)每条公路为图中的边,边上的权数表示该段公路的长度(单位:百公里),设你处在城市v1,那么从v1到v6应选择哪一路径使你的费用最省。

1.2 分析问题

这属于一个典型的求解最短路的问题,图中顶点代表六个城市,边上的权数表示该段公路的长度,题目所求为从v1到v6、的一条费用最省的路径,我们假设所需费用仅与路径长短有关,因此求费用最省的路径即求权值最小的路径。网络图中各权值均为正,可以使用Dijkstra算法。

1.3 数据整理

将网络图中各边的权作如下整理以方便程序运行

W(1,2)=5; W(2,1)=5;

W(1,3)=2; W(3,1)=2;

W(2,3)=1; W(3,2)=1;

W(2,4)=5; W(4,2)=5;

W(2,5)=5; W(5,2)=5;

W(3,4)=8; W(4,3)=8;

W(3,5)=10; W(5,3)=10;

W(4,5)=2; W(5,4)=2;

W(4,6)=5; W(6,4)=5;

W(5,6)=2; W(6,5)=2;

2.数学原理

2.1 Dijkstra算法介绍

Dijkstra 算法思想为:设G=(V,E)是一个带权有向图(也可以是无向图,无向图是有向图的特例),把图中顶点集合V分成两组:第一组为已求出最短路径的顶点集合(用S 表示,初始时S 中只有一个源点,以后每求得一条最短路径,就将其加入到集合S 中,直到全部顶点都加入到S 中,算法就结束了);第二组为其余未确定最短路径的顶点集合(用U 表示),按最短路径长度的递增次序依次把第二组的顶点加入S 中。在加入的过程中,总保持从源点v 到S 中各顶点的最短路径长度不大于从源点v 到U 中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S 中的顶点的距离就是从v 到此顶点的最短路径长度,U中的顶点的距离,是从v 到此顶点只包括S 中的顶点为中间顶点的当前最短路径长度。其步骤主要有:

第一,初始时,S 只包含源点,即S={顶点},v 的距离为0。U 包含除v 外的其他顶点,U 中顶点u 距离为边上的权(若v 与u 有边)或(若u 不是v 的出边邻接点)。

第二,从U 中选取一个距离v 最小的顶点k,把k 加入S 中(该选定的距离就是v 到k 的最短路径长度)。

第三,以k 为新考虑的中间点,修改U 中各顶点的距离;若从源点v 到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u 的距离值,修改后的距离值的顶点k 的距离加上边上的权。

第四,重复步骤第二步和第三步直到所有顶点都包含在S 中。

3.程序设计

function [c0,c,path0,path]=dijkstra(s,t,C,flag)

s=floor(s);

t=floor(t);

n=size(C,1);

label=ones(1,n)*inf;

label(s)=0;

S=[s];

Sbar=[1:s-1,s+1:n];

c0=0;

path=zeros(n,n);

path(:,1)=s;

c=ones(1,n)*inf;

parent=zeros(1,n);

i=1; % number of points in point set S.

while i

% for each point in Sbar, replace label(Sbar(j)) by

% min(label(Sbar(j)),label(S(k))+C(S(k),Sbar(j)))

for j=1:n-i

for k=1:i

if label(Sbar(j)) > label(S(k))+C(S(k),Sbar(j))

label(Sbar(j))=label(S(k))+C(S(k),Sbar(j));

parent(Sbar(j))=S(k);

end

end

end

% Find the minmal label(j), j \in Sbar.

temp=label(Sbar(1));

son=1;

for j=2:n-i

if label(Sbar(j))< temp

temp=label(Sbar(j));

son=j;

end

end

% update the point set S and Sbar

S=[S,Sbar(son)];

Sbar=[Sbar(1:son-1),Sbar(son+1:n-i)];

i=i+1;

% if flag==1, just output the shortest path between s and t. if flag==1 && S(i)==t

son=t;

temp_path=[son];

if son~=s

while parent(son)~=s

son=parent(son);

temp_path=[temp_path,son];

end

temp_path=[temp_path,s];

end

temp_path=fliplr(temp_path);

m=size(temp_path,2);

path0(1:m)=temp_path;

c_temp=0;

for j=1:m-1

c_temp=c_temp+C(temp_path(j),temp_path(j+1));

end

c0=c_temp;

path(t,1:m)=path0;

c(t)=c0;

return

end

end

% Form the output results

for i=1:n

son=i;

temp_path=[son];

if son~=s

while parent(son)~=s

son=parent(son);

temp_path=[temp_path,son];

end

temp_path=[temp_path,s];

end

temp_path=fliplr(temp_path);

m=size(temp_path,2);

path(i,1:m)=temp_path;

c_temp=0;

for j=1:m-1

c_temp=c_temp+C(temp_path(j),temp_path(j+1));

end

c(i)=c_temp;

c0=c(t);

path0=path(t,:);

end

return

4.结果分析

4.1 运行程序

clc

s=1;

t=6;

flag=1;

W=ones(9,9)*inf; %

for i=1:9

W(i,i)=0;

end

W(1,2)=5; W(2,1)=5;

W(1,3)=2; W(3,1)=2;

W(2,3)=1; W(3,2)=1;

W(2,4)=5; W(4,2)=5;

W(2,5)=5; W(5,2)=5;

W(3,4)=8; W(4,3)=8;

W(3,5)=10; W(5,3)=10;

W(4,5)=2; W(5,4)=2;

W(4,6)=5; W(6,4)=5;

W(5,6)=2; W(6,5)=2;

[c0,c,path0,path]=dijkstra(s,t,W,flag); c0

path0

4.2 运行结果

4.3 结果分析

由运行结果可知,从V1到V6的最短路径长度为10,路径为:V1->V3->V2->V5->V6,结合网络图进行验证,所求即为最短路。并且利用上述程序还可求得网络中任意两点之间的最短路径。

6.最短路的实际应用

●最短路问题在交通网络结构的分析,交通运输路线(公路、铁路、河流航运线、航空线、管道运输路线等)的选择,通讯线路的建造与维护,运输货流的最小成本分析,城公共交通网络的规划等,都有直接应用的价值。

●最短路问题在实际中还常用于汽车导航系统以及各种应急系统等(110报警、119火警以及120医疗救护系统),这些系统一般要求计算出到出事地点的最佳路线的时间最短。利用最短路还需要实际计算出前方的行驶路线,这就决定了最短路径问题的实现应该是高效率的。

●根据现在发展的要求,在城乡一体化的总体思路中,为实现农村村村通的目标,针对农村地理分布,进行合理规划,对与优化农村交通网络,促进农村发展有重要的内容。

【参考文献】:

[1] 甘应爱、田丰等. 运筹学(第三版). 北京. 清华大学出版社2006.

[2] 蒲俊等. MATLAB6.0数学手册. 上海. 浦东电子出版社2002

快递员配送路线优化模型

快递员配送路线优化模型 摘要 如今,随着网上购物的流行,快递物流行业在面临机遇的同时也需要不断迎接新的挑战。如何能够提高物流公司的配送效率并降低配送过程中的成本,已成为急需我们解决的一个问题。下面,本文将针对某公司的一名配送员在配送货物过程中遇到的三个问题进行讨论及解答。 对于问题一,由于快递员的平均速度及在各配送点停留的时间已知,故可将最短时间转换为最短路程。在此首先通过Floyd求最短路的算法,利用Matlab 程序将仓库点和所有配送点间两两的最短距离求解出来,将出发点与配送点结合起来构造完备加权图,由完备加权图确定初始H圈,列出该初始H圈加点序的距离矩阵,然后使用二边逐次修正法对矩阵进行翻转,可以求得近似最优解的距离矩阵,从而确定近似的最佳哈密尔顿圈,即最佳配送方案。 对于问题二,依旧可以将时间问题转化为距离问题。利用问题一中所建立的模型,加入一个新的时间限制条件,即可求解出满足条件的最佳路线。 对于问题三,送货员因为快件载重和体积的限制,至少需要三次才能将快件送达。所以需要对100件快件分区,即将50个配送点分成三组。利用距离矩阵寻找两两之间的最短距离是50个配送点中最大的三组最短距离的三个点,以此三点为基点按照准则划分配送点。 关键字:Floyd算法距离矩阵哈密尔顿圈二边逐次修正法矩阵翻转

问题重述 某公司现有一配送员,,从配送仓库出发,要将100件快件送到其负责的50个配送点。现在各配送点及仓库坐标已知,货物信息、配送员所承载重物的最大体积和重量、配送员行驶的平均速度已知。 问题一:配送员将前30号快件送到并返回,设计最佳的配送方案,使得路程最短。 问题二:该派送员从上午8:00开始配送,要求前30号快件在指定时间前送到,设计最佳的配送方案。 问题三:不考虑所有快件送达的时间限制,现将100件快件全部送到并返回。设计最佳的配送方案。配送员受快件重量和体积的限制,需中途返回取快件,不考虑休息时间。 符号说明 D:n个矩阵 n V:各个顶点的集合 E:各边的集合 e:每一条边 ij w:边的权 ()e G:加权无向图 , v v:定点 i j C:哈密尔顿圈 () f V:最佳哈密尔顿圈 i

数学建模路线优化问题

选路的优化模型 摘要: 本题是一个有深刻背景的NPC问题,文章分析了分组回路的拓扑结构,并构造了多个模型,从多个侧面对具体问题进行求解。最短树结构模型给出了局部寻优的准则算法模型体现了由简到繁,确保较优的思想而三个层次分明的表述模型证明了这一类问题共有的性质。在此基础上我们的结果也是比较令人满意的。如对第一题给出了总长为599.9,单项长为216的分组,第二题给出了至少分四组的证明。最后,我们还谈到了模型的优缺点及推广思想。 一、问题描述 “水大无情,人命关天”为考察灾情,县领导决定派人及早将各乡(镇),村巡视一遍。巡视路线为从县政府所在地出发,走遍各乡(镇),村又回到县政府所在地的路线。 1.若分三组巡视,试设计总路程最短且各组尽可能均衡的巡视路线。 2.假定巡视人员在各乡(镇)停留时间为T=2小时,在各村停留时间为t =1 小时, 汽车行驶速度为V=35公里/时,要在24小时内巡视完,至少分成几组;给出这 种分组下你认为最佳的巡视路线。 3.上述关于T,t和V的假定下,如果巡视人员足够多,完成巡视的最短时间是多 少?给出在这种最短时间完成巡视的要求下,你认为最佳的巡视路线。 4.巡视组数已定(如三组)要求尽快完成巡视,讨论T,t和V改变时最佳路线的 影响(图见附录)。 二、问题假设 1、乡(镇)村只考察一次,多次经过时只计算一次停留时间。 2、非本县村不限制通过。 3、汽车的行驶速度始终一致。 三、符号说明 第i 人走的回路Ti=vv i(i) v2(i)v n(i) Ti=00表示第i人在0点没移动 四、模型建立

在这一节里,我们将提出若干个模型及其特点分析,不涉及对题目的求解。 最简树结构模型 在这个模型中我们依靠利用最短树的特殊结构所给出的准则,进行局部寻优,在一个不大的图里,我们较易得到较优解。 (a)分片 准则1利用最短树的长度可大致的估算出路程长,在具体操作中,各片中 的最短路程长度不宜相差太大。 准则 2 尽可能将最短树连成一个回路,这可保证局部上路程是较短的。 (b)片内调整 a2 a3 a4 a5 a6假设a3 a4有路相连 细准1对于右图的最短树结构,最好的走法是a 若a3 a4 进去重复走的话,它与上述的走法路程差w(a3, a2)+w(a2 ,a5)+w(a4, a5)—w(a3, a4)。由两点间最小原则上式是大于0的优劣可见 细准2若有如图所示结构,一般思想是:将中间树枝上的点串到两旁树枝,以便连成回路。 五、模型求解 问题一该问题完全可以用均衡模型表述 用算法模型 1 经过局部优化手工多次比较我们能够给出的最佳结果为第一组路径为 0—P—28—27—26—N—24—23—22-17—16—1—15—1—18—K—21—20—25— M--0 长191.1 经5 镇6 村 第二组路径为 0—2—5—6—L—19—J—11--G—13—14—H—12—F—10—F—9—E—8—E—7—6—5—2—0 长216.5 经6 镇11 村第三组路径为O—2—3—D—4—D—3—C—B—1—A—34—35—33—31—32—30—Q—29 —R 长192.3 经6 镇11 村总长S=599.9 公里 由算法2 给出的为 1组0—P—29—R—31—33—A—34—35—32—30—Q—28—27—26—N—24—33—22—23—N—2 6—P—0 5 乡13 村长215.2 公里 2组0—M—25—21—K—17—16—I—15—I—18—K—21—25—20—L—19—J—11—G—13—14 —O 5 乡11 村长256.2 公里 3组 O—2—5—6—7—E—9--F—12--H--—12—F—10—F—9—E-8—4—0—7—6—M—5-2—3—L —13—1—0 8 乡11 村长256.3 公里 总长727.7 公里

数学建模最优路径设计

2015高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名 参赛队员(打印并签名) :1 2

指导教师或指导教师组负责人(打印并签名): (论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期:2015年7 月27 日赛区评阅编号(由赛区组委会评阅前进行编号):

2015高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

数学建模铺路问题的最优化模型

铺路问题的最优化模型 摘要 本文采用了两种方法,一种是非线性规划从而得出最优解,另一种是将连续问题离散化利用计算机穷举取最优的方法。 根据A地与B地之间的不同地质有不同造价的特点,建立了非线性规划模型和穷举取最优解的模型,解决了管线铺设路线花费最小的难题。 问题一:在本问题中,我们首先利用非线性规划模型求解,我们用迭代法求出极小值(用Matlab实现),计算结果为总费用最小为748.6244万元,管线在各土层中在东西方向上的投影长度分别为15.6786km,3.1827 km,2.1839 km,5.8887km,13.0661km。然后,我们又用穷举法另外建立了一个模型,采用C语言实现,所得最优解为最小花费为748.625602万元,管线在各土层中在东西方向上的投影长度分别为15.70km,3.20km,2.20km,5.90km,13.00km。 问题二:本问题加进了一个非线性的约束条件来使转弯处的角度至少为160度,模型二也是如此。非线性规划模型所得计算结果为最小花费为750.6084万元,管线在各土层中在东西方向上的投影长度分别为14.4566km,4.3591km,2.5984km,6.5387km,12.0472km。遍历模型所得最优解为最小花费为750.821154万元,管线在各土层中在东西方向上的投影长度分别为14.10km,4.30km, 2.70km,6.70km,12.20km。 问题三:因为管线一定要经过一确定点P,我们将整个区域依据P点位置分成两部分,即以A点正东30km处为界,将沙土层分成两部分。非线性规划模型最小花费为752.6432万元,管线在各土层中在东西方向上的投影长度分别为21.2613km,3.3459km,2.2639km,3.1288km,2.4102km,7.5898km。遍历模型最小花费为752.649007万元,管线在各土层中在东西方向上的投影长度分别为21.30km,3.30km,2.30km,3.10km,2.40km,7.60km。 关键词:非线性规划逐点遍历穷举法

数学建模最优路径设计

承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模 竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模 竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮 件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问 题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的 成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表 述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。 如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行 公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表 等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名 参赛队员 (打印并签名) :1 2 指导教师或指导教师组负责人 (打印并签名): (论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以 上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取 消评奖资格。) 日期: 2015年 7 月 27 日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

从成都工业学院到西南交通大学最优路径设计 摘要 本文对现在生活中行车时间的不确定性进行了分析,并给出了最优路径的定义,即:行车所需期望时间最短且该路段行车时间的标准差最小。在将时间期望值和时间标准差值两个决策变量合成为一个决策变量时,为消除不同指标带来的不可公度性,我们对这两个指标进行了无量纲化。 对于问题一,建立双目标优化模型,给出最优路径的定义和数学表达式。将这两个目标相加合成单目标。利用MATLAB编程求解,将所建模型应用到例子中,得出的结论是:选择道路A。 对于问题二,在问题一定义的最优路径的基础上,建立图论模型,应用Dijkstra算法,利用MATLAB编程,得出最优路径选择结果为:成都工业学院→C→K→G→西南交通大学。 对与问题三,结合时间和空间上的相关性,采集足够多的时刻的车流速度,用神经网络算法可以拟合出该条路时刻关于车流速度的函数,建立图论模型分析时间和空间上的相关性。 关键词:多目标优化图论模型 Dijkstra算法

数学建模中的图论方法

数学建模中的图论方法 一、引言 我们知道,数学建模竞赛中有问题A和问题B。一般而言,问题A是连续系统中的问题,问题B是离散系统中的问题。由于我们在大学数学教育内容中,连续系统方面的知识的比例较大,而离散数学比例较小。因此很多人有这样的感觉,A题入手快,而B题不好下手。 另外,在有限元素的离散系统中,相应的数学模型又可以划分为两类,一类是存在有效算法的所谓P类问题,即多项式时间内可以解决的问题。但是这类问题在MCM中非常少见,事实上,由于竞赛是开卷的,参考相关文献,使用现成的算法解决一个P类问题,不能显示参赛者的建模及解决实际问题能力之大小;还有一类所谓的NP问题,这种问题每一个都尚未建立有效的算法,也许真的就不可能有有效算法来解决。命题往往以这种NPC问题为数学背景,找一个具体的实际模型来考验参赛者。这样增加了建立数学模型的难度。但是这也并不是说无法求解。一般来说,由于问题是具体的实例,我们可以找到特殊的解法,或者可以给出一个近似解。 图论作为离散数学的一个重要分支,在工程技术、自然科学和经济管理中的许多方面都能提供有力的数学模型来解决实际问题,所以吸引了很多研究人员去研究图论中的方法和算法。应该说,我们对图论中的经典例子或多或少还是有一些了解的,比如,哥尼斯堡七桥问题、中国邮递员问题、四色定理等等。图论方法已经成为数学模型中的重要方法。许多难题由于归结为图论问题被巧妙地解决。而且,从历年的数学建模竞赛看,出现图论模型的频率极大,比如: AMCM90B-扫雪问题; AMCM91B-寻找最优Steiner树; AMCM92B-紧急修复系统的研制(最小生成树) AMCM94B-计算机传输数据的最小时间(边染色问题) CMCM93B-足球队排名(特征向量法) CMCM94B-锁具装箱问题(最大独立顶点集、最小覆盖等用来证明最优性) CMCM98B-灾情巡视路线(最优回路) 等等。这里面都直接或是间接用到图论方面的知识。要说明的是,这里图论只是解决问题的一种方法,而不是唯一的方法。 本文将从图论的角度来说明如何将一个工程问题转化为合理而且可求解的数学模型,着重介绍图论中的典型算法。这里只是一些基础、简单的介绍,目的在于了解这方面的知识和应用,拓宽大家的思路,希望起到抛砖引玉的作用,要掌握更多还需要我们进一步的学习和实践。

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

数学建模路线

数学建模路线优化问题

选路的优化模型 摘要: 本题是一个有深刻背景的NPC问题,文章分析了分组回路的拓扑结构,并构造了多个模型,从多个侧面对具体问题进行求解。最短树结构模型给出了局部寻优的准则算法模型体现了由简到繁,确保较优的思想而三个层次分明的表述模型证明了这一类问题共有的性质。在此基础上我们的结果也是比较令人满意的。如对第一题给出了总长为599.9,单项长为216的分组,第二题给出了至少分四组的证明。最后,我们还谈到了模型的优缺点及推广思想。 一、问题描述 “水大无情,人命关天”为考察灾情,县领导决定派人及早将各乡(镇),村巡视一遍。巡视路线为从县政府所在地出发,走遍各乡(镇),村又回到县政府所在地的路线。 1.若分三组巡视,试设计总路程最短且各组尽可能均衡的巡视路线。 2.假定巡视人员在各乡(镇)停留时间为T=2小时,在各村停留时间为t =1 小 时,汽车行驶速度为V=35公里/时,要在24小时内巡视完,至少分成几组; 给出这种分组下你认为最佳的巡视路线。 3.上述关于T,t和V的假定下,如果巡视人员足够多,完成巡视的最短时间是多 少?给出在这种最短时间完成巡视的要求下,你认为最佳的巡视路线。 4.巡视组数已定(如三组)要求尽快完成巡视,讨论T,t和V改变时最佳路线 的影响(图见附录)。 二、问题假设 1、乡(镇)村只考察一次,多次经过时只计算一次停留时间。 2、非本县村不限制通过。 3、汽车的行驶速度始终一致。 三、符号说明 符号表示意义 Ti 第i 人走的回路Ti=vv i(i) v2(i)v n(i) Ti=00表示第i人在0点没移动 Vi Ti的点集Si Ti的长度 Hi(v) 在V上定义的特殊函数仅当V被第i 人走过且停留时 Hi(v)=1,否则为0

初中数学几何旋转最值最短路径问题专题训练

初中数学几何旋转最值最短路径问题专题训练专练3 最短路径模型——旋转最值类 基本模型图: 【典例1】如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连 结B′D,则B′D的 最小值是(). A. B.6 C. D.4 【思路探究】根据E为AB中点,BE=B′E可知,点A、B、B′在以点E为圆心,AE长为半径的圆上,D、E为定点,B′是动点,当E、B′、D三点共线时,B′D的长最小,此时B′D=DE-EB′,问题得解. 【解析】∵AE=BE,BE=B′E,由圆的定义可知,A、B、B′在以点E为圆心,AB长为直径的圆上,如图所示. B′D的长最小值= DE-EB′.故选A. 22 -=-

【启示】此题属于动点(B′)到一定点(E )的距离为定值(“定点定长”),联想到以E 为圆心,EB′为半径的定圆,当点D 到圆上的最小距离为点D 到圆心的距离-圆的半径.当然此题也可借助三角形三边关系解决,如,当且仅当点E 、B′、D 三点共线B D DE B E ''≤-时,等号成立. 【典例2】如图,E 、F 是正方形ABCD 的边AD 上两个动点,满足AE =DF ,连接CF 交BD 于点G ,连结BE 交AG 于点H ,若正方形的边长是2,则线段DH 长度的最小值是 . 【思路探究】根据正方形的轴对称性易得∠AHB =90°,故点H 在以AB 为直径的圆上.取AB 中点O ,当D 、H 、O 三点共线时,DH 的值最小,此时DH =OD -OH ,问题得解. 【解析】由△ABE ≌△DCF ,得∠ABE =∠DCF ,根据正方形的轴对称性,可得∠DCF =∠DAG ,∠ABE =∠DAG ,所以∠AHB =90°,故点H 在以AB 为直径的圆弧上.取AB 中 点O ,OD 交⊙O 于点H ,此时DH 最小,∵OH =, OD =,∴DH 的最小值为112 AB =OD -OH . 1【启示】此题属于动点是斜边为定值的直角三角形的直角顶点,联想到直径所对圆周角为直角(定弦定角),故点H 在以AB 为直径的圆上,点D 在圆外,DH 的最小值为DO -OH .当然此题也可利用的基本模型解决. DH OD OH ≤-【针对训练 】 1. 如图,在△ABC 中,∠ACB =90°,AC =2,BC =1,点A ,C 分别在x 轴,y 轴上,当点A 在轴正半轴上运动时,点C 随之在轴上运动,在运动过程中,点B 到原点O 的最大x y 距离为( ). A B C . D .31

数学建模运输问题

运输问题 摘要 本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo编程求解出最终结果。 关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd算法对其进行分析。考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。 关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线: 1-5-7-6-3-4-8-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。即最短路线为:1-5-7-6-3-4-8-9-10-2-1。但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。 关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内即可。因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。得到优化结果为:第一辆车:1-5-2-3-4-8-9-1,第二辆车:1-7-6-9-10-1,总路程为280公里。 关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。根据matlab运行结果分析得出4条最优路线分别为:1-5-2,1-4-3-8,1-7-6,1-9-10。最短总路线为245公里,最小总费用为645。 关键词: Floyd算法 Kruskal算法整数规划旅行商问题 一、问题重述 某运输公司为10个客户配送货物,假定提货点就在客户1所在的位置,从第i个客户到第j个客户的路线距离(单位公里)用下面矩阵中的(,) i j(,1,,10) i j=位置上的数表示(其中∞表示两个客户之间无直接的路线到达)。 1、运送员在给第二个客户卸货完成的时候,临时接到新的调度通知,让他先给客户10送 货,已知送给客户10的货已在运送员的车上,请帮运送员设计一个到客户10的尽可能短的行使路线(假定上述矩阵中给出了所有可能的路线选择)。 2、现运输公司派了一辆大的货车为这10个客户配送货物,假定这辆货车一次能装满10个 客户所需要的全部货物,请问货车从提货点出发给10个客户配送完货物后再回到提货点所行使的尽可能短的行使路线?对所设计的算法进行分析。 3、现因资源紧张,运输公司没有大货车可以使用,改用两辆小的货车配送货物。每辆小

最短路径问题的算法分析及建模案例

最短路径问题的算法分析及建模案例 一.摘要 (2) 二.网络最短路径问题的基础知识 (3) 2.1有向图 (5) 2.2连通性.............................................................................................. 错误!未定义书签。 2.3割集.................................................................................................. 错误!未定义书签。 2.4最短路问题 (6) 三.最短路径的算法研究............................................................................. 错误!未定义书签。 3.1最短路问题的提出 (6) 3.2 Bellman最短路方程...................................................................... 错误!未定义书签。 3.3 Bellman-Ford算法的基本思想.................................................... 错误!未定义书签。 3.4 Bellman-Ford算法的步骤............................................................ 错误!未定义书签。 3.5实例.................................................................................................. 错误!未定义书签。 3.6 Bellman-FORD算法的建模应用举例............................................ 错误!未定义书签。 3.7 Dijkstra算法的基本思想 (6) 3.8 Dijkstra算法的理论依据 (6) 3.9 Dijkstra算法的计算步骤 (6) 3.10 Dijstre算法的建模应用举例 (7) 3.11 两种算法的分析........................................................................... 错误!未定义书签。 1.Diklstra算法和Bellman-Ford算法思想有很大的区别 ...... 错误!未定义书签。 Bellman-Ford算法在求解过程中,每次循环都要修改所有顶点的权值,也就是说 源点到各顶点最短路径长度一直要到Bellman-Ford算法结束才确定下来。错误!未定义书签。 2.Diklstra算法和Bellman-Ford算法的限制.......................... 错误!未定义书签。 3.Bellman-Ford算法的另外一种理解........................................ 错误!未定义书签。 4.Bellman-Ford算法的改进........................................................ 错误!未定义书签。

(完整版)最短路径问题专项练习

A B 最短路径问题专项练习 共13页,全面复习与联系最短路径问题 一、具体内容包括: 蚂蚁沿正方体、长方体、圆柱、圆锥外侧面吃食问题; 线段(之和)最短问题; 二、原理: 两点之间,线段最短;垂线段最短。(构建“对称模型”实现转化) 1.最短路径问题 (1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求. 如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点. (2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.如图所示,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点. 为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下: 证明:由作图可知,点B和B′关于直线l对称, 所以直线l是线段BB′的垂直平分线. 因为点C与C′在直线l上, 所以BC=B′C,BC′=B′C′. 在△AB′C′中,AB′<AC′+B′C′, 所以AC+B′C<AC′+B′C′, 所以AC+BC<AC′+C′B. 【例1】在图中直线l上找到一点M,使它到A,B两点的距离和最小. 分析:先确定其中一个点关于直线l的对称点,然后连接对称点和另一个点,与直线l的交点M即为所求的点. 解:如图所示:(1)作点B关于直线l的对称点B′; (2)连接AB′交直线l于点M. (3)则点M即为所求的点.

数据建模目前有两种比较通用的方式

数据建模目前有两种比较通用的方式1983年,数学建模作为一门独立的课程进入我国高等学校,在清华大学首次开设。1987年高等教育出版社出版了国内第一本《数学模型》教材。20多年来,数学建模工作发展的非常快,许多高校相继开设了数学建模课程,我国从1989年起参加美国数学建模竞赛,1992年国家教委高教司提出在全国普通高等学校开展数学建模竞赛,旨在“培养学生解决实际问题的能力和创新精神,全面提高学生的综合素质”。近年来,数学模型和数学建模这两个术语使用的频率越来越高,而数学模型和数学建模也被广泛地应用于其他学科和社会的各个领域。本文主要介绍了数学建模中常用的方法。 一、数学建模的相关概念 原型就是人们在社会实践中所关心和研究的现实世界中的事物或对象。模型是指为了某个特定目的将原型所具有的本质属性的某一部分信息经过简化、提炼而构造的原型替代物。一个原型,为了不同的目的可以有多种不同的模型。数学模型是指对于现实世界的某一特定对象,为了某个特定目的,进行一些必要的抽象、简化和假设,借助数学语言,运用数学工具建立起来的一个数学结构。 数学建模是指对特定的客观对象建立数学模型的过程,是现实的现象通过心智活动构造出能抓住其重要且有用的特征的表示,常常是形象化的或符号的表示,是构造刻画客观事物原型的数学模型并用以分析、研究和解决实际问题的一种科学方法。 二、教学模型的分类 数学模型从不同的角度可以分成不同的类型,从数学的角度,按建立模型的数学方法主要分为以下几种模型:几何模型、代数模型、规划模型、优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型等。 三、数学建模的常用方法 1.类比法 数学建模的过程就是把实际问题经过分析、抽象、概括后,用数学语言、数学概念和数学符号表述成数学问题,而表述成什么样的问题取决于思考者解决问题的意图。类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,

旅游路线的优化模型

楚雄师范学院 2011年数学建模培训第二次测试论文 题目玩转云南之旅游路线优化模型 姓名李雯刘正权叶万颂 系(院)数学系 专业信息与计算科学 2011年5月15日

一、摘要 云南风光旖旎,四季如春,是旅游的天堂。本论文就是以到云南旅游的交通方式以及路线选择为背景,通过构建模型。实现以经济的方式玩转云南的各大旅游景点。 旅游的交通方式一般有自驾游览和乘坐公共交通工具两种方式。本论文通过比较用公共交通出行方式下所有旅游路线的费用,得出最佳的旅游路线。 为了方便进行进行比较,文中引入了带权图和最小生成树的模型,为比较提供了可以参考的标准,模型中既要考虑路线最短,又要在规定的时间范围完成旅程,且通过预订旅游近点数最多,费用较少。 该模型以云南各大旅游景点为带权图的点,以采用交通方式来进行旅游过程中在具体的两个旅游景点的途中花去的费用为权值,这样,在该种旅游方式下的花费就是各对应的权值之和。当然,选择了公共交通的旅游方式,可能走的旅游路线也不尽相同。这样就产生了同一个旅游方式下的多条路线费用的比较,通过比较大小,就得到了较为经济的相应旅游方式下的最佳路线了。 本文作者充分调查了云南省目前的各种交通方式的收费情况,并查找了相关的旅游路线,有利地确保了论文的真实性和可靠性。

关键字:最小生成树、最佳路线、时间、路程。 二、问题 某旅客携带着家人想到云南旅游观光,并且想玩遍云南的各大旅游景点。请为这一行旅客设计旅游路线,并为他们提供一个合理的旅游交通方式的建议。 三、符号说明 把各景点用数据代替如下: 昆明市⑴楚雄市⑵大理市⑶丽江市⑷香格里拉⑸怒江⑹保山⑺德宏⑻临沧⑼ 普洱市⑽西双版纳⑾玉溪市⑿红河⒀文山市⒁石林⒂曲靖⒃昭通⒄ 权值表示景点之间的车票价

最佳旅游线路数学建模

最佳旅游路线设计 摘要 本文主要研究最佳旅游路线的设计问题。在满足相关约束条件的情况下,花最少的钱游览尽可能多的景点就是我们追求的目标。基于对此的研究,建立数学模型,设计出最佳的旅游路线。 第一问给定时间约束,要求为主办方设计合适的旅游路线。我们建立了一个最优规划模型,在给定游览景点个数的情况下以人均总费用最小为目标。再引入0—1变量表示就是否游览某个景点,从而推出交通费用与景点花费的函数表达式,给出相应的约束条件,使用lingo编程对模型求解。推荐方案:成都→都江堰→青城山→丹巴→乐山→成都,人均费用为949元(此处不考虑旅游人数对游览费用的影响)。 第二问放松时间约束,要求代表们游遍所有的景点,该问题也就成了典型的货郎担(TSP)问题。同样使用第一问的模型,改变时间约束,使用lingo编程得到最佳旅游路线为:成都→乐山→峨眉→海螺沟→康定→丹巴→四姑娘山→青城山→都江堰→九寨沟→黄龙→成都,人均费用为3243元。 第三问要求在第一问的基础上充分考虑代表们的旅游意向,建立模型求解。通过对附件一数据的观察,我们使用综合评判的方法,巧妙地将代表们的意愿转化为对相应旅游景点的权重,再对第一问的模型稍加修改,编程求出对应不同景点数的最佳路线。推荐路线:成都→乐山→都江堰→青城山→丹巴→成都,人均费用为927元。 对于第四问,由于参观景点的人数越多每人承担的费用越少,因此我们要考虑的就是尽量使得两组代表在共同旅游的时间内在相同的景点游览。正就是基于此,我们建立模型求解。推荐路线:第一组:成都→乐山→丹巴→都江堰→青城山→成都第二组:成都→都江堰→青城山→峨眉→乐山→成都,两组在都江堰会合并且共同游览了都江堰与青城山,人均费用为971元。 第五问中,首先我们修改了不合理数据,并用SPSS软件对缺省数据进行了时间序列预测。其次我们合理定义了阴雨天气带来的损失,以人均总花费最小与阴雨天气带来的损失最小为目标,建立加权双目标规划模型。推荐路线:成都→康定→青城山→都江堰→乐山→成都,相应人均消费987元,阴雨天气带来的损失为1、6。 本文思路清晰,模型恰当,结果合理、由于附件所给数据的繁杂,给数据的整理带来了很多麻烦,故我们利用Excel排序,SPSS预测,这样给处理数据带来了不少的方便。本文成功地对0—1变量进行了使用与约束,简化了模型建立难度,并且可方便地利用数学软件进行求解。此外,本文建立的模型具有很强普适性,便于推广。 关键词:最佳路线TCP问题综合评判景点个数最小费用 1 问题重述 今年暑假,西南交通大学数学系要召开“××学术会议”,届时来自国内外的许多著名学者都会相聚成都。在会议结束后,主办方希望能安排这些远道而来的贵宾参观四川省境内的著名自然与人文景观,初步设想有如下线路可供选择: 一号线:成都→九寨沟、黄龙;

送货路线设计问题数学建模优化

送货路线设计问题 现今社会网络越来越普及,网购已成为一种常见的消费方式,随之物流行业也渐渐兴盛,每个送货员需要以最快的速度及时将货物送达,而且他们往往一人送多个地方,请设计方案使其耗时最少。 现有一快递公司,库房在图1中的O点,一送货员需将货物送至城市内多处,请设计送货方案,使所用时间最少。该地形图的示意图见图1,各点连通信息见表3,假定送货员只能沿这些连通线路行走,而不能走其它任何路线。各件货物的相关信息见表1,50个位置点的坐标见表2。 假定送货员最大载重50公斤,所带货物最大体积1立方米。送货员的平均速度为24公里/小时。假定每件货物交接花费3分钟,为简化起见,同一地点有多件货物也简单按照每件3分钟交接计算。 现在送货员要将100件货物送到50个地点。请完成以下问题。 1. 若将1~30号货物送到指定地点并返回。设计最快完成路线与方式。给出结果。要求标出送货线路。 2. 假定该送货员从早上8点上班开始送货,要将1~30号货物的送达时间不能超过指定时间,请设计最快完成路线与方式。要求标出送货线路。 3. 若不需要考虑所有货物送达时间限制(包括前30件货物),现在要将100件货物全部送到指定地点并返回。设计最快完成路线与方式。要求标出送货线路,给出送完所有快件的时间。由于受重量和体积限制,送货员可中途返回取货。可不考虑中午休息时间。

以上各问尽可能给出模型与算法。 图1 快递公司送货地点示意图 O点为快递公司地点,O点坐标(11000,8250),单位:米 货物号送达地点重量(公斤) 体积(立方米) 不超过时间 1 13 2.500.03169:00 2 18 0.500.03549:00 3 31 1.180.02409:30 4 26 1.560.035012:00 5 21 2.150.030512:00 6 14 1.720.010012:00 7 17 1.380.010912:00 8 23 1.400.042612:00 9 32 0.700.048112:00 10 38 1.330.021910:15 11 45 1.100.02879:30

2020年中考数学动态问题分项破解专题01 动点问题中的最值、最短路径问题(教师版)

专题01 动点问题中的最值、最短路径问题 动点问题是初中数学阶段的难点,它贯穿于整个初中数自数轴起始,至几何图形的存在性、几何图形的长度及面积的最值,函数的综合类题目,无不包含其中. 其中尤以几何图形的长度及面积的最值、最短路径问题的求解最为繁琐且灵活多变,而其中又有一些技巧性很强的数学思想(转化思想),本专题以几个基本的知识点为经,以历年来中考真题为纬,由浅入深探讨此类题目的求解技巧及方法. 一、基础知识点综述 1. 两点之间,线段最短; 2. 垂线段最短; 3. 若A、B是平面直角坐标系内两定点,P是某直线上一动点,当P、A、B在一条直线上时,PA PB 最大,最大值为线段AB的长(如下图所示); (1)单动点模型 作图方法:作已知点关于动点所在直线的对称点,连接成线段与动点所在直线的交点即为所求点的位置. 如下图所示,P是x轴上一动点,求P A+PB的最小值的作图.

P 是∠AOB 内一点,M 、N 分别是边OA 、OB 上动点,求作△PMN 周长最小值. 作图方法:作已知点P 关于动点所在直线OA 、OB 的对称点P ’、P ’’,连接P ’P ’’与动点所在直线的交 点M 、N 即为所求. 5. 二次函数的最大(小)值 ()2 y a x h k =-+,当a >0时,y 有最小值k ;当a <0时,y 有最大值k . 二、主要思想方法 利用勾股定理、三角函数、相似性质等转化为以上基本图形解答. (详见精品例题解析) 三、精品例题解析 例1. (2019·凉山州)如图,正方形ABCD 中,AB =12,AE =3,点P 在BC 上运动(不与B 、C 重合), 过点P 作PQ ⊥EP ,交CD 于点Q ,则CQ 的最大值为 【答案】4. 【解析】解:∵PQ ⊥EP , ∴∠EPQ =90°,即∠EPB +∠QPC =90°, ∵四边形ABCD 是正方形, ∴∠B =∠C =90°,∠EPB +∠BEP =90°, ∴∠BEP =∠QPC , ∴△BEP ∽△CPQ , O

中考专题——最短路径问题教学设计

中考专题——最短路径问题 一、教学目标 1、认知目标: (1)能利用轴对称,平移将最短路径问题转化为线段和最小问题。 (2)能通过逻辑推理证明所求距离最短。 (3)在探索最短路径的过程中,体会轴对称,平移的“桥梁”作用,感悟转化思想。 2、能力目标: (1)经历问题探究的过程,将实际问题转化为数学问题,培养转化的能力。 (2)在解决问题过程中,养成良好的作图的习惯。 (3)感受图形变换、转化、数形结合、模型等思想方法。 3、情感目标:通过专项讲解,运用现代化话的教学手段,提高学生学习的兴趣,归纳出方法和规律,积累解决数学问题的经验,提高学生的合作交流的意识,消除学生对此类问题的陌生感和恐惧感,提高学生解决问题的信心和能力。 二、学情分析 九年级学生已经学习完全部的初中知识,学生的分析、理解能力有明显提高,但由于学习这部分的知识时间过长,可能出现遗忘,所以要做好复习工作。本班学生学习数学的热情比较高,思维敏捷,具有一定的自主探究和合作学习的能力但学生能力差异较大,两极分化明显。 三、重点难点 重点:利用轴对称、平移将最短路径问题转化为线段和最小问题。 难点:如何利用轴对称,平移将最短路径问题转化为线段和最小问题。 四、教学过程

(一).例题引入. 1.(最短路径综合题) 如图,已知抛物线 (a >0)与x 轴交于点B 、C ,与 y 轴交 于点E ,且点B 在点C 的左侧. (1)若抛物线过点M (-2,-2),求实数a 的值; (2)在(1)的条件下,解答下列问题; ①求出△BCE 的面积; ②在抛物线的对称轴上找一点H ,使CH+EH 的值最小,直接写出点H 的坐标. (二).基础作图 (1)将军饮马 如图,在河的同侧有两村庄,现要在河边L 建一泵站P 分别向A 、B 两村庄同时供水,要使泵站P 到A 村、B 村的距离之和最短,确定泵站P 的位置。 (2)牧童放马 如图牧马人从A 地出发,先到草地边某一处牧马,再 到河边饮马,然后回到B 处,请画出最短路径。 某班举行晚会,桌子摆成两直条(如图中的AO ,BO),AO 桌面上摆满了桔子,OB 桌面上摆满了糖果,坐在C 处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短? (三).拓展练习 l A B

相关主题
文本预览
相关文档 最新文档