当前位置:文档之家› S-3000N扫描式电子显微镜使用手册

S-3000N扫描式电子显微镜使用手册

S-3000N扫描式电子显微镜使用手册
S-3000N扫描式电子显微镜使用手册

電子槍

接物孔徑SE偵測器

S-3000N外觀圖

目 錄

Ⅰ、操作面板功能介紹 (2)

Ⅱ、操作視窗介紹 (3)

Ⅲ、開關機程序 (6)

(A)開機程序 (6)

(B)關機程序 (7)

Ⅳ、樣品的置換 (8)

(A)放置樣品於樣品座上 (8)

(B)樣品的置入 (8)

(C)高真空模式設定 (10)

(D)低真空模式設定 (11)

Ⅴ、影像的觀察 (12)

(A)加速電壓的設定 (12)

(B)影像亮度、對比調整 (13)

(C)焦距調整 (13)

(D)觀察區域的選擇 (14)

(E)像差的調整 (14)

(F)拍照攝影 (15)

Ⅵ、決定影像品質的因素 (16)

(A)高真空模式下 (16)

(B)低真空模式下 (17)

Ⅶ、準位(Alignment)調整 (18)

Ⅷ、燈絲電流調整設定與電子槍的軸調整 (19)

Ⅰ、操作面板功能介紹

號碼轉鈕功能

(1)X IMAGE SHIFT/ K1 MULTI-FUNCTIONS

(X影像移動/K1多功能鈕)

X方向影像移動K1多功能影像調整

(2)Y IMAGE SHIFT/ K2 MULTI-FUNCTIONS

(Y影像移動/K2多功能鈕)

Y方向影像移動K2多功能影像調整

(3)X STIGMATOR/ALIGNMENT

(X像差調整鈕/軸調整)X方向影像像差調整電子束軸調整

(4)Y STIGMATOR/ALIGNMENT

(Y像差調整鈕/軸調整)Y方向影像像差調整電子束軸調整

(5)MAGNIFICATION(倍率鈕)影像縮小放大(6)CONTRAST(對比鈕)影像對比度調整(7)BRIGHTNESS(明暗度鈕)影像明暗度調整(8)FOCUS(聚焦鈕)影像焦距調整

Ⅱ、操作視窗介紹

目錄列 工具列

加速電壓設定

掃描速度模式選擇 自動明亮對比調整

自動聚焦調整自動像差調整

影像掃描/凍結

影像調整視窗

放大倍率顯示

功能選擇列 分析模式選擇

影像擷取

電子式影像位移

波形顯示

真空程度顯示

影像掃描視窗 狀態列

粗調設在”50”

微調設在”0”

高解析度、高倍率模式 大聚焦深度或低倍率模式

工具列

組成像 凹凸像

3D 像

高解析模式 標準模式 立體影像

Ⅲ、開關機程序 (A ) 開機程序

(1) 打開冷卻循環水槽。

* 確認水流量設定在1至1.5公升/分鐘的流量,水流量計在電子槍體之左側。

(2)打開NFB(在配電盤上)主電源開關。

(3) 打開EVAC POWER 真空系統電源開關,

打開後RP 會開始運轉,真空操作面板上的LOW 指示燈及WAIT 指示燈會亮。

(4) 將真空控制板上的EVAC/AIR 按鍵,押至EVAC 位置。

*溫機大概約20分鐘左右,WAIT 燈會熄滅,自動真空系統啟動,再等3分鐘之後,LOW 指示燈熄滅,抽至高真空時HIGH 的指示燈會亮。

(5) 將操作系統的電源開關DISPLAY POWER 開關打開。 冷卻循環水槽

EV AC POWER

I ON

EVAC POWER真空系統電源開關

真空操作面板

(6) PC 進入Windows 2000 (profession. Workstation Version)版之操作系統。

(7) 然後出現訊息指示"Press Ctrl+Alt+Delete to log on"出現在螢幕上,即按下Ctrl、Alt 和Delete 鍵在鍵盤上同時按下。

(8) 上步驟(7)做完之後,下一步會進入 user name 及Password,輸入正確的使用

者名稱及密碼註冊後,隨及進入操作畫面。 使用者名稱:PC-SEM 密 碼:沒有設定

user name 和password 設完成後將OK 按下即可進入。

(B) 關機程序

加速電壓開關

真空操作面板

EVAC POWER真空系統電源開關

(1) 當有加速電壓Vacc ON 時,將HV

按下,把加速電壓關掉。

(2)拉下File 視窗,選擇Exit ,結束S-3000N

應用軟體(也可押右上角關閉)。

(3) 然後按照一般電腦的軟體關機程序

(在start 視窗中,選擇 shut Down (U)會出現“Shut down the computer"的訊息時選YES)之後會出現 “It is now safe to turn off your computer"的訊息在螢幕上。

(4) 真空控制面板選擇EVAC 之位置,將真空抽至high(綠燈亮) 狀態。

(5)先關掉DISPLAY 開關後,再關EVAC 開關。

*關機前請確認樣品已取出,及恢復高真空狀態。

(6) 關閉NFB(在配電盤上)主電源開關。

(7)等待約30分鐘,冷卻diffusion 泵浦,

再關閉冷卻循環水。 EV AC POWER

I ON

Ⅳ、樣品的置換

(A ) 放置樣品於樣品座上

樣品準備

樣品支撐座

(1) 將樣品利用碳膠帶固定於樣品鋁

台上。

2) 將樣品鋁台安置於樣品支撐座上。

*將固定環轉緊以避免樣品鋁台鬆動。

(3)利用標準樣品高度計量器檢查樣品

高度。 正常影像

標準樣品高度計量器

(B )樣品的置入

(1)當加速電壓在打開時,請確認HV

是否關掉,若無將HV OFF。

(2)在真空控制板上EVAC/AIR 按鍵,

按下至AIR,此時LOW 的指示燈亮,真空室內進入空氣,樣品室將會破真空。 加速電壓關閉

(3) 一段時間後就可以拉出樣品座。 *在拉出樣品座前,請確認每一個樣 品座旋鈕的位置:

X=30mm Y=20mm T=0° Z=EX R=as desired

(4) 把做好的樣品,放入樣品座的凹槽

中。

(5) 把樣品座推回 Chamber 中,然後按下EV AC/ AIR 的EV AC 設定。

*如果背向電子偵測器已放入,請確認Z 軸(工作距離)設定在15~35mm ,T 軸在0度,再推回樣品座。

(6) 等待大約3~4分鐘,抽到HIGH 高真空指示燈亮起。

(7) 真空達到時,真空計狀態會變成藍色,在工具列中HV 鍵會出現,並可被選擇加速電壓設定

R

T Y X

Z

樣品座

樣品座的凹槽

真空計狀態

(C)高真空模式設定(樣品為導電物質或表面有鍍金,可做高解析影像)高真空模式可觀察二次電子(SE)影像與反射電子影像(BSE)。

BSE反射電子偵測器

放入BSE偵測器位置

BSE偵測器拉出位置

(1) 當只觀察二次電子影像時,請拉出反射電子偵測器,因反射電子偵測器會限制樣品

移動距離。

* 拉出反射電子偵測器時請小心,拉出直到止滑卡榫卡進偵測器為止。

(2)觀察背向電子影像時,放入BSE反射電子偵測器。鬆開固定旋鈕,拉起止動桿,小心

放入BSE偵測器。

*放入BSE反射電子偵測器前,請確認工作距離為15~35mm之間,頃斜角度0°,主

要是保護BSE反射電子偵測器,避免碰撞

危害。

*完全放入BSE偵測器,觀察的是組成像(composition image )和凹凸像

(topographic image);如果只放入一半,

觀察的是3D像。此時請固定固定旋鈕,

在觀察凹凸像時,請把工作距離為

15~35mm之間。

(3)在Vacuum Mode 視窗中選擇SEM(High Vacuum Mode)高真空模式。

(4)在Signal Setup視窗中,選擇影像

的訊號來源偵測器、雙倍率的右

邊、線分析和指定訊號源。

*如果要看二次電子影像,請確認

Post HV後段加速電壓要打開。

Signal Setup視窗

(D)低真空模式設定(樣品為非導體或無經過表面處理,可以避免電荷累積)在低真空模式只能觀察BSE反射電子影像,二次電子偵測器是無法使用的。

vacuum mode 視窗低真空調整值

目前真空值

(1)在Vacuum Mode 視窗中,設定為

低真空模式(VP-SEM)並調整為適

當的真空值。在真空控制面板上

N-SEM指示燈會亮起。

*實際真空值調整與設定一致,大約

需要兩分鐘。

(2)放入BSE反射電子偵測器。

*放入BSE反射電子偵測器前,

請確認工作距離為15~35mm之

間,頃斜角度0°,主要是保護

BSE反射電子偵測器,避免碰撞

危害。

(3)用完時,請將BSE反射電子偵測

器拉出,並將真空設定選擇High

vacuum Mode。

Ⅴ、影像的觀察

(A ) 加速電壓的設定

(1)按下 HV 按鍵,打開加速電壓。

(再押一下為關閉加速電壓)

* 紅色為ON ,沒有顏色為OFF ,其

加速電壓值與電流值會顯示在旁。

(2)依照樣品種類、分析目的及解析

度要求更改電壓設定值。在HV Control 視窗中,拉下Vacc.下拉視窗設定加速電壓。

(3)請確認加速電壓與放射電流值顯

示。

加速電壓開啟

電壓與電流值顯示視窗

HV Control 視窗

加速電壓與放射電流值顯示視窗

(B) 影像亮度、對比調整

自動調整視窗

操作面板手動焦距調整

(1) 自動:按下 ABC 自動調整,調

整影像會凍結而螢幕上出現

“ABC mode in process” 的訊

息,當蜂鳴聲響起時,螢幕又回

復到掃描影像時,自動調整完

成,此時影像所呈現的對比與亮

度,就是自動調整後的結果。

*如果一次仍無法達到最佳狀

況,可以再選ABC數次。如果

要更改ABC的設定,可在Image

Setup功能中進行。

*如果ABC一直無法達到理想

效果,可能是因為樣品表面太平

滑,此時請利用手動來調整。

(2) 手動:使用BRIGHTNESS &

CONTRAST調整旋鈕,調整影

像適當的亮度與對比。

*可利用選擇波形顯示,螢幕會

出現訊號波形,請將波形的最高

與最低的地方,調整到上下各兩

條間帶之中即可,此時就是最佳

的明暗與對比

(1) 自動:壓 AFCC 自動調整啟

動,進行期間影像會被凍結,螢

幕上會出現”A.F.C. Mode In

Process” 的訊息,當結束後會有

蜂鳴聲提醒使用者,且自動調整

後影像會回到掃描狀態。

* 自動焦距調整有時會因樣品狀

態平滑缺乏對比而失敗,請改

用手動操作。

* 如果自動聚焦功能不理想,請

先做孔徑準位與燈絲準位的調

(2) 手動:一邊使用聚焦調整旋鈕,

一邊觀察影像調整的結果。

自動明亮

對比調整

電子式影像掃描位移

(D) 觀察區域的選擇:

操作面板

倍率顯示視窗(E) 像差的調整

自動調整視窗

操作面板(1) 首先把放大倍率放到最低,然後用樣品座上的X、Y、Z、R 旋鈕找到

欲觀察的區域,然後逐次加放大倍

率,直到最適當為止。

(2) 當在放大倍率時(幾千倍或更高),這時可使用電子式影像掃描位移

IMAGE SHIFT,此時可使用電子式

影像掃描位移旋鈕X、Y 。

* 電子式影像掃描位移在工作距離15mm時,大約可做最大有+/-20μ

m X,Y 方向的位移,如需更多請使

用樣品座上的旋鈕來調整。

(1) 自動:壓ASF像差自動調整啟動,進行期間影像會被動凍結,而螢幕

上出現”A.S.F Mode In Process” 的

訊息,當結束後會有蜂鳴聲提醒使

用者,且自動調整後的影像會回到

掃描狀態顯示。

* 自動像差調整,有時會因樣品表面狀態平滑缺乏對比而失敗,請改用

手動操作。

* 在進行像差調整前,聚焦一定要先做好,否則結果是不正確的。

* 如果像差自動調整失敗,請先進行孔徑準位與燈絲準位的調整。

(2)手動:一邊觀察影像,一邊調整STIGMATOR X,Y旋鈕,觀察結果。

*有時會因為軸偏移或孔徑污染而造

成像差無法調整,此時可先進行軸調

整與更換孔片。

電子式影像掃描位移

倍率調整

自動像差調整

手動像差調整

註:調整聚焦與像差時可以利用縮小掃描區域(Reduced Area Scan )來輔助。 更改掃描速度 掃描選擇視窗

(F ) 拍照攝影

(1) 在成像的畫面直接按壓Capture 按

鍵,進行其間在螢幕上出

現 ”Capture” 畫面,結束後會把所需的畫面擷取下來,並完成拍照程序。

影像擷取

(G )照片儲存

(1) 擷取的影像會放在如左圖的視窗中,選

擇欲儲存的影像後,按下下方的SA VE

,選擇欲存放的資料夾,輸入

檔案名稱則完成儲存。 :儲存多張照片

:刪除照片

:刪除多張照片

:擷取的影像以原視窗比例縮小

1/2

:儲存影像SEM 機台條件

Ⅵ、決定影像品質的因素

(A)高真空模式下

(1)設定加速電壓

如下表說明加速電壓與影像品質之間的關係,請依需要選擇適合的加速電壓。

加速電壓低高

解析度低高

累積電子少多

二次電子放射多少

樣品污染增加減少

樣品損害減少增加

影像品質軟硬

(2)設定電子束電流

如下表說明電子束電流與影像品質之間的關係,請依需要選擇適合的電子束電流。

電子束電流大小

收束透鏡電流小大

解析度低高

二次電子放射多少

影像雜訊少多

累積電子多少

(3)選擇接物孔徑的大小

如下表說明接物孔徑的大小與影像品質之間的關係,請依需要選擇適合的

接物孔徑的大小。

1 2 3 4

孔徑開孔

150μm 80μm 50μm 30μm 直徑

聚焦深度更淺淺深更深

解析度更低低高更高

放射電流很高高較低低

(4)工作距離

工作距離為樣品觀察表面到接物鏡頭之間的距離。工作距離的調整主要是

靠樣品座上Z軸的長短。如下表說明工作距離與影像品質之間的關係,

請依需要選擇適合的工作距離。

工作距離長短

聚焦深度深淺

解析度低高

(B) 低真空模式下

真空程度1Pa270Pa

產生正離子數少多

累積電子多少

二次電子放射少多

背向散射電子多少

含水樣品的脫水快慢

Ⅶ、準位(Alignment )調整

調整電子束準位時使用,利用STIGMATOR/ALIGNMENT X 、Y 轉鈕進行調整。

(A ) 孔徑(Aperture )

調整接物孔徑準位時使用,此時影像會做頻率性跳動,調整接物孔徑上調整轉鈕,使影像作最小的跳動,此時X 、Y 數值沒有任何意義。

(B ) 電子槍位移(Gun Shift )、電子槍傾

斜(Gun Tilt )

軸向準位的調整,可使電子束正確的進入接物孔徑,請利用

STIGMATOR/ALIGNMENT X 、Y 轉鈕重複調整電子槍位移、電子槍傾斜X 、Y 位置,而使畫面的亮度達到最亮即可。

(C ) 像差X (Stig X )、像差Y (Stig Y )

調整影像最小的偏移,此時影像會做頻率性跳動,利用

STIGMATOR/ALIGNMENT X 、Y 轉鈕,調整X 、Y 的位置,使影像作最小的跳動,此調整可使ASF 有較佳的正確性。

(D ) AFC

此調整可使自動聚焦功能有較佳的正確性,利用

STIGMATOR/ALIGNMENT X 、Y 轉鈕,調整X 、Y 的位置,使影像

作最小的移動。

(E ) AGA (自動電子槍準位)

按下AGA 按鍵,影像會暫時凍結,幾秒鐘後會有短暫鳴聲表示準位已調整結束。此時電子束會正確通過接物孔徑,影像回復到正常掃描。如果是長蜂鳴聲時,表示自動電子槍準位調整失敗。

(A ) (B ) (C ) (D )

(E )

電子束準位調整視窗

Y 調整轉鈕

X 調整轉鈕

接物孔徑上調整轉鈕

準位調整轉鈕

操作面板

Ⅷ、燈絲電流調整設定與電子槍的軸調整

當燈絲更換之後,燈絲電流必須重新調整設定,電子槍的軸調整也必須重新

執行。

(1) 請檢查於真空控制面板上,代表高

真空的綠燈是否亮起,而且HV 在工具列出現,真空顯示部分為正常藍色條狀顯示。

(2) 按下HV 啟動加速電壓

(3) 按下HV Control 視窗之中的AFS 鍵

(選擇High )。當按下燈絲電流自動控制時,影像會暫時凍結,此時有關訊息指示會出現。

* Low :延長燈絲壽命模式 Middle :標準模式

High :高倍率高解析模式

(4) 檢查放射電流是否有讀值。

HV Control 視窗

扫描、透射电镜的基本原理及其应用

扫描、透射电镜在材料科学中的应用 摘要:在科学技术快速发展的今天,人们不断需要从更高的微观层次观察、认识 周围的物质世界,电子显微镜的发明解决了这个问题。电子显微镜可分为扫描电了显微镜简称扫描电镜(SEM)和透射电子显微镜简称透射电镜(TEM)两大类。本文主要介绍扫描、透射电镜工作原理、结构特点及其发展,阐述了其在材料科 学领域中的应用。 1扫描电镜的工作原理 扫描电子显微镜的制造依据是电子与物质的相互作用。扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。 电子束和固体样品表面作用时的物理现象:当一束极细的高能入射电子轰击扫描样品表面时,被激发的区域将产生二次电子、俄歇电子、特征X射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。同时可产生电子-空穴对、晶格振动(声子)、电子振荡(等离子体)。 由电子枪发射的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成能谱仪可以获得且具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面作栅网式扫描。聚焦电子束与试样相互作,产生二次电子发射(以及其它物理信号)。二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,则 可以得到反映试样表面形貌的二次电子像[1]。 2扫描电镜的构成 主要包括以下几个部分: 1.电子枪——产生和加速电子。由灯丝系统和加速管两部分组成 2.照明系统——聚集电子使之成为一定强度的电子束。由两级聚光镜组合而成。 3.样品室——样品台,交换,倾斜和移动样品的装置。 4.成像系统——像的形成和放大。由物镜、中间镜和投影镜组成的三级放大系统。 调节物镜电流可改变样品成像的离焦量。调节中间镜电流可以改变整个系统的放大倍数。 5.观察室——观察像的空间,由荧光屏组成。 6.照相室——记录像的地方。 7.除了上述的电子光学部分外,还有电气系统和真空系统。提供电镜的各种电压、 电流及完成控制功能。

场发射扫描电子显微镜S-4800操作规程

场发射扫描电子显微镜(S-4800)操作规程 开机 1. 检查真空、循环水状态。 2. 开启“Display”电源。 3. 根据提示输入用户名和密码,启动电镜程序。 样品放置、撤出、交换 1. 严格按照高度规定高样品台,制样,固定。 2. 按交换舱上“Air”键放气,蜂鸣器响后将样品台放入,旋转样品杆至“Lock”位,合上交换舱,按“Evac”键抽气,蜂鸣器响后按“Open”键打开样品舱门,推入样品台,旋转样品杆至“Unlock”位后抽出,按“Close”键。 观察与拍照 1. 根据样品特性与观察要求,在操作面板上选择合适的加速电压与束流,按“On”键加高压。 2. 用滚轮将样品台定位至观察点,拧Z轴旋钮(3轴马达台)。 3. 选择合适的放大倍数,点击“Align”键,调节旋钮盘,逐步调整电子束位置、物镜光阑对中、消像散基准。 4. 在“TV”或“Fast”扫描模式下定位观察区域,在“Red”扫描模式下聚焦、消像散,在“Slow”或“Cssc”扫描模式下拍照。 5. 选择合适的图像大小与拍摄方法,按“Capture”拍照。

6. 根据要求选择照片注释内容,保存照片。 关机 1. 将样品台高度调回80mm。 2. 按“Home”键使样品台回到初始状态。 3. “Home”指示灯停止闪烁后,撤出样品台,合上样品舱。 4. 退出程序,关闭“Display”电源。 注意 1. 每天第一次加高压后,进行灯丝Flashing去除污染。 2. 冷场发射电镜一般不断电,如遇特殊情况需要大关机时,依次关闭主机正面的“Stage”电源、“Evac”电源,半小时后关闭离子泵开关和显示单元背面的三个空气开关,关闭循环水。开机时顺序相反。 3. 每半个月旋开空压机底阀放水一次。 4. 待测样品需烘干处理,不能带有强磁性,不能采用铁磁性材料做衬底制样。 5.实验室温度限定在25±5℃,相对湿度小于70% 。 仪器维护 1. 每月进行电镜离子泵及灯丝镜筒烘烤。 2. 每半年进行一次机械泵油维护或更新。 3. 每年进行一次冷却水补充,平时每月检查一次水位。

扫描电子显微镜的发展及展望

扫描电子显微镜的发展及展望 1、分析扫描电镜和X射线能谱仪 目前,使用最广的常规钨丝阴极扫描电镜的分辨本领已达3.5nm左右,加速电压范围为0.2—30kV。扫描电镜配备X射线能谱仪EDS后发展成分析扫描电镜,不仅比X射线波谱仪WDS 分析速度快、灵敏度高、也可进行定性和无标样定量分析。EDS 发展十分迅速,已成为仪器的一个重要组成部分,甚至与其融为一体。但是,EDS也存在不足之处,如能量分辨率低,一般为129—155eV,以及Si(Li)晶体需在低温下使用(液氮冷却)等。X射线波谱仪分辨率则高得多,通常为5—10eV,且可在室温下工作。1972年起EDAX公司发展了一种ECON系列无窗口探测器,可满足分析超轻元素时的一些特殊需求,但Si(Li)晶体易受污染。1987年Kevex公司开发了能承受一个大气压力差的ATW超薄窗,避免了上述缺点,可以探测到B,C,N,O等超轻元素,为大量应用创造了条件。目前,美国Kevex公司的Quantifier,Noran公司的Extreme,Link公司的Ultracool,EDAX公司的Sapphire等Si(Li)探测器都属于这种单窗口超轻元素探测器,分辨率为129eV,133eV等,探测范围扩展到了5B—92U。为克服传统Si(Li)探测器需使用液氮冷却带来的不便,1989年Kevex公司推出了可不用液氮的Superdry探测器,Noran公司也生产了用温差电制冷的Freedom探测器(配有小型

冷却循环水机),和压缩机制冷的Cryocooled探测器。这两种探测器必须昼夜24小时通电,适合于无液氮供应的单位。现在使用的大多还是改进的液氮冷却Si(Li)探测器,只需在实际工作时加入液氮冷却,平时不必维持液氮的供给。最近发展起来的高纯锗Ge探测器,不仅提高了分辨率,而且扩大了探测的能量范围(从25keV扩展到100keV),特别适用于透射电镜:如Link的GEM型的分辨率已优于115eV(MnKα)和65eV(FKα),Noran的Explorer Ge探测器,探测范围可达100keV等。1995年中国科学院上海原子核研究所研制成了Si(Li)探测器,能量分辨率为152eV。中国科学院北京科学仪器研制中心也生产了X射线能谱分析系统Finder-1000,硬件借鉴Noran公司的功能电路,配以该公司的探测器,采用Windows操作系统,开发了自己的图形化能谱分析系统程序。 2、X射线波谱仪和电子探针仪 现代SEM大多配置了EDS探测器以进行成分分析。当需低含量、精确定量以及超轻元素分析时,则可再增加1到4道X 射线波谱仪WDS。Microspec公司的全聚焦WDX-400,WDX-600型分别配有4块和6块不同的衍射晶体,能检测到5B(4Be)以上的各种元素。该谱仪可以倾斜方式装在扫描电镜试样室上,以便对水平放置的试样进行分析,而不必如垂直谱仪那样需用

扫描电镜简述

J I A N G S U U N I V E R S I T Y 冶金工程专业硕士研究生结课论文论文题目:扫描电镜SEM分析技术综述 课程名称:Modern Material Analytic Technology 专业班级: 2015级硕士研究生 学生姓名 学号:2211505072 学院名称:材料科学与工程学院 学期: 2015-2016第一学期 完成时间: 2015年11月 30 日

扫描电镜SEM分析技术综述 摘要 扫描电子显微镜(如下图所示),简称为扫描电镜,英文缩写为SEM(Scanning Electron Microscope)。它是用细聚焦的电子束轰击样品表面,通过电子与样品相互作用产生的二次电子、背散射电子等对样品表面或断口形貌进行观察和分析。现在SEM都与能谱(EDS)组合,可以进行成分分析。所以,SEM也是显微结构分析的主要仪器,已广泛用于材料、冶金、矿物、生物学等领域。 本文主要对扫描电镜SEM进行简单介绍,分别从扫描电镜发展的历史沿革;工作原理;设备构造及功能;在冶金及金属材料分析中的应用情况;未来发展方向等几个方面来对扫描电镜分析技术进行综述。 关键词: 扫描电子显微镜二次电子背散射电子 EDS 成分分析 扫描电子显微镜

目录 一扫描电镜 (4) 1.1 近代扫描电镜的发展 (4) 1.1.1场发射扫描电镜 (4) 1.1.2 分析型扫描电镜及其附件 (5) 1.2 现代扫描电镜的发展 (6) 1.2.1低电压扫描电镜 (6) 1.2.2 低真空扫描电镜 (6) 1.2.3环境扫描电镜ESEM (7) 1.3 扫描电镜工作原理设备构造及其功能 (7) 1.3.1扫描电镜工作原理 (8) 1.3.2 扫描电镜的主要结构及功能 (9) 1.4 扫描电镜性能 (11) 1.5扫描电镜在冶金及金属材料分析中的应用 (12) 二结论 (14) 三参考文献 (14)

实验一:电镜扫描

中级仪器分析 实验报告 班级:______________________ 姓名:______________________ 学号:______________________ 指导教师: ___________________ 2007应用化学 刘远旭 070804010032 周建威

完成时间:___________________ 化学与材料科学学院 目录 实验一枪击残留物的电镜分析 实验二未知Fe浓度溶液的ICP-AES分析 实验三X射线衍射(XRD)物相分析

实验四龙脑的气质谱分析 实验五丙三醇红外分析 实验一枪击残留物的电镜分析 一、仪器简介 1仪器名称:扫描式电子显微镜

2型号:日本JSM-6490LV扫描电子显微镜(配置:英国牛津INCA-350X射线能谱仪) 3扫描电子显微镜——JSM-6490LV型介绍 在当代迅速发展的科学技术中,科学家 需要观察、分析和正确地解释在一个微米(μ m)或亚微米范围内所发生的现象,电子显 微镜是强有力的仪器,可用它们观察和检测 非均相有机材料、无机材料及在上述微米、 亚微米局部范围内的物质的显微组织、晶体 结构(电子衍射)、化学成分(X射线能谱 仪)进行表征。电子显微镜主要有扫描电子显微镜(SEM)和透射电子显微镜,都用一束精细聚焦的电子照射需要检测的区域或是需要分析的微体积,该电子束可以是静止的,或者沿着样品表面以一光栅的方式扫描。其差别仅仅在于它们感兴趣的信号不同。 在扫描电镜(SEM)中,人们最感兴趣的信号是二次电子和背散射电子,因为当电子束在样品表面扫描时,这些信号随表面形貌不同而发生变化。二次电子的发射局限于电子束轰击区附近的体积内,因而可获得相当高分辨率的图象。象的三维形态起因于扫描电镜的大景深和二次电子反差的阴影起伏效果。象的三维形态起因于扫描电镜的大景深和二次电子反差的阴影起伏效果。其它的信号在许多情况下也同样有用。在通常称为电子探针的电子探针显微分析仪(EPMA)中,人们最感兴趣的辐射是由于电子轰击而发射的特征X射线,从特征X射线的分析能够得到样品中直径小到几微米区域内的定性和定量成分信息。

扫描电子显微镜的早期历史和发展趋势

扫描电子显微镜的早期历史和发展趋势 扫描电子显微镜(SEM)的基本原理在20世纪30年代到40年代初由Knoll, 德国的von Ardenne和美国的Zworykin,Hillier等人确立。扫描电镜的研究在英国剑桥大学电机工程学系Charles Oatley博士学位的一系列项目中复苏。在剑桥大学的McMullan和Smith的早期研究之后,SEM的第一次产业应用在加拿大纸浆和造纸研究所实现。不久之后,在美国的Westinghouse,SEM被应用于集成电路,并在英国和日本实现了扫描电镜的商业化。截至目前,SEM及其他显微和微分析技术在世界范围内发展,并被应用于越来越多的领域。 关键词:扫描电子显微镜(SEM),成像技术,表面形貌,成分衬度,电子通道花样(ECP),电子背散射花样(EBSP)。 Oatley描述了SEM早期历史和直至其第一次商业化的发展状况。第一台商业SEM在英国和日本制造。SEM的历史也被许多作者描述过。商用SEM性能的提高和操作的简便已经很出色并有望继续进步。 Knoll用仪器得到了四个非常重要的实验结果Fig.1:(i)他从固态多晶样品中得到了样品的吸收电流像Fig.2.(ii) 这张照片显示的晶粒间取向依赖衬度是由电子穿隧效应的对比差异引起的。(iii)他测量了不同材料的二次电子(SE)加背散射电子(BSE)系数是入射电子能量E0的函数,并且证明当SE+BSE系数为1时,有第二个交叉点,此时E0约为 1.5keV。样品的充电最小化并且保持稳定。(iv)根据一个早期关于定量电压衬度的译文,测量了束电子对非导电颗粒充电后颗粒的电势。 Figure 3 是由von Ardenne提出的产生二次电子的电子散射模型,模型表明初始束展宽;大角度散射;扩散;BSE逃逸以及每个阶段的二次电子激发。他提出了两种高分辨率SE图像。第一种(现在称为SE-I图像的详细讨论见Peters)E0等于数十电子伏,此时电子的穿透深度(几个微米)比二次电子的逃逸深度大很多倍(几个纳米)。SE-I激发是在束电子入射点的一个局部的区域内发散,这个范围比BSE小。他提出SE-I能提供一个高分辨率的SE图像(特殊情况除外)。他的第二个观点(现在称为低压SEM)是将E0减小到1keV,此时穿透深度达到束电子直径。 Zworykin给出了最早的二次电子图像。这些工作者也建立了一台密封的场发射(FE)SEM,并且为X射线微区分析和电子能量损失能谱仪(EELS)奠定了基础。当时人们热衷于似乎会更加成功的透射电镜(TEM),他们在SEM方面的工作没有继续。

电子显微镜的发展及现状

电子显微镜的发展及现状 20130125001 李智鹏 2014/10/8

电子显微镜的发展及现状 摘要:本文综述了电子显微镜的发展,电子显微镜的主要分类,它们在生活当中的应用以及国内显微镜的现状。 关键词:电子显微镜发展应用现状 1、引言 显微镜技术的发展,是其他科学技术发展的先导,在17世纪60年代出现的光学显微镜,引发了一场广泛的科技进步, 促进了细胞学和细菌学的发展。使人类的观测范围进入微观世界,导致了一大批新的领域进入人类的研究范围,促进了许多学科的创立和发展。 三百年来,光学显微镜巳经发展到了十分完善的地步。而我们知道,分辨率极限的量级为入/a带,对于光学显微镜,最短可见光波长约为400。人,最大数值孔径约1。4,故只能获得亚微米量极的分辨率。于是,人们开始寻找较短波长的光源,X射线波长为几个埃,Y射线波长更短,但它们都很难直接聚焦,所以不能直接用于显微镜。[1] 20世纪30年代出现的电子显微镜技术,更进一步拓宽了人类的观测领域,同样导致了大批新学科、新技术的出现.可以说,现代科学技术的研究工作,已很大程度依赖于电子显微镜技术的使用,尤其是在纳米技术、材料技术、生命科学技术等研究方面,没有电子显微镜技术的帮助,它们几乎是无法进行的.随着科学技术的不断进步,电子显微镜技术的应用越来越广泛,同时电子显微镜技术本身也在不断快速发展.从最初的电子显微镜开始,已经逐步发展出扫描电子显微镜、扫描隧道电子显微镜、原子力电子显微镜、扫描离子电导显微镜、扫描探针电子显微镜等.这些先进的仪器现已广泛地应用于物理学、化学、材料科学和生命科学领域的研究和检测工作中.在纺织科技研究工作和纺织材料及纺织品检测过程中也得到了广泛的应用[2]。本文仅对电子显微镜技术在出土古代纺织品检测方面的应用作一初步探讨。电子显微镜(简称电镜,EM)经过五十多年的发展已成为现代科学技术中不可缺少的重要工具。我国的电子显微学也有了长足的进展[3]。电子显微镜的创制者鲁斯卡(E.Ruska)教授因而获得了1986年诺贝尔奖的物理奖[4]。 2、电子显微镜的发展过程 20世纪30年代,德国科学家诺尔(M. knoll)和卢斯卡(E. Ruska)在电子光学的基础上,研制出了世界上第一台透射式电子显微镜(Transmission ElectronMicroscope,TEM,简称透射电镜),成功地得到了用电子束拍摄的铜网像,尽管放大倍数只有12倍,但它为以后电镜的发展和应用奠定了基础.此后经过科学家们半个多世纪的努力和改进,透射电镜的分辨本领现已达到了0. 1nm~0. 2nm,几乎能分辨所有的原子.此后又相继出现了能直接观察样品表面立体结构的扫描电子显微镜(Scanning ElectronMicroscope, SEM,简称扫描电镜),其分辨率为3nm~6nm和能进行活体观察的超高压电镜,实现了人们直接观察生物大分子结构和重金属原子图像的愿望[5]。 2.1扫描式电子显微镜扫描式电子显微镜中的电子束,在样品表面上动态地扫描,以 一定速度,逐点逐行地扫描样品的表面.样品逐点地发出带有形态、结构和化学组分信息的二次电子,这些电子由检测器接收处理,最后在屏幕上显示形态画面.图像为间接成像,其加速电压为1kV~30kV. 2.2扫描隧道显微镜(ScanningTunnelingMicroscope,STM)G.Binnig和H.Rohrer在 1981年研制成功扫描隧道显微镜,并因此获得1986年诺贝尔物理奖.扫描隧道显微镜(STM)是利用导体针尖与样品之间的隧道电流,并用精密压电晶体控制导体针尖沿样品表面扫描,从而能以原子尺度记录样品表面形貌的新型仪器.其分辨率已达到1nm~2nm,

扫描电子显微镜 (SEM)介绍

扫描电子显微镜(SEM)介绍 (SEM)扫描电子显微镜的设计思想和工作原理,早在1935年便已被提出来了。1942年,英国首先制成一台实验室用的扫描电镜,但由于成像的分辨率很差,照相时间太长,所以实用价值不大。经过各国科学工作者的努力,尤其是随着电子工业技术水平的不断发展,到1956年开始生产商品扫描电镜。近数十年来,扫描电镜已广泛地应用在生物学、医学、冶金学等学科的领域中,促进了各有关学科的发展。 目录 扫描电镜的特点 扫描电镜的结构 工作原理 扫描电镜的特点 和光学显微镜及透射电镜相比,扫描电镜SEM(Scanning Electron Microscope)具有以下特点: (一) 能够直接观察样品表面的结构,样品的尺寸可大至 120mm×80mm×50mm。 (二) 样品制备过程简单,不用切成薄片。 (三) 样品可以在样品室中作三度空间的平移和旋转,因此,可以从各种角度对样品进行观察。 (四) 景深大,图象富有立体感。扫描电镜的景深较光学显微镜大几百倍,比透射电镜大几十倍。 (五) 图象的放大范围广,分辨率也比较高。可放大十几倍到几十万倍,它基本上包括了从放大镜、光学显微镜直到透射电镜的放大范围。分辨率介于光学显微镜与透射电镜之间,可达3nm。 (六) 电子束对样品的损伤与污染程度较小。 (七) 在观察形貌的同时,还可利用从样品发出的其他信号作微区成分分析。 扫描电镜的结构 1.镜筒 镜筒包括电子枪、聚光镜、物镜及扫描系统。其作用是产生很细的电子束(直径约几个nm),并且使该电子束在样品表面扫描,同时激发出各种信号。 2.电子信号的收集与处理系统 在样品室中,扫描电子束与样品发生相互作用后产生多种信号,其中包括二次电子、背散射电子、X射线、吸收电子、俄歇(Auger)电子等。在上述信号中,最主要的是二次电子,它是被入射电子所激发出来的样品原子中的外层电子,产生于样品表面以下几nm至

扫描式电子显微镜观察

掃描式電子顯微鏡觀察 為觀察觀音一號井與麓山帶地層中碎屑性和自生性黏土礦物之 分佈與生長,以及隨埋藏深度增加,自生性黏土礦物(如:混層伊萊石膨潤石)之元素組成之比例有無改變,本研究使用中央大學地球物理研究所JSM-7000F熱場發射掃描式電子顯微鏡(Thermal Field Emission Scanning Electron Microscope, TFE-SEM),用以觀察碎屑性和自生性礦物之分佈與生長情形。SEM的操作條件為加速電壓15 kV、真空室壓力達2.8 × 10-4 Pa、工作距離10 mm。一般掃描式電子顯微鏡偵測主要為偵測二次電子(Secondary Electron Image, SEI)和背向散射電子(Backscattered Electron Image, BEI)成像,由於其產生電子之行為不同,所產生之影像分別為樣本之表面形貌和原子序對比(Goldstein et al., 2003)。平均原子序較高之區域,散射之背向電子訊號較強,呈現之影像較亮。本研究以背向散射電子偵測為主要觀察工具。由於黏土礦物之主要元素成份以原子序較低的矽、鋁氧化物和其他少量金屬鐵、鎂、鈣、鈉、鉀等,因此在背向散射電子影像中,黏土礦物多分佈在深暗色區域。 另外,使用加裝於SEM之元素能量分析儀(Energy Dispersion Spectrometer, EDS),可透過搜集激發電子束產生的X光進行礦物化學組成之定性和半定量分析。EDS操作環境為電子加速電壓15 kV、放大倍率為2000倍以及接收100秒X光光譜時間。使用INCA 軟體(Revision 4.09),鈦元素光譜校準,搜集測量結果之各氧化物重量百分比,混層伊萊石/膨潤石黏土礦物的化學式以22顆氧原子,計算化學式中的陽離子數,部分鋁離子納入四面體網格計算,即矽和鋁離子總和為8;剩餘鋁離子和鐵、鈦、鎂和鈉則被歸為八面體網格計算(Klein, 2002)。

新一代电子显微镜的发展趋势及应用

新一代电子显微镜的发展趋势及应用 特点 微观结构专业组 新一代电子显微镜的发展趋势及应用特点 一、高性能场发射枪电子显微镜日趋普及和应用。 场发射枪透射电镜能够提供高亮度、高相干性的电子光源。因而能在原子--纳米尺度上对材料的原子排列和种类进行综合分析。九十年代中期,全世界只有几十台;现在已猛增至上千台。我国目前也有上百台以上场发射枪透射电子显微镜。 常规的热钨灯丝(电子)枪扫描电子显微镜,分辨率最高只能达到 3.0nm;新一代的场发射枪扫描电子显微镜,分辨率可以优于 1.0nm;超高分辨率的扫描电镜,其分辨率高达0.5nm-0.4nm。其中环境描电子显微镜可以做到:真正的“环境”条件,样品可在100%的湿度条件下观察;生物样品和非导电样品不要镀膜,可以直接上机进行动态的观察和分析;可以“一机三用”。高真空、低真空和“环境”三种工作模式。 二、努力发展新一代单色器、球差校正器,以进一步提高电子显微镜的分辨率。 球差系数:常规的透射电镜的球差系数Cs约为mm级;现在的透射电镜的球差系数已降低到Cs<0.05mm.色差系数:常规的透射电镜的色差系数约为0.7;现在的透射电镜的色差系数已减小到0.1。 场发射透射电镜、STEM技术、能量过滤电镜已经成为材料科学研究,甚至生物医学必不可少的分析手段和工具. 物镜球差校正器把场发射透射电镜分辨率提高到信息分辨率.即从0.19nm 提高到0.12nm甚至于小于0.1nm.

利用单色器,能量分辨率将小于0.1eV.但单色器的束流只有不加单色器时的十分之一左右.因此利用单色器的同时,也要同时考虑单色器的束流的减少问题。 聚光镜球差校正器把STEM的分辨率提高到小于0.1nm的同时,聚光镜球差校正器把束流提高了至少10倍,非常有利于提高空间分辨率。 在球差校正的同时,色差大约增大了30%左右.因此,校正球差的同时,也要同时考虑校正色差. 三、电子显微镜分析工作迈向计算机化和网络化。 在仪器设备方面,目前扫描电镜的操作系统已经使用了全新的操作界面。用户只须按动鼠标,就可以实现电镜镜筒和电气部分的控制以及各类参数的自动记忆和调节。 不同地区之间,可以通过网络系统,演示如样品的移动,成像模式的改变,电镜参数的调整等。以实现对电镜的遥控作用. 四、电子显微镜在纳米材料研究中的重要应用。由于电子显微镜的分析精度逼近原子尺度,所以利用场发射枪透射电镜,用直径为0.13nm的电子束,不仅可以采集到单个原子的Z-衬度像,而且还可采集到单个原子的电子能量损失谱。即电子显微镜可以在原子尺度上可同时获得材料的原子和电子结构信息。观察样品中的单个原子像,始终是科学界长期追求的目标。一个原子的直径约为1千万分之 2-3mm。所以,要分辩出每个原子的位置,需要0.1nm左右的分辨率的电镜,并把它放大约1千万倍才行。人们预测,当材料的尺度减少到纳米尺度时,其材料的光、电等物理性质和力学性质可能具有独特性。因此,纳米颗粒、纳米管、纳米丝等纳米材料的制备,以 及其结构与性能之间关系的研究成为人们十分关注的研究热点。 利用电子显微镜,一般要在200KV

扫描电子显微镜成像原理及基本操作

扫描电子显微镜成像原理及基本操作 一、基本结构组成: 1.电子光学系统:电子枪;聚光镜(第一、第二聚光镜和物镜);物镜光阑。 2.扫描系统:扫描信号发生器;扫描放大控制器;扫描偏转线圈。 3.信号探测放大系统:探测二次电子、背散射电子等电子信号。 4.图象显示和记录系统:SEM采用电脑系统进行图象显示和记录。 5.真空系统:常用机械真空泵、扩散泵、涡轮分子泵等使真空度高于10 -4 Torr 。 6.电源系统:高压发生装置、高压油箱。 二、扫描电子显微镜成像原理 扫描电镜是用聚焦电子束在试样表面逐点扫描成像。试样为块状或粉末颗粒,成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是最主要的成像信号。由电子枪发射的能量为 5 ~35keV 的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺序作栅网式扫描。聚焦电子束与试样相互作用,产生二次电子发射(以及其它物理信号),二次电子发射量随试样表面形貌而变化。二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,得到反映试样表面形貌的二次电子像。三、扫描电镜具有以下的特点

(1) 制样方法简单,对试样的尺寸、形态等无严格要求,可以观察直径为的大块试样以及粉末等。 (2) 场深大,适用于粗糙表面和断口的分析观察;图像富有立体感、真实感、易于识别和解释。 (3) 放大倍数变化范围大,对于多相、多组成的非均匀材料便于低倍下的普查和高倍下的观察分析。 (4) 具有相当高的分辨率,可达到为3.5 ~6nm。 (5) 可以通过电子学方法有效地控制和改善图像的质量,如通过调制可改善图像反差的宽容度,使图像各部分亮暗适中。 (6) 可进行多种功能的分析。与X 射线谱仪配接,可在观察形貌的同时进行微区成分分析。 (7) 可使用,观察在不同环境条件下(加热、冷却和拉伸等样品台进行动态试验)的相变及形态变化等。 四、扫描电镜的用途 通过样品中的电子激发出的各种信号,扫描电镜可以做出电子图像分析,如可利用二次电子进行样品表面形貌及结构分析的分析;以两片探测器信号做积分运算,通过背散射电子可以分析样品表面成分像,以两片探测器信号做微分运算时,则可用于样品表面形貌像德分析;此外,通过透射电子则可对析晶体的内部结构及晶格信息进行分析。而且,其配上其它一些配套设备,还可做显微化学成份分析,显微晶体结构分析,显微阴极发光图像分析,这更加扩大的扫描电镜的广泛应用度。常见的扫描电镜配套设备主要有:x射线波谱仪、x射线能

扫描电子显微镜操作规程

扫描电子显微镜操作规程 1. 打开墙上配电箱里的空气开关(见标签上开下关) 2. 打开变压器电源(正常电压应为100v) 3. 打开主机电源:钥匙拧到START位置,停两秒松手,钥匙回到I位置。 4. 打开电脑电源 5. 点击桌面图标,等待 6. 当HT图标显示蓝色后,点VENT排气(排气时vent闪,排完气vent不闪),排完气方可打开样品室 7. 正确选择Z轴高度(需要估计样品高度,Z轴大于样品高度 放入样品,关闭样品台,点击EV AC抽气,抽气时推着样品室门,听到机械泵响声后松手 8. 打开HT图标(此图标在非真空下是灰色,真空位蓝色,打开灯丝拍照为绿色) 9. 选择扫描模式、加速电压(0.5-30KV之间选择,一般微生物类样品选10左右)、WD工作距离(10-15之间选择)、SS电子束斑(一般选30-40) 10. 在SCAN2下调焦、调整对比度及亮度、调消象散(放大时照片晃动、或者样品变形、或者整体移动可点WOBBLE(一般10000倍左右调节有效果)调节光缆使照片不晃动) 11. 高倍下调清晰度,低倍下拍照,拍照选择photo(曝光40秒)或者SCAN4(曝光80秒),拍完选择FREEZE并保存照片 12. 拍完照后关闭灯丝,点VENT排气(排气时vent闪,排完气vent不闪),排完气方可打开样品室,取出样品台;关闭样品台,点击EV AC抽气,抽气时推着样品室门,听到机械泵响声后松手 13. 依次关闭软件、电脑、主机电源、变压器、空开 注意事项 1.注意Z轴的距离要足够高不要让样品碰到探头 2.慢慢调节光缆,防止调节过快看不到被观察物 3.取、放前一定要卸真空,再抽真空 4.关机的时候,要在真空状态下关机

扫描电子显微镜的结构原理

实验一扫描电子显微镜的结构原理及图像衬度观察 一、实验目的 1.了解扫描电镜的基本结构和工作原理。 2.通过实际样品观察与分析,明确扫描电镜的用途。 二、基本结构与工作原理简介 扫描电镜利用细聚电子束在样品表面逐点扫描,与样品相互作用产生各种物理信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像扫描电镜具有景深大、图像立体感强、放大倍数范围大且连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效工具。 扫描电镜所需的加速电压比透射电镜要低得多,一般约在1~30kV,实验时可根据被分析样品的性质适当地选择,最常用的加速电压约在20kV左右。扫描电镜的图像放大倍数在一定范围内(几十倍到几十万倍)可以实现连续调整。放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。扫描电镜的电子光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束,作为使样品产生各种物理信号的激发源。扫描电镜最常使用的是二次电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。 扫描电镜的基本结构可分为六大部分,电子光学系统、扫描系统、信号检测放大系统、图像显示和记录系统、真空系统和电源及控制系统。图5-1是扫描电镜主机构造示意图。试验时将根据实际设备具体介绍。这一部分的实验内容可参照教材内容,并结合实验室现有的扫描电镜进行,在此不作详细介绍。 三、扫描电镜图像衬度观察 1.样品制备扫描电镜的优点之一是样品制备简单,对于新鲜的金属断口样品不需要做任何处理,可直接进行观察。但在有些情况下需对样品进行必要的处理。 (1) 样品表面附着有灰尘和油污,可用有机溶剂(乙醇或丙酮)在超声波清洗器中清洗。 (2) 样品表面锈蚀或严重氧化,采用化学清洗或电解的方法处理。清洗时可能会失去一些表面形貌特征的细节,操作过程中应该注意。 (3) 对于不导电的样品,观察前需在表面喷镀一层导电金属或碳,镀膜厚度控制在5~10nm 为宜。 2.表面形貌衬度观察二次电子信号来自于样品表面层5~10nm,信号的强度对样品微区表面相对于入射束的取向非常敏感。随着样品表面相对于入射束的倾角增大,二次电子的产额增多。因此,二次电子像适合于显示表面形貌衬度。

电子显微分析技术及应用

电子显微分析技术及应用 材料测试技术是材料科学与工程研究以及应用的重要手段和方法,目的就是要了解、获知材料的成分、组织结构、性能以及它们之间的关系,即材料的基本性质和基本规律。同时为发展新型材料提供新途径、新方法或新流程。在现代制造业中,测试技术具有非常重要的地位和作用。材料的组织形貌观察,主要是依靠显微镜技术,光学显微镜是在微米尺度上观察材料的组织及方法,电子显微分析技术则可以实现纳米级的观察。透射电子显微镜、扫描电子显微镜和电子探针仪等已成为从生物材料、高分子材料到金属材料的广阔范围内进行表面分析的不可缺少的工具。下面将主要介绍其原理及应用。 1.透射电子显微镜(TEM) a)透射电子显微镜 b)透射光学显微镜 图1:透射显微镜构造原理和光路 透射电子显微镜(TEM)是一种现代综合性大型分析仪器,在现代科学、技术的研究、开发工作中被广泛地使用。 所谓电子显微镜是以电子束为照明光源的显微镜。由于电子束在外部磁场或电场的作用下可以发生弯曲,形成类似于可见光通过玻璃时的折射现象,所以我们就可以利用这一物理效应制造出电子束的“透镜”,从而开发出电子显微镜。而作为透射电子显微镜(TEM)其特点在于我们是利用透过样品的电子束来成像,这一点有别于扫描电子显微镜。由于电子波的波长大大小于可见光的波长(100kV的电子波的波长为0.0037nm,而紫光的波长为400nm),根据

光学理论,我们可以预期电子显微镜的分辨本领应大大优于光学显微镜。 图l是现代TEM构造原理和光路。可以看出TEM的镜筒(Column)主要有三部分所构成:(1)照明系统,即电子枪;(2)成像系统,主要包括聚光镜、物镜、中间镜和投影镜;(3)观察系统。 通过TEM中的荧光屏,我们可以直接几乎瞬时观察到样品的图像或衍射花样。我们可以一边观察,一边改变样品的位置及方向,从而找到我们感兴趣的区域和方向。在得到所需图像后,可以利用相机照相的方法把图像记录下来。现在新一代TEM也有的装备了数字记录系统,可以将图像直接记录到计算机中去,这样可以大大提高工作效率。 2.扫描电子显微镜(SEM) 下图为扫描电子显微镜的原理结构示意图。由三极电子枪发出的电子束经栅极静电聚焦后成为直径为50mm的电光源。在2-30KV的加速电压下,经过2-3个电磁透镜所组成的电子光学系统,电子束会聚成孔径角较小,束斑为5-10m m的电子束,并在试样表面聚焦。末级透镜上边装有扫描线圈,在它的作用下,电子束在试样表面扫描。高能电子束与样品物质相互作用产生二次电子,背反射电子,X射线等信号。这些信号分别被不同的接收器接收,经放大后用来调制荧光屏的亮度。由于经过扫描线圈上的电流与显象管相应偏转线圈上的电流同步,因此,试样表面任意点发射的信号与显象管荧光屏上相应的亮点一一对应。也就是说,电子束打到试样上一点时,在荧光屏上就有一亮点与之对应,其亮度与激发后的电子能量成正比。换言之,扫描电镜是采用逐点成像的图像分解法进行的。光点成像的顺序是从左上方开始到右下方,直到最後一行右下方的像元扫描完毕就算完成一帧图像。这种扫描方式叫做光栅扫描。 图2:扫描电子显微镜的原理和结构示意图

扫描电子显微镜基本原理和应用

扫描电子显微镜的基本原理和结构 下图为扫描电子显微镜的原理结构示意图。由三极电子枪发出的电子束经栅极静电聚焦后成为直径为50mm的电光源。在2-30KV的加速电压下,经过2-3个电磁透镜所组成的电子光学系统,电子束会聚成孔径角较小,束斑为5-10m m的电子束,并在试样表面聚焦。末级透镜上边装有扫描线圈,在它的作用下,电子束在试样表面扫描。高能电子束与样品物质相互作用产生二次电子,背反射电子,X射线等信号。这些信号分别被不同的接收器接收,经放大后用来调制荧光屏的亮度。由于经过扫描线圈上的电流与显象管相应偏转线圈上的电流同步,因此,试样表面任意点发射的信号与显象管荧光屏上相应的亮点一一对应。也就是说,电子束打到试样上一点时,在荧光屏上就有一亮点与之对应,其亮度与激发后的电子能量成正比。换言之,扫描电镜是采用逐点成像的图像分解法进行的。光点成像的顺序是从左上方开始到右下方,直到最後一行右下方的像元扫描完毕就算完成一帧图像。这种扫描方式叫做光栅扫描。 扫描电镜由电子光学系统,信号收集及显示系统,真空系统及电源系统组成。 1 电子光学系统 电子光学系统由电子枪,电磁透镜,扫描线圈和样品室等部件组成。其作用是用来获得扫描电子束,作为产生物理信号的激发源。为了获得较高的信号强度和图像分辨率,扫描电子束应具有较高的亮度和尽可能小的束斑直径。 <1>电子枪: 其作用是利用阴极与阳极灯丝间的高压产生高能量的电子束。目前大多数扫描电镜采用热阴极电子枪。其优点是灯丝价格较便宜,对真空度要求不高,缺点是钨丝热电子发射效率低,发射源直径较大,即使经过二级或三级聚光镜,在样品表面上的电子束斑直径也在5-7nm,因此仪器分辨率受到限制。现在,高等级扫描电镜采用六硼化镧(LaB6)或场发射电子枪,使二次电子像的分辨率达到2nm。但这种电子枪要求很高的真空度。 扫描电子显微镜的原理和结构示意图

电子显微镜发展史

电子显微镜的发展史

电子显微镜的发展史 杨柏栋 大庆师范学院物理与电气信息工程学院 摘要:电子显微镜自从被发明出来就为人类做着巨大的贡献,随着现代社会的发展,电子显微镜的作用将会越来越大,我们应该知道电子显微镜的由来,本文将着重介绍电子显微镜的定义、分类、作用及其发展史。 关键字:电子显微镜、电子 引言 随着电子显微镜应用的广泛,人们对于电子显微镜的了解需求大大的增加了,本文介绍了电子显微镜的定义与组成、电子显微镜的种类与用途、电子显微镜的发展史以及电子显微镜的优缺点,以此让人们更加的了解电子显微镜。 一、电子显微镜的定义与组成 电子显微镜,简称电镜,是根据电子光学原理,用电子束和电子透镜代替光束和光学透镜,使物质的细微结构在非常高的放大倍数下成像的仪器[1]。 电子显微镜由镜筒、真空装置和电源柜三部分组成。 镜筒主要有电子源、电子透镜、样品架、荧光屏和探测器等部件,这些部件通常是自上而下地装配成一个柱体。 电子透镜用来聚焦电子,是电子显微镜镜筒中最重要的部件。一般使用的是磁透镜,有时也有使用静电透镜的。它用一个对称于镜筒轴线的空间电场或磁场使电子轨迹向轴线弯曲形成聚焦,其作用与光学显微镜中的光学透镜(凸透镜)使光束聚焦的作用是一样的,所以称为电子透镜。光学透镜的焦点是固定的,而电子透镜的焦点可以被调节,因此电子显微镜不象光学显微镜那样有可以移动的透镜系统。现代电子显微镜大多采用电磁透镜,由很稳定的直流励磁电流通过带极靴的线圈产生的强磁场使电子聚焦 电子源是一个释放自由电子的阴极,栅极,一个环状加速电子的阳极构成的。阴极和阳极之间的电压差必须非常高,一般在数千伏到3百万伏之间。它能发射并形成速度均匀的电子束,所以加速电压的稳定度要求不低于万分之一。 样品架样品可以稳定地放在样品架上。此外往往还有可以用来改变样品(如移动、转动、加热、降温、拉长等)的装置。 探测器用来收集电子的信号或次级信号。 二、电子显微镜的种类与用途 电子显微镜按结构和用途可分为透射式电子显微镜、扫描式电子显微镜、反射式电子显微镜和发射式电子显微镜等。透射式电子显微镜常用于观察那些用普通显微镜所不能分辨的细微物质结构[2];扫描式电子显微镜主要用于观察固体表

HITACHI S4800扫描电子显微镜操作规程

HITACHI H-7650 透射电镜操作规程编号: QW148 HITACHI S4800扫描电子显微镜操作规程 样品准备及要求: 1.含水样品测试前必须干燥,样品要尽量的小,多孔样品做之前一般要烘两到三天; 2.粉末样品测试时尽量用最少量的样品,否则容易使电镜污染; 3.严禁观察磁性样品; 4.样品须处于样品台中央位置,样品表面平坦,样品厚度不可太大。 操作步骤: 一、开机顺序 1. 开墙上主机电源的开关,开启冷却循环水; 2. 将仪器后面板处的主电源开关(Main Power) 打开,之后按下Reset键; 3.启动Evac Power,等待TMP指示正常后顺序打开IP1、IP2 和IP3的电源开关: 4.达到真空度要求后,开启操作台电源,PC机自动启动进入Windows操作系统,并自动运行S-4800操作程序,此时点击OK (没有密码)后自动进入S 4800操作软件。 二、样品安装 1.在实验台上事先粘好样品,并用高度规检测其高度; 2.装样品前确认工轴、WD,x,y以及Rotation是否复位(Z轴=8,WD=8,x=25,y=25,Rotation=0),如未复位,将其复位; 3.点击样品交换室的Air键,当听到笛的一声后轻轻的拉开样品交换室; 4.将样品杆手柄处于Unlock位置,把样品机座装于样杆的香蕉头处并转动手柄到Lock位置; 5.轻轻推住样品交换室,点击Evac键,抽好真空后点市Open键,样品交换室与样品室间的闸门自动打开; 5. 轻轻的推动样品杆的手柄将样品送至于样品台上,旋转手柄至Unlock, 拉出样品杆,最后点击Close关闭阀门,安装样品结束。 三、图像观察 1.加高压后即可进行调试观察; 2.首先在TV1模式下找到所要观察的区域; 3.在高倍下用coarse键粗聚焦,然后用fine键细调聚焦,直到图像清楚; 4.放回到观察倍数,用ABC或手动调到适合的对比度: 5. 在SLOW模式下观察调试后的图像,不合适重新执行步骤2,3,若合适即可拍照。 4、数据的存储刻录 1.数据只能用新光盘(非可擦写光盘)刻录,刻录数据应由仪器管理人员操作,严禁用移动硬盘、u盘等从电脑上拷贝数据(出于系统安全考虑): 2.电脑上的数据会定期清理,请及时拷贝备份: 3.使用后的样品(金属镀膜)保存1周,特殊情况(投稿论文)适当延长保存时间。 五、关机顺序 1. 观察完毕后,关闭高压; 2. 手动将之轴调到8m,WD 调到8mm,点击软件右上角的HOME键,使x,y

SEM(扫描电子显微镜)的原理

扫描电子显微镜(Scanning Electronic Microscopy, SEM) 扫描电镜(SEM)是介于透射电镜和光学显微镜之间的一种微观性貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。扫描电镜的优点是,①有较高的放大倍数,20-20万倍之间连续可调;②有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;③试样制备简单。目前的扫描电镜都配有X射线能谱仪装置,这样可以同时进行显微组织性貌的观察和微区成分分析,因此它是当今十分有用的科学研究仪器。 电子束与固体样品的相互作用 扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得对是试样表面性貌的观察。 具有高能量的入射电子束与固体样品的原子核及核外电子发生作用后,可产生多种物理信号如下图所示。 电子束和固体样品表面作用时的物理现象 一、背射电子 背射电子是指被固体样品原子反射回来的一部分入射电子,其中包括弹性背反射电子和非弹性背反射电子。 弹性背反射电子是指倍样品中原子和反弹回来的,散射角大于90度的那些入射电子,其能量基本上没有变化(能量为数千到数万电子伏)。非弹性背反射电子是入射电子和核外电子撞击后产生非弹性散射,不仅能量变化,而且方向也发生变化。非弹性背反射电子的能量范围很宽,从数十电子伏到数千电子伏。 从数量上看,弹性背反射电子远比非弹性背反射电子所占的份额多。背反射电子的产生范围在100nm-1mm深度,如下图所示。 电子束在试样中的散射示意图 背反射电子产额和二次电子产额与原子序束的关系背反射电子束成像分辨率一般为50-200nm (与电子束斑直径相当)。背反射电子的产额随原子序数的增加而增加(右图),所以,利用背反射电子作为成像信号不仅能分析新貌特征,也可以用来显示原子序数衬度,定性进行成分分析。 二、二次电子 二次电子是指背入射电子轰击出来的核外电子。由于原子核和外层价电子间的结合能很小,当原子的核外电子从入射电子获得了大于相应的结合能的能量后,可脱离原子成为自由电子。如果这种散射过程发生在比较接近样品表层处,那些能量大于材料逸出功的自由电子可从样品表面逸出,变成真空中的自由电子,即二次电子。

相关主题
文本预览
相关文档 最新文档