当前位置:文档之家› 运算放大器的重要技术指标

运算放大器的重要技术指标

运算放大器的重要技术指标
运算放大器的重要技术指标

运算放大器的重要指标

1. 运算放大器的静态输入指标

1.1. 输入失调电压VIO(input offset voltage)

输入电压为零时,将输出电压除以电压增益,再加上负号,即为折算到输入端的失调电压。亦即使输出电压为零时在输入端所加的补偿电压。VIO是表征运放内部电路对称性或者反映了输入级差分对管的失配程度,一般Vos约为(1~10)mV,高质量运放Vos在1mV 以下。

1.2. 输入失调电压温漂

在规定工作温度范围内,输入失调电压随温度的变化量与温度变化量之比值。 该参数是指Vos在规定工作范围内的温度系数,是衡量运放温度影响的重要指标。一般情况下约为(10~30)uV/摄氏度,高质量的可做<0.5uV/C(摄氏度)。

1.3. 输入失调电流IIO(input offset current)

在零输入时,差分输入级的差分对管基极电流之差,II0=|IB1-IB2|。用于表征差分级输入电流不对称的程度。通常,Ios为(0.5~5)nA,高质量的可低于1nA。

1.4. 输入失调电流温漂

在规定工作温度范围内,输入失调电流随温度的变化量与温度变化量之比值。 它是指II0在规定工作范围内的温度系数,也是衡量运放受温度影响的重要指标,通常约为(1~50)nA/C,高质量的约为几个pA/C。

1.5. 输入偏置电流IB(input bias current)

运放两个输入端偏置电流的平均值,确切地说是运算放大器工作在线性区时流入输入端的平均电流。用于衡量差分放大对管输入电流的大小。

1.6. 最大差模输入电压(maximum differential mode input voltage)

运放两输入端能承受的最大差模输入电压,超过此电压时,差分管将出现反向击穿现象。平面工艺制成的NPN管,其值在5V左右,横向PNP管的Vidmax可达+——30V以上。

1.7. 最大共模输入电压(maximum common mode input voltage)

在保证运放正常工作条件下,共模输入电压的允许范围。共模电压超过此值时,输入差分对管出现饱和,放大器失去共模抑制能力。

2. 运算放大器的动态技术指标

2.1. 开环差模电压放大倍数(open loop voltage gain)

运放在无外加反馈条件下,输出电压与输入电压的变化量之比。

2.2. 差模输入电阻 Rid (input resistance)

输入差模信号时,运放的输入电阻。 为运放开环条件下,从两个差动输入端看进去的动态电阻。

2.3. 共模输入电阻Ric (common mode input resistence)

它定义为运放两个输入端并联时对地的电阻。对于晶体管作输入级的集成运放来说,Ric通常比Rid高两个数量级左右。采用场效应管,输入级运算放大器Ric和Rid数值相当。

2.4. 共模抑制比(common mode rejection ratio)

与差分放大电路中的定义相同,是差模电压增益 与共模电压增益 之比,常用分贝数来表示。

KCMR=20lg(Avd / Avc ) (dB)

它是衡量输入级差放对称程度及表征集成运放抑制共模干扰信号能力的参数。其值越大

越好。通常KCMR约为(70~100)分贝,高质量的可达160分贝。

2.5. -3dB带宽(—3dB band width)

运算放大器的差模电压放大倍数 下降3dB所定义的带宽 。 其值愈大愈好。

2.6. 单位增益带宽(BWG)(unit gain band width)

下降到1时所对应的频率,定义为单位增益带宽 。与晶体管的特征频率 相类似。

2.7. 转换速率(压摆率)(slew rate)

又称为上升速率,反映运放对于快速变化的输入信号的响应能力。运放转换速率定义为,运放接成闭环条件下,将一个大信号(含阶跃信号)输入到运放的输入端,从运放的输出端测得运放的输出上升速率。由于在转换期间,运放的输入级处于开关状态,所以运放的反馈回路不起作用,也就是转换速率与闭环增益无关。转换速率对于大信号处理是一个很重要的指标,对于一般运放转换速率SR<=10V/μs,高速运放的转换速率SR>10V/μs。这用于大信号处理中运放选型。SR越大,表示运放对高速变化的输入信号的响应能力越好。信号幅值愈大,频率愈高,要求集成运放的SR愈大。目前的高速运放最高转换速率SR达到6000V/μs。

2.8. 等效输入噪声电压Vn(equivalent input noise voltage)

输入端短路时,输出端的噪声电压折算到输入端的数值。这一数值往往与一定的频带相对应。

2.9. 开环带宽

开环带宽定义为,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得开环电压增益从运放的直流增益下降3db(或是相当于运放的直流增益的0.707)所对应的信号频率。这用于很小信号处理。

2.10. 单位增益带宽GB

单位增益带宽定义为,运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增以后,可以计算出单位增益带宽,用以选择合适的运放。这用于小信号处理中运放选型。

2.11. 全功率带宽BW

全功率带宽定义为,在额定的负载时,运放的闭环增益为1倍条件下,将一个恒幅正弦大信号输入到运放的输入端,使运放输出幅度达到最大(允许一定失真)的信号频率。这个频率受到运放转换速率的限制。近似地,全功率带宽=转换速率/2πVop(Vop是运放的峰值输出幅度)。全功率带宽是一个很重要的指标,用于大信号处理中运放选型。

2.12. 建立时间

建立时间定义为,在额定的负载时,运放的闭环增益为1倍条件下,将一个阶跃大信号输入到运放的输入端,使运放输出由0增加到某一给定值的所需要的时间。由于是阶跃大信号输入,输出信号达到给定值后会出现一定抖动,这个抖动时间称为稳定时间。稳定时间+上升时间=建立时间。对于不同的输出精度,稳定时间有较大差别,精度越高,稳定时间越长。建立时间是一个很重要的指标,用于大信号处理中运放选型。

2.1

3. 等效输入噪声电压

等效输入噪声电压定义为,屏蔽良好、无信号输入的的运放,在其输出端产生的任何交流无规则的干扰电压。这个噪声电压折算到运放输入端时,就称为运放输入噪声电压(有时也用噪声电流表示)。对于宽带噪声,普通运放的输入噪声电压有效值约10~20μV。

2.14. 差模输入阻抗(也称为输入阻抗)

差模输入阻抗定义为,运放工作在线性区时,两输入端的电压变化量与对应的输入端电流变化量的比值。差模输入阻抗包括输入电阻和输入电容,在低频时仅指输入电阻。一般产品也仅仅给出输入电阻。采用双极型晶体管做输入级的运放的输入电阻不大于10兆欧;场效应管做输入级的运放的输入电阻一般大于109欧。

2.15. 共模输入阻抗

共模输入阻抗定义为,运放工作在输入信号时(即运放两输入端输入同一个信号),共模输入电压的变化量与对应的输入电流变化量之比。在低频情况下,它表现为共模电阻。通常,运放的共模输入阻抗比差模输入阻抗高很多,典型值在108欧以上。

2.16. 输出阻抗

输出阻抗定义为,运放工作在线性区时,在运放的输出端加信号电压,这个电压变化量与对应的电流变化量的比值。在低频时仅指运放的输出电阻。这个参数在开环测试。

功率放大器的技术指标

功率放大器的技术指标: 1) 输出功率:1额定输出功率:是指在一定的谐波失真系数和一定频率范围下所测的功率放大器的输出功率。 2最大输出功率:是指在一定的负载上,功率放大器在规定的谐波失真系数时,采用1000Hz 的正弦波检测信号所得到的连续最大的输出功率。业余条件下,功率放大器的额定输出功率可以通过下式进行换算: 额定输出功率=最大输出功率×0.8 额定输出功率=峰值功率×0.5 2) 放大增益:也为放大倍数,放大器的电压增益是指输出电压和输入电压之比,电流增益是指输出电流和输入电流之比,功率增益是指输出功率与输入功率之比。 3) 频率响应:反应了功率放大器对各种频率信号放大的情况。品质较高的功率放大器能够重放频率较宽的信号。一般的放大器频率响应均应在20Hz~20KHz 4) 信噪比:是指信号电平与噪声电平的比率,用S/N表示。S为信号电平,N为噪声电平。信噪比越高噪声越低。 5) 失真:是指放大器的输入信号与输出信号在几何形态上发生了变化。 其主要有:1谐波失真:由于放大器的非线性而产生的,会使声音走调。 2互调失真:是由各个频率信号之间相互调制而产生的,会使声音尖刺、混浊。 3相位失真:是由于放大器对于不同频率产生的相移不均而产生的。 4瞬态失真:会使声音变抖动、不清晰。 5交越失真:会使重放声产生间歇感。 6) 动态范围:是指放大器的最高输出电压与无信号时的噪声之比。其表示了功率放大器的重放声的动态范围和对微弱信号的表现能力。其会受输出功率的影响。 7) 瞬态响应:是指放大器对脉冲信号(瞬时大信号)的跟随能力。从声音的重放角度来看,瞬态响应较好,重放时就会干净、利落。否则会含糊不清。一般用转换速率SR来表示。转换速率是指在单位时间内信号电压的变化量,其单位是V/μs 。一般前置放大器的SR能够达到5V/μs就可以满足前置放大器的要求。一般功率放大器的SR能够达到50V/μs就可以达到高保真瞬态的要求。 8) 阻尼系数:是表示功率放大器的内阻的指标,它与扬声器的阻抗成正比,通常阻尼系数越大,扬声器的失真就越小。

实验五集成运算放大器的基本应用共7页文档

实验五集成运算放大器的基本应用(I) ─模拟运算电路─ 一、实验目的 1、了解和掌握集成运算放大器的功能、引脚 2、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算 电路的功能。 3、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。 开环电压增益A =∞ ud =∞ 输入阻抗r i =0 输出阻抗r o 带宽 f =∞ BW 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性:

(1)输出电压U O 与输入电压之间满足关系式 U O =A ud (U +-U -) 由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。 (2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图8-1所示。对于理想运放, 该电路的输出电压与输入电压 之间的关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图8-1 反相比例运算电路 图8-2 反相加法运算电路 2) 反相加法电路 电路如图8-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 // R 2 // R F 3) 同相比例运算电路 图8-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O U R R U - =

各类放大器技术指标的分析与比较

目录 引言 (1) 1放大器种类概述 (1) 1.1功率放大器 (1) 1.2运算放大器 (3) 2对各类不同的放大器性能和特点进行分析与比较 (4) 2.1功率放大器的技术指标 (4) 2.2运算放大器的技术指标 (7) 结束语 (8) 参考文献 (8) 错误!未定义书签。

各类放大器技术指标的分析与比较 摘要:放大器是能把输入信号的幅值或功率放大的电路,在通讯、广播、音响等系统中有着广泛的应用。本文主要介绍了功率放大器和运算放大器的工作原理和分类,并在此基础上对它们的技术指标进行了详细的分析与比较,总结了各类放大器的优缺点,为选择放大器提供了更多的参考和依据。通过对各类放大器的分析与比较,能够提高分析问题的能力,对实践具有重要的指导意义。 关键词:放大器;功率放大器;运算放大器;效率;输出功率 引言 放大器是广泛使用于各种电子系统中的一种电路。随着半导体器件及集成技术的迅猛发展,放大器的种类增多,其性能也大幅提高。就音频放大器的类别而言,已不仅限于传统的A类(甲类)和AB类(甲乙类),而出现了更多类别的放大器如D类、T类放大器等。同时集成运放发展迅速,新类型、高性能的运放层出不穷。在种类繁多,功能各异的众多放大器中进行选择使用,就必需对各类放大器的性能指标有个清晰的认识。本文通过对常见的各类音频功率放大器及运放技术指标的分析比较,总结了其各自的优缺点,对实际选用放大器具有参考意义。 1放大器种类概述 1.1功率放大器 功率放大器,简称为“功放”。现实生活中我们会遇到很多情况下主机的额定输出功率不能满足带动整个音响系统的任务,这时就需要在主机和播放设备之间加功率放大器来补充所需的功率缺口,这样功率放大器在整个音响系统中起到了“组织、协调”的枢纽作用,所以音响系统能否提供良好的音质输出与功率放大器的性能有着重要的关系[1]。 功率放大器是利用场效应管的电压控制作用或三极管的电流控制作用将电源的功率转换为按照输入信号变化的电流这个原理来实现放大的。同时,因为声音是不同振幅和频率的波,即交流电流信号,而三极管工作在放大区域时集电极电流总是基极电流的α倍,α是三极管的交流电流放大倍数,利用这个原理,若将小信号从基极输入,则在集电极会流出基极电流α倍的电流,再用隔直电容将这个信号隔离出来,就可以得到原来电压或电流α倍的放大信号,这种现象就称

集成运算放大器的基本应用

实验十一 集成运算放大器的基本应用 —— 模拟运算电路 一、实验目的 1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验仪器 1、双踪示波器 2、万用表 3、交流毫伏表 4、信号发生器 三、实验原理 在线性应用方面,可组成比例、加法、减法、积分、微分、对数、指数等模拟运算电路。 1、 反相比例运算电路 电路如图11-1所示。对于理想运放,该电路的输出电压与输入电压之间的关系为 i F O U R R U 1 - = (11-1) U i O 图11-1 反相比例运算电路 为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R2=R1∥R F ,此处为了简化电路,我们选取R2=10K 。

2、反相加法电路 U O U 图11-2 反相加法运算电路 电路如图11-2所示,输出电压与输入电压之间的关系为 )( 22 11i F i F O U R R U R R U +-= R 3=R 1∥R 2∥R F (11-2) 3、同相比例运算电路 图11-3(a )是同相比例运算电路,它的输出电压与输入电压之间的关系为 i F O U R R U )1(1 + = R 2=R 1∥R F (11-3) 当R1→∞时,U O =U i ,即得到如图11-3(b )所示的电压跟随器。图中R2=R F ,用以减小漂移和起保护作用。一般RF 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。 (a)同相比例运算 (b)电压跟随器 图11-3 同相比例运算电路 4、差动放大电路(减法器) 对于图11-4所示的减法运算电路,当R1=R2,R3=R F 时,有如下关系式: )(1 120i i U U R RF U -= (11-4)

运算放大器的典型应用

Op Amp Circuit Collection AN-31

Practical Differentiator f c e 1 2q R2C1 f h e 1 2q R1C1 e 1 2q R2C2 f c m f h m f unity gain TL H 7057–9 Integrator V OUT e b 1 R1C1 t2 t1 V IN dt f c e 1 2q R1C1 R1e R2 For minimum offset error due to input bias current TL H 7057–10 Fast Integrator TL H 7057–11Current to Voltage Converter V OUT e l IN R1 For minimum error due to bias current R2e R1 TL H 7057–12 Circuit for Operating the LM101 without a Negative Supply TL H 7057–13Circuit for Generating the Second Positive Voltage TL H 7057–14

Neutralizing Input Capacitance to Optimize Response Time C N s R1 R2 C S TL H 7057–15 Integrator with Bias Current Compensation Adjust for zero integrator drift Current drift typically0 1 n A C over b55 C to125 C temperature range TL H 7057–16 Voltage Comparator for Driving DTL or TTL Integrated Circuits TL H 7057–17 Threshold Detector for Photodiodes TL H 7057–18 Double-Ended Limit Detector V OUT e4 6V for V LT s V IN s V UT V OUT e0V for V IN k V LT or V IN l V UT TL H 7057–19 Multiple Aperture Window Discriminator TL H 7057–20

射频功率放大器

实验四:射频功率放大器 【实验目的】 通过功率放大器实验,让学生了解功率放大器的基本结构,工作原理及其设计步骤,掌握功率放大器增益、输出功率、频率范围、线性度、效率和输入/输出端口驻波比等主要性能指标的测试方法,以此加深对以上各项性能指标的理解。 【实验环境】 1.实验分组:每组2~4人 2.实验设备:直流电源一台,频谱仪一台,矢量网络分析仪一台,功率计一只,10dB衰减器一个,万用表一只,功率放大器实验电路 板一套 【实验原理】 一、功率放大器简介 功率放大器总体可分成A、B、C、D、E、F六类。而这六个小类又可以归入不同的大类,这种大类的分类原则,大致有两种:一种是按照晶体管的导通情况分,另一种按晶体管的等效电路分。按照信号一周期内晶体管的导通情况,即按导通角大小,功率放大器可分A、B、C三类。在信号的一周期内管子均导通,导θ(在信号周期一周内,导通角度的一半定义为导通角θ),称为A 通角? =180 θ。导通时间小于一半周期的类。一周期内只有一半导通的成为B类,即? =90 θ。如果按照晶体管的等效电路分,则A、B、C属于一大称为C类,此时? <90 类,它们的特点是:输入均为正弦波,晶体管都等效为一个受控电流源。而D、E、F属于另一类功放,它们的导通角都近似等于? 90,均属于高功率的非线性放大器。 二、功率放大器的技术要求 功率放大器用于通信发射机的最前端,常与天线或双工器相接。它的技术要求为: 1. 效率越高越好 2. 线性度越高越好 3. 足够高的增益

4. 足够高的输出功率 5. 足够大的动态范围 6. 良好的匹配(与前接天线或开关器) 三、功率放大器的主要性能指标 1.工作频率 2.输出功率 3.效率 4.杂散输出与噪声 5.线性度 6.隔离度 四、功率放大器的设计步骤 1.依据应用要求(功率、频率、带宽、增益、功耗等),选择合适的晶体管 2.确定功率放大器的电路和类型 3.确定放大器的直流工作点和设计偏置电路 4.确定最大功率输出阻抗 5.将最大输出阻抗匹配到负载阻抗(输出匹配网络) 6.确定放大器输入阻抗 7.将放大器输入阻抗匹配到实际的源阻抗(输入匹配网络) 8.仿真功率放大器的性能和优化 9.电路制作与性能测试 10.性能测量与标定 五、本实验所用功率放大器的简要设计过程 1. PA 2. 晶体管的选择 本实验所选用的晶体管为安捷伦公司的ATF54143_PHEMT,这种晶体管适合用来设计功率放大器。单管在~处能达到的最大资用增益大于18dB,而1dB压缩点高于21dB。

功率放大器技术指标概述

功率放大器技术指标概述 工作频率范围Operating Frequency 放大器满足或优于指标参数时的工作频率范围。 输出功率Output Power: 放大器的输出功率有两种表示方式:饱和功率和1dB压缩点输出功率。前者是输出的最大功率,后者则是指增益下降1dB时的输出功率,前者一般大于后者。对脉冲放大器有峰值功率和平均功率之分,前者表示有信号时的输出功率,后者则是按时间平均后的功率,两者之间的关系与信号的占空比有关。 增益Gain 功放输入输出功率的比值。 增益平坦度Gain flatness 表示放大器在工作频段内功率增益的波动。 噪声指数Noise Figure 指的是功放输出端和输入端信噪比的比值。

输入输出三阶截取点IIP3,OIP3 反映放大器的线性特性的指标。具体指三阶谐波与输入端基波电平相同时对应的输入/输出功率电平。此指标与输入电平的大小和放大器的增益无任何关系。 电压驻波比VSWR 放大器通常设计或用于50Ω阻抗的微波系统中,输入/输出驻波表示放大器输入端阻抗和输出端阻抗与系统要求阻抗(50Ω)的匹配程度。用下式表示:VSWR = (1+|Γ|)/(1-|Γ|) 其中Γ=(Z-Z0)/(Z+Z0) VSWR:输入输电压出驻波比 Γ:反射系数 Z:放大器输入或输出端的实际阻抗 Z0:需要的系统阻抗

效率Efficiency 指输入电流×输入电压=总功率 效率=实际输出射频功率/总功率×100% 临道功率比ACPR (Adjacent Channel Power Ratio) 用来衡量主信道的功率泄漏到相邻信道的多少,和放大器的线性、信号的调制等多因素有关。主要应用在象CDMA这样的宽频谱信号的研究上。 脉冲波的上升沿时间和下降沿时间Rise Time and Fall Time 上升沿时间:从脉冲波上升沿10%上升到90%所经历的时间; 下降沿时间:从脉冲波下降沿90%下降到10%所经历的时间; 脉冲宽度:两个脉冲幅值的50%的时间点之间所跨越的时间。 占空比Duty Cycle 在一串理想的脉冲序列中(如方波),正脉冲的持续时间(脉冲宽度pulse width)与脉冲总周期(Pulse cycle)的比值。

集成运算放大器的基本应用

第7章集成运算放大器的基本应用 7.1 集成运算放大器的线性应用 7.1.1 比例运算电路 7.1.2 加法运算电路 7.1.3 减法运算电路 7.1.4 积分运算电路 7.1.5 微分运算电路 7.1.6 电压—电流转换电路 7.1.7 电流—电压转换电路 7.1.8 有源滤波器 *7.1.9 精密整流电路 7.2 集成运放的非线性应用 7.2.1 单门限电压比较器 7.2.2 滞回电压比较器 7.3 集成运放的使用常识 7.3.1 合理选用集成运放型号 7.3.2 集成运放的引脚功能 7.3.3 消振和调零 7.3.4 保护 本章重点: 1. 集成运算放大器的线性应用:比例运算电路、加减法运算电路、积分微分运算电路、一阶有源滤波器、二阶有源滤波器 2. 集成运算放大器的非线性应用:单门限电压比较器、滞回比较器 本章难点: 1. 虚断和虚短概念的灵活应用 2. 集成运算放大器的非线性应用 3. 集成运算放大器的组成与调试 集成运算放大器(简称集成运放)在科技领域得到广泛的应用,形成了各种各样的应用电路。从其功能上来分,可分为信号运算电路、信号处理电路和信号产生电路。从本章开始和以后的相关章节分别介绍它们的应用。 7.1 集成运算放大器的线性应用

集成运算放大器的线性应用 7.1.1 比例运算电路 1. 同相比例运算电路 (点击查看大图)反馈方式:电压串联负反馈 因为有负反馈,利用虚短和虚断 虚短: u-= u+= u i

虚断: i +=i i- =0 , i 1 =i f 电压放大倍数: 平衡电阻R=R f//R1 2. 反相比例运算 (点击查看大图)反馈方式:电压并联负反馈 因为有负反馈,利用虚短和虚断 i - =i+= 0(虚断) u + =0,u-=u+=0(虚地) i 1 =i f 电压放大倍数:

运算放大器应用设计的技巧总结

运算放大器应用设计的几个技巧 一、如何实现微弱信号放大? 传感器+运算放大器+ADC+处理器是运算放大器的典型应用电路,在这种应用中,一个典型的问题是传感器提供的电流非常低,在这种情况下,如何完成信号放大?张世龙指出,对于微弱信号的放大,只用单个放大器难以达到好的效果,必须使用一些较特别的方法和传感器激励手段,而使用同步检测电路结构可以得到非常好的测量效果。这种同步检测电路类似于锁相放大器结构,包括传感器的方波激励,电流转电压放大器,和同步解调三部分。他表示,需要注意的是电流转电压放大器需选用输入偏置电流极低的运放。另外同步解调需选用双路的SPDT模拟开关。 另有工程师朋友建议,在运放、电容、电阻的选择和布板时,要特别注意选择高阻抗、低噪声运算和低噪声电阻。有网友对这类问题的解决也进行了补充,如网友“1sword”建议: 1)电路设计时注意平衡的处理,尽量平衡,对于抑制干扰有效,这些在美国国家半导体、BB(已被TI收购)、ADI等公司关于运放的设计手册中均可以查到。 2)推荐加金属屏蔽罩,将微弱信号部分罩起来(开个小模具),金属体接电路地,可以大大改善电路抗干扰能力。 3)对于传感器输出的nA?级,选择输入电流pA?级的运放即可。如果对速度没有多大的要求,运放也不贵。仪表放大器当然最好了,就是成本高些。 4)若选用非仪表运放,反馈电阻就不要太大了,M欧级好一些。否则对电阻要求比较高。后级再进行2级放大,中间加入简单的高通电路,抑制50Hz干扰。 二、运算放大器的偏置设置 在双电源运放在接成单电源电路时,工程师朋友在偏置电压的设置方面会遇到一些两难选择,比如作为偏置的直流电压是用电阻分压好还是接参考电压源好?有的网友建议用参考电压源,理由是精度高,此外还能提供较低的交流旁路,有的网友建议用电阻,理由是成本低而且方便,对此,张世龙没有特别指出用何种方式,只是强调双电源运放改成单电源电路时,如果采用基准电压的话,效果最好。这种基准电压使系统设计得到最小的噪声和最高的PSRR。但若采用电阻分压方式,必须考虑电源纹波对系统的影响,这种用法噪声比较高,PSRR比较低。 三、如何解决运算放大器的零漂问题? 有网友指出,一般压电加速度传感器会接一级电荷放大器来实现电荷——电压转换,可是在传感器动态工作时,电荷放大器的输出电压会有不归零的现象发生,如何解决这个问题? 对此,网友“Frank”分析道,有几种可能性会导致零漂:1)反馈电容ESR特性不好,随电荷量的变化而变化;2)反馈电容两端未并上电阻,为了放大器的工作稳定,减少零漂,在反馈电容两端并上电阻,形成直流负反馈可以稳定放大器的直流工作点;3)可能挑选的运算放大器的输入阻抗不够高,造成电荷泄露,导致零漂。 网友“camel”和“windman”还从数学分析的角度对造成零漂的原因进行了详细分析,认为除了使干扰源漂移小以外还必须使传感器、缆线电阻要大,运放的开环输入阻抗要高、运放的反馈电阻要小,即反馈电阻的作用是为了防止漂移,稳定直流工作点。但是反馈电阻太小的话,也会影响到放大器的频率下限。所以必须综合考虑! 而嘉宾张世龙则建议,对于电荷放大器输出电压不归零的现象,一般采用如下办法来解决: 1)采用开关电容电路的技巧,使用CDS采样方式可以有效消除offset电压;2)采用同步检测电路结构,可以有效消除offset电压。

集成运放基本应用之一—模拟运算电路

集成运放基本应用之一—模拟运算电路

————————————————————————————————作者:————————————————————————————————日期:

实验十二集成运放基本应用之一——模拟运算电路 一、实验目的 1、了解并掌握由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的原理与功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性: 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放: 开环电压增益A ud=∞ 输入阻抗r i=∞ 输出阻抗r o=0 带宽f BW=∞ 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性: (1)输出电压U O与输入电压之间满足关系式 U O=A ud(U+-U-) 由于A ud=∞,而U O为有限值,因此,U+-U-≈0。即U+≈U-,称为“虚短”。

(2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图5-1所示。对于理想运放, 该电路的输出电压与输入电压之间的 关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图5-1 反相比例运算电路 图5-2 反相加法运算电路 2) 反相加法电路 电路如图5-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 / R 2 // R F 3) 同相比例运算电路 图5-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O )U R R (1U + = R 2=R 1 / R F 当R 1→∞时,U O =U i ,即得到如图5-3(b)所示的电压跟随器。图中R 2=R F , i 1 F O U R R U -=

集成运算放大器的基本应用

实验名称 集成运算放大器的基本应用 一.实验目的 1.掌握集成运算放大器的正确使用方法。 2.掌握用集成运算放大器构成各种基本运算电路的方法。 3.学习正确使用示波器交流输入方式和直流输入方式观察波形的方法,重点掌握积分输入,输出波形的测量和描绘方法。 二.实验元器件 集成运算放大器 LM324 1片 电位器 1k Ω 1只 电阻 100k Ω 2只;10k Ω 3只;5.1k Ω 1只;9k Ω 1只 电容 0.01μf 1只 三、预习要求 1.复习由运算放大器组成的反相比例、反相加法、减法、比例积分运算电路的工作原理。 2.写出上述四种运算电路的vi 、vo 关系表达式。 3.实验前计算好实验内容中得有关理论值,以便与实验测量结果作比较。 4.自拟实验数据表格。 四.实验原理及参考电路 本实验采用LM324集成运算放大器和外接电阻、电容等构成基本运算电路。 1. 反向比例运算 反向比例运算电路如图1所示,设组件LM324为理想器件,则 11 0υυR R f -=

R f 100k R 1 10k A 10k R L v o v 1 R 9k 图1 其输入电阻1R R if ≈,图中1//R R R f ='。 由上式可知,改变电阻f R 和1R 的比值,就改变了运算放大器的闭环增益vf A 。 在选择电路参数是应考虑: ○ 1根据增益,确定f R 与1R 的比值,因为 1 R R A f vf - = 所以,在具体确定f R 和1R 的比值时应考虑;若f R 太大,则1R 亦大,这样容易引起较大的失调温漂;若f R 太小,则1R 亦小,输入电阻if R 也小,可能满足不了高输入阻抗的要求,故一般取f R 为几十千欧至几百千欧。 若对放大器输入电阻有要求,则可根据1R R i =先确定1R ,再求f R 。 ○ 2运算放大器同相输入端外接电阻R '是直流补偿电阻,可减小运算放大器偏执电流产生的不良影响,一般取1//R R R f =',由于反向比例运算电路属于电压并联负反馈,其输入、输出阻抗均较低。 本次试验中所选用电阻在电路图中已给出。 2. 反向比例加法运算 反向比例加法运算电路如图2所示,当运算放大器开环增益足够大时,其输入端为“虚地”,11v 和12v 均可通过1R 、2R 转换成电流,实现代数相加,其输出电压 ??? ??+-=122111 v R R v R R v f f o 当R R R ==21时 ()1211v v R R v f o +- = 为保证运算精度,除尽量选用精度高的集成运算放大器外,还应精心挑选精度高、稳定性好的电阻。f R 与R 的取值范围可参照反比例运算电路的选取范围。 同理,图中的21////R R R R f ='。

功率放大器性能指标测试

功率放大器性能指标测试 1、测试要求: 1.1电源为额定工作电压±2%,频率50H Z±1HZ 1.2测试信号标准频率:模拟:1KHZ,数字997HZ,超低音:30HZ (常用:80HZ,40HZ,100HZ) 1.3整机必须工作在以下状态: 1.3.1主音量电位器置最大 1.3.2如果有中置、环绕、超低音、音量置0dB 1.3.3音调电位器置中点。 1.3.4如果有等串响度,置于OFF位置。 1.3.5如果有声场处理器,置于关断位置。 1.3.6如果有其它滤波器,置于关断位置。 1.3.7接上额定负载,测试时用假负载,不允许用喇叭作负载。 1.3.8当测试卡拉OK功能时,把混响、延时、效果关最小位置。2 3、使用设备:双通示波器:HITACHI V-252 单针毫伏表:KIKUSUI AVM23

信号发生器:LODESTAR AG-2603AD 失真仪:ZD ZQ4121A 负载电阻:8?、4?、6?或额定负载。 4、失真限制的输出功率。 4.1测试目的:主要了解该机的输出功率是否达到额定功率。 4.2测量方框图:如图1 4.3输入信号:输入信号为标准参考频率,信号电平为额定源电动 势电平。 4.4测量步骤: 4.4.1按规定将被测样置于1.3状态,各通道接上足够功率的额 定负载电阻。 4.4.2调节主音量电位器,直到输出电压的总谐波失真达到额定 值,测量输出电压V 4.4.3失真限制的输出功率按下公式计算:P=V2/R(“V”为额定失真限制的输出电压;“R”为额定负载的阻值。) 5、信噪比: 5.1测量目的:主要考核整机在静态状态下,噪声输出电平是否 达到指标要求。 5.2测量方框图:如图1 5.3测量输入信号:信号频率为标准参考频率,信号电平为:额 定源电动势电平 5.4测量步骤:

如何正确的选择运算放大器

下文将重点说明一些有用的设计技术、简短的计算和通用的评估方法,以帮助设计师更好地进行评估。 在便携电子领域,设计师基于多种因素(尺寸、成本和性能),利用他们的专业知识和最佳判断来选择器件。但这些因素通常需要进行权衡,设计师必须依据所需的最终产品谨慎选择元件。几乎与其它行业一样,便携市场,特别是移动电话市场,通常会同时提供高端(多功能)和低端(廉价)产品。 移动电话主板包括不同的元件,如运算放大器、音 频放大器及前置放大器、数据转换器和ASIC 等。 选择运算放大器之前,设计师必须考虑封装选项, 以及更小的封装是否会使性能降低。尽管在便携产 品领域小型封装很受欢迎,但小型封装可能会给设 计师带来麻烦和问题。采用塑料封装形式的运算放 大器,譬如SC70,往往不能达到与SOIC 或MSOP 封装对应产品相同的性能。微型芯片级封装 (CSP)(这实质上是裸片),暴露于光线下,输入偏流可能发生数百量级的偏移。该封装形式也容易在 组装期间发生破裂。 哪些参数最重要? 在电池供电的应用领域—特别是PDA 和移动电话,由于电池电压会随着干扰而下降,因此应选择PSRR 性能好(~80dB)的运算放大器。此外,要注意高增益配置,这是因为耦合到运放中的噪声将导致噪声电平升高。电阻器的选择也十分关键,更大的阻值会产生更高的噪声。设计师可以利用4?估算约翰逊噪声(Johnson noise)或电阻噪声,这里R 的单位是K 欧姆,因此100K 欧姆电阻产生大约40nV 噪声! 如果运用多个运算放大器,减少噪声的一个方法是采用图1所示的方案。该方法可以按因子??减少输出噪声,这里n 是使用的放大器数量。对于LMV651而言,输出噪声将减少到大约12nV/??。此外设计师必须考虑限制带宽以使噪声最小:设计师可以将一个小电容与反馈电阻并联使用,借此降低噪声。 运算放大器的选择也取决于其它的器件。设计师面对的一个普遍挑战是为模数转换器(ADC)选择合适的运算放大器。尽管市场上有许多类型的数据转换器,但是运算放大器和模数转换器之间的匹配规则却不一样,设计师在做出选择之前必须认真考虑某些准则。 图1:运用多个运算放大器减少输出噪音。

微波低噪声放大器的主要技术指标、作用及方案设计

微波低噪声放大器的主要技术指标、作用及方案设计 随着通讯工业的飞速发展,人们对各种无线通讯工具的要求也越来越高。功率辐射小、作用距离远、覆盖范围大已成为各运营商乃至无线通讯设备制造商的普遍追求,而这也同时对系统的接收灵敏度提出了更高的要求。 1微波低噪声放大器的作用 一般情况下,一个接收系统的接收灵敏度可由以下计算公式来表示: 由上式可见,在各种特定(带宽BW、解调S/N已定)的无线通讯系统中,能有效提高灵敏度的关键因素就是降低接收机的噪声系数NF,而决定接收机噪声系数的关键部件则是处于接收机 前端的低噪声放大器。 图1所示是接收机射频前端的原理框图。由图1可见,低噪声放大器的主要作用是放大天线从空中接收到的微弱信号,降低噪声干扰,以供系统解调出所需的信息数据,所以,低噪声放大器的设计对整个接收机来说是至关重要的。

2微波低噪声放大器的主要技术指标 2.1噪声系数 噪声系数的定义为放大器输入信噪比与输出信噪比的比值,即: 对单级放大器而言,其噪声系数的计算为: 其中Fmin为晶体管 噪声系数,是由放大器的管子本身决定的,Γopt、Rn和Γs分别为获得Fmin时的 源反射系数、晶体管等效噪声电阻以及晶体管输入端的源反射系数。 对多级放大器。其噪声系数的计算应为: 其中NFn为第n级放大器的噪声系数,Gn为第n级放大器的增益。 对噪声系数要求较高的系统,由于噪声系数很小,用噪声系数表示很不方便,故常用噪声温度来表示,噪声温度与噪声系数的换算关系为: 其中Te为放大器的噪声温度,T0=2900K,NF为放大器的噪声系数。 2.2放大器增益 放大器的增益定义为放大器输出功率与输入功率之比: G=Pout/Pin(7)

实验二 集成运算放大器的基本应用(I)

实验二 集成运算放大器的基本应用(I) ─ 模拟运算电路 ─ 一 实验目的 1. 研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。 2. 了解运算放大器在实际应用时应考虑的一些问题。 二 实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 集成运算放大器配接不同的外围元件可以方便灵活地实现各种不同的运算电路(线性放大和非线性电路)。用运算放大器组成的运算电路(也叫运算器),可以实现输入信号和输出信号之间的数学运算和函数关系,是运算放大器的基本用途之一,这些运算器包括比例器、加法器、减法器、对数运算器、积分器、微分器、模拟乘法器等各种模拟运算功能电路。 (1) 反相比例运算电路 电路如图1所示。对于理想运放, 该电路的输出电压与输入电压之间的关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 i U 10-=- =i 1 F O U R R U

图1 反相比例运算电路 (2) 同相比例运算电路 图2是同相比例运算电路,它的输出电压与输入电压之间的关系为 i U 11=+ =i 1 F O )U R R (1U R 2=R 1 // R F 图2 同相比例运算电路 三 实验设备与器件 1. ±12V 直流电源 2. 函数信号发生器 3. 交流毫伏表 4. 直流电压表 5. 集成运算放大器OP07×1 9.1K Ω、10 K Ω、100 K Ω电阻各1个,导线若干。 2 3 6 7 4 1 8 2 3 1 8 4 6 7

功放电路性能指标及测试方法

1. 功放电路性能指标及测试方法 功率放大器的性能指标很多,有输出功率、频率响应、失真度、信噪比、输出阻抗、阻尼系数等,其中以输出功率、效率、频率响应、输入灵敏度、信噪比等项目指标为主。配备必要的仪器仪表主要有:音频信号发生器、音频毫伏表、示波器、失真度测量仪等。 (1)输出功率是指功放输送给负载的功率,以瓦(W )为基本单位。功放在放大倍数和负载一定的情况下,输出功率的大小由输入信号的大小决定,包括最大输出功率和额定输出功率两种。 额定输出功率:指在一定的谐波失真指标内,功放输出的最大功率。应该注意,功放的负载和谐波失真指标不同,额定输出功率也随之不同。通常规定的谐波失真指标有1%和10%。由于输出功率的大小与输入信号有关,通常测量时给功放输入频率为1KHz 的正弦信号,测出等阻负载电阻上的电压有效值o U ,此时功放的输出功率o P 可表示为 : 2o o =L U P R (4-1-4) 式中L R 为等效负载的阻抗。这样得到的输出功率,实际上为平均功率OAV P 。当输入信号幅度逐渐增大时,功放开始过载,波形削顶,谐波失真加大。谐波失真度为10%时的平均功率,称为额定输出功率,亦称最大有用功率或不失真功率。 最大输出功率:在上述情况下不考虑失真的大小,给功放输入足够大的信号,功放所能输出的最大功率称为最大输出功率。额定输出功率和最大输出功率是我国早期功放产品说明书上常用的两种功率。通常最大输出功率是额定功率的2倍。 2 L Uom Pom R (4-1-5) 其中,Uom 为放大器的最大输出电压有效值。 功放电路功率测量线路如图4-1-4所示,示波器用于监视波形失真之用,MV 表示音频毫伏表,L R 是负载电阻,O U 、I U 分别表示输出和输入信号电压。

功率放大器的性能指标

功率放大器的性能指标有哪些? 功率放大器的性能指标很多,有输出功率、频率响应、失真度、信噪比、输出阻抗、阻尼系数等,其中以输出功率、频率响应、失真度三项指标为主。 1.输出功率 输出功率是指功放输送给负载的功率,以瓦(W)为基本单位。功放在放大量和负载一定的情况下,输出功率的大小由输入信号的大小决定。过去,人们用额定输出功率来衡量输出功率,现在由于高保真度的追求和对音质的评价不一样,采用的测量方法不同,因此形成了许多名目的功率称呼,应当注意。 (1) 额定输出功率(RMS) 额定输出功率是指在一定的谐波失真指标内,功放输出的最大功率。应该注意,功放的的负载和谐波失真指标不同,额定输出功率也随之不同。通常规定的谐波失真指标有1%和10%。由于输出功率的大小与输入信号有关,为了测量方便,一般采用连续正弦波作为测量信号来测量音响设备的输出功率。通常测量时给功放输入频率为1000Hz的正弦信号,测出等阻负载电阻上的电压有效值(V),此时功放的输出功率(P)可表为 P=V2/RL 式中:RL为扬声器的阻抗 这样得到的输出功率,实际上为平均功率。当音量逐渐开大时,功放开始过载,波形削顶,谐波失真加大。谐波失真度为10%时的平均功率,称为额定输出功率,亦称最大有用功率或不失真功率。 (2)最大输出功率 在上述情况下不考虑失真的大小,给功放输入足够大的信号,并将音量和音调电位器调到最大时,功放所能输出的最大功率称为最大输出功率。额定输出功率和最大输出功率是我国早期音响产品说明书上常用的两种功率。通常最大输出功率是额定功率的2倍。但是,在放音时却有这样的情况,两台最大有用功率及扬声器灵敏度都差不多的功放在试听交响乐节目时,当一段音乐从低潮过去以后突然来一突发性打击乐器声,可能一台功放能在瞬间给出相当大的功率,给人以力度感,另一台功放却显得底气不足。为了标志功放这种瞬间的突发输出功率的能力,除了测量上述的最大有用功率和最大输出功率之外,有必要测量功放的音乐输出功率和峰值输出功率。才能全面地反映功放的输出能力。 (3)音乐输出功率(MPO)

运算放大器基本应用

东南大学电工电子实验中心 实验报告 课程名称:电子电路实验 第一次实验 实验名称:运算放大器的基本应用 院(系):吴健雄学院专业:电类强化 姓名:周晓慧学号:61010212 实验室: 105实验组别: 同组人员:无实验时间:2012年03月23日评定成绩:审阅教师:

实验一运算放大器的基本应用 一、实验目的: 1、熟练掌握反相比例、同相比例、加法、减法、积分、微分等电路的设计方法; 2、熟练掌握运算放大电路的故障检查和排除方法,以及增益、幅频特性、传输特性曲线、 带宽的测量方法; 3、了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度 漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(最大差模输入电压、最大共模输入电压、最大输出电流、最大电源电压等)的基本概念; 4、了解运放调零和相位补偿的基本概念; 5、掌握利用运算放大器设计各种运算功能电路的方法及实验测量技能。 二、预习思考: 1、查阅741运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释 参数含义。

2、 设计一个反相比例放大器,要求:|A V |=10,Ri>10K Ω,将设计过程记录在预习报告上; (1) 仿真原理图 (2) 参数选择计算 因为要求|A v |=10,即|V 0/V i |= |-R f /R 1|=10,故取R f =10R 1,.又电阻应尽量大些,故取:R 1=10k Ω,Rk=100 k Ω, R L =10 k Ω (3) 仿真结果 图中红色波形表示输入,另一波形为输出,通过仿真可知|V 0/V i |=9.77≈10,仿真正确。 3、 设计一个电路满足运算关系U O = -2U i1 + 3U i2

运算放大器详细的应用电路(很详细)

§8.1 比 例运算电 路 8.1.1 反相比例电路 1. 基本电路 电压并联负反馈输入端虚短、虚断 特点: 反相端为虚地,所以共模输入可视为0,对运放共模抑制比要求低 输出电阻小,带负载能力强 要求放大倍数较大时,反馈电阻阻值高,稳定性差。 如果要求放大倍数100,R1=100K,Rf=10M 2. T型反馈网络(T型反馈网络的优点是什么?) 虚短、虚断

8.1.2 同相比例电路 1. 基本电路:电压串联负反馈 输入端虚短、虚断 特点: 输入电阻高,输出电阻小,带负载能力强 V-=V+=V i,所以共模输入等于输入信号,对运放的共模抑制比要求高 2. 电压跟随器 输入电阻大输出电阻小,能真实地将输入信号传给负载而从信号源取流很小§8.2 加减运算电路 8.2.1 求和电路 1.反相求和电路 2.

虚短、虚断 特点:调节某一路信号的输入电阻不影响其他路输入与输出的比例关系 3.同相求和电路 4. 虚短、虚断 8.2.2 单运放和差电路

8.2.3 双运放和差电路 例1:设计一加减运算电路 设计一加减运算电路,使 V o=2Vi1+5Vi2-10Vi3 解:用双运放实现

如果选Rf1=Rf2=100K,且R4= 100K 则:R1=50K R2=20K R5=10K 平衡电阻 R3= R1// R2// Rf1=12.5K R6=R4//R5//Rf2= 8.3K 例2:如图电路,求A vf,Ri 解: §8.3 积分电路和微分电路 8.3.1 积分电路 电容两端电压与电流的关系:

积分实验电路 积分电路的用途 将方波变为三角波(Vi:方波,频率500Hz,幅度1V)

实验 集成运算放大器的基本应用

实验集成运算放大器的基本应用(Ⅱ)——有源滤波器 一、实验目的 1、熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤波器。 2、学会测量有源滤波器的幅频特性。 二、实验原理 (a)低通(b)高通 (c) 带通(d)带阻 图9-1 四种滤波电路的幅频特性示意图 由RC元件与运算放大器组成的滤波器称为RC有源滤波器,其功能是让一定频率范围内的信号通过,抑制或急剧衰减此频率范围以外的信号。可用在信息处理、数据传输、抑制干扰等方面,但因受运算放大器频带限制,这类滤波器主要用于低频范围。根据对频率范围的选择不同,可分为低通(LPF)、高通(HPF)、带通(BPF)与带阻(BEF)等四种滤波器,它们的幅频特性如图9-1所示。 具有理想幅频特性的滤波器是很难实现的,只能用实际的幅频特性去逼近理想的。一般来说,滤波器的幅频特性越好,其相频特性越差,反之亦然。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络的节数越多,元件参数计算越繁琐,电路调试越困难。任何高阶滤波器均可以用较低的二阶RC有滤波器级联实现。 1、低通滤波器(LPF) 低通滤波器是用来通过低频信号衰减或抑制高频信号。 如图9-2(a)所示,为典型的二阶有源低通滤波器。它由两级RC滤波环节与同相比例运算电路组成,其中第一级电容C接至输出端,引入适量的正反馈,以改善幅频特性。 图9-2(b)为二阶低通滤波器幅频特性曲线。

(a)电路图 (b)频率特性 图9-2 二阶低通滤波器 电路性能参数 1 f uP R R 1A + = 二阶低通滤波器的通带增益 RC 2π1 f O = 截止频率,它是二阶低通滤波器通带与阻带的界限频率。 uP A 31 Q -= 品质因数,它的大小影响低通滤波器在截止频率处幅频特性的形状。 2、高通滤波器(HPF ) 与低通滤波器相反,高通滤波器用来通过高频信号,衰减或抑制低频信号。 只要将图9-2低通滤波电路中起滤波作用的电阻、电容互换,即可变成二阶有源高通滤波器,如图9-3(a)所示。高通滤波器性能与低通滤波器相反,其频率响应和低通滤波器是“镜象”关系,仿照LPH 分析方法,不难求得HPF 的幅频特性。 (a) 电路图 (b) 幅频特性 图9-3 二阶高通滤波器 电路性能参数A uP 、f O 、Q 各量的函义同二阶低通滤波器。 图9-3(b )为二阶高通滤波器的幅频特性曲线,可见,它与二阶低通滤波器的幅频特性曲线有“镜像”关系。 3、 带通滤波器(BPF )

相关主题
文本预览
相关文档 最新文档