当前位置:文档之家› 不确定原理及其它的数学推导

不确定原理及其它的数学推导

不确定原理及其它的数学推导
不确定原理及其它的数学推导

海森堡的不确定原理及其它的数学推导

今年12日5日是德国著名物理学家沃纳·海森伯(W.Heisenbery1901--1976)诞辰100周年纪念日;1901年12月5日, 海森伯出生于维尔茨堡古希腊语教师的家庭,19岁时成为慕尼里大学著名理论物理学家索末菲(Sommerfeld) 的弟子,1924年取得博士学位.1925年率先从修改经典分析力学的途径为创立量子力学矩阵形式作出了开拓性的工作,1927年提出了著名的“不确定原理”;这便成为20世纪物理学发展的一个重要里程碑。同时,他对原子核、铁磁性、宇宙射线、基本粒子等概念的理解作出了重大的改进,并于1932年获得诺贝尔物理学奖金,他被公认为20世纪最具创新能力的思想家之一;本文重在对海森伯在量子力学的矩阵形式和“不确定原理”这两项重要贡献作简单的历史性回顾,以示对这位伟人最真挚的纪念。

不确定原理

海森伯非常注重量子力学的物理图象和原理,他早就认识到,把经典的电子坐标换成量子的跃迁振幅,相当于要从量子理论来重新解释运动学,亦即要从量子论的图象来重新描述电子的运动.1926年薛定谔(Schrodinger )创立了波动力学,随后又证明了波动力学与量子力学完全等价.实际上,海森伯的量子力学选择了力学量随时间改变而态不随时间改变的物理图象,薛定谔的波动力学则选择了态随时间改变而力学量不随时间改变的物理图象.电子运动的量子特征在海森伯图象中表现得很突出,而电子运动的波动特征在薛定谔图象中表现得十分清楚,电子运动的量子性和波动性已经被纳入了一个自洽和完整的理论体系.紧接着薛定谔的工作,玻恩用薛定谔波动方程研究量子力学的散射过程,提出了波函数的统计诠释,指出薛定谔波函数是一种几率振幅,它的绝对值的平方对应于测量到电子的几率分布.认识到了量子力学规律的统计性质,这就为海森伯提出量子力学的不确定原理在观念上奠定了基础.使海森伯疑惑不解的是:既然在量子力学中不需要电子轨道的概念,那又怎么解释威尔逊

(C.Wilson )云室里观察到的粒子径迹呢?经过几个月的思索,1927年初海森伯忽然想起,年前在一次讨论中,当他向爱因斯坦(Einstein )表示“一个完善的理论必须以直接可观测量作依据”时,爱因斯坦说道:“在原则上,试图单靠可观测量去建立理论那是完全错误的.实际上正好相反,是理论决定我们能够观测到什么东西”[7].在这一回忆的启发下,海森伯仿效爱因斯坦在狭义相对论里对同时性的定义方法,马上领悟到:云室里的径迹不可能精确地表示出经典意义下的电子路径或轨道,它原则上至多给出电子坐标和动量的一种近似的、模糊的描写.在这种想法指导下,他用高斯型波函数来研究量子力学对于经典图象的限制,立即导出了同时测量粒子的坐标和动量所受到的限制:海森伯引用狄拉克—约尔丹变换理论如下.对于位置坐标q 的一个高斯型波函数(或海森堡所称的“几率振幅”)由下式给出:[8]

??

????-?=22)(2exp )(q q q δψ常数 (11) 其中δq 是高斯凸包的半宽度,根据玻恩的几率诠释,它表示一个距离的范围.粒子几乎肯定处于此范围中,因而表示位置的测不准量(δq =q q ??,2为标准偏差)。按照交换理论,动量分布应为2)(p ?,其中)(p ?通过傅里叶变换得出:

dq q h ipq p )(2exp )(ψπ??∞

∞??? ??-= (12) 或 ()()dq h q p h q ip q q p ???? ??-???????????? ??+-=?∞

∞-222222ex p 221ex p δπδπδ? (13) 令 y h

q ip q q =+δπδ2 积分.海森堡得到

()??

????-?=22222exp )(h q p q δπψ常数 (14) 它表明动量的测不准量为

q h q δπδ2=

(15) 因此

π

δδ2h p q =

(16) 或 π4h p q =

?? (17) 这就是海森伯关于位置和动量的“不确定关系” .

后来,海森伯还通过对确定原子磁矩的斯特恩—盖拉赫(Stem Gerlach)实验的分析证明,原子穿过偏转场所费的时间越长,能量测量中的不确定性ΓΕ就越小。若我们要测量某几个定态的能量,那么因为偏转力的位能Ε在原子束的宽度d 内的变化不允许大于这些定态的能量差ΓΕ,所以偏转力之最大值为ΓΕ/d ;于是动量为p 的原子束的角偏转?由ΓΕ/pd 给出;但是,因为?至少必须等于决定原子束宽度d 的狭缝所引起的衍射角λ/d ,其中按照德布罗意关系λ=h /p ,于是海森伯得到结论:

pd t E pd h d ??≤=λ (18) 或

h t E ≥?? (19)

海森伯认为,这个方程“表明,能量的准确测定如何只有靠相应的对时间的不确定量才能得到”。[1]正如他在1929

年春天他在芝加哥大学发表了题为“量子论的物理原理”的演讲时指出的:“一般说来,任何一个测定某些物理量的实验,同时也就会改变以前所获得的另一些物理量的知识.即使定量地追溯这种影响,我们仍会发现,在很多情况下,同时测量两个不同物理量总是存在一个不能再提高的精度下限.相对论对经典概念进行批判的出发点,是假设不存在大于光速的信号速度.类似地,我们可以把同时测量两个不同的物理量有一个精度下限,即所谓不确定关系,假设为一条自然定律,并以此作为量子论对经典概念进行批判的出发点.这个‘不确定关系’告诉我们,要对原子过程作出一致描述,必须在多大程度上摆脱经典概念的限制.” [9]

海森伯后来很富有哲学意味地对他的不确定原理进行如下阐述:人在认识微观客体时,就如同一个瞎子想知道雪花的形状,于是用手摸一摸雪花,但是雪碰到手就化了,所以瞎子永远无法知道雪花的真正形状。同样,覌测过程中主体对客体的干扰,也使我们不可能真正知道客体的状况。

对γ射线显微镜实验的圆满的分析,应当从阿贝光学衍射理论的下述定理出发:显微镜的分辨本领的表示式为1/2sin ε(在空气。rl ),其中λ为所用的光的波长,2ε为透镜的直径在物点所张的角。因此任何位置测量都包含有物平面的χ方向上的一个不确定量

π

λ2=?x 若一个波长为λ从而动区为h /λ的光于沿χ轴射到一个电子处,电子在χ方向的动量分量为P x ,则在碰撞前之总动量为π=(h /λ) +p x 。对于用显微镜能观察到的电子。光量子必须被散射到角度上之内。即PA 与PB(极端向前散射与极端向后散射)之间的某个方向,其波长由于康普顿效应相应地在λ'与λ″之间。因此,被散射的光量子的动量x 分量处于-hsin ε/λ'与+hsin ε/λ″。从”之间。如果用p x '和p x ″相应表示在这两种极端的散射情况下电子量显的x 分量.那么动量守恒就要求

λ

επλε''+"=='-

'sin sin h p h p x x 或

λε

sin 2h p p p x x x =?="-'

其中用λ代替λ'和λ″,因为我们只对数量级感兴趣.由于无法--这是整个事情的关键—-精密判明光量子究竟是被散射到角2ε内的哪个方向,碰撞后电子动量的x 分量的不确定性不能更小了,这个Γp x 和Γx 一起,使得不能对碰撞后(换句话说测量之后)则粒子轨道作任何准确的确定或预言。显然,Γx Γp~h 。

海森堡在他在芝加哥的讲演中,沿用了肯纳德对他自已的推导(见上)的改进,对测不准关系证明如下。(我们把π2h 缩写为dx d ψ, 缩写为ψ',……,并假定ψ已归一化)。从关系式

dx x x ψψ?*>=<, dx x x ψψ22?*>=<, dx ih p ψψ'->=

dx h p ψψ''->=

**+'?ψ

ψψ(x '1)-=dx ψ 和不等式 02≥+'ψ

αψx

(其中α是一个任意的实常数) 可得 αα≥><+><2222 p x

选()122-><=x α并在2

22)(><->==

=0,海森堡得出了关系式①。 特哈尔和尼科耳<32>认为上述推导“不够严格”,因为α的选择是特殊的,并且“选择不同的值时人们所导出的Γx 与Γp 之间的关系将和海森堡关系完全不同”。为了严格地得出关系式(1),他们指出,应当取满足

0222

2≥><+->?< p x αα 的(Γx)2和(Γp)2最小组合,即上式中等号成立时(亦即0=+'ψαψx 时)所发生的(Γx)2和(Γp)2的组合;因为在所有其他情况下事情要更不利一些,因此π

4h p x ≥??普遍成立。戈米德和布拉加雷戈〈33〉反过来又批评这种推导“不完余余人满意” ,他们从上面关于α的二次三项式的判别式,恒不为正出发推导出(1)式,并且论证说海森堡的推导过程“永远成立,与Ψ的本性无关”。

后来对测不准关系的推导

康敦<34>研究了海森堡关系是否适用于任何一对非对易算符的问题.他争议说;(1)非对易性并不一定隐含有这种关系,(2)事实上,可以精确知道两个非对易算符的某些同时的值,以及(3)即使算符对易,精确度也可能受到限制。为了证明第一点,康敦考虑角动量分量L x 有确定值m 的氢原子波函数

)(cos )ex p()(θ?ψm l nlm P im r R =,

因为对这个态0=?z L ,显然△L x △L z =0,虽然L x 和L z 并不对易。为了证明上述第二点,康敦选取态Ψnoo ,这个态的Lx=Ly=Lz=0,因此也有△L x = △L y =△L z =0,最后,为了证明第三点。康敦指出,对于nlo ψ态(即 Lx=0)有LxLy-LyLz=0,虽然△L x ≠0及△L y ≠0。

在康敦完成他的论文之后五个星期,他在普林斯顿的巴耳末物理实验室的一个同事罗伯逊在一篇短文<35>中.首次普遍地证明,两个自伴算符A 和B 的标准偏差之积绝不会小于它们的对易子c=I(AB — BA)的平均的绝对值之半。他的证明已为大多数现代教科书所采用。令A 1为A 1=A -因而标准偏差△A

2

1(B 1同样定

义),并定义D 为D=A 1+i λB 1,其中λ为一实效,易得

222)()(0?A +><-?>=≤<+C B D D λλ

由于这个关于λ的二次多项式的判别式不能为正,因此有

ΓΑΓΒ≥BA -AB <2

1 对于A=q 和B=p ,罗伯逊得到π2ih c =,从而Γq Γp ≥h /4π,同海森堡的结果一致”。对于分母中的表面上的不符合(在海森堡的公式中分母为2π)狄奇本立即作了澄清,他还证明了(与J .L .辛格合作)当而且仅当散布是高斯型分布(正如海森堡所假定的川等号才成立。

对普遍公式的进一步改进是薛定愕得到的。我们从他同玻尔和爱因斯坦的通信“中得知.他曾对测不准关系的各种含意则如它们和一容器内的理想气体的原子的分立能级的可分辨性的关

系)极感兴趣。1930年春天,他研究了下述问题:在一次最佳的对P 、q 的问则测量中,不可避免的不确定性h /4π应如何在两个变量p 、q 之间分配,以使得在给定的一个后来时刻位置不确定性最小。他同素末菲讨论了这个问题。索末菲让他注意康敦和罗伯逊的论文。薛定愕立即看出罗伯逊的结果可以得到加强,因为对于任何两个自伴算符A 和B 以及对于任何态小都有

()()2

2222121)(??? ??B A -BA -AB +BA -AB ≥?B ?A 虽然薛定谔的公式中的最后一个平方项常常为零,如同在一切对正则共轭变量的最佳同时测量的情形那样,薛定谔的公式还是对罗伯逊的结果重要改进。

有好些的早期的量子力学教科书把海森堡的理想实验当成量子力学的“实验”基础或“逻辑”基础。不过,虽然如我们将看到的,这些理想实验对量子力学理论及其诠释的发展起过极其重要的作用,但是,主要由于这些理想实验对测不准关系的所谓操作解释,它们也容易受到这样的责难:虽然它们公开是想要否定古典物理学的本体论,但是暗中却又在某种程度上采用了它。

人教版数学四年级上册思维训练1:找规律 巧填数

四年级数学上期思维训练(一) ——找规律巧填数 例1:先找规律,再填数。 (1)1,2,4,7,11,16,(),29,() (2)2,4,8,16,(),(),() 练习:(1)1,5,11,19,29,(),55 (2)81,64,49,36,(),16,(),4,1 例2:先找出规律,在括号里填数。 (1)23,4,20,6,17,8,(),(),11,12 (2)1,1,2,3,5,8,13,(),34,55 练习:(1)21,2,19,5,17,8,(),() (2)2,9,6,10,18,11,54,(),(),13,486 (3)1,3,3,9,27,() (4)1,3,6,8,16,18,(),(),76,78 例3:下面每个括号里的两个数都是按一定的规律组合的,在□里填上适当的数。(100,96)(97,88)(91,75)(79,□) 练习:(1)(2,3),(5,7),(7,10),(10,□) (2)(100,50),(86,43),(64,32),(□,21) 例4:先计算第一题,再找出规律,并根据规律直接写得数。 12345679×9= 12345679×18= 12345679×27= 12345679×81= 练习:(1) 1×1= 11×11= 111×111= 1111×1111= 11111×11111= 111111×111111= 例5:观察下面的一组算式,找出规律,再在方框里填出适当的数。

(1)9×1+2=11 (2)9×12+3=111 (3)9×123+4=1111 (4)9×1234+5= (5)9×12345+6= (6)9×()+()=1111111 (7)()×()+()=11111111 (8)()×()+()=111111111 练习:先观察算式,找出规律,再填数。 (1)21×9=189 (2)321×9=2889 (3)4321×9=38889 (4)()×9=488889 (5)()×9=5()9 (6)()×9=68888889 例6:先观察算式,找出规律,然后填数。 3×4=12 33×34=1122 333×334=111222 3333×3334=() …… 33…3×33…34=() 练习: 9×4=36 99×44=4356 999×444=443556 9999×4444=() 99...9×44...4=44...4355 (56)

小学数学四年级上册《不确定性》资料不确定性原理

小学数学四年级上册 《不确定性》资料 不确定性原理: 不确定性原理(Uncertainty principle),是量子力学的一个基本原理,由德国物理学家海森堡(Werner Heisenberg)于1927年提出。本身为傅立叶变换导出的基本关系:若复函数f(x)与F(k)构成傅立叶变换对,且已由其幅度的平方归一化(即f*(x)f(x)相当于x 的概率密度;F*(k)F(k)/2π相当于k的概率密度,*表示复共轭),则无论f(x)的形式如何,x与k标准差的乘积ΔxΔk不会小于某个常数(该常数的具体形式与f(x)的形式有关)。 德国物理学家海森堡1927年提出的不确定性原理是量子力学的产物。这项原则陈述了精确确定一个粒子,例如原子周围的电子的位置和动量是有限制。这个不确定性来自两个因素,首先测量某东西的行为将会不可避免地扰乱那个事物,从而改变它的状态;其次,因为量子世界不是具体的,但基于概率,精确确定一个粒子状态存在更深刻更根本的限制。 海森伯测不准原理是通过一些实验来论证的。设想用一个γ射线显微镜来观察一个电子的坐标,因为γ射线显微镜的分辨本领受到波长λ的限制,所用光的波长λ越短,显微镜的分辨率越高,从而测定电子坐标不确定的程度△q就越小,所以△q∝λ。但另一方面,光照射到电子,可以看成是光量子和电子的碰撞,波长λ越短,光量子的动量就越大,所以有△q∝1/λ。再比如,用将光照到一个粒子上的方式来测量一个粒子的位置和速度,一部分光波被此粒子散射开来,由此指明其位置。但人们不可能将粒子的位置确定到比光的两个波峰之间的距离更小的程度,所以为了精确测定粒子的位置,必须用短波长的光。但普朗克的量子假设,人们不能用任意小量的光:人们至少要用一个光量子。这量子会扰动粒子,并以一种不能预见的方式改变粒子的速度。所以,位置要测得越准确,所需波长就要越短,单个量子的能量就越大,这样粒子的速度就被扰动得更厉害。简单来说,就是如果要想测定一个量子的精确位置的话,那么就需要用波长尽量短的波,这样的话,对这个量子的扰动也会越大,对它的速度测量也会越不精确。如果想要精确测量一个量子的速度,那就要用波长较长的波,那就不能精确测定它的位置[3] 。换而言之,对粒子的位置测得越准确,对粒子的速度的测量就越不准确,反之亦然。[3] 经过一番推理计算,海森伯得出:△q△p≥?/2。海森伯写道:“在位置被测定的一瞬,即当光子正被电子偏转时,电子的动量发生一个不连续的变化,因此,在确知电子位置的瞬间,关于它的动量我们就只能知道相应于其不连续变化的大小的程度。于是,位置测定得越准确,动量的测定就越不准确,反之亦然。”

小学数学解题思路技巧:找规律填数字

小学数学解题思路技巧:找规律填数字 [知识要点] 1.数列填数; 2.阵图填数。 [范例解析] 例1找规律填出后面三个数: ⑴ 3,4,6,9,13,18,______,______,______; ⑵ 56,61,47,44,______,______,______; ⑶ 3,9,27,______,______,______; ⑷ 7,14,21,28,______,______,______; ⑸ 0,1,1,2,3,5,8,______,______,______。 解⑴这一列数,从第二个数开始,逐渐增大,那它是按什么规律变化的呢?我们仔细观察,第二个数4比第一个数3大1;第三个数比第二个数大2;第四个数比第三个数大3;第五个数比第四个数大4;第六个数比第五个数大5。如图3-1所示。 即是按照加1、加2、加3、加4、……的规律加下去。因此,应填24,31,39。 ⑵这一列数正好⑴相反,它们是逐渐减少。其中,第二个数51比第一个数56少5;第三个数又比第二个数少4;第四个数比第三个数少3。如图3-2所示。 即是按照减5、减4、减3、……的规律减下去。因此,应填42,41,40。 ⑶这一列数中,第二个数是第一个数的3倍;第三个数又是第二个数的3倍,如图3-3所示。

图3-3 即是按照前一个数扩大3倍,得后一个数的规律算下去。因此,应填81,243,729。 ⑷ 我们观察发现,这一列数中的第二个数是第一个数的2倍,第三个数又是第一个数的3倍,第四个数是第一个数的4倍,如图3-4所示。 即是按照把第一个数扩大2倍、3倍、4倍……的规律酸下去因此,应填35,42,49。 ⑸ 这一列数的变化规律较复杂一点,要仔细地观察。我们改变一下观察研究的顺序,即从8起往左看,可看出:8是3+5的和,5又是它的前两个数2+3的和,3则是1+2的和,2是1+1的和,1是0+1的和。如图3-5所示。 即是按照后一个数是前两个数的和的规律算下去。因此,应填13,21,34。 说明 在一列数中填数,关键是要找出这列数中各数之间的变化规律,按规律酸下去,才能正确填才其中的缺数。 例2 你能把空缺的数填出来吗? 2 分析 我们发现,这已知的7个数字之间找不出它们的变化规律。因此,我们应该变换观察的角度,即分单双位上的数考虑,这就将一列数分才人下的两列数: 前一列数是按照后一个数是前一个数加1的规律算下去,因此,空缺数应填5。 2

透过不确定性原理看物理世界

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 题目:透过不确定性原理看物理世界 姓名:任丽行 学号:0103 专业:物理学 年级: 2008级 指导老师:宗福建 山东大学物理学院 二零一零年十二月 1

透过不确定性原理看物理世界 物理学院 2008级任丽行学号:0103 【摘要】不确定性原理由海森堡提出,表述了一个粒子的位置和动量不能被同时确定的最小程度。当粒子的位置非常确定时,其动量将会非常不确定。由此可以推广到许多对共轭物理量之间。不确定性原理是量子力学几率解释和波粒二象性的必然结果。在量子力学的发展史上,不确定性原理起到了极为重要的推动作用,尤其是玻尔与爱因斯坦两位物理学大师关于海森堡关系的争论,更是为相对论量子力学的发展奠定了基础。 【关键词】不确定性;海森堡;波粒二象性;理想实验 1.引言 本文主要研究了海森堡不确定性原理提出的背景、推理过程、后续的讨论与发展,以及它对量子力学与整个物理学的发展所起的推动作用。文中主要涉及三位物理学大师:海森堡、玻尔和爱因斯坦。由海森堡提出并论证的不确定性关系是玻尔互补原理的最好证明。爱因斯坦通过设计一系列的理想实验企图反驳不确定性原理,没想到反过来证明了不确定性原理的正确性。本文就是以不确定性原理为主线,把它与互补原理及波粒二象性联系在一起,简单地讨论了它的涵义以及量子力学的一些基本问题,从而透过不确定性原理来瞻仰近代物理学的发展历程。 2.理论背景 不确定性原理又名“测不准原理”,英文名为“Uncertainty principle”,是量子力学的一个基本原理,由德国物理学家海森堡于1927年提出。不确定性原理是指在一个量子力学系统中,一个粒子的位置和它的动量不可被同时确定。位置和动量满足如下关系: 2

不确定性原理的前世今生

不确定性原理的前世今生 · 数学篇(一) 在现代数学中有一个很容易被外行误解的词汇:信号 (signal)。当数学家们说起「一个信号」的时候,他们脑海中想到的并不是交通指示灯所发出的闪烁光芒或者手机屏幕顶部的天线图案,而是一段可以具体数字化的信息,可以是声音,可以是图像,也可是遥感测量数据。简单地说,它是一个函数,定义在通常的一维或者多维空间之上。譬如一段声音就是一个定义在一维空间上的函数,自变量是时间,因变量是声音的强度,一幅图像是定义在二维空间上的函数,自变量是横轴和纵轴坐标,因变量是图像像素的色彩和明暗,如此等等。 在数学上,关于一个信号最基本的问题在于如何将它表示和描述出来。按照上面所说的办法,把一个信号理解成一个定义在时间或空间上的函数是一种自然而然的表示方式,但是它对理解这一信号的内容来说常常不够。例如一段声音,如果单纯按照定义在时间上的函数来表示,它画出来是这个样子的: 这通常被称为波形图。毫无疑问,它包含了关于这段声音的全部信息。但是同样毫无疑问的是,这些信息几乎没法从上面这个「函数」中直接看出来,事实上,它只不过是巴赫的小提琴无伴奏 Partita No.3 的序曲开头几个小节。下面是巴赫的手稿,从某种意义上说来,它也构成了对上面那段声音的一个「描述」: 这两种描述之间的关系是怎样的呢?第一种描述刻划的是具体的信号数值,第二种描述刻划的是声音的高低(即声音震动的频率)。人们直到十九世纪才渐渐意识到,在这两种描述之间,事实上存在着一种对偶的关系,而这一点并不显然。 1807 年,法国数学家傅立叶 (J. Fourier) 在一篇向巴黎科学院递交的革命性的论文 Mémoire sur la propagation de la chaleur dans les corps solides (《固体中的热传播》)中,提出了一个崭新的观念:任何一个函数都可以表达

一年级 找规律填数

姓名(1)2、3、4、5、6、() (2)3、6、9、12、() (3)19、17、15、13、() (4)1、3、2、6、3、9、()、() (5)12、5、13、5、14、5、()、() (6)1、4、7、10、13、() (7)10、1、9、2、8、3、7、4、()、() (8)5、10、15、20、() (9)2、6、10、14、18、() (10)5、50、6、51、7、52、8、53、()、()(11)5、8、11、14、17、() (12)2、3、5、8、13、() (13)4、8、12、16、() (14)1、6、2、7、3、8、4、9、()、() (15)1、2、3、5、8、13、() (16)3、4、7、11、18、() (17)20、3、19、6、18、9、17、12、()、()(18)*1、2、4、7、11、16、()

姓名1、空格中应填什么数? 12 10 16 15 5 7 2 8 13 3 9 2、找出规律,“?”处填几? 9 14 ?12 2 4 9 4 4 6 8 2 3 1 4 ? 3、在空格里填上合适的数 2 3 4 5 10 9 8 4 4、按规律填数 5 8 7 9 10 15 16 24 14 21

5、按规律在空格处填上合适的数 2 5 8 11 1 3 16 9 3 6 9 12 1 4 17 6、在下面的圆中填上合适的数,使每条线上的三个数相加的各都是13 7、在下面的圆中填上合适的数,使每条线上的三个数相加的各都是15 8、1、3、5、7、() 2、5、8、11、14、() 1、5、 2、6、 3、7、 4、8、() 25、2、20、4、15、6、10、8、()、()

浅析不确定性原理的哲学内涵

浅析不确定性原理的哲学内涵 摘要:不确定性原理作为量子力学中的基本原理之一,主要描述了对两个力学量算符在任一时刻其几率分布宽度的的关系。本文先介绍了何为不确定性原理,再重点阐释了对不确定性原理的哲学审视,最后在借鉴先哲们精粹思想的同时也对不确定性原理提出了一些浅显的看法。 关键词:不确定性原理变量哲学 1、引言 海森堡提出的不确定性原理以其特殊的性质给科学和哲学解释提出了挑战。不确定性原理,告诉我们微观客体的任何一对互为共轭的不确定变量都不可能同时确定出确定值,使人们放弃了经典的轨道概念。这表明,几率性、随机性、偶然性,并非是由于人类认识能力不足所导致的,而是自然界客观事物的本性。科学的发展要求从哲学层次来认识不确定性原理在科学理论中的作用和地位,分析它的本体论及认识论内涵,总结其基本特征,进而为不确定性原理的科学研究提供富有启示意义的哲学观念和方法论原则。 2、不确定性原理 不确定性原理(Uncertainty principle),是量子力学的一个基本原理,由德国物理学家海森堡于1927年提出,它反映了微观粒子运动的基本规律。 在云室(一种观察微观粒子运动径迹仪器)中观察到的电子径迹的解释上,海森堡的想法是如何用已知的数学形式去描述云室中的电子径迹。云室中的径迹并不是能反映粒子明确位置和速度的一条无限细的线,在云室中看到的电子径迹的宽度要比电子本身的线度大得多,这可能代表了电子的位置具有某种不确定性。通过推算,得到了一种不确定性原理,它表明:同时严格确定两个共轭变量(如位置和速度,时间和能量等)的数值是不可能的,它们的数值准确度有个下限。这是一条自然定律,它说明,在微观粒子层次上,同时得到一个粒子运动的位置和速度的严格准确的测量值在原则上是不可能的。用这个理论去解释试验中所观察到的电子轨迹,经过重新的分析整理,最终确定:云室中电子径迹并不是一条连续的线,实质上它是一系列离散而模糊的斑点,它们近似排列成线,并非真正的电子“径迹”,也就是说电子的位置是不确定的。 海森堡进一步验证此不确定性满足新的量子力学,得到了标准的量子条件:Pq-qP=h/2π (P为动量,q为与动量对应的位置,h为普朗克常量s)。 由上式出发,海森堡导出了位置和与速度相关的p的不确定关系式:ΔpΔq≥h。 3、不确定性原理的哲学思考 不确定性原理告诉人们:经典的轨道概念已不再适用,像经典物理学精确把握宏观物体那样将微观粒子的信息精确测出也是不可能的。更重要的是,波函数的统计诠释与不确定性原理两者可共存于一个理论体系,不确定性原理可以由量子力学基本公设推导,而且推导结果也没有超出量子力学的几率诠释。我们需要将二者结合起来,看看它们究竟告诉了我们什么。 有一些社会科学工作者,由于望文生义或不太理解量子力学理论,认为不确定性原理之不确定,几率诠释之几率。深入的思考者则认为,几率诠释告诉我们微观粒子之状态我们不能百分百把握,而不确定性原理则干脆将“不确定”确定下来,告诉我们不确定不是我们的仪器有什么问题,而是客观世界正是如此,不仅

测不准关系理论推导

学号:20125041015 课程论文 学院:物理电子工程学院 专业:物理学 年级:2012级物理学班 姓名:坤 论文题目:测不准关系的理论推导 成绩:

2016 年 1 月 2 日 目录 摘要 (1) Abstract (1) 1.引言 (1) 2.历史发展 (1) 3.测不准关系实验验证 (3) 4.相关质疑 (3) 5.意义 (4) 5.1理论意义 (4) 5.2现实意义 (4) 6.总结 (4) 参考文献 (4)

测不准关系的理论推导 学生:坤学号: 学院:物理电子工程学院专业:物理学 摘要:在量子力学里,测不准关系表明,粒子的位置与动量不可同时被确定,位置的不确定性与动量的不确定性遵守不等式。一个微观粒子的某些物理量,如位置和动量,或方位角与动量矩,还有时间和能量等,不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大。 关键词:波粒二象性,不确定原理 1引言 测不准原理,又称“不确定性原理”、“不确定关系”,是量子力学中的一个重要关系,也是一个相当深奥的问题[1]。表明粒子的位置与动量不可同时被确定,它反映了微观客体的特征。即一个微观粒子的某些成对的物理量不可能同时具有确定的数值。例如位置与动量、力一位角与角动量,其中一个量越确定,另一个量就越不确定。它来源于物质的波粒二象性,测不准关系是从粒子的波动性中引出来的。 2历史发展 1900年普朗克为了解释黑体辐射的实验规律提出能量量子化的概念;1905年爱因斯坦为了解释光电效应引入光子的概念;1913年玻尔提出的氢原子理论中运用光子概念构造了频率条件;1923年,德布罗意提出物质波假设:实物粒子与光相似,也具有波粒二象性。1925年6月,维尔纳·海森堡发表论文《运动与机械关系的量子理论重新诠释》创立了矩阵力学。旧量子论渐渐式微,现代量子力学正式开启[2]。海森堡在论文里提出,只有在实验里能够观察到的物理量才具有物理意义,才可以用理论描述其物理行为。海森堡抓住云室实验中观察电

不确定性原理的推导

不确定性原理的推导 一、(普遍的)不确定性原理推导: 对于任意一个可观测量A ,有(见(12)式): 2??()() A A A ΨA A Ψf f σ=--= (1) 式中:?()f A A ψ≡- 同样地,对于另外一个可观测量 B ,有: 2 B g g σ= 式中:?(g B B ψ≡- 由施瓦茨不等式(见(16)式),有: 2 22 A B f f g g f g σσ=≥ (2) 对于一个复数z (见(17)式): 2 22221 [Re()][Im()][Im()][ ()]2z z z z z z i *=+≥=- (3) 令z f g =,(2)式: 2 2 21[]2A B f g g f i σσ?? ≥- ??? (4) 又 ??()()f g A A B B ψψ=-- ?? ()()ΨA A B B ψ=-- ???? ()ΨAB A B B A A B ψ=--+ ???? ΨAB ΨB ΨA ΨA ΨB ΨA B ΨΨ=-++ ?? AB B A A B A B =--+ ??AB A B =- 类似有: ?? f g BA A B =-

所以 ?????? ,f g g f AB BA A B ??-=-=?? (5) 式中对易式:??????,A B AB BA ??≡-? ? 把(5)代入(4),得(普遍的)不确定性原理: 2 22 1??,2A B A B i σσ????≥ ????? (6) 二、位置与动量的不确定性 设测试函数f (x ),有(见(23)式): []d d ,()()()d d x p f x x f xf i x i x ??=-???? d d d d d d f x f x i i x i x i x ? ?= -- ??? ()i f x = (7) 去掉测试函数,则: [],=x p i (8) 令??,A x B p ==,把(8)代入(6): 2 222x p σσ?? ≥ ??? 由于标准差是正值,所以位置与动量的不确定性: 2 x p σσ≥ (9)

不确定性原理(非平稳作业)

学生:李洋学号:2014524019 不确定性原理(Uncertainty principle),又称“测不准原理”、“不确定关系”。傅立叶变换导出的基本关系:若复函数f(x)与F(k)构成傅立叶变换对,且已由其幅度的平方归一化(即f*(x)f(x)相当于x的概率密度;F*(k)F(k)/2π相当于k的概率密度,*表示复共轭),则无论f(x)的形式如何,x与k标准差的乘积ΔxΔk不会小于某个常数(该常数的具体形式与f(x)的形式有关)。海森堡证明,对易关系可以推导出不确定性,或者,使用玻尔的术语,互补性:不能同时观测任意两个不对易的变量;更准确地知道其中一个变量,则必定更不准确地知道另外一个变量。该原理表明:一个微观粒子的某些物理量(如位置和动量,或方位角与动量矩,还有时间和能量等),不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大。「不确定性原理」也有了新的形式。在连续情形下,我们可以讨论一个信号是否集中在某个区域内。而在离散情形下,重要的问题变成了信号是否集中在某些离散的位置上,而在其余位置上是零。数学家给出了这样有趣的定理: 一个长度为N 的离散信号中有a 个非零数值,而它的傅立叶变换中有 b 个非零数值,那么a+b ≥ 2√N。也就是说一个信号和它的傅立叶变换中的非零元素不能都太少。但是借助不确定性原理,却正可以做到这一点!原因是我们关于原信号有一个「很多位置是零」的假设。那么,假如有两个不同的信号碰巧具有相同的K 个频率值,那么这两个信号的差的傅立叶变换在这K 个频率位置上就是零。另一方面,因为两个不同的信号在原本的时空域都有很多值是零,它们的差必然在时空域也包含很多零。不确定性原理(一个函数不能在频域和时空域都包含很多零)告诉我们,这是不可能的。 在传统的信号理论中,频域空间和原本的时空域相比,信息量是一样多的,所以要还原出全部信号,必须知道全部的频域信息,就象是要解出多少个未知数就需要多少个方程一样。我的理解:测量物必然改变被测物,在微观世界的测量,改变值无法忽略,物质是否具有确定性是不可知的。不确定性原理是世界自身存在的原理,与测量与否没有关系。 王老师,我所研究的领域是微弱信号检测,研究传感器自身噪声,并且通过仿真模拟。 领域相关期刊:电子学报

人工智能不确定性推理部分参考答案教学提纲

人工智能不确定性推理部分参考答案

不确定性推理部分参考答案 1.设有如下一组推理规则: r1: IF E1 THEN E2 (0.6) r2: IF E2 AND E3 THEN E4 (0.7) r3: IF E4 THEN H (0.8) r4: IF E5 THEN H (0.9) 且已知CF(E1)=0.5, CF(E3)=0.6, CF(E5)=0.7。求CF(H)=? 解:(1) 先由r1求CF(E2) CF(E2)=0.6 × max{0,CF(E1)} =0.6 × max{0,0.5}=0.3 (2) 再由r2求CF(E4) CF(E4)=0.7 × max{0, min{CF(E2 ), CF(E3 )}} =0.7 × max{0, min{0.3, 0.6}}=0.21 (3) 再由r3求CF1(H) CF1(H)= 0.8 × max{0,CF(E4)} =0.8 × max{0, 0.21)}=0.168 (4) 再由r4求CF2(H) CF2(H)= 0.9 ×max{0,CF(E5)} =0.9 ×max{0, 0.7)}=0.63 (5) 最后对CF1(H )和CF2(H)进行合成,求出CF(H) CF(H)= CF1(H)+CF2(H)+ CF1(H) × CF2(H) =0.692

2 设有如下推理规则 r1: IF E1 THEN (2, 0.00001) H1 r2: IF E2 THEN (100, 0.0001) H1 r3: IF E3 THEN (200, 0.001) H2 r4: IF H1 THEN (50, 0.1) H2 且已知P(E1)= P(E2)= P(H3)=0.6, P(H1)=0.091, P(H2)=0.01, 又由用户告知: P(E1| S1)=0.84, P(E2|S2)=0.68, P(E3|S3)=0.36 请用主观Bayes方法求P(H2|S1, S2, S3)=? 解:(1) 由r1计算O(H1| S1) 先把H1的先验概率更新为在E1下的后验概率P(H1| E1) P(H1| E1)=(LS1× P(H1)) / ((LS1-1) × P(H1)+1) =(2 × 0.091) / ((2 -1) × 0.091 +1) =0.16682 由于P(E1|S1)=0.84 > P(E1),使用P(H | S)公式的后半部分,得到在当前观察S1下的后验概率P(H1| S1)和后验几率O(H1| S1) P(H1| S1) = P(H1) + ((P(H1| E1) – P(H1)) / (1 - P(E1))) × (P(E1| S1) – P(E1)) = 0.091 + (0.16682 –0.091) / (1 – 0.6)) × (0.84 – 0.6) =0.091 + 0.18955 × 0.24 = 0.136492 O(H1| S1) = P(H1| S1) / (1 - P(H1| S1)) = 0.15807 (2) 由r2计算O(H1| S2) 先把H1的先验概率更新为在E2下的后验概率P(H1| E2) P(H1| E2)=(LS2×P(H1)) / ((LS2-1) × P(H1)+1)

小学一年级数学找规律填数

找规律填数 一年级数学教案 教学目标 ( 一 ) 使学生初步认识最简单的数列. ( 二 ) 教会学生通过观察、归纳、抽象出数列的规律,培养学生观察能力和抽象思维能力. ( 三 ) 使学生能用较完整的语言叙述数列的规律,培养学生的表达能力. ( 四 )

在认识规律的同时,并能按规律填数,培养学生的推理能力.( 五 ) 培养学生认真观察和爱动脑筋的好习惯. 教学重点和难点 重点:学会找规律,按规律填数. 难点:培养学生观察能力,发现规律. 教学过程设计 ( 一 ) 复习准备 1 .按要求数数. (1) 一个一个地数,从四十数到五十二. (2) 两个两个地数,从二数到二十.

五个五个地数,从五数到五十.(4) 十个十个地数,从十数到一百.2 .在横线上填数. (1)3 连续加 3 ,每次加得的和写在横线上.(2)6 连续加 6 ,每次加得的和写在横线上.(3)48 连续减 4 ,每次减得的差写在横线上.(

) 学习新课 1 .谈话. 师:今天动物园里召开运动会,有 7 只小兔参加了一百米赛跑,它们参加比赛的号码是按一定规律排列的,可是教练员点名时,发现有两只小兔迟到了,这两只小兔子的号码各是多少呢?你们能猜出来吗? ( 此时学生十分兴奋,都想参与猜号码 ) 今天我们就一起来认识数列的规律,学习按规律填数. 板书课题:找规律填数 2 .教学例 1 . (1)

出示: 1 4 7 10 13 □ □ 师:像这样几个数按次序排列起来的,称它为数列. 请学生跟读“数列”. (2) 探索: 师:从整体看,后面的数与前面的数比较,有什么特点?生:后面的数比前面的数大. 师:每相邻两个数是怎样变化的? ( 在投影仪上演示 ) 你发现了什么规律?

二年级数学下册重要知识点:找规律填数的方法

找规律填数 知识导航 找规律在奥数题目中属于常见题型,主要分为找规律填图和找规律填数。在之前的课程里面我们已经接触过这一类型的题,这一讲我们继续加深对这一类型题目的认识和理解。小朋友们,要认真观察、勇敢地去探索规律,相信你们都能找出空缺的数。 精典例题 例1 :找规律填数 1)1,3,5 ,7,(),() 。 2 )65, 60 55 , 50 ,(),()。 3)1, 10 ,1 00 ,1000 ,() , ( )。 4)1,2, 4 , 7,11,(),()。 5)1,2, 4 , 8,(),( ) 。 6 )1,3,4 ,7,11,(),(),() 思路点拨 第( 1 )题,从左往右依次增加;第( 2 )题从左往右依次减少;第( 3 ) 题,从左往右依次在末尾添加一个,或者说依次乘;第(4)题从左往右,相邻两个数相差1,2,3,4 ??第( 5 )题中, 1 ×2=2,2 ×2=4,4 ×2 =8 ,所以,8×2 =??第(6)题中,从第三个数开始,每个数都等于前面两个数的和。

模仿练习 找规律填数。 1)2,4 , 6,8,())。 2 ) 1, 5 , 9, 13 , ( ) , ()。 3 ) 2, 20 , 200 , 2000 , (),()。 4 ) 1, 2 , 2,4,3,6,4,8 ,(),()。 5 ) 49 ,4 2 ,35 ,()(),()。 6 ) 4, 6 , 9, 13 , ( ) , 24 ,()。 7 )10081 ,64 ,( ) , 36 ,25 ,(),9,4, 1 例2 :仔细观察下列组图,在每一组的“?”处填上合适的数 3)

测不准关系理论推导

课程论文 学院:物理电子工程学院 专业:物理学 年级: 2012级物理学班 姓名:李赵坤 论文题目:测不准关系的理论推导成绩:

2016 年 1 月 2 日 目录 摘要 (1) Abstract (1) 1.引言 (1) 2.历史发展 (1) 3.测不准关系实验验证 (3) 4.相关质疑 (3) 5.意义 (4) 5.1理论意义 (4) 5.2现实意义 (4) 6.总结 (4) 参考文献 (4)

测不准关系的理论推导 学生姓名:李赵坤学号:20125041015 学院:物理电子工程学院专业:物理学 摘要:在量子力学里,测不准关系表明,粒子的位置与动量不可同时被确定,位置的不确定性与动量的不确定性遵守不等式。一个微观粒子的某些物理量,如位置和动量,或方位角与动量矩,还有时间和能量等,不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大。 关键词:波粒二象性,不确定原理 1引言 测不准原理,又称“不确定性原理”、“不确定关系”,是量子力学中的一个重要关系,也是一个相当深奥的问题[1]。表明粒子的位置与动量不可同时被确定,它反映了微观客体的特征。即一个微观粒子的某些成对的物理量不可能同时具有确定的数值。例如位置与动量、力一位角与角动量,其中一个量越确定,另一个量就越不确定。它来源于物质的波粒二象性,测不准关系是从粒子的波动性中引出来的。 2历史发展 1900年普朗克为了解释黑体辐射的实验规律提出能量量子化的概念;1905年爱因斯坦为了解释光电效应引入光子的概念;1913年玻尔提出的氢原子理论中运用光子概念构造了频率条件;1923年,德布罗意提出物质波假设:实物粒子与光相似,也具有波粒二象性。1925年6月,维尔纳·海森堡发表论文《运动与机械关系的量子理论重新诠释》创立了矩阵力学。旧量子论渐渐式微,现代量子力学正式开启[2]。海森堡在论文里提出,只有在实验里能够观察到的物理量才具有物理意义,才可以用理论描述其物理行为。海森堡抓住云室实验中观察电子径迹的问题进行思考。他试图用矩阵力学为电子径迹作出数学表述,意识到关键在于电子轨道的本身有问题。人们看到的径迹并不是电子的真正轨道,而是水滴串形成的雾迹,所以人们也许只能观察到一系列电子的不确定的位置,而不是电子的准确轨道。

三年级数学上找规律填数

按一定规律排列的一列数叫做数列,例如 1,2,3,4,5,6,7,8,9,10,...... 就是自然数排成的数列,每个数比前一个大1,第n个数就是n。 数列中的每一个数叫做这个数列的项,其中第1个数称为这个数列的第1项,第2个数称为第2项...... 通过观察数列,可以发现它的内在规律,填出所缺的数,这里的规律应力求简单明了。 【例1】发现下列各数列的规律,在括号内填上合适的数。 (1)1,3,5,(),9; (2)2,4,8,16,32,(),(). 随堂练习1 发现规律,在括号中填入适当的数; 2,4,6,8,10,(),(). 【例2】找出数列的排列规律,并在括号内填入适当的数。 1,4,7,10,13,(),19. 随堂练习2 发现规律,在括号中填入适当的数; 2,5,8,11,(),17,(). 【例3】有一排加法算式: 4+2,5+8,6+14,7+20,...

按这个规律排的第10个加法算式是怎样的它的结果是多少 随堂练习3 如何求出这排加法算式的第1999个 【例4】观察已有数的规律,在()内填入恰当的数。 随堂练习4 你能根据这一规律,写出杨辉三角形第7层、第8层的所有的数吗 【例5】观察下面数列的规律,在括号内填上适当的数; 3,5,9,15,23,33,45,(). 随堂练习5 发现规律,在括号内填上适当的数: 1,4,9,16,25,(),49,64. 练习题

找规律,在()内填数: 1. 130,125,120,115,(),105,(). 2. 10,13,16,19,(),25,(). 3. 0,3,6,9,(),(),(). 4. 1,4,9,16,(),(),(). 5. 1,3,9,27,81,(),(). 6. 1,2,4,8,16,(),(). 7. 0,2,2,4,6,10,(),(). 8. 1,3,4,7,11,18,(),(). 9. 1,1,1,3,5,9,(),(). 10. 0,1,2,3,6,11,(),(). 11. 75,70,65,60,(),(),45(). 12. 320,160,80,40,(),(),().

不确定性原理的前世今生 · 数学篇

在现代数学中有一个很容易被外行误解的词汇:信号(signal)。当数学家们说起「一个信号」的时候,他们脑海中想到的并不是交通指示灯所发出的闪烁光芒或者手机屏幕顶部的天线图案,而是一段可以具体数字化的信息,可以是声音,可以是图像,也可是遥感测量数据。简单地说,它是一个函数,定义在通常的一维或者多维空间之上。譬如一段声音就是一个定义在一维空间上的函数,自变量是时间,因变量是声音的强度,一幅图像是定义在二维空间上的函数,自变量是横轴和纵轴坐标,因变量是图像像素的色彩和明暗,如此等等。 在数学上,关于一个信号最基本的问题在于如何将它表示和描述出来。按照上面所说的办法,把一个信号理解成一个定义在时间或空间上的函数是一种自然而然的表示方式,但是它对理解这一信号的内容来说常常不够。例如一段声音,如果单纯按照定义在时间上的函数来表示,它画出来是这个样子的: 这通常被称为波形图。毫无疑问,它包含了关于这段声音的全部信息。但是同样毫无疑问的是,这些信息几乎没法从上面这个「函数」中直接看出来,事实上,它只不过是巴赫的小提琴无伴奏Partita No.3 的序曲开头几个小节。下面是巴赫的手稿,从某种意义上说来,它也构成了对上面那段声音的一个「描述」: 这两种描述之间的关系是怎样的呢?第一种描述刻划的是具体的信号数值,第二种描述刻划的是声音的高低(即声音震动的频率)。人们直到十九世纪才渐渐意识到,在这两种描述之间,事实上存在着一种对偶的关系,而这一点并不显然。 1807 年,法国数学家傅立叶(J. Fourier) 在一篇向巴黎科学院递交的革命性的论文Mémoire sur la propagation de la chaleur dans les corps solides (《固体中的热传播》)中,提出了一个崭新的观念:任何一个函数都可以表达为一系列不同频率的简谐振动(即简单的三角函数)的叠加。有趣的是,这结论是他研究热传导问题的一个副产品。这篇论文经拉格朗日(J. Lagrange)、拉普拉斯(P-S. Laplace) 和勒让德(A-M. Legendre) 等人审阅后被拒绝了,原因是他的思想过于粗糙且极不严密。1811 年傅立叶递交了修改后的论文,这一次论文获得了科学院的奖金,但是仍然因为缺乏严密性而被拒绝刊载在科学

【数学】找规律填数

---------------------------------------------------------------范文最新推荐------------------------------------------------------ 找规律填数 (一)使学生初步认识最简单的数列。 (二)教会学生通过观察、归纳、抽象出数列的规律,培养学生观察能力和抽象思维能力。 (三)使学生能用较完整的语言叙述数列的规律,培养学生的表达能力。 (四)在认识规律的同时,并能按规律填数,培养学生的推理能力。 (五)培养学生认真观察和爱动脑筋的好习惯。 教学重点和难点 重点:学会找规律,按规律填数。 1 / 8

难点:培养学生观察能力,发现规律。 教学过程设计 (一)复习准备 1.按要求数数。 (1)一个一个地数,从四十数到五十二。(2)两个两个地数,从二数到二十。 (3)五个五个地数,从五数到五十。 (4)十个十个地数,从十数到一百。 2.在横线上填数。 (1)3连续加3,每次加得的和写在横线上。(2)6连续加6,每次加得的和写在横线上。

---------------------------------------------------------------范文最新推荐------------------------------------------------------ (3)48连续减4,每次减得的差写在横线上。 (二)学习新课 1.谈话。 师:今天动物园里召开运动会,有7只小兔参加了一百米赛跑,它们参加比赛的号码是按一定规律排列的,可是教练员点名时,发现有两只小兔迟到了,这两只小兔子的号码各是多少呢?你们能猜出来吗?(此时学生十分兴奋,都想参与猜号码)今天我们就一起来认识数列的规律,学习按规律填数。 板书课题:找规律填数 2.教学例1. (1)出示:1 4 7 10 13 □□ 师:像这样几个数按次序排列起来的,称它为数列。 3 / 8

小学数学《找规律填数》练习题

小学数学《找规律填数》练习题 1.观察规律,在横线上填上合适的数。 (1) 1、2、3、4、5、____; (2) 1、3、5、7、9、____; (3) 12、10、8、6、4、____; (4) 15、12、9、6、____; 2.观察规律,在横线上填上合适的数。 (1) 1、2、4、5、7、8、10、____; (2) 1、3、4、6、7、9、10、____; (3) 15、12、10、7、5、____; (4) 13、9、6、4、____; 3.观察规律,在横线上填上合适的数。 1、5、 2、6、 3、7、 4、8、 5、____; 4.远处走来两队可爱的小狗,小明仔细一看,发现所有的小狗身上都有编号,这时一队小狗的主人开始嚷嚷,他说自己丢了一只狗狗,另一队小狗的主人数了数自己的狗狗,发现多了一只,但是到底是哪一只呢,好伤脑筋呀,聪明的小朋友,你知道吗? 第一队:1、3、7、9、11; 第二队:1、4、5、7、10、13; 5.观察规律,在空格内填上合适的数。 6.观察规律,在空格内填上合适的数。 7.观察规律,在横线上填上合适的数。 (1) 3、5、8、10、13、15、18、_______、23; (2) 1、2、4、7、11、16、_______、29; (3) 1、5、3、5、5、5、7、5、_______、_______、11; (4) 101、19、92、28、83、_______、_______、46; 8.观察规律,在横线上填上合适的数。

,4,9,61,,63,94,,18; 9.观察前面的两个三角形里面的数字有什么排列的规律,在空格里填上合适的数字。 10.观察规律,在空格内填上合适的数。 34 8 45 10 32 16 52 26 42 35 55 48 43 11.观察规律,在空格内填上合适的数。 1 1 1 1 2 1 1 3 3 1 1 4 4 1 1 5 5 1 1 6 20 6 1 12.观察规律,在横线上填上合适的数。 1 1 1 2 1 1 2 1 1 1 1 1 2 2 1 3 1 2 2 1 1

不确定性推理方法研究word版

不确定性推理 摘要:对3种最常用的不确定性推理方法进行了分析和评述:概率推理、D-S证据推理和模糊推理。分别针对不同类型的不确定性。概率推理针对的是"事件发生与否不确定"这样的不确定性。D-S证据推理针对的是"分不清"或"不知道"这样的不确定性。模糊推理则是针对概念内涵或外延不清晰这样的不确定性。概率推理的理论体系是严密的,但其推理结果有赖可信的先验概率和条件概率。D-S证据推理是不可信的,但在一定条件下可以转化为概率推理问题来处理。模糊推理是一种很有发展潜力的推理方法,主要问题是推理规则需要具体设计,且设计好坏决定推理结果。 关键词:不确定性推理概率推理 D-S证据论模糊推理 引言 近年来,不确定性推理技术引起了人们的重视。这一方面是由于现实问题中普遍含有种种的不确定性,因此对不确定性推理技术有很大的需求。另一方面也在于不断出现的不确定性推理技术出现了一些问题,引起了人们的热议。 本文对三种应用最为广泛的不确定性推理技术进行了分析和评述。它们是:概率推理、D-S证据推理和模糊推理。它们分别具有处理不同类型的不确定性的能力。概率推理处理的是“事件发生与否不确定”这样的不确定性;D-S证据推理处理的是含有“分不清”或“不知道”信息这样的不确定性;模糊推理则是针对概念内涵或外延不清晰这样的不确定性。这些不确定性在实际的推理问题中是非常普遍的,因此这3种推理技术都有广泛的应用。 然而,这些推理技术在实际中的应用效果相差很大。有的得出的推理结果非常合理,用推理结果去执行任务的效果也非常好。也有的效果很差,推理结果怪异,完全背离人的直觉。应用效果差的原因可能是所用推理技术本身的缺陷,也可能是应用者对所用技术了解掌握不够。 无论如何,都非常有必要对这些不确定性推理技术进行一番对比分

测不准原理的理解及应用

不确定性原理的理解及应用 姓名: 班级: 学号:

摘要:不确定性原理作为量子力学中的一个重要组成部分,从海森堡提出至今一直受到各方争论和质疑。本文主要介绍不确定性原理的简单理解以及应用,对初学者理解不确定性原理是很有帮助的。 关键词:测量,准确性, 正文: 1.引言: 唯物主义告诉我们:物质是不依赖于人的意识的客观存在;时间的本质是物质而不是意识;先有物质后有意识;意识只不过是物质在人脑中的客观反映而已。这些都是正确的观念。然而随着二十世纪自然科学的发展,尤其是人们在探索微观世界发现了新的规律,被某些唯心主义者引用来向唯物主义的基本观点发难。其中倍受争议的是著名物理学家海森堡的“不确定性原理”。 2. 不确定性原理的介绍: 不确定性原理(Uncertainty principle),又称“测不准原理”、“不确定关系”,是量子力学的一个基本原理,由德国物理学家海森堡于1927年提出。本身为傅立叶变换导出的基本关系:若复函数f(x)与F(k)构成傅立叶变换对,且已由其幅度的平方归一化(即f*(x)f(x)相当于x的概率密度;F*(k)F(k)/2π相当于k的概率密度,*表示复共轭),则无论f(x)的形式如何,x与k标准差的乘积ΔxΔk不会小于某个常数(该常数的具体形式与f(x)的形式有关)。 该原理表明:一个微观粒子的某些物理量(如位置和动量,或方位角与动量矩,还有时间和能量等),不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大。测量一对共轭量的误差(标准差)的乘积必然大于常数h/4π(h是普朗克常数)是海森堡在1927年首先提出的,它反映了微观粒子运动的基本规律——以共轭量为自变量的概率幅函数(波函数)构成傅立叶变换对;以及量子力学的基本关系(E=h/2π*ω,p=h/2π*k),是物理学中又一条重要原理。【1】 3:不确定性原理的发现: 1927年,海森堡在经过长期的探索后提出了不确定性原理。他对此原理的解释是:设想一个电子,要观测到它在某个时刻的位置,则须用波长较短、分辨性好的光子照射它,但光子有动量,它与波长成正比,故光子波长越短,光子动量越大,对电子动量的影响也越大;反之若提高对动量的测量精度,则须用波长较长的光子,而这又会引起位置不确定度的增加。因而不可能同时准确地测量一个微观粒子的动量和位置,原因是被测物体与测量仪器之间不可避免的发生了相互作用。 人们习惯于对物体运动轨迹的准确描述,大到天体如何运行,小到微尘如何飞扬。这种认识必须基于对物体能够准确定位。为了预测一个物体的运动状态,必须准确测量它的位置和速度。测定必须施加一个物理作用于作为被测对象的物体之上,这在任何一种测量中都无法幸免。显然,对在微观粒子尺度空间的测量方法用光照最合适。然而,光照是无法把粒子的位置确定到比光的波长更小的程度的。为了测定的准确,必须用更短波长的光,这意味着光子的能量更高,这样测定对粒子速度的扰动将很厉害。因此,不能同时准确的测定粒子的位置和速度。事实上,宏观世界和微观世界都受到不确定性原理的制约,只不过对宏观物体的测量,一定波长的光已经足够精确,且扰动对其速度的影响小到远远无法计较。

相关主题
文本预览
相关文档 最新文档