当前位置:文档之家› 高中数学导数的概念、运算及其几何意义练习题

高中数学导数的概念、运算及其几何意义练习题

高中数学导数的概念、运算及其几何意义练习题
高中数学导数的概念、运算及其几何意义练习题

导数的概念、运算及其几何意义

黑龙江 依兰高中 刘 岩

A 组基础达标

选择题:

1.已知物体做自由落体运动的方程为21(),2

s s t gt ==若t ?无限趋近于0时, (1)(1)s t s t

+?-?无限趋近于9.8/m s ,那么正确的说法是( ) A .9.8/m s 是在0~1s 这一段时间内的平均速度

B .9.8/m s 是在1~(1+t ?)s 这段时间内的速度

C .9.8/m s 是物体从1s 到(1+t ?)s 这段时间内的平均速度

D .9.8/m s 是物体在1t s =这一时刻的瞬时速度.

2. 已知函数f ’ (x)=3x 2 , 则f (x)的值一定是( )

A. 3x +x

B. 3x

C. 3x +c (c 为常数)

D. 3x+c (c 为常数)

=x 2+b x +c

f /(x)的图象是( )

4.下列求导数运算错误..的是( ) A.

20122013x 0132c x ='+)( (c 为常数) B. x xlnx 2lnx x 2+=')( C. 2x

cosx xsinx x cosx +=')( D . 3ln 33x x =')( 5..已知曲线2

3ln 4

x y x =-的一条切线的斜率为12,则切点的横坐标为( ) A . 2

B . 3

C . 12

D .1 填空题:

1.若2012)1(/

=f ,则x f x f x ?-?+→?)1()1(lim 0= ,x

f x f x ?--?+→?)1()1(lim 0= ,x x f f x ??+-→?4)1()1(lim 0= , x f x f x ?-?+→?)1()21(lim 0= 。 2.函数y=(2x -3)2 的导数为 函数y= x -e

的导数为

A x

D

C x B

3. 若函数()f x 满足,321()(1),3

f x x f x x '=-?-则(1)f '的值

B 组能力过关

选择题:

(2010全国新课标高考题) 曲线2

x y x =+在点(-1,-1)处的切线方程为 ( ) A. y=2x +1 B. y=2x -1 C.y=-2x -3 D.y=-2x -2 填空题:

(哈九中2012届高三11月份月考试题) 已知函数1

1)1ln()(+-+-+=x a ax x x f , 若曲线)(x f y =在点))1(,1(f 处的切线与直线12:+-=x y l 平行,则 a 的值

参考答案

A 组基础达标

选择题: 1.D 2.C 3.A 4.C 5.B

填空题: 1. 2012,-2012,-503,2024;

提示: x

f x f x ?-?+→?)1()1(lim 0=2012)1(/=f ; x f x f x ?--?+→?)1()1(lim 0=-x

f x f x ?-?+→?)1()1(lim 0= -=)1(/f -2012 x x f f x ??+-→?4)1()1(lim 0=41-x f x f x ?-?+→?)1()1(lim 0=4

1-=)1(/f -503 x f x f x ?-?+→?)1()21(lim 0= 2x

f x f x ?-?+→?2)1()21(lim 0=2=)1(/f 2048 (∵x ?→0,则2x ?→0)

2. 8x -12 , -x e -

3. 0

提示:(1)f '为常数,f ’ (x)=x 2-2(1)f 'x -1,

令x=1则(1)f '=1-2(1)f '-1,解得(1)f '=0

B 组能力过关

选择题: A 填空题: 3

提示:f ’ (x)=-1x 1+a +2)

1(+x a ,∵)(x f y =在点))1(,1(f 处的切线与 直线12:+-=x y l 平行,而直线12:+-=x y l 的斜率为-2,∴f ’ (1)=-2

1 +a+

2

)1

1(+

a

=-2,解得a=3.

f’(1)=-

1

1

高中数学导数的概念、运算及其几何意义练习题

导数的概念、运算及其几何意义 黑龙江 依兰高中 刘 岩 A 组基础达标 选择题: 1.已知物体做自由落体运动的方程为21(),2 s s t gt ==若t ?无限趋近于0时, (1)(1)s t s t +?-?无限趋近于9.8/m s ,那么正确的说法是( ) A .9.8/m s 是在0~1s 这一段时间内的平均速度 B .9.8/m s 是在1~(1+t ?)s 这段时间内的速度 C .9.8/m s 是物体从1s 到(1+t ?)s 这段时间内的平均速度 D .9.8/m s 是物体在1t s =这一时刻的瞬时速度. 2. 已知函数f ’ (x)=3x 2 , 则f (x)的值一定是( ) A. 3x +x B. 3x C. 3x +c (c 为常数) D. 3x+c (c 为常数) 3. 若函数f(x)=x 2+b x +c 的图象的顶点在第四象限,则函数f / (x)的图象是( ) 4.下列求导数运算错误.. 的是( ) A. 20122013x 0132c x ='+)( (c 为常数) B. x xlnx 2lnx x 2+=')( C. 2x cosx xsinx x cosx +=')( D . 3ln 33x x =')( 5..已知曲线23ln 4x y x =-的一条切线的斜率为12 ,则切点的横坐标为( ) A . 2 B . 3 C . 12 D .1 填空题: 1.若2012)1(/ =f ,则x f x f x ?-?+→?)1()1(lim 0= ,x f x f x ?--?+→?)1()1(lim 0= ,x x f f x ??+-→?4)1()1(lim 0= , x f x f x ?-?+→?)1()21(lim 0= 。 2.函数y=(2x -3)2 的导数为 函数y= x -e 的导数为 A x D C x B

导数的计算及其几何意义

导数的计算及其几何意义 一、导数的概念及其几何意义 1.函数的平均变化率: 定义:已知函数()y f x =,0x ,1x 是其定义域内不同的两点,记10x x x ?=- 10y y y ?=-10()()f x f x =-00()()f x x f x =+?-,则当0x ?≠时,商 00()()f x x f x y x x +?-?=??称 作函数()y f x =在区间00[,]x x x +?(或00[,]x x x +?)的平均变化率. 注意:这里x ?,y ?可为正值,也可为负值.但0x ?≠,y ?可以为0. 2.函数的瞬时变化率、函数的导数: 定义:设函数()y f x =在0x 附近有定义,当自变量在0x x =附近改变量为x ?时,函数值相应的改变00()()y f x x f x ?=+?-.如果当x ?趋近于0时,平均变化 00()()f x x f x y x x +?-?=??趋近于一个常数l (也就是说平均变化率与某个常数l 的差的绝对值越来越小,可以小于任意小的正数),那么常数l 称为函数()f x 在点0x 的瞬时变化率. “当x ?趋近于零时,00()() f x x f x x +?-?趋近于常数l ”可以用符号“→”记作:“当0 x ?→时, 00()()f x x f x l x +?-→?”,或记作“000()() lim x f x x f x l x ?→+?-=?”,符号“→”读作“趋近于”.函数在0x 的瞬时变化率,通常称为()f x 在0x x =处的导数,并记作0()f x '.这时又称()f x 在0x x =处是可导的.于是上述变化过程,可以记作“当0x ?→时, 000()() ()f x x f x f x x +?-'→?” 或 “0000 ()() lim ()x f x x f x f x x ? →+?-'=?”. 注:0'()f x 是个数. 3.可导与导函数: 定义:如果()f x 在开区间(,)a b 内每一点都是可导的,则称()f x 在区间(,)a b 可导.这样,对开区间(,)a b 内每个值x ,都对应一个确定的导数()f x '.于是,在区间(,)a b 内,()f x '构

导数的概念及运算

导数的概念及运算 一、选择题 1.设曲线y=e ax-ln(x+1)在x=0处的切线方程为2x-y+1=0,则a=( ) A.0 B.1 C.2 D.3 解析∵y=e ax-ln(x+1),∴y′=a e ax- 1 x+1 ,∴当x=0时,y′=a-1.∵ 曲线y=e ax-ln(x+1)在x=0处的切线方程为2x-y+1=0,∴a-1=2,即a=3.故选D. 答案 D 2.若f(x)=2xf′(1)+x2,则f′(0)等于( ) A.2 B.0 C.-2 D.-4 解析∵f′(x)=2f′(1)+2x,∴令x=1,得f′(1)=-2, ∴f′(0)=2f′(1)=-4. 答案 D 3.(2017·西安质测)曲线f(x)=x3-x+3在点P处的切线平行于直线y=2x-1,则P点的坐标为( ) A.(1,3) B.(-1,3) C.(1,3)和(-1,3) D.(1,-3) 解析f′(x)=3x2-1,令f′(x)=2,则3x2-1=2,解得x=1或x=-1,∴P(1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y=2x-1上,故选C. 答案 C 4.(2017·石家庄调研)已知曲线y=ln x的切线过原点,则此切线的斜率为( ) A.e B.-e C.1 e D.- 1 e 解析y=ln x的定义域为(0,+∞),且y′=1 x ,设切点为(x0,ln x0),则 y′|x=x 0= 1 x ,切线方程为y-ln x0= 1 x (x-x0),因为切线过点(0,0),所

以-ln x 0=-1,解得x 0=e ,故此切线的斜率为1 e . 答案 C 5.(2016·郑州质检)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则 g ′(3)=( ) A.-1 B.0 C.2 D.4 解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-1 3,∴f ′(3)=- 1 3 ,∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,所以g ′(3)=1+3×? ???? -13=0. 答案 B 二、填空题 6.(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数, f ′(x )为f (x )的导函数,若f ′(1)=3,则a 的值为________. 解析 f ′(x )=a ? ? ???ln x +x ·1x =a (1+ln x ),由于f ′(1)=a (1+ln 1)=a , 又f ′(1)=3,所以a =3. 答案 3 7.(2016·全国Ⅲ卷)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________. 解析 设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,f (x )=ln x -3x , f ′(x )=1 x -3,f ′(1)=-2,切线方程为y =-2x -1. 答案 2x +y +1=0

导数的计算与导数的几何意义高考试题汇编(含答案)

专题三 导数及其应用 第七讲 导数的计算与导数的几何意义 2019年 1.(2019全国Ⅰ文13)曲线2)3(e x y x x =+在点(0,0)处的切线方程为___________. 2.(2019全国Ⅱ文10)曲线y =2sin x +cos x 在点(π,–1)处的切线方程为 A .10x y --π-= B .2210x y --π-= C .2210x y +-π+= D .10x y +-π+= 3.(2019全国三文7)已知曲线e ln x y a x x =+在点1e a (,)处的切线方程为y =2x +b ,则 A .a=e ,b =-1 B .a=e ,b =1 C .a=e -1,b =1 D .a=e -1,1b =- 4.(2019天津文11)曲线cos 2 x y x =- 在点()0,1处的切线方程为__________. 5.(2019江苏11)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的 切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 . 2010-2018年 一、选择题 1.(2018全国卷Ⅰ)设函数32()(1)=+-+f x x a x ax .若()f x 为奇函数,则曲线()=y f x 在点(0,0)处的切线方程为 A .2=-y x B .y x =- C .2=y x D .=y x 2.(2017山东)若函数e ()x f x (e=2.71828L ,是自然对数的底数)在()f x 的定义域上单 调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是 A .()2 x f x -= B .2 ()f x x = C .()3 x f x -= D .()cos f x x = 3.(2016年山东)若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线 互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是 A .sin y x = B .ln y x = C .e x y = D .3y x = 4.(2016年四川)设直线1l ,2l 分别是函数ln ,01 ()ln , 1x x f x x x -<?,图象上点1P ,2P 处

导数练习题(含答案).

3 B 10 3 C 16 3 D 13 = 2 导数概念及其几何意义、导数的运算 一、选择题: 1 已知 f ( x ) = ax 3 + 3x 2 + 2 ,若 f '(-1) = 4 ,则 a 的值等于 A 19 3 2 已知直线 y = kx + 1 与曲线 y = x 3 + ax + b 切于点(1,3),则 b 的值为 A 3 B -3 C 5 D -5 3 函数 y (x + 2a )(x-a ) 的导数为 A 2( x 2 - a 2 ) B 3(x 2 + a 2 ) C 3(x 2 - a 2 ) D 2( x 2 + a 2 ) 1 4 4 曲线 y = x 3 + x 在点 (1, ) 处的切线与坐标轴围成的三角形的面积为 3 3 A 1 2 1 2 B C D 9 9 3 3 5 已知二次函数 y = ax 2 + bx + c 的导数为 f '( x ), f '(0) > 0 ,对于任意实数 x ,有 f ( x ) ≥ 0 ,则 最小值为 f (1) f '(0) 的 A 3 B 5 2 C 2 D 3 2 6 已知函数 f ( x ) 在 x = 1 处的导数为 3,则 f ( x ) 的解析式可能为 A C f ( x ) = ( x -1)2 + 3(x - 1) f ( x ) = 2( x - 1)2 B f ( x ) = 2( x - 1) D f ( x ) = x - 1 7 下列求导数运算正确的是 A 1 1 ( x + )' = 1 + x x 2 B (log x )' = 2 1 x ln 2 C (3x )' = 3x ? log e D ( x 2 cos x )' = -2 x sin x 3 8 曲线 y = A π 6 1 3 x 3 - x 2 + 5 在 x = 1 处的切线的倾斜角为 3π π π B C D 4 4 3 9 曲线 y = x 3 - 3x 2 + 1 在点 (1,-1) 处的切线方程为 A y = 3x - 4 B y = -3x + 2 C y = -4 x + 3 D y = 4 x - 5 10 设函数 y = x sin x + cos x 的图像上的点 ( x , y ) 处的切线斜率为 k ,若 k = g ( x ) ,则函数 k = g ( x ) 的图

高中数学知识点总结导数的定义及几何意义

导数的定义及几何意义 1.x x f x x f x f x ?-?+=→?)()(lim )(0000/ 叫函数)(x f y =在0x x →处的导数,记作0|/x x y = 。 注:①函数应在点0x 的附近有定义,否则导数不存在。②在定义导数的极限式中,x ?趋近 于0可正、可负、但不为0,而y ?可能为0。③x y ??是函数)(x f y =对自变量x 在x ?范围内的平均变化率,它的几何意义是过曲线)(x f y =上点(0x ,)(0x f )及点(0x +x ?, )(00x x f ?+)的割线斜率。④导数x x f x x f x f x ?-?+=→?)()(lim )(0000/是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在0x 点处变化的快慢程度,它的几何意义是 曲线)(x f y =上点(0x ,)(0x f )处的切线的斜率。⑤若极限x x f x x f x ?-?+→?)()(lim 000不存在,则称函数)(x f y =在点0x 处不可导。⑥如果函数)(x f y =在开区间),(b a 内每一点 都有导数,则称函数)(x f y =在开区间),(b a 内可导;此时对于每一个x ∈),(b a ,都对应 着一个确定的导数)(/x f ,从而构成了一个新的函数)(/x f ,称这个函数)(/ x f 为函数)(x f y =在开区间),(b a 内的导函数,简称导数;导数与导函数都称为导数,这要加以区分: 求一个函数的导数,就是求导函数;求一个函数在给定点的导数,就是求导函数值。 [举例1]若2)(0/=x f ,则k x f k x f k 2)()(lim 000--→等于: (A) -1 (B) -2 (C) 1 (D) 1/2 解析:∵2)(0/=x f ,即k x f k x f k ---+→-)()]([lim 000=2?k x f k x f k 2)()(lim 000--→=-1。 [举例2] 已知0,a n >为正整数设()n y x a =-,证明1'() n y n x a -=- 解析:本题可以对()n y x a =-展开后“逐项”求导证明;这里用导数的定义证明: x a x a x x y n n x ?---?+=→?)()(lim 0/ =

北师大文科数学高考总复习练习:导数的概念及运算 含答案

第三章导数及其应用 第1讲导数的概念及运算 基础巩固题组 (建议用时:40分钟) 一、选择题 1.设y=x2e x,则y′= () A.x2e x+2x B.2x e x C.(2x+x2)e x D.(x+x2)e x 解析y′=2x e x+x2e x=(2x+x2)e x. 答案 C 2.已知函数f(x)的导函数为f′(x),且满足f(x)=2x·f′(1)+ln x,则f′(1)等于 () A.-e B.-1 C.1 D.e 解析由f(x)=2xf′(1)+ln x,得f′(x)=2f′(1)+1 x , ∴f′(1)=2f′(1)+1,则f′(1)=-1. 答案 B 3.曲线y=sin x+e x在点(0,1)处的切线方程是 () A.x-3y+3=0 B.x-2y+2=0 C.2x-y+1=0 D.3x-y+1=0 解析y′=cos x+e x,故切线斜率为k=2,切线方程为y=2x+1,即2x-y +1=0. 答案 C 4.(2017·成都诊断)已知曲线y=ln x的切线过原点,则此切线的斜率为

() A.e B.-e C.1 e D.- 1 e 解析y=ln x的定义域为(0,+∞),且y′=1 x ,设切点为(x0,ln x0),则y′|x =x0=1 x0 ,切线方程为y-ln x0=1 x0(x-x0),因为切线过点(0,0),所以-ln x0 =-1,解得x0=e,故此切线的斜率为1 e. 答案 C 5.(2017·昆明诊断)设曲线y=1+cos x sin x在点? ? ? ? ? π 2,1处的切线与直线x-ay+1=0 平行,则实数a等于 () A.-1 B.1 2 C.-2 D.2 解析∵y′=-1-cos x sin2x ,∴=-1. 由条件知1 a =-1,∴a=-1. 答案 A 二、填空题 6.若曲线y=ax2-ln x在点(1,a)处的切线平行于x轴,则a=________. 解析因为y′=2ax-1 x ,所以y′|x=1=2a-1.因为曲线在点(1,a)处的切线 平行于x轴,故其斜率为0,故2a-1=0,解得a=1 2. 答案1 2 7.(2017·长沙一中月考)如图,y=f(x)是可导函数,直线l:y=kx+2是曲线y=f(x) 在x=3处的切线,令g(x)=xf(x),其中g′(x)是g(x)的导函数,则g′(3)=________.

(完整word)高中数学导数练习题

专题8:导数(文) 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 解析:()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 解析:因为21= k ,所以()2 1 1'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()2 5 1=f ,所以()()31'1=+f f 答案:3 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 解析:443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例 4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 解析:Θ直线过原点,则()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02030023x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2+-=x x y ,∴ 在 () 00,y x 处曲线C 的切线斜率为()263'02 00+-==x x x f k ,∴

导数的概念、运算及几何意义

导数的概率、运算以及几何意义 1.函数的平均变化率: 一般地,已知函数()y f x =,0x ,1x 是其定义域内不同的两点,记10x x x ?=-, 10y y y ?=-10()()f x f x =-00()()f x x f x =+?-, 则当0x ?≠时,商00()()f x x f x y x x +?-?= ??称作函数()y f x =在区间[,]x x x +?(或00[,]x x x +?)上的平均变化率.2.函数的瞬时变化率、函数的导数: 设函数()y f x =在0x 附近有定义,当自变量在0x x =附近改变量为x ?时,函数值相应的改变00()()y f x x f x ?=+?-. 如果当x ?趋近于0时,平均变化率 00()() f x x f x y x x +?-?= ??趋近于一个常数,那么常数l 称为函数()f x 在点0x 的瞬时变化率. “当x ?趋近于零时,00()() f x x f x x +?-?趋近于常数l ”可以用符号“→”记作: “当0x ?→时,00()()f x x f x l x +?-→?”,或记作“000()() lim x f x x f x l x ?→+?-=?”,符号“→” 读作“趋近于”. 函数在0x 的瞬时变化率,通常称为()f x 在0x x =处的导数,并记作()f x '. 这时又称()f x 在0x x =处是可导的.于是上述变化过程,可以记作 “当0x ?→时,000()()()f x x f x f x x +?-'→?”或“0000()() lim ()x f x x f x f x x ?→+?-'=?”. 考点1: 导数的定义【铺垫】求下列函数在区间[]22x +?,和[]33x +?,上的平均变化率 ①()f x x = ②2()f x x = 【例1】 平均变化率与瞬时变化率 ⑴ 求下列函数在区间00[]x x x +?,上的平均变化率. ① ()f x x = ② 2()f x x = ③ 3()f x x = ④1 ()f x x = ⑤ ()f x ⑵ 求下列函数分别在1x =,2x =和3x =处的瞬时变化率. ① ()f x x = ② 2()f x x = ③ 3()f x x =④1 ()f x x =⑤()f x 【追问】从瞬时变化率角度分析每个函数的整体变化趋势,我们可以很明显的看出 对于一次函数,二次函数,三次函数来说,次数越高,往后变化越快. 【总结】由例1⑵看出一次函数的增长速度不变,二次函数三次函数的增长速度越来越快, 提高班学案1 【拓1】 求函数3()2f x x x =-在[]11x +?,上附近的平均变化率,在1x =处的瞬时变化率与 导数.

苏教版 导数的概念及运算

导数的概念及运算 一、填空题 1.设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为________. 解析 由f (x )=x ln x ,得f ′(x )=ln x +1.根据题意知ln x 0+1=2,所以ln x 0=1,因此x 0=e. 答案 e 2.设y =x 2e x ,则y ′=________. 解析 y ′=2x e x +x 2e x =()2x +x 2 e x . 答案 (2x +x 2)e x 3.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于________. 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1. 答案 -1 4.(2015·苏北四市模拟)设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a =________. 解析 由y ′=2ax ,又点(1,a )在曲线y =ax 2上,依题意得k =y ′|x =1=2a =2,解得a =1. 答案 1 5.(2015·湛江调研)曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为________. 解析 y ′|x =0=(-2e -2x )|x =0=-2,故曲线y =e -2x +1在点(0,2)处的切线方程为y =-2x +2,易得切线与直线y =0和y =x 的交点分别为(1,0),? ?? ?? 23,23,故围 成的三角形的面积为12×1×23=1 3. 答案 13 6.(2015·长春质量检测)若函数f (x )=ln x x ,则f ′(2)=________. 解析 ∵f ′(x )=1-ln x x 2,∴f ′(2)=1-ln 2 4.

导数练习题含答案

导数概念及其几何意义、导数的运算 一、选择题: 1 已知32 ()32f x ax x =++,若(1)4f '-=,则a 的值等于 A 193 B 103 C 16 3 D 133 2 已知直线1y kx =+与曲线3 y x ax b =++切于点(1,3),则b 的值为 A 3 B -3 C 5 D -5 3 函数2y x a a = +2 ()(x-)的导数为 A 222()x a - B 223()x a + C 223()x a - D 22 2()x a + 4 曲线313y x x =+在点4 (1,)3 处的切线与坐标轴围成的三角形的面积为 A 1 9 B 29 C 13 D 2 3 5 已知二次函数2 y ax bx c =++的导数为(),(0)0f x f ''>,对于任意实数x ,有()0f x ≥,则(1) (0) f f '的最小值为 A 3 B 52 C 2 D 32 6 已知函数()f x 在1x =处的导数为3,则()f x 的解析式可能为 A 2()(1)3(1)f x x x =-+- B ()2(1)f x x =- C 2()2(1)f x x =- D ()1f x x =- 7 下列求导数运算正确的是 A 211()1x x x '+=+ B 21 (log )ln 2 x x '= C 3(3)3log x x e '=? D 2 (cos )2sin x x x x '=- 8 曲线32 153 y x x =-+在1x =处的切线的倾斜角为 A 6 π B 34π C 4π D 3 π 9 曲线3 2 31y x x =-+在点(1,1)-处的切线方程为 A 34y x =- B 32y x =-+ C 43y x =-+ D 45y x =- 10 设函数sin cos y x x x =+的图像上的点(,)x y 处的切线斜率为k ,若()k g x =,则函数()k g x =的图像大致为

导数的几何意义及运算

导数的几何意义及运算复习 一、 导数的几何意义: )(0x f ?=x y ??=x x x x x f x f 0 000)()()(-?+-?+=x f x f x x ?-?+)()(00=K 当Δx----0时, )(0x f ? =K 趋近于一常数 二、 导数的求导公式及运算 典型例题: 例1、当h 无限趋近于0时,h h 4)4(22-+无限趋近于 ;h h 44-+无限趋近于 . 练习:若 )(0x f ?=3,当Δx 无限趋近于0时,x x f x f x x ??--?+)3()(00= . 例2.已知函数y=f(x)的图像在点(1,f(1))处的切线方程是x-2y+1=0,则'(1)2(1)f f += 训练1:已知函数y=f(x)的图像在点(0,f(0))处的切线方程是2x-y+2=0,则'(0)(0)f f += 2.曲线 '2(1) 1().(0)2x f x f x e f e x =-+在点(1,f(1))处的切线方程为 题型二:求切线方程 例3、已知曲线y=3 4313+x , (1)、求曲线在点P (2,4)处的切线方程; (2)、求斜率为4的曲线的切线方程; (3)、求过点P (2,4)的切线方程;

练习1:已知曲线3 y x = (1) 求曲线在点P (1,1)处的切线方程; (2) 求与直线3x-y=0平行的直线方程; (3) 求过点P(1,1)处的直线方程; 练习2:已知kx+1=㏑x 有实数解,求k 的取值范围 题型三:告诉切线方程求参数的值 例4:函数y=12+x a 图像与直线y=x 相切,则a= . 练习: 曲线y= 13++ax x 的一条切线方程为y=2x+1则实数a= 题型四:两个曲线的公切线 例5.若存有过点(1,0)的直线与曲线3y x =和21594 y ax x =+-都相切,则实数a= 例6已知曲线C 1:y=x 2与C 2:y=-)2(2-x ,直线l 与C 1,C 2都相切,求直线l 的方程.

导数的概念和几何意义同步练习题(教师版)

导数的概念和几何意义同步练习题 一、选择题 1.若幂函数()y f x =的图像经过点11(,)42 A ,则它在A 点处的切线方程是( ) A. 4410x y ++= B. 4410x y -+= C .20x y -= D. 20x y += 【答案】B 【解析】试题分析:设()a f x x =,把11(,)42A 代入,得1142a =,得12 a =,所以1 2()f x x ==() f x '= ,1 ()14f '=,所以所求的切线方程为11 24 y x - =-即4410x y -+=,选B.考点:幂函数、曲线的切线. 2.函数()x e x f x cos =的图像在点()()0,0f 处的切线的倾斜角为( ) A 、 4π B 、0 C 、4 3π D 、1 【答案】A 【解析】试题分析:由)sin (cos )('x x e x f x -=,则在点()()0,0f 处的切线的斜率1)0('==f k , 1.利用导数求切线的斜率; 2.直线斜率与倾斜角的关系 3.曲线x y e =在点2 (2)e ,处的切线与坐标轴所围三角形的面积为( ) A.2 e B.2 2e C.2 4e D.22 e 【答案】D 【解析】试题分析:∵点2 (2)e ,在曲线上,∴切线的斜率'22 2 x x x k y e e --===, ∴切线的方程为2 2 (2)y e e x -=-,即2 2 0e x y e --=,与两坐标轴的交点坐标为2 (0,)e -,(1,0), ∴22 1122 e S e =??=.考点:1.利用导数求切线方程;2.三角形面积公式. 4.函数2 ()f x x =在点(2,(2))f 处的切线方程为( ) A .44y x =- B .44y x =+ C .42y x =+ D .4y = 【答案】A 【解析】 试题分析:由x x f 2)(='得切线的斜率为4)2(='f ,又4)2(=f ,所以切线方程为)2(44-=-x y ,即44-=x y .也可以直接验证得到。考点:导数求法及几何意义 5.曲线e x y =在点A 处的切线与直线30x y -+=平行,则点A 的坐标为( ) (A )() 11,e -- (B )()0,1 (C )()1,e (D )()0,2

(完整版)导数的几何意义(基础练习题)

导数的几何意义(1) 1.设f(x)=1 x ,则lim x→a f x-f a x-a 等于( ) A.-1 a B. 2 a C.-1 a2 D. 1 a2 2.在曲线y=x2上切线倾斜角为π 4 的点是( ) A.(0,0) B.(2,4) C.(1 4 , 1 16 ) D.( 1 2 , 1 4 ) 3.设曲线y=ax2在点(1,a)处的切线与直线2x-y-6=0平行,则a=( ) A.1 B.1 2 C.-1 2 D.-1 4.若曲线y=h(x)在点P(a,h(a))处切线方程为2x+y+1=0,则( ) A.h′(a)<0 B.h′(a)>0 C.h′(a)=0 D.h′(a)的符号不定 5.一木块沿某一斜面自由下滑,测得下滑的水平距离s与时间t 之间的函数关系为s=1 8 t2,则当t=2时,此木块在水平方向的瞬时速

度为( ) A. 2 B. 1 C.12 D.14 6.函数f (x )=-2x 2+3在点(0,3)处的导数是________. 7.如图是函数f (x )及f (x )在点P 处切线的图像,则f (2)+f ′(2)=________. 8.设曲线y =x 2在点P 处的切线斜率为3,则点P 的坐标为________. 9.已知曲线y =2x 2上的点(1,2),求过该点且与过该点的切线垂直的直线方程. 10.求双曲线y =1 x 在点(1 2 ,2)处的切线的斜率,并写出切线方程.

导数的几何意义(2) 1.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那 么( ) A .f ′(x 0)>0 B .f ′(x 0)<0 C .f ′(x 0)=0 D .f ′(x 0)不存在 2.函数在处的切线斜率为( ) A .0 B 。1 C 。2 D 。3 3.曲线y =12x 2-2在点? ? ???1,-32处切线的倾斜角为( ) A .1 B. π4 C.5 4 π D .- π 4 4.在曲线y =x 2上切线的倾斜角为 π 4 的点是( ) A .(0,0) B .(2,4) C.? ?? ?? 14,116 D.? ?? ??12,14 5.设f (x )为可导函数,且满足lim x →0 f (1)-f (1-2x ) 2x =-1,则过曲线y =f (x )上点(1,f (1))处的切线斜率为( ) A .2 B .-1 C .1 D .-2 6.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在 B .与x 轴平行或重合 C .与x 轴垂直 D .与x

导数的概念及几何意义运算

一、选择题 1.若f ′(x 0)=2,则 f (x 0-k )-f (x 0)2k 等于( ) A .-1 B .-2 C .1 D.12 答案:A 3. 曲线f (x )=x 3+x -2在P 0点处的切线平行于直线y =4x -1, 则P 0点的坐标为( ) A .(1,0) B .(2,8) C .(1,0)或(-1,-4) D .(2,8)或(-1,-4) 解析:设P 0点的坐标为(x 0,y 0),由f (x )=x 3+x -2得:f ′(x )=3x 2+1, 令f ′(x 0)=4,即3x 2 o +1=4得x 0=1或x 0=-1,∴P 0点的坐标为(1,0)或(-1,-4). 答案:C 4.设函数f (x )是R 上以5为周期的可导偶函数,则曲线y =f (x )在x =5处的切线 的斜率为( ) A .-15 B .0 C.15 D .5 解析:由已知f ′(x )是R 上以5为周期的奇函数,则f ′(5)=f ′(0)=0. 答案:B 5. 设f (x )在x 0处可导,则 f (x 0+t )-f (x 0-t )t 的值等于________. 答案:2f ′(x 0) 6. 过原点作曲线y =e x 的切线,则切点的坐标为________,切线的斜率为________. 解析:设切点坐标为(x 0,y 0),由y =e x 知y ′=e x ,则y ′|x =x 0=e x 0, ∴y 0x 0=e x 0,即e x 0x 0 =e x 0,则x 0=1,因此切点坐标为(1,e).斜率为e. 答案:(1,e) e 7. 曲线y =x 3在点(a ,a 3)(a ≠0)处的切线与x 轴,直线x =a 所围成的三角形面积为16 , 则a =________. 解析:由y =x 3知y ′=3x 2,则y ′|x =a =3a 2.因此切线方程为y -a 3=3a 2(x -a ) 即y =3a 2x -2a 3,令y =0得:x =2a 3,令x =a 得y =a 3根据已知条件12|a -2a 3|·|a 3|=16 , 解得:a =±1. 答案:±1 1. 函数f (x )=(x +2a )(x -a )2的导数为( )

最新导数的概念及其几何意义同步练习题

导数的概念及其几何意义 1 一、选择题 2 1. 21y x =+在(1,2)内的平均变化率为( ) 3 A .3 B .2 C .1 D .0 4 2. 质点运动动规律23s t =+,则在时间(3,3)t +?中,相应的平均速度为( ) 5 A .6t +? B .9 6t t +?+ ? C .3t +? D .9t +? 6 3. 函数y =f (x )的自变量x 由x 0改变到x 0+⊿x 时,函数值的改变量⊿y 为() 7 A.f (x 0+⊿x ) B.f (x 0)+⊿x C. f (x 0)?⊿x D. f (x 0+⊿x )- f (x 0) 8 4.已知函数y =f (x )=2x 2-1的图像上一点(1,1)及邻近一点(1+⊿x ,1+⊿y ),则等于( ) 9 A.4 B.4x C.4+2⊿x D.4+2(⊿x )2 10 5. 一质点运动的方程为s =5-3t 2,则在时间[1,1+Δt ]内相应的平均速度为( ) 11 A. 3Δt +6 B. -3Δt +6 C. 3Δt -6 D. -3Δt -6 12 6.若函数y =f (x )在x 0处可导,则0 00 ()() lim h f x h f x h 的值( ) 13 A.与x 0,h 有关 B.仅与x 0有关,而与h 无关 C. 仅与h 有关,而与x 0无关 D. 与x 0,h 14 都无关 15 7. 函数y =x +1 x 在x =1处的导数是( ) 16 A.2 B.1 C.0 D.-1 17 8.设函数f (x )=,则()() lim x a f x f a x a 等于( ) 18

8导数的计算及其几何意义 - 难 -讲义

导数的计算及其 几何意义 知识讲解 一、导数的概念及其几何意义 1.函数的平均变化率: 定义:已知函数()y f x =,0x ,1x 是其定义域内不同的两点,记10x x x ?=- 10y y y ?=-10()()f x f x =-00()()f x x f x =+?-,则当0x ?≠时,商 00()()f x x f x y x x +?-?=??称 作函数()y f x =在区间00[,]x x x +?(或00[,]x x x +?)的平均变化率. 注意:这里x ?,y ?可为正值,也可为负值.但0x ?≠,y ?可以为0. 2.函数的瞬时变化率、函数的导数: 定义:设函数()y f x =在0x 附近有定义,当自变量在0x x =附近改变量为x ?时,函数值相应的改变00()()y f x x f x ?=+?-.如果当x ?趋近于0时,平均变化 00()()f x x f x y x x +?-?=??趋近于一个常数l (也就是说平均变化率与某个常数l 的差的绝对值越来越小,可以小于任意小的正数),那么常数l 称为函数()f x 在点0x 的瞬时变化率. “当x ?趋近于零时,00()() f x x f x x +?-?趋近于常数l ”可以用符号“→”记作:“当0 x ?→时, 00()()f x x f x l x +?-→?”,或记作“000()() lim x f x x f x l x ?→+?-=?”,符号“→”读作“趋近于”.函数在0x 的瞬时变化率,通常称为()f x 在0x x =处的导数,并记作0()f x '.这时又称()f x 在0x x =处是可导的.于是上述变化过程,可以记作“当0x ?→时, 000()() ()f x x f x f x x +?-'→?” 或 “0000 ()() lim ()x f x x f x f x x ? →+?-'=?”. 注:0'()f x 是个数.

导数的运算及几何意义

个性化教学辅导教案 1、某校从参加高三年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段后得到如图的频率分布直方图,请你根据频率分布直方图中的信息,估计出本次考试数学成绩的平均数为________. 2、已知△ABC 的顶点B 、C 在椭圆x 23 +y 2 =1上,顶点A 是椭圆的一个焦点,且 椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) A .2 3 B .6 C .4 3 D .12 3、如图已知圆的半径为,其内接的内角分别为和,现向圆内随机撒一粒豆子,则豆子落在内的概率为( ) A. B. C. D. 10ABC ?,A B 6045ABC ?3316π+334π+433π+1633 π +

1、导数的概念: 用定义法求函数f (x )=x 2-2x -1在x =1处的导数. 2.导数的几何意义: 曲线221y x =+在P (-1,3)处的切线方程是______________ 3.导数的运算: 求下列函数的导数: (1)y =e x ·ln x ; (2)y =x ????x 2+1x +1x 3 (3)y =sin 2????2x +π 3 (4)y =ln(2x +5) 1.学生对导数的概念不理解,没有学会利用定义求函数的导数; 2.本节课的知识点对于学生而言开始引入导数内容,难度中等,需要在对导数的定义理解的基础上,通过老师的总结引导,能够进行函数的导数运算,同时掌握导数的几何意义; 3.学生在学习导数时对公式的记忆不够熟练,对函数求导的练习量不够,学生学习比较积极,但是缺乏将知识融汇在一起的能力,总结归纳能力还需提高。

导数的概念与计算练习题带答案

导数的概念与计算练习 题带答案 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

导数概念与计算 1.若函数42()f x ax bx c =++,满足'(1)2f =,则'(1)f -=( ) A .1- B .2- C .2 D .0 2.已知点P 在曲线4()f x x x =-上,曲线在点P 处的切线平行于直线30x y -=,则点 P 的坐标为( ) A .(0,0) B .(1,1) C .(0,1) D .(1,0) 3.已知()ln f x x x =,若0'()2f x =,则0x =( ) A .2e B .e C .ln 22 D .ln 2 4.曲线x y e =在点(0,1)A 处的切线斜率为( ) A .1 B .2 C .e D .1e 5.设0()sin f x x =,10()'()f x f x =,21()'()f x f x =,…,1()'()n n f x f x +=,n N ∈,则2013()f x =等 于( ) A .sin x B .sin x - C .cos x D .cos x - 6.已知函数()f x 的导函数为'()f x ,且满足()2'(1)ln f x xf x =+,则'(1)f =( ) A .e - B .1- C .1 D .e 7.曲线ln y x =在与x 轴交点的切线方程为________________. 8.过原点作曲线x y e =的切线,则切点的坐标为________,切线的斜率为____________. 9.求下列函数的导数,并尽量把导数变形为因式的积或商的形式: (1) 1 ()2ln f x ax x x =-- (2) 2 ()1x e f x ax = + (3)21()ln(1)2 f x x ax x =--+ (4)cos sin y x x x =- (5)1cos x y xe -= (6)1 1 x x e y e +=-

专题05 导数的计算及其几何意义(解析版)

第5讲导数的计算及其几何意义 考点1:导数基本知识 导数的概念和几何意义 1. 函数的平均变化率: 已知函数y=f(x),x0,x1是其定义域内不同的两点,记Δx=x1?x0,Δy=y1?y0= f(x1)?f(x0)=f(x0+Δx)?f(x0),则当Δx≠0时,商f(x0+Δx)?f(x0) Δx =Δy Δx 称作函数y=f(x) 在区间[x0,x0+Δx](或[x0+Δx,x0])的平均变化率. 2. 函数的瞬时变化率、函数的导数: 设函数y=f(x)在x0附近有定义,当自变量在x=x0附近改变量为Δx时,函数值相应的改变Δy=f(x0+Δx)?f(x0). 如果当Δx趋近于0时,平均变化率Δy Δx =f(x0+Δx)?f(x0) Δx 趋近于一个常数l(也就是说平均变 化率与某个常数l的差的绝对值越来越小,可以小于任意小的正数),那么常数l称为函数f(x)在点x0的瞬时变化率. “当Δx趋近于零时,f(x0+Δx)?f(x0) Δx 趋近于常数l”可以用符号“→”记作:“当Δx→0时, f(x0+Δx)?f(x0) Δx →l”,或记作“lim Δx→0 f(x0+Δx)?f(x0) Δx =l”,符号“→”读作“趋近于”.函数在x0的 瞬时变化率,通常称为f(x)在x=x0处的导数,并记作f′(x0).这时又称f(x)在x=x0处是 可导的.于是上述变化过程,可以记作“当Δx→0时,f(x0+Δx)?f(x0) Δx →f′(x0)”或 “lim Δx→0f(x0+Δx)?f(x0) Δx =f′(x0)”. 3. 可导与导函数: 如果f(x)在开区间(a,b)内每一点都是可导的,则称f(x)在区间(a,b)可导.这样,对开区间(a,b)内每个值x,都对应一个确定的导数f′(x).于是,在区间(a,b)内,f′(x)构成一个新的函数,我们把这个函数称为函数y=f(x)的导函数.记为f′(x)或y′(或y x′).

相关主题
文本预览
相关文档 最新文档