(整理)外文文献译文(建筑工程)
- 格式:doc
- 大小:73.00 KB
- 文档页数:13
建筑施工质量管理体系外文翻译参考文献1. GB/T -2016 英文名称:Quality management systems--Requirements《质量管理体系要求》2. GB/T -2016 英文名称:Quality management systems--Guidelines for the application of ISO 9001:2015《质量管理体系应用指南》3. GB -2013 英文名称:Code for construction quality acceptance of building engineering《建筑工程质量验收规范》4. GB -2011 英文名称:Code for acceptance of constructional quality of masonry engineering《砌体工程施工质量验收规范》5. GB -2010 英文名称:Code for design of concrete structures《混凝土结构设计规范》6. GB -2013 英文名称:Standard for building drawing standardization《建筑施工图件编制规范》7. GB -2001 英文名称:Code for acceptance of construction quality of pile foundation engineering《桩基工程施工质量验收规范》8. /T 11-2017 英文名称:Technical specification for concrete structure of tall building《高层建筑混凝土结构技术规范》9. 63-2013 英文名称:Technical specification for strengthening of building structures using carbon fiber reinforced plastics 《建筑结构加固碳纤维布增强复合材料技术规范》10. 81-2002 英文名称:Technical specification for application of sprayed mortar in building construction and acceptance of quality 《建筑喷涂砂浆工程施工及质量验收技术规定》。
建筑设计外文翻译文献(文档含中英文对照即英文原文和中文翻译)外文:Structural Design of Reinforced Concrete Sloping Roof Abstract: This paper point out common mistakes and problems in actual engineering design according immediately poured reinforced concrete sloping roof especially common residential structure.It brings out layout and design concept use folded plate and arch shell structure in order to reduction or elimination beam and column Layout to reduce costs and expand use function for user of garret . The paper also discussed the need to open the roof holes, windows, and with other design with complex forms . The corresponding simple approximate calculation method and the structure treatment also described in this paper.Keywords : sloping roof;folded plate; along plane load;vertical plane load1. IntroductionIn recent years, reinforced concrete slope of the roof has been very common seen, the correct method of it’s design need establish urgently It’s target is to abolish or reduce the roof beams and columns, to obtain big room and make the roof plate "clean ". This not only benefits tructure specialty itself but also to the design of the building professionals to develop new field, and ultimately to allow users, property developers benefited,and so it has far-reaching significance.In the common practice engineering practice, a designer in the calculation of the mechanical model often referred sloping roof as vertical sloping roof under the projection plane Beam, or take level ridge, ramps ridge contour as a framework and increase unnecessary beam and tilt column . In fact ,the stress is similar between General square planar housing, double slope, multi-slope roof and arch, shell.Ping and oblique ridge are folded plate like “A”, whether layout beams and columns, its ridge line of the deformation pattern is different from the framework fundamentally. All these method will make the difference between calculation results and real internal structure force. During the construction process, housing backbone, plate bias department template has complex shapes, multi-angle bars overlap, installation and casting is very difficult. These projects are common in construction and is a typical superfluous. Some scholars use the elastic shell theory to analyze folded plate roof、internal force and deformation, reveals the vertical loads law of surrounding the base is neither level rise nor the vertical displacement which to some extent reflects the humps and shell’s features .But assume that boundary conditions which is very different from general engineering actual situation and covered the eaves of a vertical cross-settlement and bottom edge under the fundamental characteristics of rally, so it is not for general engineering design .2. Outlines of MethodsFor most frequently span, the way to cancel the backbone of housing, didn’t add axillary often. But in the periphery under the eaves to the framework need established grid-beam or beams over windows. For long rectangular planar multi-room, multi-column, building professionals in a horizontal layout of the partition wall between each pair of columns and the direction set deep into the same thickness width have possession of a gathering of the rafah beam profiles . Pull beam above has a two-slope roof plate affixed sloping beams expect smaller span. For residential,if it has no needs according construction professional, we will be able to achieve within the household no ceiling beams exposed, see figure 1. Similar lattice theory, this approach emphasizes the use of axial force component effe ct, But is different with the truss because it’s load distribution along the bar not only single but also along the axis of the plate. Generally each plate has force characteristics of folded plate, for bear gravity at the roof, wind, earthquake loads, caused the plate along with the internal force components, each plate is equivalent to strengthen the thin flange beams .Among vertical bearing , it is thin-walled beams anti-edge horizontal component to balance Wang thrust formed by arch shell effect. When plates bear the the vertical component load, each plate is equivalent to a solid edge embedded multilateral bearing plates .The design feature of this method is establish and perfect the sloping roof of the arch, folded plate system Consciously, at top of the roof, using a minimal level of rafah balance beam ramp at the level of thrust.It’s calculation methods can be divided into hand algorithm and computer paper, this paper focus on the hand algorithm.Hand algorithm take the single-slope plate of sloping roof plate as slider , through approximate overall analysis, Simplified boundary conditions of determine plate,solving load effect along level and vertical plane, Internal forces of various linear superposition under the condition of assumption of normal straight, testing stability and integrated reinforcement. The method pursuit of operational, use general engineer familiar calculation steps to address more complex issues.This method is suitable for the framework structure, little modifications also apply to masonrystructure or Frame-wall structure. General arch structure have good anti-seismic performance, if designed properly, the sloping roof will also do so. In this paper the pseudo-static is used to analysis earthquake effects.3. Analysis and Design for Along Plane Effect of LoadsFirst regard to cross profile of figure 1,we analysis equal width rectangular parts of long trapezoidal panels 1、2. as for approximate calculation,it is take plane loads along plane as a constant just like four rectangular plate can be simplified to one-way slab,we take along to long unit width narrow structure as analysis object ,take hinged arch model shown in figure 2.图2a图3a图2b图3b图2c图3cIn Figure 2 the right supports vertical linkage representatives roof beams supporting role, ramps connecting rod on behalf of the board itself thin beam reaction effect which is virtual and approximate equivalent. We would like to calculate two anti-bearing.Because the total pressure of physical project through two plate roof beams and transfer to the ends column, So Anti two numerical difference can be seen as two plates bear along with the plane load and roof beams bear the vertical load pressure. Two Anti power link expressions in Various conditions were given as follows, because the model take units width,so the results is line averageload distribution except it has Focus quality in house.They are bouth represent by N , English leftover subscript s, b, represent the plane along the roof panels and vertical role in the roof beam, g, w, e,represent gravity, air pressure and the level of earthquake separately. d, c, represent distribution of concentrated load or effect separately, In the formula h is thicness of every plate,g is gravitation acceleration, a is roof for the horizontal seismic acceleration value formula, Wk represent the standard value Pressure.m with number footnotesrepresent every numbered ramp the quality distribution per unit area ,m with english footnotes represent quality of per location.as to two symmetrical slopes, the formula can be more concise.Figure 2a represent situation of vertical gravity load ,these formulas as follows:()()'''111100110cos cos 38cos cos cos cos L AL L m L AL N l h l h l m ωαβμααββ-=++ ()()()()'10000000101'100000cos cos 2cos cos 8sin cos 8sin cos cos 8sin cos cos cos l l l l l h m m s h N l l h h l h l μαβωααηαβωμβββαββααβ++-=--++()()()()101101110100001012111cos 2cos cos 2L L L L L L L m LL L L mLL L L L L L N h B hL hL LIμξβαβ⎡⎤⎛⎫⎛⎫⎛⎫--+-+--+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦=++()()()()()001001110011200101021000110111121cos sin 2sin 2sin cos cos A L h L m LL L L mL L m a L L L L h h L m l m N L L L Ah L L k B h L h L δδββββαβ⎛⎫⎛⎫⎡⎤⎛⎫-+-+--+ ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦=+---++Figure 2b represent situation of bear wind load, these formulas as follows:()()222211122111cos cos cos 8cos cos cos cos wkL h L L S li N a L h h b ωαωββαβα-=++ ()()()()22222001111222212110cos cos cos 11cos cos cos cos sin 5cos sin cos cos sin cos k K L h l w L w w h w h m L N l l AL h L a h L αωαβαβλαβααββββαββ⎡⎤-⎡⎤+⎢⎥=+++-+⎢⎥++⎢⎥⎣⎦⎣⎦Figure 2c represent situation of role of level earthquake, these formulas as follows:()()2222210011022001sin cos sin cos 3sin cos cos cos cos cos a a L h l L L N L h l hl αμβαωαβωβδαβαβδβ+=--+ ()()()()222221011120322222102101sin cos sin cos sin sin sin 3cos 2ln cos 5ln cos cos cos cos a l h m l m L m m m N n s l l l g h l h l δβααβαββββαβαβαβ++=++++ ()()()0010011012110121000111sin cos 2cos 2cos cos cos a a L L m L L L n L L L L L nh L N L l h l h l ββαβαβ⎡⎤⎛⎫⎛⎫-+-+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥=+⎢⎥+⎢⎥⎢⎥⎣⎦ ()00000201sin 2cos a a L m L L L h L l θβα⎡⎤⎛⎫-+-⎢⎥ ⎪⎝⎭⎣⎦+()()()2000010121001sin sin cos sin cos sin cos cos 2sin cos a e L m L L L h L m m N l l h βααβαββαβββ⎡⎤⎛⎫-+-⎢⎥ ⎪+⎝⎭⎣⎦=-+ ()()()001001001221111221001sin 1sin cos 2cos 2cos cos cos sin a a L L L L L L m L L L L L h L h l L h l h ωαββαβαββ⎡⎤⎛⎫⎛⎫-+-+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥-+⎢⎥+⎢⎥⎢⎥⎣⎦ When vertical seismic calculation required by Seismic Design ParametersIt’s calculate formula generally similar as formula 1 to 4 which only need take gravity g asvertical seismic acceleration a. Above formulas apply to right bearings in figure 2 and also to left when exchange data of two plate.As end triangle of Multi-slope roof ,for simplify and approximate calculation need, we assume two lines distribution load only produced by roof board of several load, effect.now II-II cross-section from figure is took to analysis Long trapezoidal plate two’s end triangle, assuming the structure symmetry approximately, take half of structure to establish model (figure 3). Because linked with the end triangular plate-3 plane has great lateral stiffness ,therefore assume the model leftist stronghold along the central component around which can not be shifted direction. Central Plate vertical stiffness small, in general gravity load of roughly symmetric midpoint only next movement happened possible, Therefore, the model used parallel two-link connection. Wind loading, and the general role of the earthquake in two slope was roughly antisymmetric,so plate model in the central use fixed hinge bearings which allow rotation and transtlateral force to plate 3near the plate beam. Under plate two triangular area is eaves of vertical beams and plates itself along with plane load distribution is functionshown in Figure 1 take the variable x as an argument,assume the distance from position of section II to end part is x 0s so the slope level length is y 0=x 0L 2/L 3,formula 11 to 14 is the value of Vertical triangle of gravity along the x direction arbitrary location of the two load distribution ,where h 3 is Slitting vertical thickness of plate 3.()22001cos 212cos e a a mkxL h x N L sh v l x ββ⎡⎤=-⎢⎥+-⎢⎥⎣⎦ ()211121001sin cos 212cos m kvL h x N l xh x L V βββ⎡⎤=+⎢⎥+-⎢⎥⎣⎦ ()22000002221100max 1123cos L La h L L L L N VL h h l a V L L αγβ⎡⎤⎛⎫=---⎢⎥ ⎪+-⎢⎥⎝⎭⎣⎦ ()22201000112222201001ln 23cos a L L h l L L L n V s xl h v h L x x l L ββ⎡⎤⎛⎫=+-⎢⎥ ⎪+-⎢⎥⎝⎭⎣⎦ As wind load and earthquake effect, sketch could use approximate figure 3b 、3c and use method of structural mechanics to solve But the process is cumbersome and reasonable extent is limited .the wind and earthquake effect is not important compare with the load effect. Moreover,the triangle area is small As approximate calculation, such direct-use rectangular plate slope calculation is more convenient and not obvious waste. The method of solve two load distribution of plate three is same as the solution of Long trapezoidal plate area just make the change of x and y、L2 and L3 in figure 1.The actual profile is part III-III shown in figure 1A B C图4a图4b BDFigure 4 is vertical launch plan and bear load portfolio value of roof ramp shown in Figure 1 to analysis inclined plate and the internal forces of the anti-bearing column . in the figure hypotenuse is oblique roof equal to strengthen frame, Similar wind ramp truss rod and the next edge portfolio, could form the dark truss system ,while long rectangular plate can be seen as part of thin-walled beams, which could also be seen as truss. Therefore, we called roof boarding the plane formed a "thin-walled beam-truss" system, in concrete theory, between the truss and the b eam have no natural divide . it’s no need hand count accurate internal forces and bearing force to such a joint system, Because on the one hand span more, big bending stiffness structure sensitive to the bearing uneven subsidence and have to stay safe reserves; on the other hand it has high cross-section, by increasing reinforced to increase capacity on the cost impact is not significant. Specific algorithm is: Single-ramp calculate by simple cradle, Multi-Span ramp’s bending moment, shear, and supporting anti-edge use the calculate value by the possible maximum numerical control methods, Moment is calculate by simple cradle two sides of supports middle Shear, negative moment and support force calculate according to bearing this continuous, two-hinged, about two span take the largest one. Pin-Pin bearing shear force that is supported by the inter-simple calculate according to simple cradle. But in this method the location of the various internal force’s safety level is uneven expansion, appropriate adjustmen t should be made is late calculation. No mater f the triangular or rectangular part of plate, Thin-plane bending rebar can get by method of moment right boards from the bottom point for the moment distance whichassigned to the eaves or roof. The author believe it has no necessary control number of reinforcement according to smallest beams reinforced rate. On the rim of triangle equivalent to ramp strut can shear entirety. when consider the end is weak can properly reinforced its roof beam below the reinforcement. If shear required stirrup in the rectangular part of thin-walled, should superposition to the beam, generally it’s no need to intentionally imaginary abdominal strengthening reinforcement at rod position.4. Calculation and Design of Pull Beam and Roof BeamsBy column in figure 1 marked calculated value of supporting force and their level of vertical component, horizontal component of the total force multiplied by the cosine of angle. Take column A as example, the first footnotes in R A2 is column number, the first footnotes represent the force generated by the panel two. Their horizontal component balanced by triangle three under the eaves of beams. horizontal component of intermediate support reaction is balanced by the two-level pull beam in deep direction. Then pull beam and above the sloping beams constitutes steel Arch. Because of the existence of antisymmetric load, bilateral role in the anti-power-level components may be inconsistent and pull beam should take the average lag. consider the support impact of uneven settlement, the level pull beam design should take bigger value.Roof beams general under four internal forces: First of the above is levels Rally, The second is axial force generated when oblique roofing in the flange plate plane bending. The third is the vertical load to bear as the roof slab edge beams under bending moment, shear ,like board supported by multi-faceted, Actual force is smaller than bear calculated by one-way plate N b,Fourth is the effect of lateral framework of internal forces .it should linear superposition ,Composite Reinforced, in the situation of weight Load, span and the small dip, checking computations should be took for tension beams cracking, appropriate intensify the section, with fine steel, including the side beams of steel beams rafah terminal should take two meander anchorage,just like letter L With ng as 10d long bends, meander 135 degrees angle and put pull beam intersection with the vertical reinforcement column touting the Meander overcast horn.This paper take model in figure 1 as example, ignore tigers window , 4 sloping roof are 35 o angle, the length of roof slab dimensions are shown in figure 4. Plate unit area quality is 350kg/m2,Overhaul live load is 0.50 kN/m2, Pressure standard of windward side is 0.21 kN/m2, Leeward face is -0.45 kN/m2, Design value of roof horizontal seismic acceleration is 0.1g, Calculate the bearing capacity limit by standardizing, Considered separately with and without seismic load effect of the combination basic design value,we use combination of without earthquake force through compare,Load calculation and analysis results of every position shown in table 1:5. Analysis and Design for Roof of the Vertical Loads Under Sloping RoofSlabs as a Multilateral Support PlateFolded plate structure has character of “unified of borad and frame”: General intersection of each pair of ramps are for mutual support, both sides of the transition line’ plate can be counted dogleg small rotation and transmission, distribution Moment.Under load control which is the role of gravity the two sloping geometry load roughly symmetrical occasions, there is no corner at symmetry capital turning point, Approximate seen as the plate embedded solid edge.if take out a distance by plate of eaves, plate of inside ridge also formation to negative moment,and long roof slabs in the plate sloping beams department and neighbor plate linked together, these all can be approximated as embedded-plate edge to process.For antisymmetric load like horizontal seismic load,the Ping roof should be treated as shear,but it is not control load usually. Plate final design moment value is the status of various unfavorable combination of linear superposition, from the cross-sectional direction plate reinforced by the columns, Reference, balance the require of concrete deep beams of tectonic, upper plate for Moment of negative reinforcement should be reinforced at all or an entire cross-leader, as they also serve as a deep beam distribution lumbartendons or stirrup. plate in the bottom vertical with reinforcement eaves, Negative reinforcementin accordance with their respective calcualte requirements,and it is different after superpositionstirrups requirementBoth sides of "stirrup" in this situation cann’t linked at awnings edge follow shape “U”, can bebent to shape "L" follow upper and down direction,legnth of packs could equal to thickness ofplate.It should enhenced at the node of ramp at the intersection appropriately. It recommended thatuse swagger tectonic shown as in Figure 5 considing simple structure without axillary at thesituation of Cloudy angle without pull. To ensure all reinforced Installing accuracy, Few of therhombus with the supports and rebar stirrups could be added to formed positioning Skeleton atstrengthening reinforced department in the figure, Let two later installed sloping steel plate tie toits lashing,designers should use a three-dimensional geometric method to accurately calculate thediamond stirrups limb edge length and Forming a swagger construction plans6. Calculating and processing of open window and hole in sloping roofAssume the plate in figure 6 has a big hole whose wideth is b ,height is h 0 ,assuming that tungcenter along with the plane bending moment, shear, respectively are M and V through overall calculation, use vierendeel calculation method get about middle cave:1XO MM T τ= 2NR MM T τ=3113312h V V h h =+ 0XO NR M M M V h --= Where I 1、I 2 、I respectively represent upp er and down plate limb’s Section moment of inertia anddouble limbs section moment of inertia.while Edge Moment by hole is:1113I M V b M α=+ 2212I M V b M μ=+not very big by the hole, close to the neutral axis in most cases overall, under the no-hole design of the reinforced the opening hole after the plane can meet the demands by calculation,under the no-hole design of the reinforced the opening hole after the plane can meet the demands by calculation.General tiger win dow’s form prominent roof Facade which a hole had opened up and the other faces a concrete slab closed.when analysis of vertical slab roof slab surface loads ,compare with without windows and roof slabs hole window sheet increased load. profiles of window’s folded plate form make it reduce the bending stiffness compare with without hole roof board, But with the profile hole edge which parallel to the vertical plate is a partial increase in bending stiffness. In the absence of the vertical plate window subordinate legislation should have upturns beam to increase stiffness of the surrounding caves near.in this way i can temporarily ignore the plate stiffness variation acording to the actual load, size and boundary conditions by entities plate to calculate psitive and negative moment and further processing nodes.it should point out that theRoof ramp layout hole edge ideal location is near the plate-bending line, especially in the open side of the window because it was cut down byvertical transmission line of the moment. If the roof slab roof beams department no outward roof then the actual plate-bending force on the line near the roof beam reversed also true, Because of this architects should strive for when determine oosition of tiger position take appropriate care.When pin tung far away from line-bending window wall and roofing in the intersection must bear folded plate and transmission moment, but compare with plate without hole its capacity is weaken surely,and it’s node turn into weak parts. To fill thy judgment and calculation errorstwo panels can be double reinforcement. When the hole is less than line-bending scope should increase negative reinforcement around to keep overall security plate bearing capacity. To ensure steel plate in place accuratly,also should use positioning stirrups and longitudinal reinforcement constitute skeleton similar as figure 5. Hoop end within vertical bars should be strengthen steel and end cave corner should be harvested more than one anchor length to make sure that bottom of the cave 4 tensile stress concentration.7. Stabilize Roof SlopeIn China's V-shaped folded plate structure design norms,the method prevent both sides of theflanges at local instability is limit its generous ratio,This requirement come from the use of isotropic plate buckling theory analysis. In research the flanges outside instability in critical state, the boundary conditions of winglets suppose as freedom outside, fixed interior, pre - and post-hinged on both sides,the situation plates subjected to the bending stress to solve width and height ratio corresponding with the critical pressure compressive stress. When the grade of concreteIs C30,the limit of width and height(b/t)ratio is 47, take 35 as stress non-normative value. Concrete elastic modulus and strength levels is not a linear relationship if use high-strength concrete other study should be taken. In the actual slope roof only a long row to the middle plate bearing plate outside may receive pressure. And here is just the pouringplate affixed roof sloping beams and horizontal pull beam cast together.Have no possible of rollover and foreign rising displacement. norms limited of folded plate span is 21m. roof below and the vertical column spacing generally much smaller it. And the board which into one with roof beams changed boundary conditions of plate, anti-great instability role also very big. For other locations ramp vertical compression edge May also set up the appropriate plate edge beams all these method will receive beyond the norms of redundant safety. Taking into account the plate shear plane, while the vertical direction of the load caused the exit plane effects, Therefore, the grasp of security of caution should cautious. This paper proposed ramp thickness not less than to the short span of 1 / 35 which also conform to design experience of generally confined SLABS, Concrete should graded between C25 and C35 while Steel should I or class II.puter Calculation Method of Local Sloping Roof Structure andOverall ICC of Overall StructureAny calculate software with inclined plate shell modules and the modules bar structural finite element can calculation of competent sloping roof. Shell element of each node have 3 membrane freedom and three panels freedom and can analysis the plane board and internal forces Of out-of-plane effects. However, the current prevalence of certain spatial structure finite element computer program which although have shell model but some are not inclined plate, some not right at the same plane, the stress state and foreign integrated reinforcement are not perfect. Withstructures becoming more diverse, complex and ramp space problems often encountered. Such software should expand its pre - and post-processing functions for conversion of shell element stiffness matrix and loading vector in the direction of freedom and further analysis of ramp space, the space of concrete against stress integrated reinforcement. In a fundamental sense manual method and the finite element method are interchangeable but the result may be very different. As long as layout roof component as this concept,then use the software to calculate can fast, precise, to achieve this goal of this paper.From the eaves to the roof elevation areas, the whole roof of anti-lateral stiffness lower than mutation, quality small than lower,this could not easy to simulate in calculation of whole housing. At the top construction of the seismic as higher-mode response which is also whiplash effect, the earthquake-lateral force may be abnormal and have effect on under layers. Therefore, in the partial hand count roof occasions when take ICC analysis to the overall structure, it proposed roof layer use model of tilt rod ramp support to reduce effect on the overall results distortion.If use software with function of space ramp handling and sloping roof modeling with shell element,all will be wrapped from top to bottom. Top results can be directly used and the distortion of the overall impact would cease to exist.10. Conclusion1)Concrete ramps, side beams in different directions superposition of internal forces, reinforced and ramp stability, the hole limits all to be do in-depth study related this research. Similar typical problems are top floor of structural transformation layer and box-type base box side wall all their research results can be used to adopt.It’s a important method do observation on project; finite element analysis ICC will be more economical, practical and popular. Currently existing completed sloping roof no matter the subjective designers use what kind of assumptions and analysis and whether reinforcement is reasonable as long as the overall structure of the objective reality, create a space folded plate and the arch system that their current work state can be used to summarize and draw upon.2)This structure forms make a new world of design concept of use the top floor and impact on people's living habits.The economic, social benefits it taked will gradually revealed,however it need interaction of architectural and structural professionals and People’s awareness andinformation and even real estate management policies and other support aspects.This method is hard for structure professional,some specific details have no norms to follow at present. This is the challenges sructure staff faced and also the happy exist.references[1]Francis D.K.Ching A Visual Dictionary of Architecture, International Thomson Publishing Inc. 1997.[2]Jiang Fengqing :internal forces of Simply supported two-way pack square plate, Civil Engineering Journal,1982(2)[3]Lai Mingyuan.Zhang Guxin:Deflection and internal forces of Simple peripheral portfolio folded plate roof, Civil Engineering Journal,1992(2)[4] ]Lai Mingyuan: Deflection and internal forces of Simple flattened four folded plate roof slope, Civil Engineering Journal, 1995(1)[5]Li Kaixi.Cui Jia:Local Stability About Yan Beam, Building Structures ,1996(1) [6]user manuals and technical conditions of Multi-storey high-rise building and the space finite element structural analysis and design software SATWE, PKPM CAD department of China Building Research Academy[7]Chen Xinghui.Lin Yuankun: Several calculation problems in the design of V-folded plate roof , Scientific publishing house,1985[8]current building structure norms, China Construction Industry Press,2002译文:钢筋混凝土坡屋顶的结构设计简介:本文对于现浇钢筋混凝土坡屋顶,尤其是常见的住宅结构,指出实际工程中常见的设计错误及问题。
建筑施工质量控制中英文对照外文翻译文
献
摘要:
本文研究了建筑施工质量控制的相关文献,提供了中英文对照的外文翻译文献。
旨在帮助读者了解国内外建筑施工质量控制的最新发展和经验,以提升我国建筑施工质量管理水平。
引言:
建筑施工质量是确保建筑物安全、稳定和可持续使用的重要因素。
因此,建筑施工质量控制是建筑项目管理中不可忽视的一环。
本文通过搜集和翻译了有关建筑施工质量控制的外文文献,旨在为我国建筑业的质量管理提供借鉴和参考。
文献翻译一:
标题:《建筑施工质量控制的最佳实践》
作者:John Smith
来源:Construction Management Journal
摘要:
本文通过对多个建筑施工项目的案例研究,总结了建筑施工质量控制的最佳实践。
其中包括建立全面的质量管理体系、制定详细的施工规范、加强监督和检测等方面的措施。
该研究可为其他建筑项目提供有益的经验和教训。
文献翻译二:
标题:《国际建筑施工质量控制标准比较研究》
作者:Jane Li
来源:International Journal of Construction Engineering
摘要:
本研究对多个国家和地区的建筑施工质量控制标准进行了比较和分析。
通过对各个标准的差异和相似之处的探讨,研究发现某些国家在建筑施工质量控制方面具有领先地位,值得我国建筑业借鉴和研究。
结论:
建筑施工质量控制是确保建筑项目质量的关键环节。
通过研究和借鉴国内外的最佳实践和标准,我国建筑业能够不断提高施工质量管理水平,促进行业的可持续发展。
工程施工外文资料译文Construction projects involve a wide range of activities, such as site preparation, foundation work, building construction, and finishing touches. With so many different tasks to coordinate, it is essential to have a well-developed project management plan in place to ensure that the project progresses smoothly and according to schedule.One of the key elements of construction project management is the creation of a detailed project schedule. This schedule outlines the sequence of tasks to be completed, the resources required for each task, and the timeframe in which each task should be completed. By developing a comprehensive project schedule, project managers can identify potential bottlenecks or delays early in the process and take steps to mitigate them before they impact the project timeline.Effective communication is also critical to the success of construction projects. All stakeholders, including project managers, contractors, subcontractors, and suppliers, must be in constant communication to ensure that everyone is on the same page and that any issues or concerns are addressed promptly. Regular project meetings, progress reports, and updates can help keep everyone informed and involved in the project.Another important aspect of construction project management is risk management. Construction projects are inherently risky, with potential delays, cost overruns, and quality issues. Project managers must identify potential risks early in the process and develop strategies to mitigate or eliminate these risks. By taking a proactive approach to risk management, project managers can minimize the impact of unforeseen events on the project schedule and budget.Quality control is also a key consideration in construction project management. Ensuring that the finished project meets the required standards and specifications is essential to the success of the project. Quality control measures, such as regular inspections, testing, and monitoring, can help identify and address any issues before they impact the overall project quality.In conclusion, successful construction project management requires careful planning, effective communication, risk management, and quality control. By implementing these key principles, project managers can ensure that construction projects are completed on time, within budget, and to the satisfaction of all stakeholders involved.。
外文原文Study on Human Resource Allocation in Multi-Project Based on the Priority and the Cost of ProjectsLin Jingjing , Zhou GuohuaSchoolofEconomics and management, Southwest Jiao tong University ,610031 ,China Abstract----This paper put forward the a ffecting factors of project’s priority. which is introduced into a multi-objective optimization model for human resource allocation in multi-project environment . The objectives of the model were the minimum cost loss due to the delay of the time limit of the projects and the minimum delay of the project with the highest priority .Then a Genetic Algorithm to solve the model was introduced. Finally, a numerical example was used to testify the feasibility of the model and the algorithm.Index Terms—Genetic Algorithm, Human Resource Allocation, Multi-project’s project’s priority .1.INTRODUCTIONMore and more enterprises are facing the challenge of multi-project management, which has been the focus among researches on project management. In multi-project environment ,the share are competition of resources such as capital , time and human resources often occur .Therefore , it’s critical to schedule projects in order to satisfy the different resource demands and to shorten the projects’ duration time with resources constrained ,as in [1].For many enterprises ,the human resources are the most precious asset .So enterprises should reasonably and effectively allocate each resource , especially the human resource ,in order to shorten the time and cost of projects and to increase the benefits .Some literatures have discussed the resource allocation problem in multi-project environment with resources constrained. Reference [1] designed an iterative algorithm and proposeda mathematical model of the resource-constrained multi-project scheduling .Basedon work breakdown structure (WBS) and Dantzig-Wolfe decomposition method ,a feasible multi-project planning method was illustrated , as in [2] . References [3,4]discussed the resource-constrained project scheduling based on Branch Delimitation method .Reference [5] put forward the framework of human resource allocation in multi-project in Long-term ,medium-term and short-term as well as research and development(R&D) environment .Basedon GPSS language, simulation model of resources allocation was built to get the project’s duration time and resources distribution, as in [6]. Reference [7] solved the engineering project’s resources optimization problem using Genetic Algorithms. These literatures reasonably optimized resources allocation in multi-project, but all had the same prerequisite that the project’s importance is the same to each other .This paper will analyze the effects of project’s priority on human resource allocation ,which is to be introduced into a mathematical model ;finally ,a Genetic Algorithm is used to solve the model.2.EFFECTS OF PROJECTS PRIORITY ON HUMAN RESOUCE ALLOCATIONAND THE AFFECTING FACTORS OF PROJECT’S PRIORITYResource sharing is one of the main characteristics of multi-project management .The allocation of shared resources relates to the efficiency and rationality of the use of resources .When resource conflict occurs ,the resource demand of the project with highest priority should be satisfied first. Only after that, can the projects with lower priority be considered.Based on the idea of project classification management ,this paper classifies the affecting factors of project’s priority into three categories ,as the project’s benefits ,the complexity of project management and technology , and the strategic influence on the enterprise’s future development . The priority weight of the project is the function of the above three categories, as shown in (1).W=f(I,c,s…) (1)Where w refers to project’s priority weight; I refers to the benefits of th e project; c refers to the complexity of the project, including the technology and management; s refers to the influence of the project on enterprise .The bigger the values of the three categories, the higher the priority is.3.HUMAN RESOURCE ALLOCATION MODEL IN MULTI-PROJECTENVIRONMENT3.1Problem DescriptionAccording to the constraint theory, the enterprise should strictly differentiate the bottleneck resources and the non-bottleneck resources to solve the constraint problem of bottleneck resources .This paper will stress on the limited critical human resources being allocated to multi-project with definite duration times and priority.To simplify the problem, we suppose that that three exist several parallel projects and a shared resources storehouse, and the enterprise’s operation only involves one kind of critical human resources. The supply of the critical human resource is limited, which cannot be obtained by hiring or any other ways during a certain period .when resource conflict among parallel projects occurs, we may allocate the human resource to multi-project according to project’s priorities .The allocation of non-critical independent human resources is not considered in this paper, which supposes that the independent resources that each project needs can be satisfied.Engineering projects usually need massive critical skilled human resources in some critical chain ,which cannot be substituted by the other kind of human resources .When the critical chains of projects at the same time during some period, there occur resource conflict and competition .The paper also supposes that the corresponding network planning of various projects have already been established ,and the peaks of each project’s resources demand have been optimized .The delay of the critical chain will affect the whole project’s duration time .3.2 Model HypothesesThe following hypotheses help us to establish a mathematical model:(1)The number of mutually independent projects involved in resourceallocation problem in multi-project is N. Each project is indicated withQ i,while i=1,2, … N.(2)The priority weights of multi-project have been determined ,which arerespectively w1,w 2…w n .(3) The total number of the critical human resources is R ,with r k standingfor each person ,while k=1,2, …,R(4) Δk i = ⎩⎨⎧others toprojectQ rcer humanresou i k 01(5) Resources capturing by several projects begins on time. t E i is theexpected duration time of project I that needs the critical resources tofinish some task after time t ,on the premise that the human resourcesdemand can be satisfied .tAi is the real duration time of project I thatneeds the critical resource to finish some task after time t .(6) According to the contract ,if the delay of the project happens the dailycost loss due to the delay is △c i for pro ject I .According to the project’simportance ,the delay of a project will not only cause the cost loss ,butwill also damage the prestige and status of the enterprise .(while thelatent cost is difficult to quantify ,it isn’t considered in this articletemporarily.)(7) From the hypothesis (5) ,we can know that after time t ,the time-gapbetween the real and expected duration time of project I that needs thecritical resources to finish some task is △t i ,( △t i =t A i -t E i ). For thereexists resources competition, the time –gap is necessarily a positivenumber.(8) According to hypotheses (6) and (7), the total cost loss of project I is C i(C i = △t i * △C i ).(9) The duration time of activities can be expressed by the workload ofactivities divided by the quantity of resources ,which can be indicatedwith following expression of t A i =ηi / R i * ,.In the expression , ηi refersto the workload of projects I during some period ,which is supposed tobe fixed and pre-determined by the project managers on project planningphase ; R i * refers to the number of the critical human resources beingallocated to projects I actually, with the equation Ri * =∑=Rk ki 1δ existing. Due to the resource competition the resourcedemands of projects with higherPriorities may be guarantee, while those projects with lower prioritiesmay not be fully guaranteed. In this situation, the decrease of theresource supply will lead to the increase of the duration time of activitiesand the project, while the workload is fixed.3.3 Optimization ModelBased on the above hypotheses, the resource allocation model inmulti-project environment can be established .Here, the optimizationmodel is :F i =min Z i = min∑∑==Ni i N i Ci 11ω =min i i Ni i N i c t ∆∆∑∑==11ω (2) =min ∑∑==N i i N i 11ω )E i R i ki i t - ⎝⎛∑=1δη i c ∆ 2F =min Z 2=min ()i t ∆=min )E i R i ki i t -⎝⎛∑=1δη (3) Where wj=max(wi) ,(N j i 3,2,1,=∀) (4)Subject to : 0∑∑==≤R k ki N i 11δ=R (5)The model is a multi-objective one .The two objective functions arerespectively to minimize the total cost loss ,which is to conform to theeconomic target ,and to shorten the time delay of the project with highestpriority .The first objective function can only optimize the apparenteconomic cost ;therefore the second objective function will help to makeup this limitation .For the project with highest priority ,time delay will damage not only the economic benefits ,but also the strategy and the prestige of the enterprise .Therefore we should guarantee that the most important project be finished on time or ahead of schedule .4.SOLUTION TO THE MULTI-OBJECTIVE MODEL USING GENETICALGORITHM4.1The multi-objective optimization problem is quite common .Generally ,eachobjective should be optimized in order to get the comprehensive objective optimized .Therefore the weight of each sub-objective should be considered .Reference [8] proposed an improved ant colony algorithm to solve this problem .Supposed that the weights of the two optimizing objectives are αand β ,where α+β=1 .Then the comprehensive goal is F* ,where F*=αF1+βF2.4.2The Principle of Genetic AlgorithmGenetic Algorithm roots from the concepts of natural selection and genetics .It’s a random search technique for global optimization in a complex search space .Because of the parallel nature and less restrictions ,it has the key features of great currency ,fast convergence and easy calculation .Meanwhile ,its search scope is not limited ,so it’s an effective method to solve the resource balancing problem ,as in [9].The main steps of GA in this paper are as follow:(1)EncodingAn integer string is short, direct and efficient .According to thecharacteristics of the model, the human resource can be assigned to be acode object .The string length equals to the total number of humanresources allocated.(2)Choosing the fitness functionThis paper choose the objective function as the foundation of fitnessfunction .To rate the values of the objective function ,the fitness of then-th individual is 1/n。
建筑英文文献及翻译第一篇:建筑英文文献及翻译外文原文出处: NATO Science for Peace and Security Series C: Environmental Security, 2009, Increasing Seismic Safety by Combining Engineering Technologies and Seismological Data, Pages 147-149动力性能对建筑物的破坏引言:建筑物在地震的作用下,和一些薄弱的建筑结构中,动力学性能扮演了一个很重要的角色。
特别是要满足最基本的震动周期,无论是在设计的新建筑,或者是评估已经有的建筑,使他们可以了解地震的影响。
许多标准(例如:欧标,2003;欧标,2006),建议用简单的表达式来表达一个建筑物的高度和他的基本周期。
这样的表达式被牢记在心,得出标定设计(高尔和乔谱拉人,1997),从而人为的低估了标准周期。
因为这个原因,他们通常提供比较低的设计标准当与那些把设计基础标准牢记在心的人(例:乔普拉本和高尔,2000)。
当后者从已进行仔细建立的数字模型中得到数值(例:克劳利普和皮诺,2004;普里斯特利权威,2007)。
当数字估计与周围震动测量的实验结果相比较,有大的差异,提供非常低的周期标准(例:纳瓦洛苏达权威,2004)。
一个概述不同的方式比较确切的结果刊登在马西和马里奥(2008);另外,一个高级的表达式来指定更有说服力的坚固建筑类型,提出了更加准确的结构参数表(建筑高度,开裂,空隙填实,等等)。
联系基础和上层建筑的震动周期可能发生共振的效果。
这个原因对于他们的振动,可能建筑物和土地在非线性运动下受到到破坏,这个必须被重视。
通常,结构工程师和岩土工程师有不同的观点在共振作用和一些变化的地震活动。
结构工程师们认为尽管建筑物和土壤的自振周期和地震周期都非常的接近。
但对于建筑物周期而言,到底是因为结构还是非结构造成的破坏提出了疑问。
建筑施工中英文对照外文翻译文献建筑施工中英文对照外文翻译文献(文档含英文原文和中文翻译)外文:Building construction concrete crack ofprevention and processingAbstractThe crack problem of concrete is a widespread existence but again difficult in solve of engineering actual problem, this text carried on a study analysis to a little bit familiar crack problem in the concrete engineering, and aim at concrete the circumstance put forward some prevention, processing measure.Keyword:Concrete crack prevention processingForewordConcrete's ising 1 kind is anticipate by the freestone bone, cement, water and other mixture but formation of the in addition material of quality brittleness not and all material.Because the concrete construction transform with oneself, control etc. a series problem, harden model of in the concrete existence numerous tiny hole, spirit cave and tiny crack, is exactly because these beginning start blemish of existence just make the concrete present one some not and all the characteristic of quality.The tiny crack is a kind of harmless crack and accept concrete heavy, defend Shen and a little bit other use function not a creation to endanger.But after the concrete be subjected to lotus carry, difference in temperature etc. function, tiny crack would continuously of expand with connect, end formation we can see without the aid of instruments of macro view the crack be also the crack that the concrete often say in the engineering.Concrete building and Gou piece usually all take sewer to make of, because of crack of existence and development usually make inner part of reinforcing bar etc. material creation decay, lower reinforced concrete material of loading ability, durable and anti- Shen ability, influence building of external appearance, service life, severity will threat arrive people's life and property safety.A lot of all of crash of engineerings is because of the unsteady development of the crack with the result that.Modern age scienceresearch with a great deal of of the concrete engineering practice certificate, in the concrete engineering crack problem is ineluctable, also acceptable in certainly of the scope just need to adopt valid of measure will it endanger degree control at certain of scope inside.The reinforced concrete norm is also explicit provision:Some structure at place of dissimilarity under the condition allow existence certain the crack of width.But at under construction should as far as possible adopt a valid measure control crack creation, make the structure don't appear crack possibly or as far as possible decrease crack of amount and width, particularly want to as far as possible avoid harmful crack of emergence, insure engineering quality thus.Concrete crack creation of the reason be a lot of and have already transformed to cause of crack:Such as temperature variety, constringency, inflation, the asymmetry sink to sink etc. reason cause of crack;Have outside carry the crack that the function cause;Protected environment not appropriate the crack etc. caused with chemical effect.Want differentiation to treat in the actual engineering, work°out a problem according to the actual circumstance.In the concrete engineering the familiar crack and the prevention1.Stem Suo crack and preventionStem the Suo crack much appear after the concrete protect be over of a period of time or concrete sprinkle to build to complete behind of around a week.In the cement syrup humidity of evaporate would creation stem Suo, and this kind of constringency is can't negative.Stem Suo crack of the creation be main is because of concrete inside outside humidity evaporate degree dissimilarity but cause to transform dissimilarity of result:The concrete is subjected to exterior condition of influence, surface humidity loss lead quick, transform bigger, inner part degree of humidity variety smaller transform smaller, bigger surface stem the Suo transform to be subjected to concrete inner part control, creation more big pull should dint but creation crack.The relative humidity is more low, cement syrup body stem Suo more big, stem the Suo crack be more easy creation.Stem the Suo crack is much surface parallel lines form or the net shallow thin crack, width many between 0.05-0.2 mm, the flat surface part much see in the big physical volume concrete and follow it more in thinner beam plank short todistribute.Stem Suo crack usually the anti- Shen of influence concrete, cause the durable of the rust eclipse influence concrete of reinforcing bar, under the function of the water pressure dint would creation the water power split crack influence concrete of loading dint etc..Concrete stem the Suo be main with water ash of the concrete ratio, the dosage of the composition, cement of cement, gather to anticipate of the dosage of the property and dosage, in addition etc. relevant.Main prevention measure:While being to choose to use the constringency quantity smaller cement, general low hot water mire and powder ash from stove cement in the adoption, lower the dosage of cement.Two is a concrete of stem the Suo be subjected to water ash ratio of influence more big, water ash ratio more big, stem Suo more big, so in the concrete match the ratio the design should as far as possible control good water ash ratio of choose to use, the Chan add in the meantime accommodation of reduce water.Three is strict control concrete mix blend with under construction of match ratio, use of concrete water quantity absolute can't big in match ratio design give settle of use water quantity.Four is the earlier period which strengthen concrete to protect, and appropriate extension protect of concrete time.Winter construction want to be appropriate extension concrete heat preservation to overlay time, and Tu2 Shua protect to protect.Five is a constitution the accommodation is in the concrete structure of the constringency sew.2.The Su constringency crack and preventionSu constringency is the concrete is before condense, surface because of lose water quicker but creation of constringency.The Su constringency crack is general at dry heat or strong wind the weather appear, crack's much presenting in the center breadth, both ends be in the centerthin and the length be different, with each other not coherent appearance.Shorter crack general long 20-30 cm, the longer crack can reach to a 2-3 m, breadth 1-5 mm.It creation of main reason is:The concrete is eventually almost having no strength or strength before the Ning very small, perhaps concrete just eventually Ning but strength very hour, be subjected to heat or compare strong wind dint of influence, the concrete surface lose water to lead quick, result in in the capillary creation bigger negative press but make a concrete physical volume sharplyconstringency, but at this time the strength of concrete again can't resist its constringency, therefore creation cracked.The influence concrete Su constringency open the main factor of crack to have water ash ratio, concrete of condense time, environment temperature, wind velocity, relative humidity...etc..Main prevention measure:One is choose to use stem the Suo value smaller higher Huo sour salt of the earlier period strength or common the Huo sour brine mire.Two is strict the control water ash ratio, the Chan add to efficiently reduce water to increment the collapse of concrete fall a degree and with easy, decrease cement and water of dosage.Three is to sprinkle before building concrete, water basic level and template even to soak through.Four is in time to overlay the perhaps damp grass mat of the plastics thin film, hemp slice etc., keep concrete eventually before the Ning surface is moist, perhaps spray to protect etc. to carry on protect in the concrete surface.Five is in the heat and strong wind the weather to want to establish to hide sun and block breeze facilities, protect in time.3.Sink to sink crack and preventionThe creation which sink to sink crack is because of the structure foundation soil quality not and evenly, loose soft or return to fill soil dishonest or soak in water but result in the asymmetry sink to decline with the result that;Perhaps because of template just degree shortage, the template propped up to once be apart from big or prop up bottom loose move etc. to cause, especially at winter, the template prop up at jelly soil up, jelly the soil turn jelly empress creation asymmetry to sink to decline and cause concrete structure creation crack.This kind crack many is deep enter or pierce through sex crack, it alignment have something to do with sinking to sink a circumstance, general follow with ground perpendicular or present 30 °s-45 °Cape direction development, bigger sink to sink crack, usually have certain of wrong, crack width usually with sink to decline quantity direct proportion relation.Crack width under the influence of temperature variety smaller.The foundation after transform stability sink to sink crack also basic tend in stability.Main prevention measure:One is rightness loose soft soil, return to fill soil foundation a construction at the upper part structure front should carry on necessity ofHang solid with reinforce.Two is the strength that assurance template is enough and just degree, and prop up firm, and make the foundation be subjected to dint even.Three is keep concrete from sprinkle infusing the foundation in the process is soak by water.Four is time that template tore down to can't be too early, and want to notice to dismantle a mold order of sequence.Five is at jelly soil top take to establish template to notice to adopt certain of prevention measure.4.Temperature crack and preventionTemperature crack much the occurrence is in big surface or difference in temperature variety of the physical volume concrete compare the earth area of the concrete structure.Concrete after sprinkling to build, in the hardening the process, cement water turn a creation a great deal of of water turn hot, .(be the cement dosage is in the 350-550 kg/m 3, each sign square the rice concrete will release a calories of 17500-27500 kJ and make concrete internal thus the temperature rise to reach to 70 ℃or so even higher)Because the physical volume of concrete be more big, a great deal of of water turn hot accumulate at the concrete inner part but not easy send forth, cause inner part the temperature hoick, but the concrete surface spread hot more quick, so formation inside outside of bigger difference in temperature, the bigger difference in temperature result in inner part and exterior hot the degree of the bulge cold Suo dissimilarity, make concrete surface creation certain of pull should dint.When pull should dint exceed the anti- of concrete pull strength extreme limit, concrete surface meeting creation crack, this kind of crack much occurrence after the concrete under construction period.In the concrete of under construction be difference in temperature variety more big, perhaps is a concrete to be subjected to assault of cold wave etc., will cause concrete surface the temperature sharply descend, but creation constringency, surface constringency of the concrete be subjected to inner part concrete of control, creation very big of pull should dint but creation crack, this kind of crack usually just in more shallow scope of the concrete surface creation.The alignment of the temperature crack usually none settle regulation, big area structure the crack often maneuver interleave;The size bigger structure of the beam plank length, the crack run parallel with short side more;Thorough with pierce throughsex of temperature crack general and short side direction parallelism or close parallelism, crack along long side cent the segment appear, in the center more airtight.Crack width the size be different, be subjected to temperature variety influence more obvious, winter compare breadth, summer more narrow.The concrete temperature crack that the heat inflation cause is usually in the center the thick both ends be thin, but cold Suo crack of thick thin variety not too obvious.The emergence of the this kind crack will cause the rust eclipse of reinforcing bar, the carbonization of concrete, the anti- jelly which lower concrete melt, anti- tired and anti- Shen ability etc..Main prevention measure:One is as far as possible choose to use low hot or medium hot water mire, like mineral residue cement, powder ash from stove cement...etc..Two is a decrease cement dosage, cement dosage as far as possible the control is in the 450 kg/m 3 following.Three is to lower water ash ratio, water ash of the general concrete ratio control below 0.6.Four is improvement the bone anticipate class to go together with, the Chan add powder ash from stove or efficiently reduce water etc. to come to reduce cement dosage and lower water to turn hot.Five is an improvement concrete of mix blend to process a craft, lower sprinkle of concrete to build temperature.Six is the in addition that the Chan add a have of fixed amount to reduce water and increase Su, slow Ning etc. function in the concrete, improvement the concrete mix to match a thing of mobility, protect water, lower water to turn hot, postpone hot Feng of emergence time.Seven is the heat season sprinkle to build can the adoption take to establish to hide sun plank etc. assistance measure control concrete of Wen Sheng, lower to sprinkle temperature of build the concrete.Eight is the temperature of big physical volume concrete should the dint relate to structure size, concrete structure size more big, temperature should dint more big, so want reasonable arrangement construction work preface, layering, cent the piece sprinkle to build, for the convenience of in spread hot, let up control.Nine is at great inner part constitution of the physical volume concrete cool off piping, cold water perhaps cold air cool off, let up concrete of inside outside difference in temperature.Ten is the supervision which strengthen concrete temperature, adopt to cool off in time, protection measure.11 is to reserve temperature constringency to sew.12 is to let up to control, sprinkle proper before building concrete in the Ji rockand old concrete top build a 5 mm or so sand mat a layer or usage asphalt etc. material Tu2 Shua.13 is to strengthen concrete to protect, the concrete after sprinkle build use moist grass Lian in time, hemp slice's etc. overlay, and attention sprinkle water to protect, appropriate extension protect time, assurance the concrete surface be slow-moving cool off.At the cold season, concrete surface should constitution heat preservation measure, in order to prevent cold wave assault.14 is the allocation be a little amount in the concrete of reinforcing bar perhaps add fiber material concrete of temperature crack control at certain of scope inside.5.Crack and prevention that the chemical reaction causeAlkali bone's anticipating the crack that reaction crack and reinforcing bar rust eclipse cause is the most familiar in the reinforced concrete structure of because of chemical reaction but cause of crack.The concrete blend a future reunion creation some alkalescence ion, these ion with some activity the bone anticipate creation chemical reaction and absorb surroundings environment in of water but the physical volume enlarge, make concrete crisp loose, inflation open crack.In this kind of crack general emergence concrete structure usage period, once appear very difficult remediable, so should at under construction adopt valid the measure carry on prevention.Main of prevention measure:While being to choose to anticipate with the alkali activity small freestone bone.Two is the in addition which choose to use low lye mire with low alkali or have no alkali.Three is the Chan which choose to use accommodation with anticipate to repress an alkali bone to anticipate reaction.Because the concrete sprinkle to build, flap Dao bad perhaps is a reinforcing bar protection layer thinner, the harmful material get into concrete to make reinforcing bar creation rust eclipse, the reinforcing bar physical volume of the rust eclipse inflation, cause concrete bulge crack, the crack of this kind type much is a crack lengthways, follow the position of reinforcing bar ually of prevent measure from have:One is assurance reinforcing bar protection the thickness of the layer.Two is a concrete class to go together with to want good.Three is a concrete to sprinkle to note and flap Dao airtight solid.Four is a reinforcing bar surface layer Tu2 Shua antisepsiscoating.Crack processingThe emergence of the crack not only would influence structure of whole with just degree, return will cause the rust eclipse of reinforcing bar, acceleration concrete of carbonization, lower durable and anti- of concrete tired, anti- Shen ability.Therefore according to the property of crack and concrete circumstance we want differentiation to treat, in time processing, with assurance building of safety usage.The repair measure of the concrete crack is main to have the following some method:Surface repair method, infuse syrup, the Qian sew method, the structure reinforce a method, concrete displacement method, electricity chemistry protection method and imitate to living from heal method.Surface repair the method be a kind of simple, familiar of repair method, it main be applicable to stability and to structure loading the ability don't have the surface crack of influence and deep enter crack of processing.The processing measure that is usually is a surface in crack daubery cement syrup, the wreath oxygen gum mire or at concrete surface Tu2 Shua paint, asphalt etc. antisepsis material, at protection of in the meantime for keeping concrete from continue under the influence of various function to open crack, usually can adoption the surface in crack glue to stick glass fiber cloth etc. measure.1, infuse syrup, the Qian sew methodInfuse a syrup method main the concrete crack been applicable to have influence or have already defend Shen request to the structure whole of repair, it is make use of pressure equipments gum knot the material press into the crack of concrete, gum knot the material harden behind and concrete formation one be whole, thus reinforce of purpose.The in common use gum knot material has the cement the syrup, epoxy, A Ji C Xi sour ester and gather ammonia ester to equalize to learn material.The Qian sew a method is that the crack be a kind of most in common use method in, it usually is follow the crack dig slot, the Qian fill Su in the slot or rigid water material with attain closing crack of purpose.The in common use Su material has PVC gum mire,plastics ointment, the D Ji rubber etc.;In common use rigid water material is the polymer cement sand syrup.2, the structure reinforce a methodWhen the crack influence arrive concrete structure of function, will consideration adopt to reinforce a method to carry on processing to the concrete structure.The structure reinforce medium in common use main have the following a few method:The piece of enlargement concrete structure in every aspect accumulate, outside the Cape department of the Gou piece pack type steel, adoption prepare should the dint method reinforce, glue to stick steel plate to reinforce, increase to establish fulcrum to reinforce and jet the concrete compensation reinforce.3, concrete displacement methodConcrete displacement method is processing severity damage concrete of a kind of valid method, this method be first will damage of the concrete pick and get rid of, then again displacement go into new of concrete or other material.The in common use displacement material have:Common concrete or the cement sand syrup, polymer or change sex polymer concrete or sand syrup.4, the electricity chemistry protection methodThe electricity chemistry antisepsis is to make use of infliction electric field in lie the quality of electricity chemical effect, change concrete or reinforced concrete the environment appearance of the place, the bluntness turn reinforcing bar to attain the purpose of antisepsis.Cathode protection method, chlorine salt's withdrawing a method, alkalescence to recover a method is a chemistry protection method in three kinds of in common use but valid method.The advantage of this kind of method is a protection method under the influence of environment factor smaller, apply reinforcing bar, concrete of long-term antisepsis, since can used for crack structure already can also used for new set up structure.5, imitate to living from legal moreImitate to living from heal the method be a kind of new crack treatment, its mimicry living creature organization secrete a certain material towards suffering wound part auto, but make the wound part heal of function, join some and special composition(suchas contain to glue knot of the liquid Xin fiber or capsule) in the concrete of the tradition the composition, at concrete inner part formation the intelligence type imitate to living from heal nerve network system, be the concrete appear crack secrete a parts of liquid Xin fiber can make the crack re- heal.ConclusionThe crack is widespread in the concrete structure existence of a kind of phenomenon, it of emergence not only will lower the anti- Shen of building ability, influence building of usage function, and will cause the rust eclipse of reinforcing bar, the carbonization of concrete, lower the durable of material, influence building of loading ability, so want to carry on to the concrete crack earnest research, differentiation treat, adoption reasonable of the method carry on processing, and at under construction adopt various valid of prevention measure to prevention crack of emergence and development, assurance building and Gou piece safety, stability work.From《CANADIAN JOURNAL OF CIVIL ENGINEERING》译文:建筑施工混凝土裂缝的预防与处理混凝土的裂缝问题是一个普遍存在而又难于解决的工程实际问题,本文对混凝土工程中常见的一些裂缝问题进行了探讨分析,并针对具体情况提出了一些预防、处理措施。
forced concrete structure reinforced with anoverviewReinSince the reform and opening up, with the national economy's rapid and sustained development of a reinforced concrete structure built, reinforced with the development of technology has been great. Therefore, to promote the use of advanced technology reinforced connecting to improve project quality and speed up the pace of construction, improve labor productivity, reduce costs, and is of great significance.Reinforced steel bars connecting technologies can be divided into two broad categories linking welding machinery and steel. There are six types of welding steel welding methods, and some apply to the prefabricated plant, and some apply to the construction site, some of both apply. There are three types of machinery commonly used reinforcement linking method primarily applicable to the construction site. Ways has its own characteristics and different application, and in the continuous development and improvement. In actual production, should be based on specific conditions of work, working environment and technical requirements, the choice of suitable methods to achieve the best overall efficiency.1、steel mechanical link1.1 radial squeeze linkWill be a steel sleeve in two sets to the highly-reinforced Department with superhigh pressure hydraulic equipment (squeeze tongs) along steel sleeve radial squeeze steel casing, in squeezing out tongs squeeze pressure role of a steel sleeve plasticity deformation closely integrated with reinforced through reinforced steel sleeve and Wang Liang's Position will be two solid steel bars linkedCharacteristic: Connect intensity to be high, performance reliable, can bear high stress draw and pigeonhole the load and tired load repeatedly.Easy and simple to handle, construction fast, save energy and material, comprehensive economy profitable, this method has been already a large amount of application in the project.Applicable scope : Suitable for Ⅱ, Ⅲ, Ⅳgrade reinforcing bar (including welding bad reinfor cing bar ) with ribbing of Ф 18- 50mm, connection between the same diameter or different diameters reinforcing bar .1.2must squeeze linkExtruders used in the covers, reinforced axis along the cold metal sleeve squeeze dedicated to insert sleeve Lane two hot rolling steel drums into a highly integrated mechanical linking methods.Characteristic: Easy to operate and joining fast and not having flame homework , can construct for 24 hours , save a large number of reinforcing bars and energy. Applicable scope : Suitable for , set up according to first and second class antidetonation requirement -proof armored concrete structure ФⅡ, Ⅲgrade reinforcing bar with ribbing of hot rolling of 20- 32mm join and construct live.1.3 cone thread connectingUsing cone thread to bear pulled, pressed both effort and self-locking nature, undergo good principles will be reinforced by linking into cone-processing thread at the moment the value of integration into the joints connecting steel bars.Characteristic: Simple , all right preparatory cut of the craft , connecting fast, concentricity is good, have pattern person who restrain from advantage reinforcing bar carbon content.Applicable scope : Suitable for the concrete structure of the industry , civil buil ding and general structures, reinforcing bar diameter is for Фfor the the 16- 40mm one Ⅱ, Ⅲgrade verticality, it is the oblique to or reinforcing bars horizontal join construct live.conclusionsThese are now commonly used to connect steel synthesis methods, which links technology in the United States, Britain, Japan and other countries are widely used. There are different ways to connect their different characteristics and scope of theactual construction of production depending on the specific project choose a suitable method of connecting to achieve both energy conservation and saving time limit for a project ends.钢筋混凝土结构中钢筋连接综述改革开放以来,随着国民经济的快速、持久发展,各种钢筋混凝土建筑结构大量建造,钢筋连接技术得到很大的发展。
外文文献:Construction of the competition and competition strategy Engineering and construction firms from the United States dominated the global market for many decades but recent world events have altered their position.To investigate the driving forces and trends that will affect engineering and construction competition in the next decade, a research project, called the "Anatomy of Construction Competition in the Year 2000", was sponsored by the Construction Industry Institute's Construc—tion 2000 Task Force— The project examined the factors that affect competitiveness, including the following, The shaping of corporate capabilities; vertical integration and horizontal expansion to increase corporate capabilities and market share, including acquisition and mergers by offshore conglomerates and the acquisition of foreign firms by U. S. companies.Financing options; the role of privatization, build-own-transfer projects, and the nature of project financing in future markets,Management, organization, and structure; future management and organizational approaches, structures, and techniques to attract personnel to perform in a global competitive environment.Work force characteristics; future availability of engineering and construction workers at the professional and craft levels.Technological issues:how technology will affect competition and be used to offset work force shortages.Research Objectives and ScopeThis research project's goal is to collect information, to adapt to the 2000 and the engineering construction after adjustment,formulate strategies needed to provide insight and formulate 2000 engineering construction of possible development plan. This study reviewed the project construction process of history, current development trend, to determine the impact of the industry, and the impetus to the future industrial enterprises are related to reshape the ability, privatisation and financing methods of potential function and management, organization structure, methods for future development direction。
建筑学毕业设计的外文文献及译文文献、资料题目:《Advanced Encryption Standard》文献、资料发表(出版)日期:2004.10.25系(部):建筑工程系生:陆总LYY外文文献:Modern ArchitectureModern architecture, not to be confused with Contemporary architecture1, is a term given to a number of building styles with similar characteristics, primarily the simplification of form and the elimination of ornament. While the style was conceived early in the 20th century and heavily promoted by a few architects, architectural educators and exhibits, very few Modern buildings were built in the first half of the century. For three decades after the Second World War, however, it became the dominant architectural style for institutional and corporate building.1. OriginsSome historians see the evolution of Modern architecture as a social matter, closely tied to the project of Modernity and hence to the Enlightenment, a result of social and political revolutions.Others see Modern architecture as primarily driven by technological and engineering developments, and it is true that the availability of new building materials such as iron, steel, concrete and glass drove the invention of new building techniques as part of the Industrial Revolution. In 1796, Shrewsbury mill owner Charles Bage first used his "fireproof design, which relied on cast iron and brick with flag stone floors. Such construction greatly strengthened the structure of mills, which enabled them to accommodate much bigger machines. Due to poor knowledge of iron's properties as a construction material, a number of early mills collapsed. It was not until the early 1830s that Eaton Hodgkinson introduced the section beam, leading to widespread use of iron construction, this kind of austere industrial architecture utterly transformed the landscape of northern Britain, leading to the description, πDark satanic millsπof places like Manchester and parts of West Yorkshire. The Crystal Palace by Joseph Paxton at the Great Exhibition of 1851 was an early example of iron and glass construction; possibly the best example is the development of the tall steel skyscraper in Chicago around 1890 by William Le Baron Jenney and Louis Sullivan∙ Early structures to employ concrete as the chief means of architectural expression (rather than for purely utilitarian structure) include Frank Lloyd Wright,s Unity Temple, built in 1906 near Chicago, and Rudolf Steiner,s Second Goetheanum, built from1926 near Basel, Switzerland.Other historians regard Modernism as a matter of taste, a reaction against eclecticism and the lavish stylistic excesses of Victorian Era and Edwardian Art Nouveau.Whatever the cause, around 1900 a number of architects around the world began developing new architectural solutions to integrate traditional precedents (Gothic, for instance) with new technological possibilities- The work of Louis Sullivan and Frank Lloyd Wright in Chicago, Victor Horta in Brussels, Antoni Gaudi in Barcelona, Otto Wagner in Vienna and Charles Rennie Mackintosh in Glasgow, among many others, can be seen as a common struggle between old and new.2. Modernism as Dominant StyleBy the 1920s the most important figures in Modern architecture had established their reputations. The big three are commonly recognized as Le Corbusier in France, and Ludwig Mies van der Rohe and Walter Gropius in Germany. Mies van der Rohe and Gropius were both directors of the Bauhaus, one of a number of European schools and associations concerned with reconciling craft tradition and industrial technology.Frank Lloyd Wright r s career parallels and influences the work of the European modernists, particularly via the Wasmuth Portfolio, but he refused to be categorized with them. Wright was a major influence on both Gropius and van der Rohe, however, as well as on the whole of organic architecture.In 1932 came the important MOMA exhibition, the International Exhibition of Modem Architecture, curated by Philip Johnson. Johnson and collaborator Henry-Russell Hitchcock drew together many distinct threads and trends, identified them as stylistically similar and having a common purpose, and consolidated them into the International Style.This was an important turning point. With World War II the important figures of the Bauhaus fled to the United States, to Chicago, to the Harvard Graduate School of Design, and to Black Mountain College. While Modern architectural design never became a dominant style in single-dwelling residential buildings, in institutional and commercial architecture Modernism became the pre-eminent, and in the schools (for leaders of the profession) the only acceptable, design solution from about 1932 to about 1984.Architects who worked in the international style wanted to break with architectural tradition and design simple, unornamented buildings. The most commonly used materials are glass for the facade, steel for exterior support, and concrete for the floors and interior supports; floor plans were functional and logical. The style became most evident in the design of skyscrapers. Perhaps its most famous manifestations include the United Nations headquarters (Le Corbusier, Oscar Niemeyer, Sir Howard Robertson), the Seagram Building (Ludwig Mies van der Rohe), and Lever House (Skidmore, Owings, and Merrill), all in New York. A prominent residential example is the Lovell House (Richard Neutra) in Los Angeles.Detractors of the international style claim that its stark, uncompromisingly rectangular geometry is dehumanising. Le Corbusier once described buildings as πmachines for living,∖but people are not machines and it was suggested that they do not want to live in machines- Even Philip Johnson admitted he was πbored with the box∕,Since the early 1980s many architects have deliberately sought to move away from rectilinear designs, towards more eclectic styles. During the middle of the century, some architects began experimenting in organic forms that they felt were more human and accessible. Mid-century modernism, or organic modernism, was very popular, due to its democratic and playful nature. Alvar Aalto and Eero Saarinen were two of the most prolific architects and designers in this movement, which has influenced contemporary modernism.Although there is debate as to when and why the decline of the modern movement occurred, criticism of Modern architecture began in the 1960s on the grounds that it was universal, sterile, elitist and lacked meaning. Its approach had become ossified in a πstyleπthat threatened to degenerate into a set of mannerisms. Siegfried Giedion in the 1961 introduction to his evolving text, Space, Time and Architecture (first written in 1941), could begin ,,At the moment a certain confusion exists in contemporary architecture, as in painting; a kind of pause, even a kind of exhaustion/1At the Metropolitan Museum of Art, a 1961 symposium discussed the question πModern Architecture: Death or Metamorphosis?11In New York, the coup d r etat appeared to materialize in controversy around the Pan Am Building that loomed over Grand Central Station, taking advantage of the modernist real estate concept of πair rights,∖[l] In criticism by Ada Louise Huxtable and Douglas Haskell it was seen to ,,severπthe Park Avenue streetscape and πtarnishπthe reputations of its consortium of architects: Walter Gropius, Pietro Belluschi and thebuilders Emery Roth & Sons. The rise of postmodernism was attributed to disenchantment with Modern architecture. By the 1980s, postmodern architecture appeared triumphant over modernism, including the temple of the Light of the World, a futuristic design for its time Guadalajara Jalisco La Luz del Mundo Sede International; however, postmodern aesthetics lacked traction and by the mid-1990s, a neo-modern (or hypermodern) architecture had once again established international pre-eminence. As part of this revival, much of the criticism of the modernists has been revisited, refuted, and re-evaluated; and a modernistic idiom once again dominates in institutional and commercial contemporary practice, but must now compete with the revival of traditional architectural design in commercial and institutional architecture; residential design continues to be dominated by a traditional aesthetic.中文译文:现代建筑现代建筑,不被混淆与‘当代建筑’,是一个词给了一些建筑风格有类似的特点,主要的简化形式,消除装饰等.虽然风格的设想早在20世纪,并大量造就了一些建筑师、建筑教育家和展品,很少有现代的建筑物,建于20世纪上半叶.第二次大战后的三十年,但最终却成为主导建筑风格的机构和公司建设.1起源一些历史学家认为进化的现代建筑作为一个社会问题,息息相关的工程中的现代性, 从而影响了启蒙运动,导致社会和政治革命.另一些人认为现代建筑主要是靠技术和工程学的发展,那就是获得新的建筑材料,如钢铁,混凝土和玻璃驱车发明新的建筑技术,它作为工业革命的一部分.1796年,Shrewsbury查尔斯bage首先用他的‘火’的设计,后者则依靠铸铁及砖与石材地板.这些建设大大加强了结构,使它们能够容纳更大的机器.由于作为建筑材料特性知识缺乏,一些早期建筑失败.直到1830年初,伊顿Hodgkinson预计推出了型钢梁,导致广泛使用钢架建设,工业结构完全改变了这种窘迫的面貌,英国北部领导的描述,〃黑暗魔鬼作坊〃的地方如曼彻斯特和西约克郡.水晶宫由约瑟夫paxton的重大展览,1851年,是一个早期的例子, 钢铁及玻璃施工;可能是一个最好的例子,就是1890年由William乐男爵延长和路易沙利文在芝加哥附近发展的高层钢结构摩天楼.早期结构采用混凝土作为行政手段的建筑表达(而非纯粹功利结构),包括建于1906年在芝加哥附近,劳埃德赖特的统一宫,建于1926 年瑞士巴塞尔附近的鲁道夫斯坦纳的第二哥特堂,.但无论原因为何,约有1900多位建筑师,在世界各地开始制定新的建筑方法,将传统的先例(比如哥特式)与新的技术相结合的可能性.路易沙利文和赖特在芝加哥工作,维克多奥尔塔在布鲁塞尔,安东尼高迪在巴塞罗那,奥托瓦格纳和查尔斯景mackintosh格拉斯哥在维也纳,其中之一可以看作是一个新与旧的共同斗争.2现代主义风格由1920年代的最重要人物,在现代建筑里确立了自己的名声.三个是公认的柯布西耶在法国,密斯范德尔德罗和瓦尔特格罗皮乌斯在德国.密斯范德尔德罗和格罗皮乌斯为董事的包豪斯,其中欧洲有不少学校和有关团体学习调和工艺和传统工业技术.赖特的建筑生涯中,也影响了欧洲建筑的现代艺术,特别是通过瓦斯穆特组合但他拒绝被归类与他们.赖特与格罗皮乌斯和Van der德罗对整个有机体系有重大的影响.在1932年来到的重要moma展览,是现代建筑艺术的国际展览,艺术家菲利普约翰逊. 约翰逊和合作者亨利-罗素阁纠集许多鲜明的线索和趋势,内容相似,有一个共同的目的, 巩固了他们融入国际化风格这是一个重要的转折点.在二战的时间包豪斯的代表人物逃到美国,芝加哥,到哈佛大学设计黑山书院.当现代建筑设计从未成为主导风格单一的住宅楼,在成为现代卓越的体制和商业建筑,是学校(专业领导)的唯一可接受的,设计解决方案,从约1932年至约1984 年.那些从事国际风格的建筑师想要打破传统建筑和简单的没有装饰的建筑物。
黄山学院毕 业 设 计系 别:_________________________班 级:_________________________ 姓 名:_________________________ 指 导 教 师:_______郭富__________________ 2010年5月8 日 刘星 10土对本(2)班 土木工程系目录1 中文翻译 (1)1.1钢筋混凝土 (1)1.2土方工程 (2)1.3结构的安全度 (3)2 外文翻译 (6)2.1 Reinforced Concrete (6)2.2 Earthwork (7)2.3 Safety of Structures (9)1 中文翻译1.1钢筋混凝土素混凝土是由水泥、水、细骨料、粗骨料(碎石或;卵石)、空气,通常还有其他外加剂等经过凝固硬化而成。
将可塑的混凝土拌合物注入到模板内,并将其捣实,然后进行养护,以加速水泥与水的水化反应,最后获得硬化的混凝土。
其最终制成品具有较高的抗压强度和较低的抗拉强度。
其抗拉强度约为抗压强度的十分之一。
因此,截面的受拉区必须配置抗拉钢筋和抗剪钢筋以增加钢筋混凝土构件中较弱的受拉区的强度。
由于钢筋混凝土截面在均质性上与标准的木材或钢的截面存在着差异,因此,需要对结构设计的基本原理进行修改。
将钢筋混凝土这种非均质截面的两种组成部分按一定比例适当布置,可以最好的利用这两种材料。
这一要求是可以达到的。
因混凝土由配料搅拌成湿拌合物,经过振捣并凝固硬化,可以做成任何一种需要的形状。
如果拌制混凝土的各种材料配合比恰当,则混凝土制成品的强度较高,经久耐用,配置钢筋后,可以作为任何结构体系的主要构件。
浇筑混凝土所需要的技术取决于即将浇筑的构件类型,诸如:柱、梁、墙、板、基础,大体积混凝土水坝或者继续延长已浇筑完毕并且已经凝固的混凝土等。
对于梁、柱、墙等构件,当模板清理干净后应该在其上涂油,钢筋表面的锈及其他有害物质也应该被清除干净。
浇筑基础前,应将坑底土夯实并用水浸湿6英寸,以免土壤从新浇的混凝土中吸收水分。
一般情况下,除使用混凝土泵浇筑外,混凝土都应在水平方向分层浇筑,并使用插入式或表面式高频电动振捣器捣实。
必须记住,过分的振捣将导致骨料离析和混凝土泌浆等现象,因而是有害的。
水泥的水化作用发生在有水分存在,而且气温在50°F以上的条件下。
为了保证水泥的水化作用得以进行,必须具备上述条件。
如果干燥过快则会出现表面裂缝,这将有损与混凝土的强度,同时也会影响到水泥水化作用的充分进行。
设计钢筋混凝土构件时显然需要处理大量的参数,诸如宽度、高度等几何尺寸,配筋的面积,钢筋的应变和混凝土的应变,钢筋的应力等等。
因此,在选择混凝土截面时需要进行试算并作调整,根据施工现场条件、混凝土原材料的供应情况、业主提出的特殊要求、对建筑和净空高度的要求、所用的设计规范以及建筑物周围环境条件等最后确定截面。
钢筋混凝土通常是现场浇注的合成材料,它与在工厂中制造的标准的钢结构梁、柱等不同,因此对于上面所提到的一系列因素必须予以考虑。
对结构体系的各个部位均需选定试算截面并进行验算,以确定该截面的名义强度是否足以承受所作用的计算荷载。
由于经常需要进行多次试算,才能求出所需的截面,因此设计时第一次采用的数值将导致一系列的试算与调整工作。
选择混凝土截面时,采用试算与调整过程可以使复核与设计结合在一起。
因此,当试算截面选定后,每次设计都是对截面进行复核。
手册、图表和微型计算机以及专用程序的使用,使这种设计方法更为简捷有效,而传统的方法则是把钢筋混凝土的复核与单纯的设计分别进行处理。
1.2土方工程由于和土木工程中任何其他工种的施工方法与费用相比较,土方挖运的施工方法与费用的变化都要快得多,因此对于有事业心的人来说,土方工程是一个可以大有作为的领域。
在1935年,目前采用的利用轮胎式机械设备进行土方挖运的方法大多数还没有出现。
那是大部分土方是采用窄轨铁路运输,在这目前来说是很少采用的。
当时主要的开挖方式是使用正铲、反铲、拉铲或抓斗等挖土机,尽管这些机械目前仍然在广泛应用,但是它们只不过是目前所采用的许多方法中的一小部分。
因此,一个工程师为了使自己在土方挖运设备方面的知识跟得上时代的发展,他应当花费一些时间去研究现代的机械。
一般说来,有关挖土机、装载机和运输机械的唯一可靠而又最新的资料可以从制造厂商处获得。
土方工程或土方挖运工程指的是把地表面过高处的土壤挖去(挖方),并把它倾卸到地表面过低的其他地方(填方)。
为了降低土方工程费用,填方量应该等于挖方量,而且挖方地点应该尽可能靠近土方量相等的填方地点,以减少运输量和填方的二次搬运。
土方设计这项工作落到了从事道路设计的工程师的身上,因为土方工程的设计比其他任何工作更能决定工程造价是否低廉。
根据现有的地图和标高,道路工程师应在设计绘图室中的工作也并不是徒劳的。
它将帮助他在最短的时间内获得最好的方案。
费用最低的运土方法是用同一台机械直接挖方取土并且卸土作为填方。
这并不是经常可以做到的,但是如果能够做到则是很理想的,因为这样做既快捷又省钱。
拉铲挖土机。
推土机和正铲挖土机都能做到这点。
拉铲挖土机的工作半径最大。
推土机所推运的图的数量最多,只是运输距离很短。
拉铲挖土机的缺点是只能挖比它本身低的土,不能施加压力挖入压实的土壤内,不能在陡坡上挖土,而且挖。
卸都不准确。
正铲挖土机介于推土机和拉铲挖土机的之间,其作用半径大于推土机,但小于拉铲挖土机。
正铲挖土机能挖取竖直陡峭的工作面,这种方式对推土机司机来说是危险的,而对拉铲挖土机则是不可能的。
每种机械设备应该进行最适合它的性能的作业。
正铲挖土机不能挖比其停机平面低很多的土,而深挖坚实的土壤时,反铲挖土机最适用,但其卸料半径比起装有正铲的同一挖土机的卸料半径则要小很多。
在比较平坦的场地开挖,如果用拉铲或正铲挖土机运输距离太远时,则装有轮胎式的斗式铲运机就是比不可少的。
它能在比较平的地面上挖较深的土(但只能挖机械本身下面的土),需要时可以将土运至几百米远,然后卸土并在卸土的过程中把土大致铲平。
在挖掘硬土时,人们发现在开挖场地经常用一辆助推拖拉机(轮式或履带式),对返回挖土的铲运机进行助推这种施工方法是经济的。
一旦铲运机装满,助推拖拉机就回到开挖的地点去帮助下一台铲运机。
斗式铲运机通常是功率非常大的机械,许多厂家制造的铲运机铲斗容量为8 m ³,满载时可达10 m³。
最大的自行式铲运机铲斗容量为19立方米(满载时为25 m ³),由430马力的牵引发动机驱动。
翻斗机可能是使用最为普遍的轮胎式运输设备,因为它们还可以被用来送混凝土或者其他建筑材料。
翻斗车的车斗位于大橡胶轮胎车轮前轴的上方,尽管铰接式翻斗车的卸料方向有很多种,但大多数车斗是向前翻转的。
最小的翻斗车的容量大约为0.5立方米,而最大的标准型翻斗车的容量大约为4.5m³。
特殊型式的翻斗车包括容量为4 m³的自装式翻斗车,和容量约为0.5 m³的铰接式翻斗车。
必须记住翻斗车与自卸卡车之间的区别。
翻斗车车斗向前倾翻而司机坐在后方卸载,因此有时被称为后卸卡车。
1.3结构的安全度规范的主要目的是提供一般性的设计原理和计算方法,以便验算结构的安全度。
就目前的趋势而言,安全系数与所使用的材料性质及其组织情况无关,通常把它定义为发生破坏的条件与结构可预料的最不利的工作条件之比值。
这个比值还与结构的破坏概率(危险率)成反比。
破坏不仅仅指结构的整体破坏,而且还指结构不能正常的使用,或者,用更为确切的话来说,把破坏看成是结构已经达到不能继续承担其设计荷载的“极限状态”。
通常有两种类型的极限状态,即:(1)强度极限状态,它相当于结构能够达到的最大承载能力。
其例子包括结构的局部屈曲和整体不稳定性;某此界面失效,随后结构转变为机构;疲劳破坏;引起结构几何形状显著变化的弹性变形或塑性变形或徐变;结构对交变荷载、火灾和爆炸的敏感性。
(2)使用极限状态,它对应着结构的使用功能和耐久性。
器例子包括结构失稳之前的过大变形和位移;早期开裂或过大的裂缝;较大的振动和腐蚀。
根据不同的安全度条件,可以把结构验算所采用的计算方法分成:(1)确定性的方法,在这种方法中,把主要参数看作非随机参数。
(2)概率方法,在这种方法中,主要参数被认为是随机参数。
此外,根据安全系数的不同用途,可以把结构的计算方法分为:(1)容许应力法,在这种方法中,把结构承受最大荷载时计算得到的应力与经过按规定的安全系数进行折减后的材料强度作比较。
(2)极限状态法,在这种方法中,结构的工作状态是以其最大强度为依据来衡量的。
由理论分析确定的这一最大强度应不小于结构承受计算荷载所算得的强度(极限状态)。
计算荷载等于分别乘以荷载系数的活载与恒载之和。
把对应于不乘以荷载系数的活载和恒载的工作(使用)条件的应力与规定值(使用极限状态)相比较。
根据前两种方法和后两种方法的四种可能组合,我们可以得到一些实用的计算方法。
通常采用下面两种计算方法:确定性的方法,这种方法采用容许应力。
概率方法,这种方法采用极限状态。
至少在理论上,概率法的主要优点是可以科学的考虑所有随机安全系数,然后将这些随机安全系数组合成确定的安全系数。
概率法取决于:(1)制作和安装过程中材料强度的随机分布(整个结构的力学性能数值的分散性);(2)截面和结构几何尺寸的不确定性(由结构制作和安装造成的误差和缺陷而引起的);对作用在结构上的活载和恒载的预测的不确定性;所采用的近似计算方法有关的不精确性(实际应力与计算应力的偏差)。
此外,概率理论意味着可以基于下面几个因素来确定允许的危险率,例如:建筑物的重要性和建筑物破坏造成的危害性;(2)由于建筑物破坏使生活受到威胁的人数;(3)修复建筑的可能性;(4)建筑物的预期寿命。
所有这些因素均与经济和社会条件有关,例如:(1)建筑物的初始建设费;(2)建筑物使用期限内的折旧费;就给定的安全系数而论,所有这些参数的确定都是以建筑物的最佳成本为依据的。
但是,应该考虑到进行全概率分析的困难。
对于这种分析来说,应该了解活载及其所引起的盈利的分布规律、材料的力学性能的分散性和截面的结构几何尺寸的分散性。
此外,由于强度的分布规律和应力的分布规律之间的相互关系是困难的。
这些实际困难可以采用两种方法来克服。
第一种方法对材料和荷载采用不同的安全系数,而不需要采用概率准则;第二种方法是引入一些而简化假设的近似概率方法(半概率方法)。
2 外文翻译2.1 Reinforced ConcretePlain concrete is formed from a hardened mixture of cement ,water ,fine aggregate, coarse aggregate (crushed stone or gravel),air, and often other admixtures. The plastic mix is placed and consolidated in the formwork, then cured to facilitate the acceleration of the chemical hydration reaction lf the cement/water mix, resulting in hardened concrete. The finished product has high compressive strength, and low resistance to tension, such that its tensile strength is approximately one tenth lf its compressive strength. Consequently, tensile and shear reinforcement in the tensile regions of sections has to be provided to compensate for the weak tension regions in the reinforced concrete element.It is this deviation in the composition of a reinforces concrete section from the homogeneity of standard wood or steel sections that requires a modified approach to the basic principles of structural design. The two components of the heterogeneous reinforced concrete section are to be so arranged and proportioned that optimal use is made of the materials involved. This is possible because concrete can easily be given any desired shape by placing and compacting the wet mixture of the constituent ingredients are properly proportioned, the finished product becomes strong, durable, and, in combination with the reinforcing bars, adaptable for use as main members of any structural system.The techniques necessary for placing concrete depend on the type of member to be cast: that is, whether it is a column, a bean, a wall, a slab, a foundation. a mass columns, or an extension of previously placed and hardened concrete. For beams, columns, and walls, the forms should be well oiled after cleaning them, and the reinforcement should be cleared of rust and other harmful materials. In foundations, the earth should be compacted and thoroughly moistened to about 6 in. in depth to avoid absorption of the moisture present in the wet concrete. Concrete should always be placed in horizontal layers which are compacted by means of high frequency power-driven vibrators of either the immersion or external type, as the case requires, unless it is placed by pumping. It must be kept in mind, however, that over vibration can be harmful since it could cause segregation of the aggregate and bleeding of the concrete.Hydration of the cement takes place in the presence of moisture at temperatures above 50°F. It is necessary to maintain such a condition in order that the chemical hydration reaction can take place. If drying is too rapid, surface cracking takes place. This would result in reduction of concrete strength due to cracking as well as the failure to attain full chemical hydration.It is clear that a large number of parameters have to be dealt with in proportioning a reinforced concrete element, such as geometrical width, depth, area of reinforcement, steel strain, concrete strain, steel stress, and so on. Consequently, trial and adjustment is necessary in the choice of concrete sections, with assumptions based on conditions at site, availability of the constituent materials, particular demands of the owners, architectural and headroom requirements, the applicable codes, and environmental reinforced concrete is often a site-constructed composite, in contrast to the standard mill-fabricated beam and column sections in steel structures.A trial section has to be chosen for each critical location in a structural system. The trial section has to be analyzed to determine if its nominal resisting strength is adequate to carry the applied factored load. Since more than one trial is often necessary to arrive at the required section, the first design input step generates into a series of trial-and-adjustment analyses.The trial-and –adjustment procedures for the choice of a concrete section lead to the convergence of analysis and design. Hence every design is an analysis once a trial section is chosen. The availability of handbooks, charts, and personal computers and programs supports this approach as a more efficient, compact, and speedy instructional method compared with the traditional approach of treating the analysis of reinforced concrete separately from pure design.2.2 EarthworkBecause earthmoving methods and costs change more quickly than those in any other branch of civil engineering, this is a field where there are real opportunities for the enthusiast. In 1935 most of the methods now in use for carrying and excavating earth with rubber-tyred equipment did not exist. Most earth was moved by narrow rail track, now relatively rare, and the main methods of excavation, with face shovel, backacter, or dragline or grab, though they are still widely used are only a few of the many current methods. To keep his knowledge of earthmoving equipment up to date an engineer must therefore spend tine studying modern machines. Generally the only reliable up-to-dateinformation on excavators, loaders and transport is obtainable from the makers.Earthworks or earthmoving means cutting into ground where its surface is too high ( cuts ), and dumping the earth in other places where the surface is too low ( fills). Toreduce earthwork costs, the volume of the fills should be equal to the volume of the cuts and wherever possible the cuts should be placednear to fills of equal volume so as to reduce transport and double handlingof the fill. This work of earthwork design falls on the engineer who lays out the road since it is the layout of the earthwork more than anything else which decides its cheapness. From the available maps ahd levels, the engineering must try to reach as many decisions as possible in the drawing office by drawing cross sections of the earthwork. On the site when further information becomes available he can make changes in jis sections and layout,but the drawing lffice work will not have been lost. It will have helped him to reach the best solution in the shortest time.The cheapest way of moving earth is to take it directly out of the cut and drop it as fill with the same machine. This is not always possible, but when it canbe done it is ideal, being both quick and cheap. Draglines, bulldozers and face shovels an do this. The largest radius is obtained with the dragline,and the largest tonnage of earth is moved by the bulldozer, though only over short distances.The disadvantages of the dragline are that it must dig below itself, it cannot dig with force into compacted material, it cannot dig on steep slopws, and its dumping and digging are not accurate.Face shovels are between bulldozers and draglines, having a larger radius of action than bulldozers but less than draglines. They are anle to dig into a vertical cliff face in a way which would be dangerous tor a bulldozer operator and impossible for a dragline. Each piece of equipment should be level of their tracks and for deep digs in compact material a backacter is most useful, but its dumping radius is considerably less than that of the same escavator fitted with a face shovel.Rubber-tyred bowl scrapers are indispensable for fairly level digging where the distance of transport is too much tor a dragline or face shovel. They can dig the material deeply ( but only below themselves ) to a fairly flat surface, carry it hundreds of meters if need be, then drop it and level it roughly during the dumping. For hard digging it is often found economical to keep a pusher tractor ( wheeled or tracked ) on the digging site, to push each scraper as it returns to dig. As soon as the scraper is full,the pusher tractor returns to the beginning of the dig to heop to help the nest scraper.Bowl scrapers are often extremely powerful machines;many makers build scrapersof 8 cubic meters struck capacity, which carry 10 m ³ heaped. The largest self-propelled scrapers are of 19 m ³ struck capacity ( 25 m ³ heaped )and they are driven by a tractor engine of 430 horse-powers.Dumpers are probably the commonest rubber-tyred transport since they can also conveniently be used for carrying concrete or other building materials. Dumpers have the earth container over the front axle on large rubber-tyred wheels, and the container tips forwards on most types, though in articulated dumpers the direction of tip can be widely varied. The smallest dumpers have a capacity of about 0.5 m ³, and the largest standard types are of about 4.5 m ³. Special types include the self-loading dumper of up to 4 m ³and the articulated type of about 0.5 m ³. The distinction between dumpers and dump trucks must be remembered .dumpers tip forwards and the driver sits behind the load. Dump trucks are heavy, strengthened tipping lorries, the driver travels in front lf the load and the load is dumped behind him, so they are sometimes called rear-dump trucks.2.3 Safety of StructuresThe principal scope of specifications is to provide general principles and computational methods in order to verify safety of structures. The “ safety factor ”, which according to modern trends is independent of the nature and combination of the materials used, can usually be defined as the ratio between the conditions. This ratio is also proportional to the inverse of the probability ( risk ) of failure of the structure.Failure has to be considered not only as overall collapse of the structure but also as unserviceability or, according to a more precise. Common definition. As the reaching of a “ limit state ” which causes the construction not to accomplish the task it was designed for. There are two categories of limit state :(1)Ultimate limit sate, which corresponds to the highest value of the load-bearing capacity. Examples include local buckling or global instability of the structure; failure of some sections and subsequent transformation of the structure into a mechanism; failure by fatigue; elastic or plastic deformation or creep that cause a substantial change of the geometry of the structure; and sensitivity of the structure to alternating loads, to fire and to explosions.(2)Service limit states, which are functions of the use and durability of the structure. Examples include excessive deformations and displacements without instability; early or excessive cracks; large vibrations; and corrosion.Computational methods used to verify structures with respect to the different safetyconditions can be separated into:(1)Deterministic methods, in which the main parameters are considered as nonrandom parameters.(2)Probabilistic methods, in which the main parameters are considered as random parameters.Alternatively, with respect to the different use of factors of safety, computational methods can be separated into:(1)Allowable stress method, in which the stresses computed under maximum loads are compared with the strength of the material reduced by given safety factors.(2)Limit states method, in which the structure may be proportioned on the basis of its maximum strength. This strength, as determined by rational analysis, shall not be less than that required to support a factored load equal to the sum of the factored live load and dead load ( ultimate state ).The stresses corresponding to working ( service ) conditions with unfactored live and dead loads are compared with prescribed values ( service limit state ) . From the four possible combinations of the first two and second two methods, we can obtain some useful computational methods. Generally, two combinations prevail:(1)deterministic methods, which make use of allowable stresses.(2)Probabilistic methods, which make use of limit states.The main advantage of probabilistic approaches is that, at least in theory, it is possible to scientifically take into account all random factors of safety, which are then combined to define the safety factor. probabilistic approaches depend upon :(1) Random distribution of strength of materials with respect to the conditions of fabrication and erection ( scatter of the values of mechanical properties through out the structure );(2) Uncertainty of the geometry of the cross-section sand of the structure ( faults and imperfections due to fabrication and erection of the structure );(3) Uncertainty of the predicted live loads and dead loads acting on the structure;(4)Uncertainty related to the approximation of the computational method used ( deviation of the actual stresses from computed stresses ).Furthermore, probabilistic theories mean that the allowable risk can be based on several factors, such as :(1) Importance of the construction and gravity of the damage by its failure;(2)Number of human lives which can be threatened by this failure;(3)Possibility and/or likelihood of repairing the structure;(4) Predicted life of the structure.All these factors are related to economic and social considerations such as:(1) Initial cost of the construction;(2) Amortization funds for the duration of the construction;The definition of all these parameters, for a given safety factor, allows construction at the optimum cost. However, the difficulty of carrying out a complete probabilistic analysis has to be taken into account. For such an analysis the laws of the distribution of the live load and its induced stresses, of the scatter of mechanical properties of materials, and of the geometry of the cross-sections and the structure have to be known. Furthermore, it is difficult to interpret the interaction between the law of distribution of strength and that of stresses because both depend upon the nature of the material, on the cross-sections and upon the load acting on the structure. These practical difficulties can be overcome in two ways. The first is to apply different safety factors to the material and to the loads, without necessarily adopting the probabilistic criterion. The second is an approximate probabilistic method which introduces some simplifying assumptions ( semi-probabilistic methods ) .。