当前位置:文档之家› (完整版)高一物理动能动能定理教案

(完整版)高一物理动能动能定理教案

(完整版)高一物理动能动能定理教案
(完整版)高一物理动能动能定理教案

动能动能定理

一、教学目标

1.理解动能的概念:

(1)知道什么是动能。

中动能的单位是焦耳(J);动能是标量,是状态量。

(3)正确理解和运用动能公式分析、解答有关问题。

2.掌握动能定理:

(1)掌握外力对物体所做的总功的计算,理解“代数和”的含义。

(2)理解和运用动能定理。

二、重点、难点分析

1.本节重点是对动能公式和动能定理的理解与应用。

2.动能定理中总功的分析与计算在初学时比较困难,应通过例题逐步提高学生解决该问题的能力。

3.通过动能定理进一步加深功与能的关系的理解,让学生对功、能关系有更全面、深刻的认识,这是本节的较高要求,也是难点。

三、教具

投影仪与幻灯片若干。

四、主要教学过程

(一)引入新课

初中我们曾对动能这一概念有简单、定性的了解,在学习了功的概念及功和能的关系之后,我们再进一步对动能进行研究,定量、深入地理解这一概念及其与功的关系。

(二)教学过程设计

1.什么是动能?它与哪些因素有关?这主要是初中知识回顾,可请学生举例回答,然后总结作如下板书:

物体由于运动而具有的能叫动能,它与物体的质量和速度有关。

下面通过举例表明:运动物体可对外做功,质量和速度越大,动能越大,物体对外做功的能力也越强。所以说动能是表征运动物体做功的一种能力。

2.动能公式

动能与质量和速度的定量关系如何呢?我们知道,功与能密切相关。因此我们可以通过做功来研究能量。外力对物体做功使物体运动而具有动能。下面我们就通过这个途径研究一个运动物体的动能是多少。

用投影仪打出问题,引导学生回答:

光滑水平面上一物体原来静止,质量为m,此时动能是多少?(因为物体没有运动,所以没有动能)。在恒定外力F作用下,物体发生一段位移s,得到速度v(如图1),这个过程中外力做功多少?物体获得了多少动能?

由于外力做功使物体得到动能,所以mv2就是物体获得的动能,这样我们就得到了动能与质量和速度的定量关系:

物体的动能等于它的质量跟它的速度平方的乘积的一半。用E k表示动能,则计算动能的公式为:

由以上推导过程可以看出,动能与功一样,也是标量,不受速度方向的影响。它在国际单位制中的单位也是焦耳(J)。一个物体处于某一确定运动状态,它的动能也就对应于某一确定值,因此动能是状态量。

下面通过一个简单的例子,加深同学对动能概念及公式的理解。

试比较下列每种情况下,甲、乙两物体的动能:(除下列点外,其他情况相同)

①物体甲的速度是乙的两倍;②物体甲向北运动,乙向南运动;

③物体甲做直线运动,乙做曲线运动;④物体甲的质量是乙的一半。

在学生得出正确答案后总结:动能是标量,与速度方向无关;动能与速度的平方成正比,因此速度对动能的影响更大。

3.动能定理

(1)动能定理的推导

将刚才推导动能公式的例子改动一下:假设物体原来就具有速度v1,且水平面存在摩擦力f,在外力F作用下,经过一段位移s,速度达到v2,如图2,则此过程中,外力做功与动能间又存在什么关系呢?

外力F做功:W1=Fs

摩擦力f做功:W2=-fs

可见,外力对物体做的总功等于物体在这一运动过程中动能的增量。其中F 与物体运动同向,它做的功使物体动能增大;f与物体运动反向,它做的功使物体动能减少。它们共同作用的结果,导致了物体动能的变化。

将上述问题再推广一步:若物体同时受几个方向任意的外力作用,情况又如何呢?引导学生推导出正确结论并板书:

外力对物体所做的总功等于物体动能的增加,这个结论叫动能定理。

用W总表示外力对物体做的总功,用E k1表示物体初态的动能,用E k2表示末态动能,则动能定理表示为:

W总=E k2-E k1=ΔE k

(2)对动能定理的理解

动能定理是学生新接触的力学中又一条重要规律,应立即通过举例及分析加深对它的理解。

a.对外力对物体做的总功的理解

有的力促进物体运动,而有的力则阻碍物体运动。因此它们做的功就有正、负之分,总功指的是各外力做功的代数和;又因为W总=W1+W2+…=F1·s+F2·s+…=F合·s,所以总功也可理解为合外力的功。

b.对该定理标量性的认识

因动能定理中各项均为标量,因此单纯速度方向改变不影响动能大小。如匀速圆周运动过程中,合外力方向指向圆心,与位移方向始终保持垂直,所以合外力做功为零,动能变化亦为零,并不因速度方向改变而改变。

c.对定理中“增加”一词的理解

由于外力做功可正、可负,因此物体在一运动过程中动能可增加,也可能减少。因而定理中“增加”一词,并不表示动能一定增大,它的确切含义为末态与初态的动能差,或称为“改变量”。数值可正,可负。

d.对状态与过程关系的理解

功是伴随一个物理过程而产生的,是过程量;而动能是状态量。动能定理表示了过程量等于状态量的改变量的关系。

4.例题讲解或讨论

主要针对本节重点难点——动能定理,适当举例,加深学生对该定理的理解,提高应用能力。

例1.一物体做变速运动时,下列说法正确的

是 [ ]

A.合外力一定对物体做功,使物体动能改变

B.物体所受合外力一定不为零

C.合外力一定对物体做功,但物体动能可能不变

D.物体加速度一定不为零

此例主要考察学生对涉及力、速度、加速度、功和动能各物理量的牛顿定律和动能定理的理解。只要考虑到匀速圆周运动的例子,很容易得到正确答案B、D。

例2.在水平放置的长直木板槽中,一木块以 6.0米/秒的初速度开始滑动。滑行4.0米后速度减为4.0米/秒,若木板槽粗糙程度处处相同,此后木块还可以向前滑行多远?

此例是为加深学生对负功使动能减少的印象,需正确表示动能定理中各物理量的正负。解题过程如下:

设木板槽对木块摩擦力为f,木块质量为m,据题意使用动能定理有:

二式联立可得:s2=3.2米,即木块还可滑行3.2米。

此题也可用运动学公式和牛顿定律来求解,但过程较繁,建议布置学生课后作业,并比较两种方法的优劣,看出动能定理的优势。

例3.如图3,在水平恒力F作用下,物体沿光滑曲面从高为h1的A处运动到高为h2的B处,若在A处的速度为v A,B处速度为v B,则AB的水平距离为多大?

可先让学生用牛顿定律考虑,遇到困难后,再指导使用动能定理。

A到B过程中,物体受水平恒力F,支持力N和重力mg的作用。三个力做功分别为Fs,0和-mg(h2-h1),所以动能定理写为:

从此例可以看出,以我们现在的知识水平,牛顿定律无能为力的问题,动能定理可以很方便地解决,其关键就在于动能定理不计运动过程中瞬时细节。

通过以上三例总结一下动能定理的应用步骤:

(1)明确研究对象及所研究的物理过程。

(2)对研究对象进行受力分析,并确定各力所做的功,求出这些力的功的代数和。

(3)确定始、末态的动能。(未知量用符号表示),根据动能定理列出方程

W总=E k2-E k1)

(4)求解方程、分析结果

我们用上述步骤再分析一道例题。

例4.如图4所示,用细绳连接的A、B两物体质量相等,A位于倾角为30°的斜面上,细绳跨过定滑轮后使A、B均保持静止,然后释放,设A与斜面间的滑动摩擦力为A受重力的0.3倍,不计滑轮质量从摩擦,求B下降1米时的速度大可。

让学生自由选择研究对象,那么可能有的同学分别选择A、B为研究对象,而有了则将A、B看成一个整体来分析,分别请两位方法不同的学生在黑板上写出解题过程:

三式联立解得:v=1.4米/秒

解法二:将A、B看成一整体。(因二者速度、加速度大小均一样),此时拉力T为内力,求外力做功时不计,则动能定理写为:

f=0.3mg

二式联立解得:v=1.4米/秒

可见,结论是一致的,而方法二中受力体的选择使解题过程简化,因而在使用动能定理时要适当选取研究对象。

五、课堂小结

1.对动能概念和计算公式再次重复强调。

2.对动能定理的内容,应用步骤,适用问题类型做必要总结。

3.通过动能定理,再次明确功和动能两个概念的区别和联系、加深对两个物理量的理解。

六、说明

1.由于计算功时质点的位移和动能中的速度都与参照系有关。因此对学习基础较好的学生,可以补充讲解功和动能对不同惯性系的相对性和动能定理的不变性。如时间较紧。可在教师适当提示下,让学生在课下思考解答。

2.一节课不可能对动能定理的应用讲解的非常全面、深刻,但一定要强调公式中各物理量的正确含义,因为动能定理实质上就是能的转化和守恒定律的一

种表达形式,掌握好动能定理,以后才能顺利地深入研究动能关系、机械能守恒定律及能的转化和守恒定律。如果一开始就概念不清,很可能影响以后知识的学习。

物理必修动能和动能定理专题复习资料

物理必修动能和动能定理专题复习资料 Revised as of 23 November 2020

高一物理重点突破(1) 动能和动能定理 辅导教师:林裕光 知识链接 一、动能 1.定义式: 2.动能是描述物体运动状态的一种形式的能,它是标量. 二、动能定理 1.表达式: 2.意义:表示合力功与动能改变的对应关系. 3.应用动能定理解题的基本步骤 (1)确定研究对象,研究对象可以是一个单体也可以是一个系统. (2)分析研究对象的受力情况和运动情况,是否是求解“力、位移与速率关系”问题. (3)若是,根据W合=E k2-E k1列式求解. 与牛顿定律观点比较,动能定理只需考查一个物体运动过程的始末两个状态有关物理量的关系,对过程的细节不予细究,这正是它的方便之处;动能定理还可求解变力做功的问题. 重点、难点、疑点突破 1 一架喷气式飞机,质量m=5×103kg,起飞过程中从静止开始滑跑的路程为s =×102m时,达到起飞的速度v =60m/s,在此过程中飞机受到的平均阻力是飞机重量的倍(k=),求飞机受到的牵引力。 2 将质量m=2kg的一块石头从离地面H=2m高处由静止开始释放,落入泥潭并陷入泥中h=5cm深处,不计空气阻力,求泥对石头的平均阻力。(g取10m/s2)

3 一质量为㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( ) A .Δv=0 B. Δv =12m/s C. W=0 D. W= 4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( ) A. gh v 20+ B. gh v 20- C. gh v 220 + D. gh v 220- 5 一质量为m 的小球,用长为l 的轻绳悬挂于O 点。小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( ) A. mgl cos θ B. mgl (1-cos θ) C. Fl cos θ D. Flsin θ 6 如图2-7-4所示,绷紧的传送带在电动机带动下,始终保持v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件轻轻地放在传送带底端,由传送带传送至h =2m 的高处。已知工件与传送带间的动摩擦因数2 3 = μ,g 取10m/s 2。 (1)试通过计算分析工件在传送带上做怎样的运动 2-7-3

高一物理动能、动能定理练习题

高一物理动能、动能定 理练习题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

动能、动能定理练习 1、下列关于动能的说法中,正确的是( )A 、动能的大小由物体的质量和速率决定,与物体的运动方向无关 B 、物体以相同的速率分别做匀速直线运动和匀速圆周运动时,其动能不同.因为它在这两种情况下所受的合力不同、运动性质也不同 C 、物体做平抛运动时,其动能在水平方向的分量不变,在竖直方向的分量增大 D 、物体所受的合外力越大,其动能就越大 2、一质量为2kg 的滑块,以4m/s 的速度在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力.经过一段时间,滑块的速度方向变为向右,大小为4m/s.在这段时间里水平力做的功为( ) A 、0 B 、8J C 、16J D 、32J 3、质量不等但有相同动能的两物体,在动摩擦因数相同的水平地面上滑行直到停止,则( ) A 、质量大的物体滑行距离小 B 、它们滑行的距离一样大 C 、质量大的物体滑行时间短 D 、它们克服摩擦力所做的功一样多 4、一辆汽车从静止开始做加速直线运动,运动过程中汽车牵引力的功率保持恒定,所受的阻力不变,行驶2min 速度达到10m/s.那么该列车在这段时间内行的距离( ) A 、一定大于600m B 、一定小于600m C 、一定等于600m D 、可能等于1200m 5、质量为1.0kg 的物体,以某初速度在水平面上滑行,由于摩擦阻力的作用,其动能随位移变化的情况如下图所示,则下列判断正确的是(g=10m/s 2 )( ) A 、物体与水平面间的动摩擦因数为0.30 B 、物体与水平面间的动摩擦因数为0.25 C 、物体滑行的总时间是2.0s D 、物体滑行的总时间是4.0s 6、一个小物块从斜面底端冲上足够长的斜面后,返回到斜面底端,已知小物块的初动能为E ,它返回斜面底端的速度大小为υ,克服摩擦阻力做功为E/2.若小物块冲上斜面的初动能变为2E ,则有( ) A 、返回斜面底端的动能为E B 、返回斜面底端时的动能为3E/2 C 、返回斜面底端的速度大小为2υ D 、返回斜面底端的速度大小为 2υ 7、以初速度v 0急速竖直上抛一个质量为m 的小球,小球运动过程中所受阻力f 大小不变,上升最大高度为h ,则抛出过程中,人手对小球做的功( ) A. 12 02mv B. mgh C. 12 02 mv mgh + D. mgh fh + 8、如图所示,AB 为1/4圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R ,一质量为m 的物 体,与两个轨道间的动摩擦因数都为μ,当它由轨道顶端A 从静止开始下落,恰好运动到C 处停止,那么物体在AB 段克服摩擦力所做的功为 A. 1 2 μmgR B. 1 2 mgR C. mgR D. ()1-μmgR 9、 质量为m 的物体静止在粗糙的水平地面上,若物体受水平力F 的作用从静止起通过位移s 时的动能为E 1,当物体受水平力2F 作用,从静止开始通过相同位移s ,它的动能为E 2,则: A 、E 2=E 1 B 、E 2=2E 1 C 、E 2>2E 1 D 、 E 1<E 2<2E 1 10.质量为m ,速度为V 的子弹射入木块,能进入S 米。若要射进3S 深,子弹的初速度应为原来的 (设子弹在木块中的阻力不变) ( ) A .3倍 B . 3 倍 C .9倍 D .2 3 倍 11.质量为m 的物体A 由静止开始下滑至B 而停止,A 、B 离水平地面的高度分别为h 及2 h ,如图所 示。若用平行于接触面的力把它沿原路径从B 拉回到A 处,则拉力的功至少应为 ( ) h / 2 h 图 5 - 17 h B V 0

高考物理动能与动能定理试题经典及解析

高考物理动能与动能定理试题经典及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角θ=37°的粗糙斜面相切。一质量m =1kg 的小滑块从A 点正上方h =1 m 处的P 点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10 m/s 2。 (1)求滑块第一次运动到B 点时对轨道的压力。 (2)求滑块在粗糙斜面上向上滑行的最大距离。 (3)通过计算判断滑块从斜面上返回后能否滑出A 点。 【答案】(1)70N ; (2)1.2m ; (3)能滑出A 【解析】 【分析】 【详解】 (1)滑块从P 到B 的运动过程只有重力做功,故机械能守恒,则有 ()21 2 B mg h R mv += 那么,对滑块在B 点应用牛顿第二定律可得,轨道对滑块的支持力竖直向上,且 ()2 N 270N B mg h R mv F mg mg R R +=+=+= 故由牛顿第三定律可得:滑块第一次运动到B 点时对轨道的压力为70N ,方向竖直向下。 (2)设滑块在粗糙斜面上向上滑行的最大距离为L ,滑块运动过程只有重力、摩擦力做功,故由动能定理可得 cos37sin37cos370mg h R R L mgL μ+-?-?-?=() 所以 1.2m L = (3)对滑块从P 到第二次经过B 点的运动过程应用动能定理可得 ()21 2cos370.542 B mv mg h R mgL mg mgR μ'=+-?=> 所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出A 点。 【点睛】 经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。

高中物理动能定理典型练习题含答案.doc

动能定理典型练习题 典型例题讲解 1.下列说法正确的是( ) A 做直线运动的物体动能不变,做曲线运动的物体动能变化 B 物体的速度变化越大,物体的动能变化也越大 C 物体的速度变化越快,物体的动能变化也越快 D 物体的速率变化越大,物体的动能变化也越大 【解析】 对于给定的物体来说,只有在速度的大小(速率)发生变化时它的动能才改变,速度的变化是矢量,它完全可以只是由于速度方向的变化而引起.例如匀速圆周运动.速度变化的快慢是指加速度,加速度大小与速度大小之间无必然的联系. 【答案】D 2.物体由高出地面H 高处由静止自由落下,不考虑空气阻力,落至沙坑表面进入沙坑h 停止(如图5-3-4所示).求物体在沙坑中受到的平均阻力是其重力 的多少倍? 【解析】 选物体为研究对象, 先研究自由落体过程,只有重力做功,设物体质量为m ,落到沙坑表面时速 度为v ,根据动能定理有 02 12 -= mv mgH ① 再研究物体在沙坑中的运动过程,重力做正功,阻做负功,根据动能定理有 22 1 0mv Fh mgh -=- ② 由①②两式解得 h h H mg F += 另解:研究物体运动的全过程,根据动能定理有 000)(=-=-+Fh h H mg 解得h h H mg F += 3.如图5-3-5所示,物体沿一曲面从A 点无初速度滑下,滑至曲面的最低点B 时,下滑高度为5m ,若物体的质量为lkg ,到B 点时的速度为6m/s ,则在下滑过程中,物体克服阻力所做的功为多少?(g 取10m/s 2) 【解析】设物体克服摩擦力 图5-3-5 H h 图5-3-4

图5-3-6 图5-3-7 所做的功为W ,对物体由A 运动到B 用动能定理得 22 1mv W mgh = - J mv mgh W 32612 1 51012122=??-??=-= 即物体克服阻力所做的功为32J. 课后创新演练 1.一质量为1.0kg 的滑块,以4m/s 的初速度在光滑水平面上向左滑行,从某一时刻起一向右水平力作用于滑块,经过一段时间,滑块的速度方向变为向右,大小为4m/s ,则在这段时间内水平力所做的功为( A ) A .0 B .8J C .16J D .32J 2.两物体质量之比为1:3,它们距离地面高度之比也为1:3,让它们自由下落,它们落地时的动能之比为( C ) A .1:3 B .3:1 C .1:9 D .9:1 3.一个物体由静止沿长为L 的光滑斜面下滑当物体的速度达到末速度一半时,物体沿斜面下滑了( A ) A .4L B .L )12(- C .2L D .2 L 4.如图5-3-6所示,质量为M 的木块放在光滑的水平面上,质量为m 的子弹以速度v 0沿水平射中木块,并最终留在木块中与木块一起以速度v 运动.已知当子弹相对木块静止时,木块前进距离L ,子弹进入木块的深度为s .若木块对子弹的阻力f 视为恒定,则下列关系式中正确的是( ACD ) A .fL =21Mv 2 B .f s =2 1mv 2 C .f s =21mv 02-21(M +m )v 2 D .f (L +s )=21mv 02-2 1mv 2 5.如图5-3-7所示,质量为m 的物体静放在水平光滑平台上,系在物体上的绳子跨过光滑的定滑轮由地面以速度v 0向右匀速走动的人拉着,设人从地面上且从平台的 边缘开始向右行 至绳和水平方向 成30°角处,在此 过程中人所做的功 为( D ) A .mv 02/2 B .mv 02

高中物理《动能和动能定理(2)》优质课教案、教学设计

1.回顾知识引出新内容,使学生对其产生兴趣。 师:前几节课我们学习了功、重力势能、弹性势能。而且我们知道了力对物体做功的时候总是对应于某种能量的变化。那么重力做功的时候对应于何种能量的变化呢? 生:重力势能的变化。 师:弹簧弹力做功的时候对应于何种能量的变化呢? 生:弹簧的弹性势能的变化。 【通过提问题的方式能够引导学生回想前面的知识,并且对功和能之间的关系进行潜意识的思考。这对下面的推导演绎动能和动能定理有很大的帮助。】 师:对,重力做功对应于重力势能的变化,弹簧的弹力做功对应于弹簧弹性势能的变化。重力势能和弹性势能是我们前面所学的两种能量的存在形式。今天我们就来学习一个物体由于运动而具有的能——动能。 【由于初中已经对动能有了感性的认识,而感性的认识是形成物理概念的基础。将学过的东西再次学习是从感性认识升华到理性认识的过程。】 师:我们在研究重力势能的时候是从什么地方开始入手分析的呢? 生:是从重力做功开始研究的。 师:从重力势能的研究中,我们得到了什么启发来研究动能呢? 生:也从力做功研究动能。 师:行得通吗?能不能,只有我们大胆尝试后才能知道。下面我们就从力做功来开始研究动能。 2.构建知识平台,铺设探究之路。 师:首先我们设计如下的物理模型: 一质量为m 的物体在水平面上受到方向与运动方向相同的恒力F 的作用下发生了一段位移。速度也由原来的变为求力F 对物体做功的表达式。 【建立适当的物理模型是得出正确结论的保证。】 生: 师:我们根据牛顿第二定律可知F=ma 。那么位移又等于什么呢?我们一起来分析一下。大家看F 是恒力,有时在水平面上作直线运动。那么这是一个什么样的运动? 生:匀变速直线运动 师:对,是我们熟悉的匀变速直线运动。那么我们就可以根据来求出等于什么? 生: 师:好,我们知道了F 和,那么代入即可的到F 对物体做的功的表达式: 【引导学生利用运动学公式得出,使学生掌握用演绎推理的方法得出动能表达式的物理学研究方法。将新知识的学习与旧知识联系起来,在进一步完善学生知识结构的同时,发展学生的知识迁移能力。】 3.分析论证 师:观察这个式子中有两个这种形式的量。再看这个量在过程结束与开始时的差正好是力F 对物体做的功。在此过程中物体除了动能是否还有另一种能量的变化啊? 生:没有出现别的能量的变化。 师:那么是不是我们要探究的动能呢?似乎是,但不敢肯定。那么大家回想一下上节课我们得出的一个结论:当物体的初速度为零时合外力对物体做的功与物体的末速度的平方成正比。由此我们能否肯定就是动能的表达式啊? 生:能肯定。 【分析和论证是这节教学需要突出的探究要素。和学生一起讨论分析得出结论。在这一过程中,培养学生的分析论证能力。】

高一物理动能、动能定理练习题

动能、动能定理练习 1、下列关于动能的说法中,正确的是( )A、动能的大小由物体的质量和速率决定,与物体的运动方向无关 B、物体以相同的速率分别做匀速直线运动和匀速圆周运动时,其动能不同.因为它在这两种情况下所受的合力不同、运动性质也不同 C、物体做平抛运动时,其动能在水平方向的分量不变,在竖直方向的分量增大 D、物体所受的合外力越大,其动能就越大 2、一质量为2kg的滑块,以4m/s的速度在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力.经过一段时间,滑块的速度方向变为向右,大小为4m/s.在这段时间里水平力做的功为( ) A、0 B、8J C、16J D、32J 3、质量不等但有相同动能的两物体,在动摩擦因数相同的水平地面上滑行直到停止,则( ) A、质量大的物体滑行距离小 B、它们滑行的距离一样大 C、质量大的物体滑行时间短 D、它们克服摩擦力所做的功一样多 4、一辆汽车从静止开始做加速直线运动,运动过程中汽车牵引力的功率保持恒定,所受的阻力不变,行驶2min速度达到10m/s.那么该列车在这段时间内行的距离( ) A、一定大于600m B、一定小于600m C、一定等于600m D、可能等于1200m 5、质量为1.0kg的物体,以某初速度在水平面上滑行,由于摩擦阻力的作用,其动能随位移变化的情况如下图所示,则下列判断正确的是(g=10m/s2)( ) A、物体与水平面间的动摩擦因数为0.30 B、物体与水平面间的动摩擦因数为0.25 C、物体滑行的总时间是2.0s D、物体滑行的总时间是4.0s 6、一个小物块从斜面底端冲上足够长的斜面后,返回到斜面底端,已知小物块的初动能为E,它返回斜面底端的速度大小为υ,克服摩擦阻力做功为E/2.若小物块冲上斜面的初动能变为2E,则有( ) A、返回斜面底端的动能为E B、返回斜面底端时的动能为3E/2 C、返回斜面底端的速度大小为2υ D、返回斜面底端的速度大小为2υ 7、以初速度v0急速竖直上抛一个质量为m的小球,小球运动过程中所受阻力f大小不变,上升最大高度为h,则抛出过程中,人手对小球做的功() A. 1 20 2 mv B. mgh C. 1 20 2 mv mgh + D. mgh fh + 8、如图所示,AB为1/4圆弧轨道,BC为水平直轨道,圆弧的半径为R,BC的长度也是R,一质量为m的物 体,与两个轨道间的动摩擦因数都为μ,当它由轨道顶端A从静止开始下落,恰好运动到C处停止,那么物体在AB段克服摩擦力所做的功为 A. 1 2 μmgR B. 1 2 mgR C. mgR D. () 1-μmgR 9、质量为m的物体静止在粗糙的水平地面上,若物体受水平力F的作用从静止起通过位移s时的动能为 E1,当物体受水平力2F作用,从静止开始通过相同位移s,它的动能为E2,则: A、E2=E1 B、E2=2E1 C、E2>2E1 D、E1<E2<2E1 10.质量为m,速度为V的子弹射入木块,能进入S米。若要射进3S深,子弹的初速度应为原来的(设子弹在木块中的阻力不变)( ) h/2 h 图5-17

高中物理动能与动能定理题20套(带答案)

高中物理动能与动能定理题20套(带答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,圆弧轨道AB是在竖直平面内的1 4 圆周,B点离地面的高度h=0.8m,该处切 线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2.求: (1)圆弧轨道的半径 (2)小球滑到B点时对轨道的压力. 【答案】(1)圆弧轨道的半径是5m. (2)小球滑到B点时对轨道的压力为6N,方向竖直向下. 【解析】 (1)小球由B到D做平抛运动,有:h=1 2 gt2 x=v B t 解得: 10 410/ 220.8 B g v x m s h ==?= ? A到B过程,由动能定理得:mgR=1 2 mv B2-0 解得轨道半径R=5m (2)在B点,由向心力公式得: 2 B v N mg m R -= 解得:N=6N 根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下 点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动. 2.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在A点用一弹射装置可将静止的小滑块以v0水平速度弹射出去,沿水平直线轨道运动到B点后,进入半径R=0.3m 的光滑竖直圆形轨道,运行一周后自 B点向C点运动,C点右侧有一陷阱,C、D两点的竖直高度差h=0.2m,水平距离s=0.6m,水平轨道AB长为L1=1m,BC长为 L2 =2.6m,

高一物理动能定理经典题型汇总(全)

高一物理动能定理经典题型汇总(全)

————————————————————————————————作者:————————————————————————————————日期:

1、动能定理应用的基本步骤 应用动能定理涉及一个过程,两个状态.所谓一个过程是指做功过程,应明确该过程各外力所做的总功;两个状态是指初末两个状态的动能. 动能定理应用的基本步骤是: ①选取研究对象,明确并分析运动过程. ②分析受力及各力做功的情况,受哪些力?每个力是否做功?在哪段位移过程中做功?正功?负功?做多少功?求出代数和. ③明确过程始末状态的动能E k1及E K2 ④列方程 W=E K2一E k1,必要时注意分析题目的潜在条件,补充方程进行求解. 2、应用动能定理的优越性 (1)由于动能定理反映的是物体两个状态的动能变化与其合力所做功的量值关系,所以对由初始状态到终止状态这一过程中物体运动性质、运动轨迹、做功的力是恒力还是变力等诸多问题不必加以追究,就是说应用动能定理不受这些问题的限制. (2)一般来说,用牛顿第二定律和运动学知识求解的问题,用动能定理也可以求解,而且往往用动能定理求解简捷.可是,有些用动能定理能够求解的问题,应用牛顿第二定律和运动学知识却无法求解.可以说,熟练地应用动能定理求解问题,是一种高层次的思维和方法,应该增强用动能定理解题的主动意识. (3)用动能定理可求变力所做的功.在某些问题中,由于力F 的大小、方向的变化,不能直接用W=Fscos α求出变力做功的值,但可由动能定理求解. 一、整过程运用动能定理 (一)水平面问题 1、一物体质量为2kg ,以4m/s 的速度在光滑水平面上向左滑行。从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s ,在这段时间内,水平力做功为( ) A. 0 B. 8J C. 16J D. 32J 2、 一个物体静止在不光滑的水平面上,已知m=1kg ,u=0.1,现用水平外力F=2N ,拉其运动5m 后立即撤去水平外力F ,求其还能滑 m (g 取2 /10s m ) 3、总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭油门,除去牵 S L V V

动能和动能定理复习课教案

功、动能和动能定理复习课教案 授课班级k一5 授课老师杨再英 ★学情分析 随着对物理学习的深入,学生刚入学时对物理的新鲜感正被逐渐繁难的物理知识带来的压力所取代,许多学生学习劲头有所下降,出现了一个低谷。他们对于物理学的基本轮廓及研究过程和方法可以说是空的,特别是学生的思维能力还停留在以记忆为主的模式上,想让他们在短时间内入门较为困难,因此在教学中要充分调动学生学生的积极性,加强学习方法论引导,逐步培养学生自主学习的能力,特别是物理学中的基本概念老师更加应该注重方法加以引导理解。另外在物理的课堂教学中应加强作业及解题格式的规范,还应该在教学中漫漫渗透物理思维方法的培养。 ★复习要求 1、掌握动能的表达式。 2、掌握动能定理的表达式。 3、理解动能定理的确切含义,应用动能定理解决实际问题。 ★过程与方法 分析解决问题理论联系实际,学习运用动能定理分析解决问题的方法。 ★情感、态度与价值观 通过运用动能定理分析解决问题,感受成功的喜悦,培养学生对科学研究的兴趣。 ★教学重点 动能定理及其应用。 ★教学难点 对动能定理的理解和应用。 ★教学过程 (一)引入课题 教师活动:通过新课的探究,我们已经知道了力对物体所做的功与速度变化的关系,也知道物体的动能应该怎样表达,力对物体所做的功与物体的动能之间关系这 节课我们就来复习这些问题。 (二)进行复习课 教师活动:物体由于运动而具有的能叫动能,还知道动能表达式吗?

学生活动:思考后回答22 1mv E k = 教师活动:动能是矢量还是标量?国际单位制中,动能的单位是什么? 教师活动: 提出问题: 1970年我国发射的第一颗人造地球卫星,质量为173kg ,运动速度为7200m/s ,它的动能是多大? 学生活动:回答问题,并计算卫星的动能。 点评:通过计算卫星的动能,增强学生的感性认识。同时让学生感受到动能这个概念在生活、科研中的实际应用。促进学生对物理学的学习兴趣。 2、动能定理 教师活动:直接给出动能定理的表达式: 有了动能的表达式后,前面我们推出的21222 121mv mv W -=,就可以写成 12k k E E W -= 其中2k E 表示一个过程的末动能2221mv ,1k E 表示一个过程的初动能212 1mv 。 上式表明,力在一个过程中对物体所作的功,等于物体在这个过程中动能的 变化。这个结论,叫做动能定理。 提出问题:(1)如果物体受到几个力的作用,动能定理中的W 表示什么意义? 结合生活实际,举例说明。(2)动能定理,我们实在物体受恒力作用且作直 线运动的情况下推出的。动能定理是否可以应用于变力作功或物体作曲线运 动的情况,该怎样理解? 教师活动:投影例题引导学生一起分析、解决。 学生活动:学生讲解自己的解答,并相互讨论;教师帮助学生总结用动能定理解题的要 点、步骤,体会应用动能定理解题的优越性。 1、动能定理不涉及运动过程中的加速度和时间,用它来处理问题要比牛顿 定律方便. 2、用动能定理解题,必须明确初末动能,要分析受力及外力做的总功. 3、要注意:当合力对物体做正功时,末动能大于初动能,动能增加;当合 力对物体做负功时,末动能小于初动能,动能减小。 点评:通过分析实例,培养学生进行情景分析,加深对规律的理解能力,加强物理与生活实践的联系。 ★课堂总结、点评 教师活动:让学生概括总结本节的内容。请一个同学到黑板上总结,其他同学在笔记本 上总结,然后请同学评价黑板上的小结内容。 学生活动:认真总结概括本节内容,并把自己这节课的体会写下来、比较黑板上的小结 和自己的小结,看谁的更好,好在什么地方。 点评:总结课堂内容,培养学生概括总结能力。

高中物理动能与动能定理练习题及答案

高中物理动能与动能定理练习题及答案一、高中物理精讲专题测试动能与动能定理 1.如图所示,圆弧轨道AB是在竖直平面内的1 4 圆周,B点离地面的高度h=0.8m,该处切 线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2.求: (1)圆弧轨道的半径 (2)小球滑到B点时对轨道的压力. 【答案】(1)圆弧轨道的半径是5m. (2)小球滑到B点时对轨道的压力为6N,方向竖直向下. 【解析】 (1)小球由B到D做平抛运动,有:h=1 2 gt2 x=v B t 解得: 10 410/ 220.8 B g v x m s h ==?= ? A到B过程,由动能定理得:mgR=1 2 mv B2-0 解得轨道半径R=5m (2)在B点,由向心力公式得: 2 B v N mg m R -= 解得:N=6N 根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下 点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动. 2.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道

后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得: ?2mgR=m v12-m v02 且需要满足m≥mg,解得R≤0.72m, 综合以上考虑,R需要满足的条件为:0.3m≤R≤0.42m或0≤R≤0.12m。 【点睛】 解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。

高一物理 动能定理练习题

动能定理练习 巩固基础 一、不定项选择题(每小题至少有一个选项) 1.下列关于运动物体所受合外力做功和动能变化的关系,下列说法中正确的是( ) A .如果物体所受合外力为零,则合外力对物体所的功一定为零; B .如果合外力对物体所做的功为零,则合外力一定为零; C .物体在合外力作用下做变速运动,动能一定发生变化; D .物体的动能不变,所受合力一定为零。 2.下列说法正确的是( ) A .某过程中外力的总功等于各力做功的代数之和; B .外力对物体做的总功等于物体动能的变化; C .在物体动能不变的过程中,动能定理不适用; D .动能定理只适用于物体受恒力作用而做加速运动的过程。 3.在光滑的地板上,用水平拉力分别使两个物体由静止获得相同的动能,那么可以肯定( ) A .水平拉力相等 B .两物块质量相等 C .两物块速度变化相等 D .水平拉力对两物块做功相等 4.质点在恒力作用下从静止开始做直线运动,则此质点任一时刻的动能( ) A .与它通过的位移s 成正比 B .与它通过的位移s 的平方成正比 C .与它运动的时间t 成正比 D .与它运动的时间的平方成正比 5.一子弹以水平速度v 射入一树干中,射入深度为s ,设子弹在树中运动所受的摩擦阻力是恒定的,那么子弹以v /2的速度射入此树干中,射入深度为( ) A .s B .s/2 C .2/s D .s/4 6.两个物体A 、B 的质量之比m A ∶m B =2∶1,二者动能相同,它们和水平桌面的动摩擦因数相同,则二者在桌面上滑行到停止所经过的距离之比为( ) A .s A ∶s B =2∶1 B .s A ∶s B =1∶2 C .s A ∶s B =4∶1 D .s A ∶s B =1∶4 7.质量为m 的金属块,当初速度为v 0时,在水平桌面上滑行的最大距离为L ,如果将金属块的质量增加到2m ,初速度增大到2v 0,在同一水平面上该金属块最多能滑行的距离为( ) A .L B .2L C .4L D .0.5L 8.一个人站在阳台上,从阳台边缘以相同的速率v 0,分别把三个质量相同的球竖直上抛、竖直下抛、水平抛出,不计空气阻力,则比较三球落地时的动能( ) A .上抛球最大 B .下抛球最大 C .平抛球最大 D .三球一样大 9.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则此过程中物块克服空气阻力所做的功等于( ) A .2022121mv mv mgh -- B .mgh mv mv --2022 121 C .2202121mv mv mgh -+ D .2022121mv mv mgh -- 10.水平抛出一物体,物体落地时速度的方向与水平面的夹角为θ,取地面为参考平面,则物体刚被抛出时,其重力势能与动能之比为( ) A .sin 2θ B .cos 2θ C .tan 2θ D .cot 2θ 11.将质量为1kg 的物体以20m /s 的速度竖直向上抛出。当物体落回原处的速率为16m/s 。在此过程中物体克服阻力所做的功大小为( ) A .200J B .128J C .72J D .0J

人教版高中物理必修二动能和动能定理优质教案

动能和动能定理 一、要求与目标: 1、 理解动能的的概念,会用动能的定义进行计算。 2、 理解动能定理,知道动能定理的适用条件,会用动能定理进行计算。 3、 理解动能定理的推导过程。 4、 会用动能定理解决力学问题,知道用动能定理解题的步骤。 二、重点与难点: 1、动能的概念;动能定理及其应用。 2、对动能定理的理解。 三教学过程: (一)①请同学们欣赏几个课件,这些课件有什么共同特点呢? 学生的回答是:这些物体均在运动, ②哪这些物体具有能吗? 归纳:我们把这些运动物体具有的能叫物体的“动能” ③哪么物体的动能与哪些因素有关呢? 例题1、如图有一质量为m 的物体放在粗糙的水平面上,物体在运动过程中受到的摩擦力为f ,当物体受到恒力F (F >f )作用从速度V 0增加到V 时,物体运动合力做功为多大? 解:物体运动中的加速度为: m f F a -= 由运动学公式得到as V V 22 02+= 代入得到:m s f F V V )(22 02-=- 整理得到:s f F mV mV )(21212 02-=- 我们将:2 2 1mV =E k ,叫物体的动能。s f F )(-=W 合,叫合外力做功。 (二)、认识动能:E K =2 2 1mV 动能不仅与物体的质量有关,还与物体的速度平方有关; 它是一个标量,仅有大小而没有方向。如一个物体以4m/s 速度从A 点运动过后又以4m/s 的速度返回A 点,两次过A 点时物体的动能大小相等。 动能的单位是:“J ” 有:1kg.m 2/s 2=1J 例题1、改变汽车的质量和速度,都能使汽车的动能发生改变,在下列情况下,汽车的动能各是原来的几倍。 A 、质量不变,速度增大为原来的2倍; B 、速度不变,质量增大为原来的2倍; C 、质量减半,速度增大到原来的4倍; D 、速度减半,质量增大到原来的4倍。 (三)动能定理: 1、 在物理上我们将 s f F mV mV )(2 1 21202-=- 叫动能定理,它反映的是物体合外力做

高中物理动能与动能定理题20套(带答案)及解析

高中物理动能与动能定理题20套(带答案)及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,斜面ABC 下端与光滑的圆弧轨道CDE 相切于C ,整个装置竖直固定,D 是最低点,圆心角∠DOC =37°,E 、B 与圆心O 等高,圆弧轨道半径R =0.30m ,斜面长L =1.90m ,AB 部分光滑,BC 部分粗糙.现有一个质量m =0.10kg 的小物块P 从斜面上端A 点无初速下滑,物块P 与斜面BC 部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g =10m/s 2,忽略空气阻力.求: (1)物块第一次通过C 点时的速度大小v C . (2)物块第一次通过D 点时受到轨道的支持力大小F D . (3)物块最终所处的位置. 【答案】(1)32m/s (2)7.4N (3)0.35m 【解析】 【分析】 由题中“斜面ABC 下端与光滑的圆弧轨道CDE 相切于C”可知,本题考查动能定理、圆周运动和机械能守恒,根据过程分析,运用动能定理、机械能守恒和牛顿第二定律可以解答. 【详解】 (1)BC 长度tan 530.4m l R ==o ,由动能定理可得 21 ()sin 372 B mg L l mv -=o 代入数据的 32m/s B v = 物块在BC 部分所受的摩擦力大小为 cos370.60N f mg μ==o 所受合力为 sin 370F mg f =-=o 故 32m/s C B v v == (2)设物块第一次通过D 点的速度为D v ,由动能定理得 2211 (1cos37)22 D C mgR mv mv -= -o

高中物理专题汇编物理动能与动能定理(一)

高中物理专题汇编物理动能与动能定理(一) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37?角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。 (1)求小物块经过B 点时对轨道的压力大小; (2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。 【答案】(1)62N (2)60N (3)10m 【解析】 【详解】 (1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==? 解得:04 m /5m /cos370.8 A v v s s = ==? 小物块经过A 点运动到B 点,根据机械能守恒定律有: ()2211cos3722 A B mv mg R R mv +-?= 小物块经过B 点时,有:2 B NB v F mg m R -= 解得:()232cos3762N B NB v F mg m R =-?+= 根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有: 22011222 C B mgL mg r mv mv μ--?= - 在C 点,由牛顿第二定律得:2 C NC v F mg m r += 代入数据解得:60N NC F = 根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N

高中物理必修二教案-7.7动能和动能定理52-人教版

动能和动能定理教学设计 ●三维目标 一、知识与技能 1.理解动能的概念。 2.知道动能的公式,会用动能的公式进行分析和计算。 3.理解动能定理及其推导过程,知道动能定理的适用范围,会用动能定理进行计算。 二、过程与方法 1.运用演绎推导方式推导动能和动能定理的表达式。 2.理论联系实际,在运用中培养学生分析问题和解决问题的能力。 三、情感态度与价值观 1.通过动能和动能定理的演绎推导,培养学生对科学研究的兴趣。 2.在理解和运用过程中养成具体情况具体分析,按科学规律办事的习惯。 ●学法引导 通过教师利用学生的知识,通过演绎推论从理论上来推导动能和动能定理的表达形式,并组织学生进行辨析、提高认识;通过对比分析,体会到应用动能定理解题的优点;通过实例分析,来确定动能定理的使用步骤。 ●教学重点、难点及解决办法 一、教学重点 1.动能的概念. 2.动能定理及其应用. 二、教学难点 对动能定理的理解和应用. ●教学方法 推理归纳法、讲授法、电教法 ●课时安排 1课时 ●教学用具 PPT课件 ●教学过程设计 一、复习回顾,引入新课 教师问:什么是动能? 学生答:物体由于运动而具有的能量叫做动能; 教师问:初中学过,物体的动能与那些量有关? 学生答:它与物体的质量和速度有关,质量越大,速度越大,物体的动能就越大。 教师引入:那么,物体的动能与物体的质量和速度之间有什么定量关系呢?我们先来研究这个问题

二、新课教学 <一>、动能 1.探究动能表达式 推导思路:要使静止的物体获得一定的速度,就需要一个使物体产生加速度的力,这个力做了多少功,就表示有多少其他形式的能转化为物体的动能。我们根据做功的多少可定量确定物体的动能。 推导过程: 设在光滑的水平面上有一质量为m的静止物体,在恒定的水平外力F作用下开始运动,经过一段位移l速度达到v,则物体获得了多少动能 用Ek表示动能,则有: 2 2 1 mv E K 即:物体的动能等于物体质量与物体速度的二次方的乘积的一半。 2.动能是标量与速度方向无关,无负值; 3.动能的单位与功的单位相同,在国际单位制中都是焦耳。 1kg·m2/s2=1N·m=1J 举例: 练习1(多选):关于对动能的理解,下列说法是正确的() A、凡是运动的物体都具有动能 B、动能总是正值 C、一定质量的物体,动能变化时,速度一定变化 D、一定质量的物体,动能不变时,速度一定不变 总结:动能变化与速度变化的区别。动能变,速度大小一定变,但方向可能不变;速度变,动能可能不变。例如匀速圆周运动。 <二>、动能定理 1.动能定理的推导 推导思路:探究哪个力做功等于动能改变。 将刚才推导动能公式的例子改动一下:质量为m 的物体在与运动方向相同的恒力F 的作用下,沿粗糙水平面运动了一段位移l,受到的摩擦力为F f,速 度从v 1变为v 2 ,求力做功与物体动能变化量间的关系。 总结:合外力做功等于动能改变。 2.动能定理内容: 合力所做的功等于物体动能的变化,这个结论叫做动能定理。 讨论: ①当合力对物体做正功时,物体动能如何变化? ②当合力对物体做负功时,物体动能如何变化? 学生答: ①当合力对物体做正功时,末动能大于初动能,动能增加; ②当合力对物体做负功时,末动能小于初动能,动能减少。 3.动能定理的表达式:. 用W表示合力所做的功,用E k1表示物体初状态的动能,用E k2表示末状态动能,动能定理可表示为:W=E K2-E K1

高中物理动能定理的综合应用练习题及答案

高中物理动能定理的综合应用练习题及答案 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,一条带有竖直圆轨道的长轨道水平固定,底端分别与两侧的直轨道相切,半径R =0.5m 。物块A 以v 0=10m/s 的速度滑入圆轨道,滑过最高点N ,再沿圆轨道滑出,P 点左侧轨道光滑,右侧轨道与物块间的动摩擦因数都为μ=0.4,A 的质量为m =1kg (A 可视为质点) ,求: (1)物块经过N 点时的速度大小; (2)物块经过N 点时对竖直轨道的作用力; (3)物块最终停止的位置。 【答案】(1)5m/s v =;(2)150N ,作用力方向竖直向上;(3)12.5m x = 【解析】 【分析】 【详解】 (1)物块A 从出发至N 点过程,机械能守恒,有 22011 222 mv mg R mv =?+ 得 20445m /s v v gR =-= (2)假设物块在N 点受到的弹力方向竖直向下为F N ,由牛顿第二定律有 2 N v mg F m R += 得物块A 受到的弹力为 2 N 150N v F m mg R =-= 由牛顿第三定律可得,物块对轨道的作用力为 N N 150N F F '== 作用力方向竖直向上 (3)物块A 经竖直圆轨道后滑上水平轨道,在粗糙路段有摩擦力做负功,动能损失,由动能定理,有 2 0102 mgx mv μ-=- 得

12.5m x = 2.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =250 17 N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x = 17 5 m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求: (1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小; (3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度. 【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】 对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】 (1)小球从A 到B 过程,由动能定理得:212 B Fx mv = 解得:v B =10 m/s (2)在C 点,由牛顿第二定律得mg +F N =2 c v m R 又据题有:F N =2.6mg 解得:v C =6 m/s. (3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =22 1122 c B mv mv - 解得克服摩擦力做的功:W f =12 J (4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h = 12 gt 2

相关主题
文本预览
相关文档 最新文档