当前位置:文档之家› 3.从开普勒定律到万有引力定律

3.从开普勒定律到万有引力定律

3.从开普勒定律到万有引力定律
3.从开普勒定律到万有引力定律

从开普勒定律到牛顿万有引力定律的推导过程

高中阶段,由于缺少数学知识,从开普勒定律到万有引力的推导只能在简化之后的圆轨道上进行。甚至大学阶段,普通物理的教材中,也采用了这个方法。本文力图从原始的椭圆轨道入手,导出万有引力定律。当然,这个过程不可能不涉及高等数学的知识。首先我们做一个准备工作,然后再集中考虑推导的过程。如果“准备”中的知识已完全清楚,则可以直接考虑定律的推导了。

第一部分 准备

一、极坐标中的椭圆方程

椭圆定义为到定点的距离与到定直线的距离之比为常数e 的点的集合。

如图1所示,在极坐标中,Ox 为极轴l 是垂直于极轴的定直线,它与O 点的距离为p 。由椭圆的定义可知:

e r p r

=+θ

cos

整理可得:

θ

cos 1e pe

r -=

(1)

二、极坐标中的位置矢量

极坐标中,r 表示从原点到曲线上一点的距离,如果我们以原点O 为参考,则r 实际上只表示出了位置矢量的大小。为了明确其方向,我们沿着r 所在的直线做出单位矢量i 作为径向单位向量。另外,将i 旋转

2

π

得到j 作为横向单位向量。显然物体的位置矢量可表示为: ri =r (2)

上式中等号右边的r 表示的是位矢的大小,i 表示的位矢的方向。但是应当注意的是,

x

O θ

图1

l

r

不管是r 还是i ,都不一定是常量。这和直角坐标系中的单位向量是常量是有区别的。

另外,r 和i 都是θ的函数,在运动学中θ又是时间t 的函数。所以,r 和i 都是时间t 的函数,所以我们也可以说位置矢量r 是时间的函数。

在这里,我们必须清楚的是,极坐标中的矢量表示和用极坐标表示函数关系并不完全是一回事。若用极坐标表示数量关系,我们只需要用标量式()θr r =即可,在表示矢量时,我们不得不在这个基础上加上了单位向量i 。

三、极坐标中的速度和加速度

下面我们先求单位向量对时间的导数。

在图3中,以Ox 方向为x 轴,O 为原点,垂直Ox 向上为y 轴建立直角坐标系,用ξ、

η表示沿x 轴、y 轴的单位向量,则i 、j 可分别表示为:

θηθξsin cos +=i ,θηθξηπθξπθcos sin 2sin 2cos +-=??? ?

?

++??? ??+=j

因此

()()()dt

d dt d d d dt d dt di θ

θηθξθθθηθξθηθξcos sin sin cos sin cos +-=?+=+= 对比j 的表达式有,

j dt

di θ

=……………………………………………(3) x

图3

r

i

j

θd θ

O Δi

θd x

O θ

图2

r

i

j

其中θ 表示θ对时间的导数dt

d θ。 同理可知:

i dt

dj θ -=……………………………………………(4) 下面我们对位矢函数ri =r 求导,这样可以得到在极坐标系中的速度公式。

j r i r dt

di r i r dt d θ +=+==

r v ……………………………………………(5) 将上面得到的速度公式再次求导可以得到加速度的表达式:

()()

()(

)

j r r i r r i r j r j r j r i r dt dj r j r j r dt di r i r dt

j dr dt i r

d dt d θθθ

θθθθθθθθ 222++-=-+++=??? ??+++??? ??+=+

==v a 其中

r r a r -=……………………………………………(6) θθ

θ r r a 2+=……………………………………………(7) 分别表示径向加速度和横向加速度。

第二部分 推导

开普勒定律的内容是:

开普勒第一定律,也称椭圆定律:每一个行星都沿各自的椭圆轨道环绕太阳,而太阳则处在椭圆的一个焦点上。

开普勒第二定律,也称面积定律:在相等时间内,太阳和运动着的行星的连线所扫过的面积都是相等的。

开普勒第三定律,也称调和定律:各个行星绕太阳公转周期的平方和它们的椭圆轨道的半长轴的立方成正比。

由(7)式可知:

()

()

dt

r d r r r r r r r a θθθθθθ 221212=+=+=

由开普勒第二律可知:

常数=θ

2r 故上式中

()

02=dt

r d θ

这就是说,

02=+θθ

r r ……………………………………………(8) 由椭圆方程θcos 1e pe

r -=

可得:

θcos 1e r

pe

-=……………………………………………(9) 对时间t 求导可得:

θθ sin 2=-

r

p r ……………………………………………(10) 由(10)式可得:

θθ sin 2

p

r r

-=……………………………………………(11) 再次对时间求导可得:

()()

(

)

θ

θθ

θθθθθθθθθθθcos cos sin 2cos sin cos sin 222222

2p

r r p r r r r p

r r p r p r p r p r r r -=-=+--=???

? ??++-=

即:

θθ

cos 22p

r r -= (12)

由椭圆方程θ

cos 1e pe

r -=

可知

r

p e -=

1cos θ 代入(12)式可知:

???

? ??--=12pe r r r θ (13)

由(6)可知:

pe r r pe r r r r a r 2222

2

1θθθθ -=-???

? ??--=-= 对上式右边分数线上下同乘以2

r 有

()22

21

r

pe

r a r

?

-

=θ ……………………………………………(14) 由开普勒第二定律知,对于一个确定的行星来说2θ

r 为一常数,pe 也是常数。这就是说(14)式的意义是:对于一个确定的行星,它的加速度(等于它的径向加速度)与它到太阳的距离r 的二次方成反比。

但是,对于不同的行星,2θ

r 与pe 未必是相同。也就是说我们只得到了对于一个确定的行星成立的规律,对于所有的行星来说,还不一定成立。虽然我们可以肯定的说,引力的大小与行星与太阳的距离的二次方成反比,但是我们不能保证两颗行星的比例系数是相同的。但幸运的是,到目前为止,我们还没有应用开普勒第三定律。下面我们接着进行没有完成的讨论。

由开普勒第三定律知:

k T

a =23

……………………………………………(14) 而单位时间内行星与太阳的连线扫过的面积,即面积的变化率为:

T

ab r πθ= 221……………………………………………(15) 其中,a 、b 分别表示椭圆的长轴与短轴,而ab π表示的是椭圆的面积。 因此有:

()

2

2

222

2

4T b a r πθ= (16)

由(14)式有a

k

T a =22,代入(16)式有:

()

a

k b r 2222

4πθ= (17)

将(17)式代入(14)式有:

222

1

4r

pea b k a r ??-=π (18)

在上式中,除了pea b 2外,都是与轨道无关的量,因此我们只需要证明pea

b 2

也与轨道无

关。

下面我们的主要思想是想办法替换p 。 对椭圆方程θ

cos 1e pe

r -=

来说,

当0=θ时,e pe

r -=11 (19)

当πθ=时,e

pe

r +=12 (20)

如图4所示,1r 用红色的线段来表示,2r 用绿色的线段来表示。可知:

a r r 221=+ (21)

(19)(20)代入(21)可得:

()

21e a pe -= (21)

因此

x

O θ 图4

l

r 1r

2r

()

1112222222

22

222

2==-=???

? ??-=-=b b c

a b a c a b e

a b pea b 代入(18)式可得:

2

21

4r k a r ?

-=π……………………………………………(23) 上式中,k 2

4π是与轨道无关的量,负号的含义是r a 的方向与矢径r 的方向相反。至此,我们由开普勒定律推导出了引力的距离平方反比关系。 在(23)的基础上乘以行星的质量m ,就可以得到:

2

24r m k F ?

-=π 即:

2

r m

F ∝

……………………………………………(24) 这正是我们想要的结果。

第十章定积分的应用§4旋转曲面的面积_数学分析

§4 旋转曲面的面积 (一) 教学目的:理解微元法的基本思想和方法,掌握旋转曲面的面积计算公式. (二) 教学内容:旋转曲面的面积计算公式. 基本要求:掌握求旋转曲面的面积的计算公式,包括求由参数方程定义的旋转曲面的面积;掌握平面曲线的曲率的计算公式. (三) 教学建议: 要求学生必须熟记旋转曲面面积的计算公式,掌握由参数方程定义的旋转曲面的面积. ———————————————————— 一 微元法 用定积分计算几何中的面积,体积,弧长,物理中的功,引力等等的量,关键在于把所求量通过定积分表达出来. 元素法就是寻找积分表达式的一种有效且常用的方法. 它的大致步骤是这样的:设所求量 是一个与某变量(设为x )的变化区间 有关的量,且关于区间 具有可加性. 我们就设想把 分成n 个小区间,并把其中一个代表性的小区间记坐 , 然后就寻求相应于这个小区间的部分量 的近似值(做这一步的时候,经常画出示意图帮助思考),如果能够找到 的形如 近似表达式(其中 为 上的一个连续函数在点x 处的值, 为小区间的长度),那么就把 称为量 的元素并记做 ,即 dx x f dU )(= 以量 的元素作为被积表达式在 上进行积分,就得到所求量 的积分表达式: ?b a dx x f )( 例如求由两条曲线)(,)(21x f y x f y == (其中],[,21b a C f f ∈)及直线 b x a x ==, 所为成图形的面积A.容易看出面积元素dx x f x f DA |)()(|21-=于是得平面图形 b x a x f y x f ≤≤≤≤,)()(21 的面积为 ?-=b a dx x f x f A |)()(|21

开普勒定律

度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。注:(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。3)万有引力1.开普勒第三定律:T2/R3=K(=4π2/GM) {R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}2.万有引力定律:F=Gm1m2/r2 (G =6.67×10-11N?m2/kg2,方向在它们的连线上)3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)} 4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2 {M:中心天体质量}5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s 6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2 {h≈36000km,h:距地球表面的高度,r地:地球的半径}注: (1)天体运动所需的向心力由万有引力提供,F向=F万;(2)应用万有引力定律可估算天体的质量密度等;(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。 开普勒定律 目录[隐藏] 开普勒定律的意义 发现 影响 开普勒定律的意义 发现 影响 也统称“开普勒三定律”,也叫“行星运动定律”,是指行星在宇宙空间绕太阳公转所遵循的定律。由于是德国天文学家开普勒根据丹麦天文学家第谷·布拉赫等人的观测资料和星表,通过他本人的观测和分析后,于1609~1619年先后早归纳提出的,故行星运动定律即指开普勒三定律。

常微分 用万有引力定律推导开普勒三定律

万有引力推导开普勒定律 万有引力定律的阐明: 任意两个质点由通过连心线方向上的力相互吸引。该引力大小与它们质量的乘积成正比,与它们距离的平方成反比,与两物体的化学组成和其间介质种类无关。 开普勒定律的阐明: ①椭圆定律:所有行星绕太阳的轨道都是椭圆,太阳在椭圆的一个焦点上。 ②面积定律:行星和太阳的连线在相等的时间间隔内扫过相等的面积。 ③所有行星绕太阳一周的恒星时间()的平方与它们轨道长半轴(ai)的立 方成比例,即 一、开普勒第二定律导引: 由于太阳超重于行星,我们可以假设太阳是固定的。用方程式表示为: ; 其中,是太阳作用于行星的万有引力、是行星的质量、是太阳的质量、是行星相对于太阳的位移向量、是的单位向量。 牛顿第二定律声明:物体受力后所产生的加速度,和其所受的浮力成正比, 和其质量成反比。用方程式表示: 。 合并这两个方程式: (1) 思考位置向量,随时间微分一次可得到速度向量,再微分一次则 可得到加速度向量: 在这里,我们用到了单位向量微分方程式:

, 。(2) 合并方程式 (1) 与 (2) ,可以得到向量运动方程式: 取各个分量,我们得到两个常微分方程式,一个是关于径向加速度,另一个是关于切向加速度: ,(3) 。(4) 导引开普勒第二定律只需切向加速度方程式。试想行星的角动量。 由于行星的质量是常数,角动量随时间的导数为: 。 角动量也是一个运动常数,即使距离与角速度都可能会随时间变化。从 时间到时间扫过的区域: 。 行星太阳连线扫过的区域面积相依于间隔时间。 所以,开普勒第二定律是正确的。 二、开普勒第一定律导引: 设定。这样,角速度是: 。 随时间微分与随角度微分的关系为: 。 随时间微分径向距离:

第三节万有引力定律

第六章 曲线运动 第3节 万有引力定律 【学习目标】 编写:温敬霞 审核: 1.了解万有引力定律发现的思路和过程 2.理解万有引力定律,知道它的适用范围 3.会用万有引力定律解决简单的引力计算问题,知道公式中r 的物理意义 4. 引力常量G 的物理意义及万有引力定律发现的意义 【课堂探究】 一. 万有引力定律提出的背景 通过上节的学习,我们知道:行星绕太阳匀速圆周运动所需的向心力由太阳与行星间的引力 来提供的,从而使得行星不能飞离太阳; 那么现在我们来进一步思考: ⑴. 地面上的物体,如苹果,被抛出后总要落回地面,是什么力使得苹果不离开地球呢? ————是否也是由于地球对苹果的引力造成的? ————地球对苹果的引力和太阳对行星的引力是否根本就是同一种力呢? ⑵. 进一步设想: 如果物体延伸到月球那么远,物体是否也会向月球那样围绕地球运动? 太阳吸引行星的力; 地球吸引月球的力; 是否是同一性质的力?遵循相同的规律? 地球吸引苹果的力; 这个想法的正确性要由事实来检验 二. 万有引力的检验 思考:“月 地检验”基本思路是怎样的? 假设维持月球绕地球运动的力与使苹果下落的力是同一种力,同样遵循F =G 2r Mm 因为 r 月 = r 地 所以 F 月= F 地 根据牛顿第二定律 所以a 月= g 地

已知:月球与地球之间的距离r=3.8×108m ,月 T=27.3天,重力加速度28.9s m g 求: 三. 万有引力定律 1.定律内容: 2. 公式 3. 万有引力定律的适用条件 【典型例题】 例题1. 既然任何物体间都存在着引力,为什么当两个人接近时他们不会吸在一起?我们通常分析物体的受力时是否考虑物体间的万有引力? 例题2. 大麦哲伦云和小麦哲伦云是银河系外离地球最近的星系。大麦哲伦云的质量是太阳质量的1010倍,即2.0×1040㎏,小麦哲伦云的质量是太阳质量的109倍,两者相距5×104 光年,求它们之间的引力。 g a 月

开普勒定律的推导及应用

开普勒定律的推导及应用 江苏南京师范大学物科院王勇江苏海安曲塘中学周延怀 随着人类航天技术的飞速发展和我国嫦娥绕月卫星的发射成功,以天体运动为载体的问题将成为今后考查热点。在现行的高中物理教材中主要引用了开普勒三大定律来描述了天体的运动的规律,这三条定律的主要内容如下: (1)所有行星绕太阳运动的轨道都是椭圆,太阳位于椭圆轨道的一个焦点上。 (2)对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 (3)所有行星的轨道半长轴的三次方跟它的公转周期的二次方的比值。 至于行星绕太阳的轨道为何是椭圆以及中的常量C与那些量相关并无说明。为了更深入的理解天体和人造卫星的运行规律,本文将以椭圆的性质为基础从理论上推导开普勒定律。 一、开普勒第一定律 1.地球运行的特点 (1)由于地球始终绕太阳运动,则太阳对地球的万有引力的力矩始终为零,所以地球在运动过程中角动量守恒。 (2)若把太阳与地球当作一个系统,由于万有引力为保守力且无外力作用在这个系统上,所以系统机械能守恒。 2.地球运行轨迹分析 地球在有心力场中作平面运动且万有引力的作用线始终通过太阳,所以建立如图所示的极坐标系,则P点坐标为(r,θ)。 若太阳质量为M,地球质量为m,极径为r时地球运行的运行速度为v。

当地球的运行速度与极径r垂直时,则地球运行过程中的角动量(1)若取无穷远处为引力势能的零参考点,则引力势能,地球在运行过程中的机械能(2) (1)式代入(2)式得:(3) 由式(3)得:(4) 由式(4)可知,当地球的运行速度与极径r垂直时,地球运行的极径r有两解,由于初始假设地球的运行速度与极径垂直,所以r为地球处在近日点和远日点距太阳的距离。考 虑到地球的这两个位置在极坐标系中分别相当于和,可把式(4)中 的号改写为更普遍的形式极坐标方程。 则地球的运行轨迹方程为(5)(5)式与圆锥曲线的极坐标方程吻合,其中(p 为决定圆锥曲线的开口),(e为偏心率,决定运行轨迹的形状),所以地球的运行轨迹为圆锥曲线。由于地球绕太阳运动时E<0,则圆锥曲线的偏心率,所以地球绕太阳运行的轨迹为椭圆。 3.人造星体的变轨

开普勒三定律的应用

万有引力及天体运动 一.开普勒行星运动三大定律 1、开普勒第一定律(轨道定律): 所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。 2、开普勒第二定律(面积定律): 对于每一个行星而言,太阳和行星的联线在相等的时间扫过相等的面积。 3、开普勒第三定律(周期定律): 所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。 1、如图所示是行星m 绕恒星M 运动的情况示意图,则下面的说确的是: A 、速度最大的点是B 点 B 、速度最小的点是C 点 C 、m 从A 到B 做减速运动 D 、m 从B 到A 做减速运动 二、万有引力定律 1、万有引力定律的建立 ①太阳与行星间引力公式 ②月—地检验 ③卡文迪许的扭秤实验——测定引力常量G 2、万有引力定律 ①容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量1m 和2m 的乘积成正比,与它们之间的距离r 的二次方成反比。即: ②适用条件 (Ⅰ)可看成质点的两物体间,r 为两个物体质心间的距离。 (Ⅱ)质量分布均匀的两球体间,r 为两个球体球心间的距离。 ③运用 地上:忽略地球自转可得: 2)计算重力加速度 地球上空距离地心r=R+h 处 方法: 在质量为M ’,半径为R ’的任意天体表面的重力加速度' 'g 方法: (3)计算天体的质量和密度 利用自身表面的重力加速度: 天上:利用环绕天体的公转: 等等 (注:结合 得到中心天体的密度) (4)双星:两者质量分别为m 1、m 2,两者相距L 特点:距离不变,向心力相等,角速度相等,周期相等。 双星轨道半径之比: 双星的线速度之比: 三、宇宙航行 1、人造卫星的运行规律 2Mm F G r =11226.6710/G N m kg -=??12 2m m F G r =2 R Mm G mg =2' '''' 'R m M G mg =mg R Mm G =2r T m r m r v m r Mm G 222 224πω===33 4 R M πρ?=2 ')(h R Mm G mg +=1 2 2121 m m v v R R ==v Mm 22 24π

第十章 定积分的应用

第十章 定积分的应用 §1.平面图形的面积 习题 1. 求由抛物线2 22x y x y -==与所围图形的面积。 解:设所围图形的面积为S ,如图10-1 解方程组 2 2 2y x y x ?=??=-?? 得两曲线两交点坐标为(1,1),(1,1)A B -,则积分区间为[1,1]-, 图形面积为 11 221 1 1 221 (2)[(2)]83 S x dx x dx x x dx ---=--=--= ??? 2. 求由x y ln =与直线 ,10,101 == x x 和10,0x y ==所围图形的面积。 解:设所围图形总面积为S , 110 11 10 1 101110 (ln )ln (ln ) (ln ) 1 (99ln1081)10 S x dx xdx x x x x x x =-+=--+-= -?? 3. 抛物线x y 22=把圆 822=+y x 分成两部分,求这两部分面积之比。 解:设12,S S 分别表示被抛物线分割成的两部分圆面积,则 2 2 12244 )28 8cos 3423 y S dy d π πθθπ--==- =+ ??

2184 823463 S S ππππ=-=--=- 124 2323492 63 S S ππππ+ += =-- 4. 试证摆线33cos ,sin (0)x a t y a t a ==>所围图形的面积(图10—7)。 解:设所围图形的全部面积为S ,取积分变量为t ,当t 由2 π 变到0时,就得到曲线在第一象限的部分, '2 2322 2 4220 224()()12sin cos (sin )12sin (1sin )3153112()4226422 83 S y t x t dt a t t t dt a t t dt a a πππ ππ π==?-=?-???=?-????=??? 5. 求心形线(1cos )(0)r a a θ=+>所围图形的面积。 解:设所围图形面积为S ,取积分变量为θ,当θ由0变到π时,即得到曲线在x 轴上方部分,由极坐标系下面积的积分表达式有: 2 202220 2 212(1cos )2(12cos cos )31 [2sin sin 2]2432 S a d a d a a ππ πθθ θθθ θθθπ=?+=++=++=?? 6. 求三叶形线)0(3sin >=a a r θ所围图形的面积。 解:2 223 3 013sin 63(sin 3)()2224 4 a S a d a ππθθπ θθ=?= -= ?

万有引力定律应用的12种典型案例

3232 万有引力定律应用的12种典型案例 万有引力定律不仅是高考的一个大重点,而且是自然科学的一个重大课题,也是同学们最感兴趣的科学论题之一。 特别是我国“神州五号”载人飞船的发射成功,更激发了同学们研究卫星,探索宇宙的信心。 下面我们就来探讨一下万有引力定律在天文学上应用的12个典型案例: 【案例1】天体的质量与密度的估算 下列哪一组数据能够估算出地球的质量 A.月球绕地球运行的周期与月地之间的距离 B.地球表面的重力加速度与地球的半径 C.绕地球运行卫星的周期与线速度 D.地球表面卫星的周期与地球的密度 解析:人造地球卫星环绕地球做匀速圆周运动。月球也是地球的一颗卫星。 设地球的质量为M ,卫星的质量为m ,卫星的运行周期为T ,轨道半径为r 根据万有引力定律: r T 4m r Mm G 22 2π=……①得: 2 32G T r 4M π=……②可见A 正确 而T r 2v π= ……由②③知C 正确 对地球表面的卫星,轨道半径等于地球的半径,r=R ……④ 由于3 R 4M 3 π= ρ……⑤结合②④⑤得: G 3T 2π = ρ 可见D 错误 地球表面的物体,其重力近似等于地球对物体的引力 由2R Mm G mg =得:G g R M 2=可见B 正确

3333 【探讨评价】根据牛顿定律,只能求出中心天体的质量,不能解决环绕天体的质量;能够根据已知条件和已知的常量,运用物理规律估算物理量,这也是高考对学生的要求。总之,牛顿万有引力定律是解决天体运动问题的关键。 【案例2】普通卫星的运动问题 我国自行研制发射的“风云一号”“风云二号”气象卫星的运行轨道是不同的。“风云一号”是极地圆形轨道卫星,其轨道平面与赤道平面垂直,周期为12 h ,“风云二号”是同步轨道卫星,其运行轨道就是赤道平面,周期为24 h 。问:哪颗卫星的向心加速度大哪颗卫星的线速度大若某天上午8点,“风云一号”正好通过赤道附近太平洋上一个小岛的上空,那么“风云一号”下次通过该岛上空的时间应该是多少 解析:本题主要考察普通卫星的运动特点及其规律 由开普勒第三定律T 2 ∝r 3 知:“风云二号”卫星的轨道半径较大 又根据牛顿万有引力定律r v m ma r Mm G 22==得: 2r M G a =,可见“风云一号”卫星的向心加速度大, r GM v = ,可见“风云一号”卫星的线速度大, “风云一号”下次通过该岛上空,地球正好自转一周,故需要时间24h ,即第二天上午8点钟。 【探讨评价】由万有引力定律得:2M a G r = ,v = ω= 2T = ⑴所有运动学量量都是r 的函数。我们应该建立函数的思想。 ⑵运动学量v 、a 、ω、f 随着r 的增加而减小,只有T 随着r 的增加而增加。 ⑶任何卫星的环绕速度不大于7.9km/s ,运动周期不小于85min 。 ⑷学会总结规律,灵活运用规律解题也是一种重要的学习方法。 【案例3】同步卫星的运动 下列关于地球同步卫星的说法中正确的是: A 、为避免通讯卫星在轨道上相撞,应使它们运行在不同的轨道上 B 、通讯卫星定点在地球赤道上空某处,所有通讯卫星的周期都是24h C 、不同国家发射通讯卫星的地点不同,这些卫星的轨道不一定在同一平面上

人教版必修二 第六章第3节万有引力定律同步练习

6.3万有引力定律同步练习 1.设想把质量为m 的物体(可视为质点)放到地球的中心,地球质量为M ,半径为R.则物体与地球间的万有引力是( ) A .零 B .无穷大 C.GMm R 2 D .无法确定 2.物理学发展历程中,在前人研究基础上经过多年的尝试性计算,首先发表行星运动的三个定律的科学家是 A. 白尼 B. 第谷 C. 开普勒 D. 伽利略 3.以下说法符合物理史实的是 A. 开普勒提出行星运动的三大定律,牛顿测出了万有引力常量G 的数值 B. 牛顿第三定律为我们揭示了自然界中存在的惯性及惯性定律 C. 亚里士多德认为只有力作用在物体上,物体才会运动 D. 伽利略通过理想斜面实验得出,物体在不受摩擦力的情况下,会作减速运动,直至停止运动 4.一行星绕恒星做圆周运动.由天文观测可得,其运行周期为T ,速度为v ,引力常量为G ,则( ) A .恒星的质量为v 3 T 2πG B .行星的质量为4π2v 3 GT 2 C .行星运动的轨道半径为vT 2π D .行星运动的加速度为2πv T 5.月球与地球质量之比约为1∶80,有研究者认为月球和地球可视为一个由两质点构成的双星系统,它们都围绕地月连线上某点O 做匀速圆周运动.据此观点,可知月球与地球绕O 点运动线速度大小之比约为( ) A .1∶6400 B .1∶80 C .80∶1 D .6400∶1 6.假设有一“太空电梯”悬在赤道上空某处,相对地球静止,如图所示,那么关于“太空电梯”,下列说法正确的是( )

A .“太空电梯”各点均处于完全失重状态 B .“太空电梯”各点运行周期随高度增大而增大 C .“太空电梯”上各点线速度与该点离地球球心距离的开方成反比 D .“太空电梯”上各点线速度与该点离地球球心距离成正比 7.设地球表面重力加速度为g 0,物体在距离地心4R(R 是地球的半径)处,由于地球的作用而产生的加速度为g ,则 g g 为( ) A .1 B. 19 C. 14 D. 116 8.对于万有引力定律的表达式F = 12 2 Gm m r ,下列说法中正确的是( ) A .公式中的G 为比例常数,无单位 B .m 1与m 2之间的相互作用力,总是大小相等,方向相反,是一对作用力和反作用力 C .当r 趋近于0时,F 趋向无穷大 D .当r 趋近于0时,公式不成立 9.关于万有引力,下列说法中正确的是( ) A .万有引力只有在研究天体与天体之间的作用时才有价值 B .由于一个苹果的质量很小,所以地球对它的万有引力几乎可以忽略 C .地球对人造卫星的万有引力远大于卫星对地球的万有引力 D .地球表面的大气层是因为万有引力的约束而存在于地球表面附近 10.科技日报北京2017年9月6日电,英国《自然天文学》杂志发表的一篇论文称,某科学家在银河系中心附近的一团分子气体云中发现了一个黑洞。科学研究表明,当天体的逃逸速度(即第二宇宙速度,为第一宇宙速度的倍)超过光速时,该天体就是黑洞。已知某天体与地球的质量之比为k ,地球的半径为R ,地球卫星的环绕速度(即第一宇宙速度)为v 1,光速为c ,则要使该天体成为黑洞,其半径应小于( ) A. B. C. D.

定积分的应用

第十章 定积分的应用 应用一 平面图形的面积 1、积分()b a f x dx ?的几何意义 我们讲过,若[,]f C a b ∈且()0f x ≥,则定积分()b a f x dx ? 表示由连线曲线y=f(x),以及直线x=a,b 和 x 轴所围成的曲边梯形的面积。当()b a f x dx ? <0时,定积分表示的是负面积,即()b a f x dx ?表示的是f 在[a,b] 上的正负面积代数和。例如 552220 2sin (sin sin )sin 321xdx xdx xdx xdx ππππ π π =++=-=? ???。若计算sinx 在 [0,5 2 π]上的面积,则变为55222002sin (sin sin )sin 325x dx xdx xdx xdx ππ ππππ=+-=+=????。 2、f(x),g(x)在[a,b]上所围的面积 由几何意义得()()[()()]b b b a a a S f x dx g x dx f x g x dx = -=-? ??,该式当f(x)和g(x)可判断大小的情况下 适合,但f(x)和g(x)无法判断大小时,要修改为|()()|b a S f x g x dx =-? 。如果f(x)和g(x)有在积分区域[a,b] 内交点,设为12,x x ,且12x x <,则|()()|b a S f x g x dx = -= ? 2 1 |()()|x x f x g x dx -? 。所以此时求f(x)和g(x) 在[a,b]上的面积,即为f(x)和g(x)所围成的面积,要先求出交点,作为它们的积分区域。 例1、求2y x =,2 x y =所围的面积S 。 例2、求sin y x =、cos y x =在[0,2]π上所围图形的面积。 例3、已知2y ax bx =+通过点(1,2)与22y x x =-+有个交点10x >,又a<0,求2y ax bx =+与 22y x x =-+所围的面积S ,又问a,b 为何值时,S 取最小值? 例4、求抛物线2 2y x =与直线4x y -=所围成的图形的面积。 例5、有一个椭圆柱形的油灌,某长度为l ,底面是长轴为a ,短轴为b 的椭圆,问油灌中油面高为h 时,油量是多少?(已知油的密度为ρ) 3、参数方程形式下的面积公式 若所给的曲线方程为参数形式:() () x x t y y t =?? =? (t αβ≤≤),其中y(x)是连续函数,x(t)是连续可微函 数,且()0x t '≥且()x a α=,()x b β=,那么由() ()x x t y y t =??=? ,x 轴及直线x =a ,x =b 所围图形的面积S 的公 式为||()S y dx t β α= ?。 (αβ<) 例1、求旋轮线:(sin ) (1cos )x a t t y a t =-?? =-? (a>0)一个拱与x 轴所围的图形的面积。

从开普勒定律到万有引力定律

从开普勒定律到牛顿万有引力定律 [摘要]:在高中阶段甚至大学的普通物理中,从开普勒三定律到万有引力定律的推导都是在简化之后的圆轨道上进行的。本文从椭圆轨道出发,推导出了万有引力定律。 [关键词]:万有引力定律、开普勒定律、行星运动、椭圆轨道、极坐标 [正文] 高中阶段,由于缺少数学知识,从开普勒定律到万有引力的推导只能在简化之后的圆轨道上进行。甚至大学阶段,普通物理的教材中,也采用了这个方法。本文力图从原始的椭圆轨道入手,导出万有引力定律。当然,这个过程不可能不涉及高等数学的知识。首先我们做一个准备工作,然后再集中考虑推导的过程。如果“准备”中的知识已完全清楚,则可以直接考虑定律的推导了。 第一部分 准备 一、极坐标中的椭圆方程 椭圆定义为到定点的距离与到定直线的距离之比为常数e 的点的集合。 如图1所示,在极坐标中,Ox 为极轴l 是垂直于极轴的定直线,它与O 点的距离为p 。由椭圆的定义可知: e r p r =+θ cos 整理可得: θ cos 1e pe r -= (1) 二、极坐标中的位置矢量 x O θ 图1 l r

极坐标中,r 表示从原点到曲线上一点的距离,如果我们以原点O 为参考,则r 实际上只表示出了位置矢量的大小。为了明确其方向,我们沿着r 所在的直线做出单位矢量i 作为径向单位向量。另外,将i 旋转2 π 得到j 作为横向单位向量。显然物体的位置矢量可表示为: ri =r (2) 上式中等号右边的r 表示的是位矢的大小,i 表示的位矢的方向。但是应当注意的是,不管是r 还是i ,都不一定是常量。这和直角坐标系中的单位向量是常量是有区别的。 另外,r 和i 都是θ的函数,在运动学中θ又是时间t 的函数。所以,r 和i 都是时间t 的函数,所以我们也可以说位置矢量r 是时间的函数。 在这里,我们必须清楚的是,极坐标中的矢量表示和用极坐标表示函数关系并不完全是一回事。若用极坐标表示数量关系,我们只需要用标量式()θr r =即可,在表示矢量时,我们不得不在这个基础上加上了单位向量i 。 三、极坐标中的速度和加速度 下面我们先求单位向量对时间的导数。 在图3中,以Ox 方向为x 轴,O 为原点,垂直Ox 向上为y 轴建立直角坐标系,用ξ、 η表示沿x 轴、y 轴的单位向量,则i 、j 可分别表示为: θηθξsin cos +=i x 图3 r i j θd θ O Δi θd x O θ 图2 r i j

10数学分析教案-(华东师大版)第十章定积分的应用旋转曲面的面积

§4 旋转曲面的面积 定积分的所有应用问题,一般总可以按分割,近似求和,取极限三个步骤导出所求量的积分形式,但为简便实用起见,也常采用下面介绍的微元法.本节和下一节将采用此法来处理. 一 微元法 在上一章知道若令()()x a x f t dt Φ= ?,则当f(x)为连续函数时,Φ'(x)=f(x),或d Φ=f(x)dx,且Φ(a)=0,()()b a b f x dx Φ=?,现在恰好把问题倒过来:如果所求量Φ是分布在某区间[a,x]上的,或者 说它是该区间端点x 的函数,即Φ=Φ(x),x ∈[a,b],而且当x=b 时Φ(b)为最终所求的值。 在任意小区间[x,x+?x]?[a,b]上恰当选取Φ的微小量?Φ的近似可求量?'Φ(指用来近似代替?Φ的有确定意义而且可以计算的量。例如当Φ是由函数f(x)确定的曲边梯形的面积时)?'Φ是以f(x)为长,?x 为宽的矩形面积,当Φ是已知平行截面面积A(x)的几何体的体积时,?'Φ是以面积为A(x)d 的截面为底,?x 为高的柱体体积,这里矩形的面积和柱体的体积都是有确定意义的,而且可以利用公式进行计算)。若能把?'Φ近似表示为?x 的线性形式?'Φ≈f(x)?x,其中f(x)为某一连续函数,而且当?x→0时?'Φ-f(x)?x=o(x),则记d Φ=f(x)dx,那么只要把定积分()b a f x dx ?计算出来,就是该问题所 求的结果。 上述方法通常称为微元法,在采用微元法时必须注意以下三点: 1)所求量Φ关于分布区间必须是代数可加的 2)微元法的关键是正确给出?Φ的近似可求量?'Φ。严格来说,?Φ的近似可求量?'Φ应该根据所求量Φ的严格定义来选取,如曲线的弧长公式讨论中在任意小区间[t,t+?t]?[α,β]上微小增量?s 的近似可求为对应的线段的长度?'s=([x(t+?t)-x(t)]2+[y(t+?t)-y(t)]2)^0.5,一般说来?Φ的近似可求量?'Φ的选取不是唯一的,但是选取不恰当将会产生错误的结果。例如在本节后面旋转曲面的面积公式的推导中,如果?S 的近似可求量?'S 采用对应的圆柱的侧面积而不是对应的圆台的侧面积,将会得到错误的面积公式2()b a S f x dx π=?。所以本章的讨论中对于未严格定义的量均视为规定。 3)当我们将?'Φ用线性形式f(x)?x 代替时要严格检查?'Φ-f(x)?x 是否为?x 的高阶无穷小,以 保证其对应的积分和的极限是相等的。在导出弧长公式的过程的后一部分,实际上是在验证 i i t t 是否为||T'||的高阶无穷小量。 对于前三节所求的平面图形的面积、立体体积和曲线弧长,改用微元法来处理,所求量的微元表达式分别为?A≈|y|?x,并有dA=|y|dx, ?V≈A(x) ?x,并有dV=A(x)dx, ?s≈(1+y'2)^0.5?x,并有ds=(1+y'2)^0.5dx.如果在上面三个公式中把弧长增量的近似可求量(1+y'2)^0.5?x 近似表示为(1+y'2)^0.5?x≈?x,将导致b a s dx b a ==-?的明显错误,事实上,此 时0lim 10x ?→=≠,除非y=f(x)为常数。 二 旋转曲面的面积 设平面光滑曲线C 的方程为y=f(x),x ∈[a,b](不妨设f(x)≥0),这段曲线绕x 轴旋转一周得到旋转曲面(图10-20),下面用微元法导出它的面积公式。 通过x 轴上的点x 和x+?x 分别作垂直于x 轴的平面,它们在旋转曲面上截下一条夹在两个圆形截线间的狭带,当?x 很小时,此狭带的面积?S 近似于由这两个圆所确定的圆台的侧面积?'S , 即[()([2()S f x f x x f x y x ππ'?=++?=+?,其中?y=f(x+?x)-f(x),

开普勒定律万有引力定律重力加速度

开普勒定律、万有引力定律、重力加速度深析知识达标: 1、关于宇宙的两种学说 2、开普勒行星运动定律 (1)开普勒第一定律: (2)开普勒第二定律: (3)开普勒第三定律: 3、万有引力定律: (1)论证 (2)公式 (3)引力常量 4、重力加速度深析 5、计算天体的质量和密度

经典题型: 1、已知万有引力恒量,在以下各组数椐中,根椐哪几组可以测地球质量( ) ①地球绕太阳运行的周期信太阳与地球的距离 ②月球绕地球运行的周期信月球离地球的距离 ③地球半径、地球自转周期及同步卫星高度 ④地球半径及地球表面的重力加速度 A. ①②③ B. ②③④ C.①③④ D.①②④ 2、火星与地球的质量之比为P ,半径之比为q ,则火星表面的重力加速度和地球表面的重力加速度之比为( ) A. 2q p B.2pq C.q p D.pq 3、地球表面处的重力加速度为g ,则在距地面高度等于地球半径处的重力加速度为( ) A. g B. g/2 C. g/4 D. 2g 4、一名宇航员来到某星球上,如果该星球的质量为地球的一半,它的直径也为地球的一半,那么这名宇航员在该星球上的重力是他在地球上重力的( ) A. 4倍 B. 0.5倍 C. 0.25倍 D. 2倍 5、关于地球的运动,正确的说法有( ) A. 对于自转,地表各点的线速度随纬度增大而减小 B. 对于自转,地表各点的角速度随纬度增大而减小 C. 对于自转,地表各点的向心加速度随纬度增大而增大 D. 公转周期等于24小时

6、已知金星绕太阳公转的周期小于1年,则可判定( ) ①金星到太阳的距离小于地球到太阳的距离 ②金星的质量大于地球的质量 ③金星的密度大于地球的密度 ④金星的向心加速度大于地球的向心加速度 A. ①③ B. ②③ C. ①④ D.②④ 7、人造地球卫星所受的向心力与轨道半径r 的关系,下列说法中正确的是( ) A. 由2r Mm G F =可知,向心力与r 2成反比 B. 由22r v m F =可知,向心力与r 成反比 C. 由r m F 2ω=可知,向心力与r 成正比 D. 由v m F ω=可知,向心力与r 无关 8、关于人造地球卫星及其中物体的超重和失重问题,下列说法正确的是( ) ①在发射过程中向上加速时产生超重现象 ②在降落过程中向下减速时产生失重现象 ③进入轨道时作匀速圆周运动,产生失重现象 ④失重是由于地球对卫星内物体的作用力减小而引起的 A. ①③ B.②③ C. ①④ D.②④ 9、设想人类开发月球,不断把月球上的矿藏搬运到地球上,假定经过长时间开采后,地球仍可看作是均匀的球体,月球仍沿开采前的圆轨道运动,则与开采前相比 ( ) ①地球与月球间的万有引力将变大; ②地球与月球间的万有引力将变小; ③月球绕地球运动的周期将变长; ④月球绕地球的周期将变短。 A. ①③ B. ②③ C.①④ D.②④

对开普勒行星运动定律的理解

对开普勒行星运动定律的理解德国天文学家开普勒用了20年的时间,通过对丹麦天文学家第谷的行星观测记录,以“日心说”为理论基础,总结了开普勒三定律,也叫“行星运动定律”,指行星在宇宙空间绕太阳公转所遵循的定律,它否定了古人奉行的“地心说”的错误观点。下面本人就开普勒定律谈谈自己的一些理解。 开普勒第一定律也称椭圆定律,它指出所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。我们把像太阳这样被其他星体环绕的天体称为中心天体,其他围绕中心天体运动的行星称为环绕天体。这个定律的提出,首先否定了“天体运动为一个圆周”的错误理论,开创了天体运动科学研究的新局面。另外,我们还应了解,太阳系中不同行星运动的椭圆轨道是不同的,但这些椭圆有一个共同的焦点,即在太阳所在位置。其次,不仅在太阳系中各行星的轨道如此,其他星系中,各环绕天体和中心天体也符合开普勒第一定律。比如,在地月系中,月球和其他地球卫星围绕地球运动的轨道也为一个椭圆,而地球也处在它们椭圆轨道的一个焦点上。 开普勒第二定律,也称面积定律,它指出在相等时间内,太阳和运动着的行星的连线所扫过的面积都是相等的。这一定律实际揭示了行星绕太阳公转的角动量守恒。行星在椭圆轨道运动时,极径 (又 称向径R)所扫过面积与经过的时间成正比,即掠面速度守恒,亦即矢积守恒,又称动量矩(角动量)守恒。天体运动若每走一步的时间

都相等,则向径所扫过的面积也相等,即面速度不变而形状变化。据此我们可以得出,离太阳越近的环绕天体运动的线速度越大,或者说低轨道运行行星比高轨道运行行星的速度大。其次,该定律还蕴含着行星与太阳之间的相互作用力在行星和太阳的连线上。我们还应理解,该定律对于其他星系也同样适用。 “所有行星的轨道半长轴的三次方跟公转周期的二次方的比值都相等”,这就是开普勒第三定律的表述,也称调和定律。这个定律的得出比前两个定律要晚些,它是通过所有行星围绕太阳运动的轨道半长轴与公转周期的比较得出的,是三个定律中应用较为广泛的一个,当然也可以用与其他星系。其物理表达式为a3/T2=K,它蕴含着行星运动的动力学关系,是牛顿得出万有引力定律的基础。公式中的K值是一个只与中心天体质量有关的量,与环绕天体无关,也就是说,只要中心天体一定,则K值就一定。比如,在太阳系中所有围绕太阳运动的轨道半长轴与公转周期的比值K与月球围绕地球运动的轨道半长轴与公转周期的比值K就不一样,这里一定要注意理解。 下面举个例子,已知飞船沿半径为R 的圆周绕地球运动,其周期为T,如图所示如果飞船要返回地面,可在轨道上的某点A将速度降低到适当的数值,从而使飞船沿着地心为焦点的椭圆轨道运行,椭圆与地球表面在B点相切,求飞船由A 点到B 点所需的时间。(已知 地球半径为R0) 分析:无论飞船是沿圆轨道运行还是沿椭圆轨道运行,

万有引力定律应用的12种典型案例

万有引力定律应用的12种典型案例 万有引力定律不仅是高考的一个大重点,而且是自然科学的一个重大课题,也是同学们最感兴趣的科学论题之一。 特别是我国“神州五号”载人飞船的发射成功,更激发了同学们研究卫星,探索宇宙的信心。 下面我们就来探讨一下万有引力定律在天文学上应用的12个典型案例: 【案例1】天体的质量与密度的估算 下列哪一组数据能够估算出地球的质量 A.月球绕地球运行的周期与月地之间的距离 B.地球表面的重力加速度与地球的半径 C.绕地球运行卫星的周期与线速度 D.地球表面卫星的周期与地球的密度 解析:人造地球卫星环绕地球做匀速圆周运动。月球也是地球的一颗卫星。 设地球的质量为M ,卫星的质量为m ,卫星的运行周期为T ,轨道半径为r 根据万有引力定律: r T 4m r Mm G 22 2π=……①得: 2 32GT r 4M π=……②可见A 正确 而T r 2v π= ……由②③知C 正确 对地球表面的卫星,轨道半径等于地球的半径,r=R ……④ 由于3 R 4M 3 π= ρ……⑤结合②④⑤得: G 3T 2π = ρ 可见D 错误 地球表面的物体,其重力近似等于地球对物体的引力 由2R Mm G mg =得:G g R M 2=可见B 正确 【探讨评价】根据牛顿定律,只能求出中心天体的质量,不能解决环绕天体的质量;能够根据已知条件和已知的常量,运用物理规律估算物理量,这也是高考对学生的要求。总之,牛顿万有引力定律是解决天体运动问题的关键。 【案例2】普通卫星的运动问题 我国自行研制发射的“风云一号”“风云二号”气象卫星的运行轨道是不同的。“风云一号”是极地圆形轨道卫星,其轨道平面与赤道平面垂直,周期为12 h ,“风云二号”是同步轨道卫星,其运行轨道就是

人教版必修二第六章第三节万有引力定律同步训练(包含答案)

6.3 万有引力定律同步训练 一.选择题 1.要使两物体间的万有引力减小到原来的1/4,不能采用的方法是( ) A. 使两物体的质量各减小一半,距离保持不变 B. 使两物体间的距离增至原来的 2 倍,质量不变 C. 使其中一个物体的质量减为原来的一半,距离不变 D. 使两物体的质量及它们之间的距离都减为原来的1/4 2.下列说法中正确的是( ) A. 牛顿发现了万有引力定律,开普勒发现了行星的运动规律 B. 人们依据天王星偏离万有引力计算的轨道,发现了冥王星 C. 海王星的发现和哈雷彗星的“按时回归”确定了万有引力定律的地位 D. 牛顿根据万有引力定律进行相关的计算发现了海王星和冥王星 3.人造卫星在运行中因受高空稀薄空气的阻力作用,绕地球运转的轨道半径会慢慢减小, 在半径缓慢变化过程中,卫星的运动还可近似当作匀速圆周运动。当它在较大的轨道半 径 r 1 上时运行线速度为 v 1,周期为 T 1,后来在较小的轨道半径 r 2 上时运行线速度为 v 2, 周期为 T 2,则它们的关系是 A .v 1﹤v 2,T 1﹤T 2 C .v 1﹤v 2,T 1﹥T 2 B .v 1﹥v 2,T 1﹥T 2 D .v 1﹥v 2,T 1﹤T 2 4.下列关于地球同步卫星的说法正确的是 ( ) A .它的周期与地球自转同步,但高度和速度可以选择,高度增大,速度减小 B .它的周期、高度、速度都是一定的 C .我们国家发射的同步通讯卫星定点在北京上空 D .我国发射的同步通讯卫星也定点在赤道上空 5.人造卫星在太空绕地球运行中,若天线偶然折断,天线将 A .继续和卫星一起沿轨道运行 B .做平抛运动,落向地球 C .由于惯性,沿轨道切线方向做匀速直线运动,远离地球 ( )

高中物理模块要点回眸11开普勒三定律的理解和应用新人教版必修

第11点开普勒三定律的理解和 应用 开普勒定律不仅适用于行星绕太阳的运动,也适用于卫星绕行星的运动.我们可以从以下三方面应用开普勒定律迅速解决天体运动问题. 1.由开普勒第一定律知所有行星围绕太阳运动时的轨道都是椭圆,不同的行星绕太阳运动时的椭圆轨道是不同的,太阳处在椭圆的一个焦点上,如图1所示.该事实否定了圆形轨道的说法,建立了正确的行星轨道理论,而且准确地给出了太阳的位置. 图1 2.由开普勒第二定律知:当离太阳比较近时,行星运行的速度比较快,而离太阳比较远时,行星运动的速度比较慢. 3.由开普勒第三定律知:所有行星的轨道的半长轴的三次方和公转周期的平方的比值都相等.该定律揭示了周期和轨道半径的关系,其中的比例常数与行星无关,只与中心天体有关. 对点例题1火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知() A.太阳位于木星运行轨道的中心 B.火星和木星绕太阳运行速度的大小始终相等

C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方 D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 解题指导太阳位于木星运行椭圆轨道的一个焦点上,选项A 错误;由于火星和木星沿各自的椭圆轨道绕太阳运行,火星和木星绕太阳运行速度的大小变化,选项B 错误;根据开普勒行星运动定律可知,火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方,选项C 正确;相同时间内,火星与太阳连线扫过的面积不等于木星与太阳连线扫过的面积,选项D 错误. 答案C 特别提醒本题中的D 项是学生作答中的易错点.对开普勒三定律理解时要注意对象的同一性,不能张冠李戴将该行星和其他行星的相关量混为一谈. 对点例题2飞船沿半径为R 的圆周绕地球运动,其周期为T .如图2所示,飞船要返回地面,可以在轨道上的某一点A 处,将速率降低到适当数值,从而使飞船沿着以地心为焦点的特殊椭圆轨道运动,椭圆和地球表面在B 点相切.如果地球半径为R 0,求飞船由A 点运动到B 点所需的时间. 图2 解题指导由开普勒第三定律知,飞船绕地球做圆周(半长轴和半短轴相等的特殊椭圆)运动时,其轨道半径的三次方跟周期的平方的比值,等于飞船绕地球沿椭圆轨道运动时其半长轴的三次方跟周期平方的比值. 飞船椭圆轨道的半长轴为R +R 02, 设飞船沿椭圆轨道运动的周期为T ′, 则有R 3T 2=(R +R 0)3 8T ′ 2, 因此飞船从A 点运动到B 点所需的时间为 t =T ′2=(R +R 0)T 4R R +R 02R . 答案(R +R 0)T 4R R +R 02R 木星绕太阳运动的周期为地球绕太阳运动周期的12倍,那么,木星绕太阳运动轨道的半长

人教版高中物理必修二 第六章 第3节 万有引力定律 教案2

6.3万有引力定律 一、教学目标 (一)知识和技能 1.知道万有引力是一种普遍存在的力。知道万有引力定律的发现过程,了解科学研究的一般过程。 2.知道万有引力定律的表达式,知道万有引力定律是平方比定律,知道G的含义。 3.了解卡文迪许实验中扭秤的测量微小力的巧妙构思,知道卡文迪许实验的意义在于直接验证万有引力定律。 (二)过程和方法 1.以学习万有引力定律为载体,培养学生搜集、组织信息的能力,掌握理论探究的基本方法。 2.以学习万有引力定律为载体,通过展现思维程序“提出问题→猜想与假设→理论分析→实验观测→验证结论”培养学生探究思维能力。 3. 认识物理模型、理想实验和数学工具在物理学发展过程中的作用。 (三)情感、态度和价值观 1.领略自然界的奇妙与和谐,蕴涵其中的规律之简洁,发展对科学的好奇心与求知欲。 2.体验牛顿在前人基础上发现万有引力的思考过程,说明科学研究的长期性、连续性、艰巨性,体现科学精神与人文精神的结合。 二、学情分析 教学对象分析:本节课的教学对象为高一年级学生。本节课使用的教材是人民教育出版社出版的普通高中课程标准实验教科书——物理②(必修),第六章第二、第三节的相关内容。将这两节内容进行整合,有利于学生经历完整的探究过程。这两节内容准备两课时完成,本节课主要是引领学生,用自己的手和脑,重新“发现”万有引力定律。经历将近两个学期的高中学习,学生已经基本掌握了高中物理的学习方法,具有一定的抽象思维能力和概括能力。另外,处于十七、八岁的他们,人生观、世界观正逐步形成,需要教师正确引导。 教学任务分析:本节课以天体运动为线索,通过猜想、建模、归纳、演绎、理想实验、检验等方法、运用牛顿运动定律、匀速圆周运动及向心力的知识,揭示万有引力定律。通过对科学简史和科学人物的介绍,突出了万有引力的发现过程,体现了科学精神和人文精神的结合。卡文迪许实验的介绍,说明任何科学发现都必须接受实验的验证。 教学设计思路:学生普遍感觉“万有引力”部分知识的学习为他们打开了探索宇宙的一扇天窗。但是,这部分知识的学习过程可以用:“难”、“繁”两字来概括。因此本节课采取了与以往不同的教授过程,在以往的接受式学习中融入了探究的学习方式,利用各种媒体的整合,使得课堂与课外,传统媒体与现代媒体、独立学习与协作学习结合在一起。学生成为了课堂的主体。 启发学生,激发学生的兴趣,在完成教材要求的同时,充分展现学生的活力,体现出他们的独立思考和团队互助与合作的能力。 教师在教学中力争做到:“以学生为本”,依据知识结构,依据学生认识规律的顺序,把握住教学过程,让学生在快乐、兴奋的状态下,完成教学目标。 三、教学重点和难点 教学重点:万有引力定律的发现。 教学难点:学生在参与重新“发现”万有引力定律的过程中,利用自身的物理知识体系架起沟通天体运动和万有引力定律的桥梁;学生将搜集到的有效信息及自己的思考归纳整理并向他人表述。

相关主题
文本预览
相关文档 最新文档