当前位置:文档之家› 用函数观点看方程

用函数观点看方程

用函数观点看方程
用函数观点看方程

用函数观点看方程(组)与不等式

第一课时 一次函数与一元一次方程

学习目标:

1、理解一次函数与一元一次方程的关系;

2、会根据一次函数的图象解决一元一次方程的求解。 学习重点:

用一次函数的图象求解一元一次方程。

学习难点:

一次函数与一元一次方程的关系的发现,归纳和运用。 学习过程:

一、自主学习:

(一)学生看课本P 123,完成下列问题:

(1)方程2x+20=0的解为________。

(2)自变量x 为_________时,函数y=2x+20的值为0?

(3)画出函数y=2x+20的图象,它与x 轴交点的坐标是(_______)。

(4)直线y=2x+20与x 轴交点的横坐标与方程2x+20=0的解有什么关系?

(学生独立思考后可进行小组内讨论、交流,并最终得出结论)。 结论:

求一元一次方程的解就是求一次函数与x 轴交点的横坐标。

(二)看例1,再次验证一次函数与一元一次方程的关系。

二、自主检测:

1、一元一次方程3x-6=0的解为x=2,那么一次函数y=3x-6的函数值为0时,自变量x 的取值为_______。

2、函数y=-21x-3的图象与x

-21x-3=0的解是_________。

3、如图是函数y=2x+2的图象,由图象可知

方程2x+2=0的解是__________。

4、当自变量x 的值满足什么条件时,函数列条件?

(1)y=0 (2)y=-5

三、课堂小结:

本节课你收获了什么?

四、布置作业:

课本P129 1,2

教后感:

函数与方程思想在高中的应用

函数与方程思想在高考中的应用 组长:潘云鹏 12033034 组员:夏炎 12304177 杨岑 12304154 张瑶 12304184 孙雪 12304013 高清华 12304196 谭博闻 12304159 郭志岩 12304143 刘春旭 12304009 函数与方程思想在高考中的应用

摘要本文阐述了函数思想与方程思想的概念、二者之间的相互转换及在转换时需要注意的一些问题.用典型的例题阐明用函数与方程思想方法能够轻易解决数学学科中不等式、数列、二项式定理、三角函数、平面向量、解析几何、立体几何、概率与统计、导数、实际问题等难以突破的部分,并且它也应用在其他学科领域中.并结合中学数学教学,提出教师应该在教学中有意培养学生的函数与方程思想,并且给出了具体可行性的建议. 一.函数与方程思想的概念 1.函数思想 函数思想是一种通过构造函数从而应用函数图象、性质解题的思想方法,即用运动变化的思想观点,分析和研究具体问题中的数量关系,通过函数的形式把这种数量关系表示出来,并加以研究其内在的联系,使问题获解.应用函数思想解题的基础是:常见函数的单调性、奇偶性、周期性、最值和图象变换等;熟练掌握一次函数、二次函数、指对数函数等具体特征;应用函数思想解题的关键是:善于观察题目的结构特征,揭示内在联系,挖掘隐含条件,从而恰当地构造函数和利用函数性质去解题.. 2.方程思想 方程思想是若干变量关系是通过解析式表示的,则可以把解析式看成一个等式,然后通过方程的讨论从而使问题获解.许多问题中含有常量、变量和参量,可以通过适当方式,运用方程的观点去观察、

深入分析问题的结构特点,抓住某一个关键变量,构造出这种等式来处理.两种思想方法是相辅相成的,有关方程、不等式、最值等问题,利用函数、方程观点加以分析,常可以使问题“明朗化”,从而易于找到适当解题途径. 3.函数与方程思想的相互转化 很明显,只有在对问题的观察、分析、判断等一系列的思维过程中,具备有标新立异、独树一帜的深刻性、独创性思维,才能构造出函数原型,化归为方程的问题,实现函数与方程的互相转化接轨,达到解决问题的目的. 方程与函数是中学数学的重点内容,占了相当多的份量,其中某些内容既是重点又是难点.例如,列方程(组)解应用题,函数的定义和性质,反函数的概念,平面解几里曲线的方程,方程的曲线的概念等等.方程的思想和函数的思想是处理常量数学与变量数学的重要思想,在解决一般数学问题中具有重大的方法论意义.在中学数学里,对各类代数方程和初等超越方程都作了较为系统的研究.对一个较为复杂的问题,常常先通过分析等量关系,列出一个或几个方程或函数关系式,再解方程(组)或研究这函数的性质,就能很好地解决问题.函数知识涉及到的知识点多,面广,在概念性、应用性、理解性上能达到一定的要求,有利于检测学生的深刻性、独创性思维. 二.函数思想在解题中的应用分析 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的

教学案例《方程的根与函数的零点》

《方程的根与函数的零点》教学案例 肃南一中程斌斌 一、教学内容分析 本节课选自《普通高中课程标准实验教课书数学I必修本(A版)》第94-95页的第三章第一课时3.1.1方程的根与函数的的零点。 函数与方程是中学数学的重要内容,既是初等数学的基础,又是初等数学与高等数学的连接纽带。在现实生活注重理论与实践相结合的今天,函数与方程都有着十分重要的应用,再加上函数与方程还是中学数学四大数学思想之一,因此函数与方程在整个高中数学教学中占有非常重要的地位。 就本章而言,本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形.它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3.1.2)加以应用,通过建立函数模型以及模型的求解(3.2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系.渗透“方程与函数”思想。 总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。 二学生学习情况分析 地理位置:学生大多来自基层,学生接触面较窄,个性较活跃,所以开始可采用竞赛的形式调动学生积极性;学生数学基础的差异不大,但进一步钻研的精神相差较大,所以可适当对知识点进行拓展。 程度差异性:中低等程度的学生占大多数,程度较高的学生占少数。 知识、心理、能力储备:学生之前已经学习了函数的图象和性质,现在基本会画简单函数的图象,也会通过图象去研究理解函数的性质,这就为学生理解函数的零点提供了帮助,初步的数形结合知识也足以让学生直观理解函数零点的存在性,因此从学生熟悉的二次函数的图象入手介绍函数的零点,从认知规律上讲,应该是容易理解的。再者一元二次方程是初中的重要内容,学生应该有较好的基础对于它根的个数以及存在性学生比较熟悉,学生理解起来没有多大问题。这也为我们归纳函数的零点与方程的根联系提供了知识基础。但是学生对其他函数的图象与性质认识不深(比如三次函数),对于高次方程还不熟悉,我们缺乏更多类型的例子,让学生从特殊到一般归纳出函数与方程的内在联系,因此理解函数的零点、函数的零点与方程根的联系应该是学生学习的难点。加之函数零点的存在性的判定方法的表示抽象难懂。因此在教学中应加强师生互动,尽多的给学生动手的机会,让学生在实践中体验二者的联系,并充分提供不同类型的二次函数和相应的一元二次方程让学生研讨,从而直观地归纳、总结、分析出二者的联系。 三、设计思想 教学理念:培养学生学习数学的兴趣,学会严密思考,并从中找到乐趣 教学原则:注重各个层面的学生 教学方法:启发诱导式 四、教学目标

专题三函数与方程及函数的应用

高三二轮复习专题三 函数与方程及函数的应用 主备教师:xxx 审核:xxx 班级___________ 姓名____________ 【考试要求】1、结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数2、根据具体函数的图象,能够用二分法求相应方程的近似解;3、了解函数模型的广泛应用。 【高考试题回放】 1、(2011天津理2)函数()23x f x x =+的零点所在的一个区间是( ). A. ()2,1-- B. ()1,0- C. ()0,1 D. ()1,2 2、(2011山东理10)已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3 ()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为 (A )6 (B )7 (C )8 (D )9 3、(2011湖北理10)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象成为衰变,假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系: ()30 02 t M t M -=,其中 M 为0=t 时铯137 的含量,已知30=t 时,铯137的含量的变化率是2ln 10-(太贝克/年),则()=60M A. 5太贝克 B. 2ln 75太贝克 C. 2ln 150太贝克 D. 150太贝克 4、(2011北京理6)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为 ()x A f x x A <=≥(A ,c 为常数)。已知工人组装第4件产品用时30分钟,组装第A 件 产品时用时15分钟,那么c 和A 的值分别是 A. 75,25 B. 75,16 C. 60,25 D. 60,16 【课内探究】探究一、确定函数的零点 例1.设函数1()ln (0)3 f x x x x = ->,则f(x)( ) A .在区间1[,1],(1,)e e 内均有零点 B.在区间1[,1],(1,)e e 内均无零点 C.在区间 1 [,1]e 内有零点,在区间(1,e )内无零点 D .在区间 1 [,1]e 内无零点,在区间(1,e )内有零点

26.2用函数观点看方程精编习题

1.二次函数221y x x =-+与x 轴的交点个数是( ) A .0 B .1 C .2 D .3 2.已知:二次函数24y x x a =-+,下列说法错误的是( ) A .当x <1时,y 随x 的增大而减小; B .若图象与x 轴有交点,则4a ≤; C .当3a =时,不等式24x x a -+>0的解是1<x <3; D .若将图象向左平移1个单位,再向上平移3个单位后过点(1,-2),则3a =-. 3.二次函数2y ax bx c =++的部分对应值如下表: 二次函数y ax bx c =++图象的对称轴为 ,2x =对应的函数值y = 。 4.如图,抛物线的对称轴是1x =,与x 轴交于A 、B 两点, 若B 点的坐标是,则A 点的坐标是 . 5.已知抛物线241y x x =-+与x 轴交于A 、B 两点,则A 、B 两点间的距离为 。 6.二次函数2(0)y ax bx c a =++≠的图象如图所示,根据图象解答下列问题: (1)写出方程2 0ax bx c ++=的两个根. (2)写出不等式20ax bx c ++>的解集. (3)写出y 随x 的增大而减小的自变量x 的取值范围. (4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围. 7.如图二次函数的图象与x 轴相交于A 、B 两点,与y 轴相交于C 、D 两点,点C 、D 是二次函数图象上的一对对称点,一次函数的图象过点B 、D. (1)求D 点的坐标; (2)求一次函数的表达式; (3)根据图象写出使一次函数值大于二次函数值的x 的取值范围.

8.如图,抛物线的顶点坐标是?? ? ??8925,-,且经过点) 14 , 8 (A . (1)求该抛物线的解析式; (2)设该抛物线与y 轴相交于点B ,与x 轴相交于C 、D 两点(点C 在点D 的左边), 试求点B 、C 、D 的坐标; (3)设点P 是x 轴上的任意一点,分别连结AC 、BC .试判断:PB PA +与BC AC + 的大小关系,并说明理由. 9.二次函数的二次项系数为2,它与x 轴交点的横坐标分别为1和4,则二次函数的解析式是( ) A .y=2(x -4)(x+2) B .y=2(x+4)(x -1) C .y=2(x -4)(x -1) D .y=2(x -4)(x+1) 10.已知抛物线的顶点到x 轴的距离为3,且与x 轴两交点的横坐标为4、2,则该抛物线的关系式为__________________. 11.画出函数y=x 2-4x -3的图象,根据图象回答下列问题: (1)图象与x 轴交点的坐标是什么? (2)方程x 2-4x -3=0的解是什么? (3)不等式x 2-4x -3>0,x 2-4x -3<0的解是什么? 12.二次函数y=-x 2+4x -3的图象交x 轴于A 、B 两点,交y 轴于C 点,则△ABC 的面积为( ) A .6 B .4 C .3 D .1 13.当a >0,Δ=b 2-4ac__________0时,二次函数y=ax 2+bx+c 的值恒为正;当a__________0,Δ= b 2-4ac__________0时,二次函数y=ax 2+bx+c 的值恒为负. 14.已知一抛物线与x 轴的交点为A (-1,0)、B (m ,0),且过第四象限内的点C (1,n ),而m+n=-1, mn=-12,则此抛物线关系式是__________. 15.抛物线y=ax 2+bx+c (a >0)与x 轴交于A (x 1,0),B (x 2,0),x 1

函数与方程思想简单应用

数学思想方法的简单应用(1) 一、函数与方程思想 函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还需要函数与方程的互相转化、接轨,达到解决问题的目的。 函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:y=f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解决问题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题、集合问题、数列问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。 1.证明:若 则为整数. 解析:若x+y+z+t=0,则由题设条件可得 ,于是此时(1)式的值等于-4. 若x+y+z+t≠0,则 由此可得x=y=z=t.于是(1)式的值等于4. 2.已知:函数g(x)=ax2﹣2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设函数f(x)=. (1)求a、b的值及函数f(x)的解析式; (2)若不等式f(2x)﹣k?2x≥0在x∈[﹣1,1]时恒成立,求实数k的取值范围;

方程的根与函数的零点

方程的根与函数的零点 教学重点:确定方程实数根的个数 教学难点:通过计算器或计算机做出函数的图象 教学方法:探讨法 教学过程: 引入问题 一元二次方程20(0)ax bx c a ++=≠的根与二次函数2 (0)y ax bx c a =++≠的图象有什么关系? 通过复习二者之间的关系引出新课(板书课题): 1.函数零点的定义: 对于函数()y f x =,我们把使()0f x =的实数x 叫做函数()y f x =的零点(zero point ).这样,函数()y f x =的零点就是方程()0f x =的实数根,也就是函数()y f x =的图象与x 轴的交点的横坐标,故有 2.一般结论 方程()0f x =有实数根?函数()y f x =的图象与x 轴有交点?函数()y f x =有零点 3.函数变号零点具有的性质 对于任意函数()y f x =,只要它的图象是连续不间断的,则有 (1)当它通过零点时(不是二重零点),函数值变号。如函数2()23f x x x =--的图象在零点1-的左边时,函数值取正号,当它通过第一个零点1-时,函数值由正变为负,再通过第二个零点3时,函数值又由负变成正(见教材第102页“探究”题)。 (2)在相邻两个零点之间所有的函数值保持同号。 4.注意点 (1)函数是否有零点是针对方程是否有实数根而言的,若方程没有实数根,则函数没有零点。 (2)如方程有二重实数根,可以称函数有二阶零点。 5.勘根定理 如果函数()y f x =在区间[,]a b 上的图象是连续不间断的一条曲线,并且有 ()()0f a f b ?<那么函数()y f x =在区间(,)a b 内有零点, 即存在(,)c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的实数根。 例1.求函数()ln 26f x x x =+-的零点个数。 分析:求函数的零点个数实际上是判断方程有没有实数根,有几个实数根的方法,其步骤是:

专题:函数与方程(章节练习)

专 题 函数与方程综合复习 教学目标 理解函数零点的概念,掌握函数零点的求法 理解二分法的概念,了解二分法是求方程近似解的常用方法,掌握 运用二分法求简单方程近似解的方法。 重点、难点 函数零点与方程根的关系 运用二分法求方程的近似解,用二分法求方程的近似解的步骤 考点及考试要求 结合二次函数的图像,了解函数的零点和方程根的关系,判断一二 次函数根的存在性及根的个数 (2)根据具函数的图像,能够用二分法求相应方程的近示解 教学知识框架 1理解二次函数根与系数的关系 2了解函数的零点与根的关系 3掌握二分法求相应方程的近示解 考点一:方程的根与函数的零点 典型例题 1二次函数的性质的应用 例1.已知函数212()325 f x x x =--- (1)求函数的开口方向、对称轴、顶点坐标、与x 轴的交点坐标 (2) 求函数的单调区间、最值、零点 (3)设图像与x 轴相交与(x 2,0)(x 1,0)求12x x -的值 (4) 已知71815(),()254 f f -=-不计算函数值,求的值 (5)不计算函数值,试比较115f ()()44 f --与的大小 2一次函数与二次函数的零点 例2.函数()f ()1-1,1x kx =+在区间上存在零点,求k 的取值范围 例3二次函数y=ax 2+bx+c 中,a.c <0则函数的零点的个数是 3函数零点的应用 (1)有关方程根的个数的应用 例4.已知对于一切实数x ∈R ,函数f(x)=f(x-2)成立,且方程f(x)=0有五个不同的实根,则这五个实根的和为 (2)利用函数零点解不等式 例5.二次函数y=ax 2+bx+c (a ≠0)的部分对应值如下表 x -3 -2 -1 0 1 2 3 4 y 6 0 -4 -6 -6 -4 0 6 则不等式ax 2+bx+c >0的解集是

用函数的观点看方程组与不等式

第14讲 用函数的观点看方程(组)或不等式 【回顾与思考】 【例题经典】 利用一次函数图象求方程(组)的解 例1 (1)(2006年陕西省)直线y=kx+b (k ≠0)的图象如图1,则方程kx+b=0?的解为 x=_______,不等式kx+b<0的解集为x_______. (1) (2) (3) 【点评】抓住直线与x 的交点就可迎刃而解. (2)(2006年重庆市)如图2,已知函数y=?ax+?b?和y=?kx?的图象,则方程组y ax b y kx =+??=? 的解为 _______. 【点评】两直线的交点坐标即为方程组的解. 利用二次函数的图象求二元二次方程的根或函数值的取值范围 例2 (2006年吉林省)已知二次函数y 1=ax 2+bx+c (a≠0)和直线y 2=kx+b (k ≠0)的图象如图3,则当 x=______时,y 1=0;当x______时,y 1<0;当x______时,y 1>y 2. 【点评】抓住抛物线与x 轴的交点和直线与抛物线交点来观察分析. 利用函数与方程、不等式关系解决综合问题 例3 某医药研究所开发了一种新药,在试验药效时发现,?如果成人按规定剂量服用,那么服药后2小时时血液中含药量最高,达每毫升6微克(1微克=10-3毫克),?接着逐步衰减,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量y (微克)随时间x (小时)的变化如图所示.当成人按规定剂量服药后: (1)分别求出x ≤2和x ≥2时x 与y 之间的函数关系式; (2)如果每毫升血液中含药量为4微克或4微克以上时在治疗疾病时是有效的,那么这个有效时间是多长?

方程的根与函数的零点题型及解析

方程的根与函数的零点 题型及解析 标准化管理部编码-[99968T-6889628-J68568-1689N]

方程的根与函数的零点题型及解析1.求下列函数的零点 (1)f(x)=x3+1;(2)f(x)=;(3)y=﹣x2+3x+4;(4)y=x2+4x+4. 分析:根据函数零点的定义解f(x)=0,即可得到结论. 解:(1)由f(x)=x3+1=0得x=﹣1,即函数的零点为﹣1;(2)由f(x)==0 得x2+2x+1=0得(x+1)2=0,得x=﹣1,即函数的零点为﹣1.(3)由y=﹣x2+3x+4=0,可得(x﹣4)(x+1)=0,所以函数的零点为4,﹣1;(4)y=x2+4x+4,可得(x+2)2=0,所以函数的零点为﹣2. 2.①求函数f(x)=2x+x﹣3的零点的个数;②求函数f(x)=log 2 x﹣x+2的零点的个数;③求函数的零点个数是多少? 分析:①由题意可判断f(x)是定义域上的增函数,从而求零点的个数;②由题意可 得,函数y=log 2 x 的图象和直线y=x﹣2的交点个数,数形结合可得结论.③由函数 y=lnx 的图象与函数y=的图 象只有一个交点,可得函数f(x)=lnx-(1/x)的零点个数. 解:①∵函数f(x)=2x+x﹣3单调递增,又∵f(1)=0,故函数f(x)=2x+x﹣3 有且只有一个零点 ②函数f(x)=log 2x﹣x+2的零点的个数,即函数y=log 2 x 的图象和直线y=x﹣2 的交点个数,如图所示:故函数y=log 2 x 的图象(红色部分)和直线y=x﹣2(蓝 色部分)的交点个数为2,即函数f(x)=log 2 x﹣x+2的零点的个数为2;③函数 f(x)=lnx-(1/x)的零点个数就是函数y=lnx的图象与函数y=1/x的图象 的 交点的个数,由函数y=lnx 的图象与函数y=1/x的图象只有一个交点,如图 所示, 可得函数f(x)=lnx-(1/x)的零点个数是1 3.①已知方程x2﹣3x+a=0在区间(2,3)内有一个零点,求实数a的取值范围 ②已知a是实数,函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个 零点,求a的取值. ③已知函数f(x)=x2﹣2ax+4在区间(1,2)上有且只有一个零点,求a的取值范围 分析:①由已知,函数f(x)在区间(2,3)内有一个零点,它的对称轴为x=3/2,得出不等式组,解出即可; ②若函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个零点,则f(0)<0,f(1)>0,f(2)>0,f(4)<0,解得答案;③若函数f(x)=x2﹣2ax+4只有一个零点,则△=0,经检验不符合条件;则函数f(x)=x2﹣2ax+4有两个零点,进而f (1)f(2)<0,解得答案 解:①若函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个零点,则f (0)<0,f(1)>0,f(2)>0,f(4)<0,即-3<0,a-4>0,2a-7>0,4a-19<0,解得:a∈(4,19/4);②∵令f(x)=x2﹣3x+a,它的对称轴为x=3/2,∴函数f (x)在区间(2,3)单调递增,∵方程x2﹣3x+a=0在区间(2,3)内有一个零点,∴函数f(x)在区间(2,3)内与x轴有一个交点,根据零点存在性定理得出:f(2)<0,f(3)>0,即a-2<0,9-9+a>0,解得0<a<2;③解:若函数f(x)=x2﹣2ax+4只有

人教版初二(上)数学第26讲:用函数观点看方程(组)与不等式(教案教学设计导学案)

用函数观点看方程(组)与不等式 __________________________________________________________________________________ __________________________________________________________________________________ 1、能用函数观点看一次方程(组)、不等式; 2、能用辩证的观点认识一次函数与一次方程、不等式的区别与联系; 3、在解决简单的一次函数的问题过程中,建立数形结合的思想及转化思想. 1.一次函数与一元一次方程 由于任何一元一次方程都可以转为(为常数,)的形式,所以解一元一次方程可转化为:当某一个函数的值为0时,求__________的值.从图像上看,这相当于已知直线,确定它与轴交点的横坐标的值. 2. 一次函数与不等式 由于任何一元一次不等式都可以转为或(为常数,)的形式,所以解一元一次不等式可看作:当一次函数的值_________时,求自变量相应的取值范围. 3.一次函数与二元一次方程组 一般地,每个二元一次方程组都对应两个一次函数,于是对应两条直线.从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从的“形”角度看,解方程组相当于确定两条直线_________的坐标. 参考答案: 1. 相应的自变量 2. 大(小)于0 3. 交点 1、解一次函数与一元一次方程 【例1】一个物体现在的速度是5米/秒,其速度每秒增加2米/秒,再过几秒它的速度是17米/秒? 【解析】应用一次函数的与一元一次方程的方法即可求解. 解法1:设再过秒物体的速度是17米/秒,列方程得

高中数学竞赛专题一 函数与方程思想

高中数学竞赛专题一函数与方程思想 函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,它主要包括函数的概念、图象和性质以及几类典型的函数,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来考虑问题,研究问题和解决问题。函数思想贯穿于高中代数的全部内容,它是在学习指数函数、对数函数以及三角函数的过程中逐渐形成,并为研究这些函数服务的,如研究方程、不等式、数列、解析几何等其他内容,一直是高考的热点、重点内容。函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数关系,运用函数的知识,使问题得到解决.这种思想方法在于揭示问题的数量关系的本质特征,重在对问题的变量的动态研究,从变量的运动变化,联系和发展角度拓宽解题思路. 和函数有必然联系的是方程,方程是初中代数的主要内容,初中阶段主要学习了几类方程和方程组的解法,方程的思想就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略。 一、考点回顾 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。比如,对于满足0≤p≤4的一切实数,不等式x2+px>4x+p-3恒成立,试求x的取值范围一例,我们习惯上把x当作自变量,构造函数y=x2+(p-4)x+3-p,于是问题转化为:当p∈[0,4]时,y>0恒成立,求x的取值范围.解决这个等价的问题需要应用二次函数以及二次方程的区间根原理,可想而知,这是相当复杂的. 如果把p看作自变量,x视为参数,构造函数y=(x-1)p+(x2-4x+3),则y是p的一次函数,就非常简单.即令 f(p)=(x-1)p+(x2-4x+3).函数f(p)的图象是一条线段,要使f(p)>0恒成立,当且仅当f(0)>0,且f(4)>0,解这个不等式组即可求得x的取值范围是(-∞,-1)∪(3,+∞).本题看上去是一个不等式问题,但是经过等价转化,我们把它化归为一个非常简单的一次函数,并借助于函数的图象建立了一个关于x的不等式组来达到求解的目的 在函数的学习和复习中,要做到熟练掌握基础知识,充分理解各知识点间的内在联系,如数列中的an、Sn都可以看作是n的函数而应用函数思想以获得新的解法。要总结、归纳运用

用函数观点看一元二次方程(含答案)

用函数观点看一元二次方程 学习要求 1.理解二次函数与一元二次方程的关系,掌握抛物线与x轴的交点与一元二次方程两根之间的联系,灵活运用相关概念解题. 2.掌握并运用二次函数y=a(x-x1)(x-x2)解题. 课堂学习检测 一、填空题 1.二次函数y=ax2+bx+c(a≠0)与x轴有交点,则b2-4ac______0; 若一元二次方程ax2+bx+c=0两根为x1,x2,则二次函数可表示为y=_________ ____________. 2.若二次函数y=x2-3x+m的图象与x轴只有一个交点,则m=______. 3.若二次函数y=mx2-(2m+2)x-1+m的图象与x轴有两个交点,则m的取值范围是______. 4.若二次函数y=ax2+bx+c的图象经过P(1,0)点,则a+b+c=______. 5.若抛物线y=ax2+bx+c的系数a,b,c满足a-b+c=0,则这条抛物线必经过点______. 6.关于x的方程x2-x-n=0没有实数根,则抛物线y=x2-x-n的顶点在第______象限. 二、选择题 7.已知抛物线y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0( ) A.没有实根 B.只有一个实根 C.有两个实根,且一根为正,一根为负

D.有两个实根,且一根小于1,一根大于2 8.一次函数y=2x+1与二次函数y=x2-4x+3的图象交点( ) A.只有一个B.恰好有两个 C.可以有一个,也可以有两个D.无交点 9.函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c-3=0的根的情况是( ) A.有两个不相等的实数根B.有两个异号实数根 C.有两个相等的实数根D.无实数根 10.二次函数y=ax2+bx+c对于x的任何值都恒为负值的条件是( ) A.a>0,>0 B.a>0,<0 C.a<0,>0 D.a<0,<0 三、解答题 11.已知抛物线y=ax2+bx+c与x轴的两个交点的横坐标是方程x2+x-2=0的两个根,且抛物线过点(2,8),求二次函数的解析式.

函数与方程思想在初中数学解题中的应用

函数与方程思想在初中数学解题中的应用 张猛 【内容提要】:函数与方程思想是初中数学中的基本思想。它们密切相关,有时需要互相转化来解决问题。本文对初中数学中的函数与方程思想的内涵作了探讨,并结合一些具体案例说明了函数与方程思想在初中数学解题中的应用。 关键词:函数;方程;函数与方程思想应用案例 数学知识可以记忆一时,但数学思想和方法却随时随地发挥作用,使人受益终身。近年来中考考纲已明确提出不仅要考察学生的数学知识和思维能力,还要考察学生思想方法的运用能力。其中,函数与方程思想是众多考试考查的最基本的数学思想方法之一。学生仅仅学习了函数与方程的知识是不够的,应通过解题和对解题过程的反思来领悟函数与方程思想。 一:函数与方程思想的地位与作用 函数与方程思想,简单地说,就是学会用函数和变量来思考,学会转化已知与未知的关系。在解题时,用函数思想做指导就需要把字母看作变量,把代数式看作函数,利用函数性质做工具进行分析,或者构造一个函数把表面上不是函数的问题化归为函数问题。用方程思想做指导就需要把含字母的等式看作方程,研究方程的根有什么要求。函数与方程思想在解题过程中有着密切的联系。 目前初中阶段主要数学思想有:函数与方程思想、数形结合思想、分类讨论思想,化归与转化思想、图形运动思想、数学模型思想。函数与方程思想,既是函数与方程思想的体现,也是两种思想综合运用

的体现,是研究变量与函数,相等与不等过程中的基本数学思想。 本文例析函数与方程思想在解题中的应用: 二:函数与方程思想的应用案例 通过整理与归纳,可以发现,在数学解题中,函数与方程思想常用于以下几类问题的解决。 1 求代数式的值 例1 已知 22a b ==求22(3124)(2813)a a b b -+-+的值。 解:因为24,1,,410a b ab a b x x +==-+=所以为方程的两个根。 当x a =时,2410.a a -+=可得2231243(41)11a a a a -+=-++=; 当x b =时,222410.28132(41)1111b b b b b b -+=-+=-++=可得 ∴ 原式=1?11=11。 解题反思:此题若将a ,b 的值分别代入所求式中计算,显然运算过程很麻烦。观察发现,所求式中两个括号内的二次项系数之比与一次项系数之比相等,因此可先算出a +b =4,ab =1.利用根与系数的关系构建一元二次方程,这样解起来就简便多了,体现了方程思想的简捷性。 2 解应用问题 例2 某开发公司生产的960件新产品需要精加工后才能投放市场,现有甲、乙两个工厂同时加工这批产品。已知甲厂单独完成加工任务比乙厂单独完成加工任务多用20天,而乙厂每天比甲厂多加工8件产品。公司每天需付甲厂加工费800元,每天需付乙厂加工费1200元。 (1)甲、乙两个工厂每天各加工多少件新产品? (2)请你计算两厂合作完成加工任务公司所付费用。 解:(1)设甲厂每天加工x 件新产品,则乙厂每天加工(x +8)件。 依题意得方程 960960208x x -=+。

《方程的根与函数的零点》测试题

《3.1.1 方程的根与函数的零点》测试题 一、选择题 1.(2012天津)函数在区间(0,1)内的零点个数是( ). A.0 B.1 C.2 D.3 考查目的:考查函数零点的概念与零点存在性定理的应用. 答案:B. 解析:∵函数在区间(0,1)上连续且单调递增,又∵,,∴根据零点存在性定理可知,在区间内函数零点的个数有1个,答案选B. 2.(2010浙江)已知是函数的一个零点.若,,则( ). A. B. C. D. 考查目的:考查函数零点的概念、函数的性质和数形结合思想. 答案:B. 解析:(方法1)由得,∴.在同一直角坐标系中,作出函数,的图象,观察图象可知,当时,;当时,,∴,. (方法2)∵函数、在上均为增函数,∴函数在上为增函数,∴由,得,由,得. 3.若是方程的解,则属于区间( ).

A. B. C. D. 考查目的:考查函数零点的存在性定理. 答案:D. 解析:构造函数,由,知,属于区间(1.75,2). 二、填空题 4.若函数的零点位于区间内,则 . 考查目的:考查函数零点的存在性定理. 答案:2. 解析:∵函数在定义域上是增函数,∴函数在区间上只有一个零点. ∵,,,∴函数的零点位于区间内,∴. 5.若函数在区间(-2,0)与(1,2)内各有一个零点,则实数的取值范围. 考查目的:考查函数零点的概念,函数零点的存在性定理和数形结合思想. 答案:. 解析:由题意画出函数的草图,易得,即,解得. 6.已知函数,设函数有两个不同的零点,则实数 的取值范围是. 考查目的:考查函数零点的概念、函数与方程的关系和数形结合思想. 答案:.

解析:函数有两个不同的零点,即方程有两个不同的实数根,画出函数图象与直线,观察图象可得满足题意的实数的取值范围是. 三、解答题 7.利用函数图象判断下列方程有没有根,有几个根? ⑴; ⑵. 考查目的:考查方程有实数根等价于函数的图象与轴交点的情况. 解析:⑴方程可化为,作出函数的图象,与轴有两个交点,故原方程有两个实数根; ⑵方程可化为,作出函数的图象,开口向上,顶点坐标为,与轴没有交点,故原方程没有实数根. 8.求出下列函数零点所在的区间. ⑴;⑵. 考查目的:考查函数零点的存在性定理. 解析:⑴∵函数的定义域为,且在定义域上单调递增,在 上最多只有一个零点.又∵,, ,∴函数的零点所在的区间为. ⑵∵函数的定义域为R,且在定义域上单调递减,∴函数在R上最多只有一个零点,又∵,,,∴函数零点所在的区间为.

专题7:函数与方程思想(理)

专题七:函数与方程思想 【思想方法诠释】 函数与方程都是中学数学中最为重要的内容.而函数与方程思想更是中学数学的一种基本思想,几乎渗透到中学数学的各个领域,在解题中有着广泛的应用,是历年来高考考查的重点. 1.函数的思想 函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题.经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等. 2.方程的思想 方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题,方程思想是动中求静,研究运动中的等量关系. 3.函数思想与方程思想的联系 函数思想与方程思想是密切相关的,如函数问题可以转化为方程问题来龙去脉解决;方程问题也可以转化为函数问题加以解决,如解方程f (x)=0,就是求函数y= f (x)的零点,解不等式f (x)>0(或f (x)<0),就是求函数y= f (x)的正负区间,再如方程f (x)=g(x)的交点问题,也可以转化为函数y= f (x)-g(x)与x轴交点问题,方程f (x)= a有解,当且仅当a属于函数f (x)的值域,函数与方程的这种相互转化关系十分重要. 4.函数与方程思想解决的相关问题 (1)函数思想在解题中的应用主要表现在两个方面: ①借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题; ②在问题研究中通过建立函数关系式或构造中间函数;把研究的问题化为讨论函数的有关性质,达到化难为易,化繁为简的目的. (2)方程思想在解题中的应用主要表现在四个方面: ①解方程或解不等式; ②带参变数的方程或不等式的讨论,常涉及一元二次方程的判别式、根与系数的关系、区间根、区间上恒成立等知识应用; ③需要转化为方程的讨论,如曲线的位置关系; ④构造方程或不等式求解问题.

高中数学必修一 函数与方程的思想方法

函数与方程的思想方法 函数与方程的思想是中学数学的基本思想,也是历年高考的重点。 函数的思想,是用运动和变化的观点、集合与对应的思想,去分析和研究数学问题中的数量关系,建立函数关系或构造函数,再利用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。函数思想的精髓就是构造函数。 方程的思想,是分析数学问题中变量间的等量关系,从而建立方程或方程组,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。 方程的思想与函数的思想密切相关,函数与方程的思想方法,几乎渗透到中学数学的各个 领域,在解题中有着广泛的运用。对于函数 ) (x f y=,当0 = y时,就转化为方程0 ) (= x f, 也可以把函数式 ) (x f y=看做二元方程0 ) (= -x f y,函数与方程这种相互转化的关系十 分重要。 函数与表达式也可以相互转化,对于函数 ) (x f y=,当0 > y时,就转化为不等式 ) (> x f,借助与函数的图像与性质可以解决不等式的有关问题,而研究函数的性质,也离不开解不等式。 数列的通项或前n项和时自变量为自然数的函数,用函数观点去处理数列问题也是十分重要。 函数 ) ( ) ( ) (* N n bx a x f n∈ + =与二项式定理密切相关,利用这个函数,用赋值法和比 较系数法可以解决很多有关二项式定理的问题。 解析几何中的许多问题,例如直线与二次曲线的位置关系问题,需要通过解二元方程组才能解决,这都涉及二次方程与二次函数的有关理论。 立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决。建立空间向量后,立体几何与函数的关系就更加密切。 函数思想在解题中的应用主要表现在两个方面:一是借助初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关问题,达到化难为易、化繁为简的目的。 高考中的方程和不等式问题包括方程、不等式的求解及方程、不等式观点的应用,可以分成逐渐提高的四个层次。 第一层次:解方程或不等式,主要是指解代数(一次、二次等)方程或不等式,指数、对数方程或不等式,三角方程或不等式,复数方程等; 第二层次:对带参数的方程或不等式的讨论,常涉及二次方程的判别式、韦达定理、区间根、区间上恒成立的不等式等问题; 第三层次:转化为方程的讨论,如曲线的位置关系(包括点与曲线及直线与曲线的位置关系)、函数的性质、集合的关系等; 第四层次:构造方程或不等式求解问题。 其中第三、四层次(特别是第四层次)已经进入到方程、不等式观点应用的境界,即把方程、不等式作为基本数学工具去解决各个学科中的问题。 纵观中学数学,可谓是以函数为中心,以函数为纲,“纲举目张”,抓住了函数这个“纲”

方程的根与函数的零点说课稿

《方程的根与函数的零点》说课稿 1 教材分析 1.1 地位与作用 本节内容为人教版《普通高中课程标准实验教科书》A版必修1第三章《函数的应用》第一节《函数与方程》的第一课时,主要内容是函数零点概念、函数零点与相应方程根的关系、函数零点存在性定理,是一节概念课. 新课标教材新增了二分法,也因而设置了本节课.所以本节课首先是为“用二分法求方程的近似解”打基础,零点概念与零点存在性定理的是二分法的必备知识.之前的教材虽然没有设置本节内容,但方程的根与函数的关系从来是重要且无法回避的,所以将本节课直接编入教材很有必要.本节课也就不仅为二分法的学习做准备,而且为方程与函数提供了零点这个连接点,从而揭示了两者之间的本质联系,这种联系正是“函数与方程思想”的理论基础.用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础. 从研究方法而言,零点概念的形成和零点存在性定理的发现,符合从特殊到一般的认识规律,有利于培养学生的概括归纳能力,也为数形结合思想提供了广阔的平台. 1.2 教学重点 基于上述分析,确定本节的教学重点是:了解函数零点概念,掌握函数零点存在性定理. 2 学情分析 2.1 学生具备必要的知识与心理基础. 通过前面的学习,学生已经了解一些基本初等函数的模型,具备一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础.方程是初中数学的重要内容,用所学的函数知识解决方程问题,扩充方程的种类,这是学生乐于接受的,故而学生具备心理与情感基础. 2.2学生缺乏函数与方程联系的观点. 高一学生在函数的学习中,常表现出不适,主要是数形结合与抽象思维尚不能胜任.具体表现为将函数孤立起来,认识不到函数在高中数学中的核心地位. 例如一元二次方程根的分布问题,学生自然会想到韦达定理,而不是看二次函数的图象.函数与方程相联系的观点的建立,函数应用的意识的初步树立,就成了本节课必须承载的任务. 2.3直观体验与准确理解定理的矛盾. 从方程根的角度理解函数零点,学生并不会觉得困难.而用函数来确定方程根的个数和大致范围,则需要适应.换言之,零点存在性定理的获得与应用,必须让学生从一定量的具体案例中操作感知,通过更多的举例来验证.

基本初等函数、函数与方程专题

基本初等函数、函数与方程专题 1.函数f (x )=ln(x 2+1)的图象大致是( ) 解析:选A 函数f (x )的定义域为R ,由f (-x )=ln [(-x )2+1]=ln(x 2+1)=f (x )知函数f (x )是偶函数,则其图象关于y 轴对称,排除C ;又由f (0)=ln 1=0,可排除B ,D .故选A . 2. 若0<a <b <1,m =a b ,n =b a ,p =log b a ,则m ,n ,p 这三个数的大小关系正确的是( ) A .n <m <p __ B .m <n <p C .p <m <n D .p <n <m 解析:选B 由0log b b =1,而0

相关主题
文本预览
相关文档 最新文档